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Two-loop renormalization group equations in general gauge field theories
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The complete set of two-loop renormalization group equations in general gauge field theories is presented.
This includes theb functions of parameters with and without a mass dimension.
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I. INTRODUCTION

Renormalization group equations~RGEs! provide a
unique method in the analysis of particle physics. A comp
hensive analysis of RGEs confirmed the behavior
asymptotic freedom in QCD, which played a pivotal role
establishing a non-Abelian gauge theory for the strong in
action @1#. The running of the coupling constants and ma
parameters is crucial in the global analysis of high precis
electroweak experiments@2#. On the other hand, a RGE
analysis extrapolated to extremely high energy provide
possible, in some cases the only feasible, test for phy
beyond the standard model~SM!. RGEs are a natural ingre
dient in the analysis of grand unification theories and str
theories. For more than ten years, it has been known
gauge couplings do not unify within the SM. This gives ex
evidence against simple grand unification theories such
SU(5) without supersymmetry, in addition to the nonobs
vation of proton decay. On the other hand, gauge coupli
seem to unify at a scale;231016 GeV in the minimal su-
persymmetric standard model, which can be interpreted
indirect evidence for supersymmetry as well as unificat
theories@3–5#.

Computations of RGEs in gauge theories have been
formed for various models to different orders of perturbatio
Persistent efforts yielded recently a four-loop result for theb
function of the strong coupling constant@6#. Two-loop RGEs
of dimensionless couplings in general gauge theory as
as in the specific case of the SM were calculated long ag
a series of classic papers by Machacek and Vaughn@7–9#.
By introducing a nonpropagating gauge-singlet ‘‘dumm
scalar field, two-loop RGEs of dimensional couplings can
readily inferred from dimensionless results@10,11#. These
were used to derive the RGEs of supersymmetric theori
decade later@10#.

Recently@11#, we recalculated the two-loop RGEs in th
SM, using a combination of the general results of@7–9# and
direct calculations from Feynman diagrams. A new coe
cient was found in theb function of the quartic coupling and
a class of gauge invariants were found to be absent in thb
functions of hadronic Yukawa couplings. We also presen
the two-loopb function of the Higgs boson mass parame
in complete form, which provided a partial but useful che
on the calculation of the quartic coupling. Whenever discr
ancy with results in the literature appeared, we carefully
spected the relevant Feynman diagrams to ensure co
tency. In this paper, we present the complete set of two-l
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renormalization group equations in general gauge field th
ries. This includes theb functions of parameters with an
without a mass dimension. The results in@11# can then be
readily reproduced.

In Sec. II, we present essential notations and definitio
along with a discussion of the differences between@7–9# and
our analysis. In Sec. III, we present theg functions of the
scalar and fermion fields. In Sec. IV, we present theb func-
tions of dimensionless parameters and in Sec. V those
dimensional parameters. In Sec. VI the results are exten
to semisimple groups. We conclude in Sec. VII.

II. NOTATION AND DEFINITIONS

We start with a general renormalizable field theory w
gauge fieldsVm

A of a compact simple groupG, scalar fields,
fa , and two-component fermion fieldsc j . In Sec. VI, these
results will be extended to semisimple groups. The Lagra
ian of the theory can be conveniently divided into three pa

L5L01L11~gauge fixing1 ghost terms!, ~1!

where L0 contains no dimensional parameters andL1 in-
cludes all terms with dimensional parameters. Explicitly,

L052
1

4
FA

mnFmn
A 1

1

2
DmfaDmfa1 ic j

1smDmc j

2
1

2
~Yjk

a c jzckfa1H.c.!2
1

4!
labcdfafbfcfd ,

~2!

wherez56 is2. Unlike @7–9#, we have included an overa
1
2 factor in the Yukawa coupling terms. The gauge fie
strengths are defined to be

Fmn
A 5]mVn

A2]nVm
A1g fABCVm

BVn
C , ~3!

where f ABC are the structure constants of the gauge gro
andg is the gauge coupling constant. Choosing the stand
Rj gauge, the gauge field propagator is

Dmn
AB~k!5dABS 2gmn1~12j!

kmkn

k2 D i

k2 , ~4!

wherej is the gauge parameter. The covariant derivatives
the matter fields are
©2003 The American Physical Society19-1
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Dmfa5]mfa2 iguab
A Vm

Afb , ~5!

Dmc j5]mc j2 igt jk
A Vm

Ack , ~6!

where bothuab
A and t jk

A are Hermitian matrices, which form
representations of the gauge group on the scalar and ferm
fields, respectively. Since any complex scalar fields can
ways be decomposed in terms of real ones, scalars in
paper are assumed to be real.uA are thus purely imaginary
and antisymmetric. For later convenience, we define the
lowing gauge invariants:

C2
ab~S!5uac

A ucb
A , S2~S!dAB5Tr@uAuB#, ~7!

C2
ab~F !5tac

A tcb
A , S2~F !dAB5Tr@ tAtB#, ~8!

C2~G!dAB5 f ACDf BCD. ~9!

C2
ab(R) is block diagonal for each irreducible representat

R(5S,F) of eigenvalues ofC2(R).
In this paper, we use dimensional regularization and

modified minimal subtraction algorithm. The renormaliz
coupling constantsxk in d5422e are related to the corre
sponding bare coupling constantsxk

0 by

xk
0m2rke5xk1 (

n51

`

ak
(n) 1

en , ~10!

wherem is an arbitrary mass scale parameter,rk51(2) for
gauge and Yukawa~scalar quartic! coupling constants, and
ak

(n) are to be calculated perturbatively. Theb functions ofxk

are defined to be

bxk
5m

dxk

dm U
e50

. ~11!

It is easy to see that

bxk
5(

l
r lxl

]ak
(1)

]xl
2rkak

(1) . ~12!

Perturbatively, one has

bxk
5

1

~4p!2 bxk

I 1
1

~4p!4bxk

II 1•••, ~13!

wherebxk

I and bxk

II are one- and two-loop contributions, re

spectively. The wave function renormalization constantZi of
the i th field can be expressed as

Zi511 (
n51

`

Ci
(n) 1

en . ~14!

The corresponding anomalous dimension is

g i5
1

2
m

d

dm
logZi52

1

2 (
l

r lxl

]Ci
(1)

]xl
. ~15!

Also perturbatively, one has
06501
ion
l-
is

l-

e

g i5
1

~4p!2 g i
I1

1

~4p!4g i
I I 1•••, ~16!

where g i
I and g i

I I are one- and two-loop contributions, re
spectively.

The constraint on the Yukawa coupling matrices impos
by gauge invariance is given by

Yjk
b uba

A 1Yjl
a t lk

A 1t j l
A* Ylk

a 50. ~17!

When a fermion is involved simultaneously with a Yukaw
coupling and a gauge coupling, one usually has the com
nation Yjl

a t lk
A 1t j l

A* Ylk
a . That is to say, in these cases,Ya is

always preceded by atA* or followed by atA. Equation~17!
can thus be used to simplify the gauge structure of Feynm
diagrams. In@7–9#, fermion fields are implicitly assumed t
be real sotA are pure imaginary and antisymmetric.t j l

A! was
replaced by2t j l

A and Eq.~17! is reduced to

Yjk
b uba

A 1Yjl
a t lk

A 2t j l
AYlk

a 50. ~18!

However, in most physical theories, fermions are in gene
Weyl and complex, with only the possible exceptions of ne
trinos and gauginos as real Majorona fermions. Fortunat
close inspections of Feynman diagrams show that both
proaches yield the same final results in most cases. In c
where they differ, we will retaint j l

A! .
By assuming real fermion fields, the direction of a fe

mion propagator need not be discriminated either. Shown
Fig. 1 are two fermion loop diagrams that contribute to t
propagators of scalar fields. The two diagrams are differ
for complex fermions and the total result is proportional t

Y2
ab~S!5

1

2
Tr~Y1aYb1Y1bYa!. ~19!

Y2
ab(S) forms a Hermitian matrix and is block diagonal fo

each irreducible representation of the eigenvalueY2(S). For
real fermions, the two terms inY2

ab(S) become equal and
they reduce to a common factor Tr(Y1aYb). Again, we will
retain Eq.~19! and other similar combinations.

The second part of the Lagrangian is

L152
1

2
@~mf ! jkc jzck1H.c.#2

mab
2

2!
fafb2

habc

3!
fafbfc .

~20!

In principle, theb functions of (mf) jk , mab
2 , andhabc can be

calculated directly. But this would be tedious and can

FIG. 1. Fermion radiative corrections to the scalar propaga
9-2
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avoided. To do so, we introduce a nonpropagating dum
real scalar fieldf d̂ with no gauge interactions and rewrite th
Lagrangian as

L152
1

2
~Yjk

d̂ c jzckf d̂1H.c.!2
labd̂d̂

4!
fafbf d̂f d̂

2
labcd̂

4!
fafbfcf d̂ ~21!

with the substitutions ofYi j
d̂ 5(mf) i j , labd̂d̂52mab

2 , and
labcd̂5habc . The b functions of mf , mab

2 , and habc are

equal to those of the new Yukawa couplingYd̂, the quartic
scalar couplinglabd̂d̂ , andlabcd̂. The latter can be readily
obtained from theb functions ofYa andlabcd by suppress-
ing both the summations of thed̂-type indices and related
gauge couplings.

III. WAVE FUNCTION RENORMALIZATION

A. Scalar wave function renormalization

To one loop, the anomalous dimensions of scalars are

gab
sI 52kY2

ab~S!2g2~32j!C2
ab~S!. ~22!

To two loops,

gab
sII52g4C2

ab~S!F S 35

3
22j2

1

4
j2DC2~G!2

10

3
kS2~F !

2
11

12
S2~S!G1

1

2
Lab

2 ~S!1
3

2
g4C2

ac~S!C2
cb~S!

23kHab
2 ~S!22kH̄ab

2 ~S!110kg2Yab
2F~S!, ~23!

wherek51/2 (1) for two- ~four-!component fermions, and

Lab
2 ~S!5

1

6
lacdelbcde, ~24!

Hab
2 ~S!5

1

2
Tr~YaY1bYcY1c1Y1aYbY1cYc!, ~25!

H̄ab
2 ~S!5

1

2
Tr~YaY1cYbY1c1Y1aYcY1bYc!, ~26!

Yab
2F~S!5

1

2
Tr@C2~F !~YaY1b1YbY1a!#. ~27!

In contrast with@7#, Y2
ab(S), Hab

2 (S), H̄ab
2 (S), andYab

2F(S)
are modified so that they are Hermitian for complex ferm
ons. As mentioned above, this is because complex ferm
lines have two distinct directions in Feynman diagrams. T
contributions of the two parts are Hermitian conjugate
each other. For real fermions, both contributions are real
they are equal and can be combined. A similar structure
pears in later results. Here and hereafter, we express the
06501
y

-
n
e

o
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mir factors as C2
ab(S) instead of C2(S)dab and

C2
ac(S)C2

cb(S) instead ofC2
2(S)dab , to accommodate reduc

ible representations.

B. Fermion wave function renormalization

To one loop, the anomalous dimensions of fermions a

g I
F5

1

2
YaY1a1g2C2~F !j. ~28!

To two loops,

g II
F 52

1

8
YaY1bYbY1a2

3

2
kYaY1bY2

ab~S!

1g2F9

2
C2

ab~S!YaY1b2
7

4
C2~F !YaY1a

2
1

4
YaC2~F !Y1aG

1g4C2~F !F S 25

4
12j1

1

4
j2DC2~G!22kS2~F !

2
1

4
S2~S!G2

3

2
g4@C2~F !#2. ~29!

Here the only modification is in theY2
ab(S), which appears

in the first line of Eq.~29!. This is due to one-loop fermion
subdiagrams in scalar field propagators.

IV. DIMENSIONLESS PARAMETERS

A. The gauge coupling constant

Theb function for the gauge coupling constants has be
extensively studied. Recent results are up to the fourth or
Here we include the two-loop results for completeness:

b~g!52
g3

~4p!2 H 11

3
C2~G!2

4

3
kS2~F !2

1

6
S2~S!

1
2k

~4p!2 Y4~F !J 2
g5

~4p!4H 34

3
@C2~G!#22kF4C2~F !

1
20

3
C2~G!GS2~F !2F2C2~S!1

1

3
C2~G!GS2~S!J ,

~30!

whereY4(F) is defined through

Y4~F !5
1

d~G!
Tr@C2~F !YaY1a#. ~31!

d(G) is the dimension of the group. Note that, although t
Yukawa couplings are normalized differently, Eq.~30! as-
sumes the same form as Eq.~6.1! of @7#.
9-3
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B. The Yukawa couplings

The b functions of the Yukawa couplings can be e
pressed as

ba5ga1g1FYa1YagF1gab
S Yb, ~32!

where ga are the anomalous dimensions of the operat
fac jzck , andgF andgab

S are the anomalous dimensions
the corresponding fermions and bosons, respectively. To
loop,
th
d

he

ex

be

or
e

06501
s

ne

b I
a5

1

2
@Y2

1~F !Ya1YaY2~F !#12YbY1aYb12kYbY2
ab~S!

23g2$C2~F !,Ya%, ~33!

where

Y2~F !5Y1aYa. ~34!

To two loops,
b II
a 52YcY1bYa~Y1cYb2Y1bYc!2Yb@Y2~F !Y1a1Y1aY2

1~F !#Yb2
1

8
@YbY2~F !Y1bYa1YaY1bY2

1~F !Yb#

24kY2
ac~S!YbY1cYb22kYbH̄ab

2 ~S!2
3

2
kY2

bc~S!~YbY1cYa1YaY1cYb!23kYbHab
2 ~S!22labcdY

bY1cYd

1
1

2
Lab

2 ~S!Yb13g2$C2~F !,YbY1aYb%15g2Yb$C2~F !,Y1a%Yb2
7

4
g2@C2~F !Y2

1~F !Ya1YaY2~F !C2~F !#

2
1

4
g2@YbC2~F !Y1bYa1YaY1bC2~F !Yb#16g2H2t

a 110kg2YbYab
2F~S!16g2@C2

bc~S!YbY1aYc22C2
ac~S!YbY1cYb#

1
9

2
g2C2

bc~S!~YbY1cYa1YaY1cYb!2
3

2
g4$@C2~F !#2,Ya%16g4C2

ab~S!$C2~F !,Yb%

1g4F2
97

6
C2~G!1

10

3
kS2~F !1

11

12
S2~S!G$C2~F !,Ya%2

21

2
g4C2

ab~S!C2
bc~S!Yc

1g4C2
ab~S!F49

4
C2~G!22kS2~F !2

1

4
S2~S!GYb, ~35!
where

H2t
a 5tA* YaY1btA* Yb1YbtAY1bYatA. ~36!

The second term in the fourth line, the first term in the six
line, and the second term in the tenth line, are expresse
terms of the Hermitian gauge invariantsH̄ab

2 (S), Hab
2 (S),

andYab
2F(S), respectively. They are all from theg functions

of the scalar fields. They differ from the fourth line and t
ninth line of ~3.3! in @8#, which included only parts of the
expressions. InH2t

a , in front of Ya and Yb one hastA* in-
stead oftA, again due to the fact that fermions are compl

C. The scalar quartic couplings

The b functions of the scalar quartic couplings can
expressed as

babcd5gabcd1(
i

gS~ i !labcd, ~37!

wheregabcd are the anomalous dimensions of the operat
fafbfcfd , and gS( i ) is the anomalous dimension of th
scalar fieldi. To one loop,
in

.

s

babcd
I 5Labcd

2 28kHabcd12kLabcd
Y 23g2Labcd

S

13g4Aabcd, ~38!

where

Labcd
2 5

1

8 (
perms

labe fle f cd, ~39!

Habcd5
1

4 (
perms

Tr~YaY1bYcY1d!,

~40!

Labcd
Y 5(

i
Y2~ i !labcd, ~41!

Labcd
S 5(

i
C2~ i !labcd, ~42!

Aabcd5
1

8 (
perms

$uA,uB%ab$u
A,uB%cd .

~43!

To two loops,
9-4
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babcd
II 5

1

2 (
i

L2~ i !labcd2L̄abcd
3 24kL̄abcd

2Y 1kH 8H̄abcd
l 2(

i
@3H2~ i !12H̄2~ i !#labcdJ 14k~Habcd

Y 12H̄abcd
Y 12Habcd

3 !

1g2H 2L̄abcd
2S 26Labcd

2g 14k~Habcd
S 2Habcd

F !110k(
i

Y2F~ i !labcdJ 2g4H F35

3
C2~G!2

10

3
kS2~F !

2
11

12
S2~S!GLabcd

S 2
3

2
Labcd

SS 2
5

2
Aabcd

l 2
1

2
Āabcd

l 14k~Babcd
Y 210B̄abcd

Y !J
1g6H F161

6
C2~G!2

32

3
kS2~F !2

7

3
S2~S!GAabcd2

15

2
Aabcd

S 127Aabcd
g J , ~44!
s

gn.

o

m

om
whereL2( i ), H2( i ), H̄2( i ), andY2F( i ) are the eigenvalue
of the invariants ofLab

2 (S), Hab
2 (S), H̄ab

2 (S), andYab
2F(S),

respectively. The other invariants are defined by

L̄abcd
3 5

1

4 (
perms

labe flceghld f gh , ~45!

L̄abcd
2Y 5

1

8 (
perms

Y2
f g~S!labe flcdeg, ~46!

H̄abcd
l 5

1

8 (
perms

labe f Tr~YcY1eYdY1 f

1Y1cYeY1dYf !, ~47!

Habcd
Y 5 (

perms
Tr@Y2~F !Y1aYbY1cYd#, ~48!

H̄abcd
Y 5

1

2 (
perms

Tr~YeY1aYeY1bYcY1d

1Y1eYaY1eYbY1cYd!, ~49!

Habcd
3 5

1

2 (
perms

Tr~YaY1bYeY1cYdY1e!, ~50!

L̄abcd
2S 5

1

8 (
perms

C2
f g~S!labe flcdeg, ~51!

Labcd
2g 5

1

8 (
perms

labe flcdghueg
A u f h

A , ~52!

Habcd
S 5(

i
C2~ i !Habcd, ~53!

Habcd
F 5 (

perms
Tr@$C2~F !,Ya%Y1bYcY1d#, ~54!

Labcd
SS 5(

i
@C2~ i !#2labcd, ~55!
06501
Aabcd
l 5

1

4 (
perms

labe f$u
A,uB%e f$u

A,uB%cd , ~56!

Āabcd
l 5

1

4 (
perms

labe f$u
A,uB%ce$u

A,uB%d f , ~57!

Babcd
Y 5

1

4 (
perms

$uA,uB%ab Tr@ tA* tB* YcY1d

1YctAtBY1d#, ~58!

B̄abcd
Y 5

1

4 (
perms

$uA,uB%ab Tr~ tA* YctBY1d!, ~59!

Aabcd
S 5(

i
C2~ i !Aabcd, ~60!

Aabcd
g 5

1

8
f ACEf BDE (

perms
$uA,uB%ab$u

C,uD%cd . ~61!

In the first term ofBabcd
Y , Yc is preceded bytA* tB* instead

of tAtB, since the fermions are complex. Similarly, inB̄abcd
Y ,

Yc is preceded bytA* instead oftA. Since there is only one
t factor in this case, this introduces one extra minus si
Therefore, the relative sign betweenBabcd

Y and B̄abcd
Y in Eq.

~44! is minus while it was plus in@9#. In addition to
Hab

2 (S), H̄ab
2 (S), andYab

2F(S), H̄abcd
Y is also reexpressed t

be Hermitian.

V. DIMENSIONAL PARAMETERS

A. Fermion mass

Theb functions of the fermion mass can be inferred fro
those of the Yukawa couplings by taking thea indices to be
dummies. The trilinear scalar terms start to contribute fr
two loops. The one-loop result is

bmf

I 5
1

2
@Y2

1~F !mf1mfY2~F !#12Ybmf
1Yb1kYb Tr~mf

1Yb

1mfY
1b!23g2$C2~F !,mf%. ~62!

The two-loop result is
9-5



LUO, WANG, AND XIAO PHYSICAL REVIEW D 67, 065019 ~2003!
bmf

II 52YcY1bmf~Y1cYb2Y1bYc!2Yb@Y2~F !mf
11mf

1Y2
1~F !#Yb2

1

8
@YbY2~F !Y1bmf1mfY

1bY2
1~F !Yb#

22kYbY1cYb Tr~mf
1Yc1mfY

1c!2
3

2
kY2

bc~S!~YbY1cmf1mfY
1cYb!2

3

2
kYb Tr@Y2~F !Y1bmf1mf

1Y2
1~F !Yb#

2kYb Tr~Ycmf
1YcY1b1Y1cmfY

1cYb!22hbcdY
bY1cYd1

1

12
hcdelbcdeY

b13g2$C2~F !,Ybmf
1Yb%

15g2Yb$C2~F !,mf
1%Yb2

7

4
g2@C2~F !Y2

1~F !mf1mfY2~F !C2~F !#2
1

4
g2@YbC2~F !Y1bmf

1mfY
1bC2~F !Yb#16g2@ tA* mfY

1btA* Yb1YbtAY1bmft
A#15kg2Yb Tr@C2~F !~mfY

1b1Ybmf
1!#

16g2C2
bc~S!Ybmf

1Yc2
3

2
g4$@C2~F !#2,mf%1

9

2
g2C2

bc~S!~YbY1cmf1mfY
1cYb!

1g4F2
97

6
C2~G!1

10

3
kS2~F !1

11

12
S2~S!G$C2~F !,mf%. ~63!
n-
o
ri
B. Trilinear scalar couplings

The b functions of trilinear scalar couplings can be i
ferred from those of the quartic couplings by taking one
the four indices to be a dummy. The fermion masses cont
ute from one loop. The one-loop result is

bhabc

I 5Labc
2 28kHabc12kLabc

Y 23g2Labc
S , ~64!

where the invariants are defined as

Labc
2 5

1

2 (
perms

labe fhe f c , ~65!

Habc5
1

2 (
perms

Tr~mfY
1aYbY1c1Yamf

1YbY1c!,

~66!

Labc
Y 5(

i
Y2~ i !habc , ~67!

Labc
S 5(

i
C2~ i !habc . ~68!

The two-loop result is

bhabc

II 5
1

2 (
i

L2~ i !habc2L̄abc
3 24kL̄abc

2Y

1kH 8H̄abc
lm 18H̄abc

h 2(
i

@3H2~ i !12H̄2~ i !#habcJ
14k~Habc

Y 12H̄abc
Y 12Habc

3 !

1g2H 2L̄abc
2S 26Labc

2g 14k~Habc
S 2Habc

F !
06501
f
b-

110k(
i

Y2F~ i !habcJ
2g4H F35

3
C2~G!2

10

3
kS2~F !2

11

12
S2~S!GLabc

S

2
3

2
Labc

SS 2
5

2
Aabc

l 2
1

2
Āabc

l 14k~Babc
Y 210B̄abc

Y !J ,

~69!

where the invariants are defined as

L̄abc
3 5

1

2 (
perms

~labe flceglhf gl1laegllb f glhce f!, ~70!

L̄abc
2Y 5

1

2 (
perms

Y2
f g~S!labe fhceg, ~71!

H̄abc
lm 5

1

8 (
perms

labe f Tr~YcY1emfY
1 f1mfY

1eYcY1 f

1Y1cYemf
1Yf1mf

1YeY1cYf !, ~72!

H̄abc
h 5

1

4 (
perms

hae f Tr~YbY1eYcY1 f1Y1bYeY1cYf !,

~73!

Habc
Y 5 (

perms
Tr@Y2~F !~mf

1YaY1bYc1Y1amfY
1bYc

1Y1aYbmf
1Yc1Y1aYbY1cmf !#, ~74!
9-6



re
ur
s

TWO-LOOP RENORMALIZATION GROUP EQUATIONS IN . . . PHYSICAL REVIEW D67, 065019 ~2003!
H̄abc
Y 5

1

2 (
perms

Tr~Yemf
1YeY1aYbY1c

1YeY1aYemf
1YbY1c1YeY1aYeY1bmfY

1c

1YeY1aYeY1bYcmf
11H.c.!, ~75!

Habc
3 5

1

2 (
perms

Tr~mfY
1aYeY1bYcY1e

1Yamf
1YeY1bYcY1e1YaY1bYemf

1YcY1e

1YaY1bYeY1cmfY
1e!, ~76!

L̄abc
2S 5

1

2 (
perms

C2
f g~S!hae flbceg, ~77!

Labc
2g 5

1

2 (
perms

hae flbcglueg
A u f l

A , ~78!

Habc
S 5(

i
C2~ i !Habc , ~79!

Habc
F 5 (

perms
Tr@$C2~F !,mf%Y

1aYbY1c

1$C2~F !,Ya%mf
1YbY1c

1$C2~F !,Ya%Y1bmfY
1c

1$C2~F !,Ya%Y1bYcmf #, ~80!

Labc
SS 5(

i
@C2~ i !#2habc , ~81!

Aabc
l 5

1

2 (
perms

hae f$u
A,uB%e f$u

A,uB%bc , ~82!

Āabc
l 5

1

2 (
perms

hae f$u
A,uB%be$u

A,uB%c f , ~83!

Babc
Y 5

1

4 (
perms

$uA,uB%ab Tr~ tA* tB* mfY
1c

1mft
AtBY1c1tA* tB* Ycmf

11YctAtBmf
1!,

~84!

B̄abc
Y 5

1

4 (
perms

$uA,uB%ab Tr~ tA* mft
BY1c

1tA* YctBmf
1!. ~85!

C. Scalar mass

The b functions of scalar masses can also be infer
from those of the quartic couplings by taking two of the fo
indices to be dummies. From one loop, both fermion mas
and trilinear terms contribute. The one-loop result is
06501
d

es

bm
ab
2

I
5me f

2 labe f1hae fhbe f24kHab23g2Lab
S 12kLab

Y ,

~86!

where the invariants are defined as

Hab5Tr@~YaY1b1YbY1a!mfmf
11~Y1aYb

1Y1bYa!mf
1mf1Yamf

1Ybmf
11mfY

1amfY
1b#,

~87!

Lab
S 5(

i
C2~ i !mab

2 , ~88!

Lab
Y 5(

i
Y2~ i !mab

2 . ~89!

The two-loop contribution is

bm
ab
2

II
5

1

2 (
i

L2~ i !mab
2 2

1

2
L̄ab

3 24kL̄ab
2Y

1kH 4H̄ab
l 2(

i
@3H2~ i !12H̄2~ i !#mab

2 J
12k~Hab

Y 12H̄ab
Y 12Hab

3 !

1g2H 2L̄ab
2S26Lab

2g12k~Hab
S 2Hab

F !

110k(
i

Y2F~ i !mab
2 J

2g4H F35

3
C2~G!2

10

3
kS2~F !2

11

12
S2~S!GLab

S

2
3

2
Lab

SS2
5

2
Aab

l 2
1

2
Āab

l 12k~Bab
Y 210B̄ab

Y !J ,

~90!

where the invariants are defined as

L̄ab
3 5labe fheglhf gl12me f

2 laegllb f gl12hae fhf gllbegl

12hbe fhf gllaegl , ~91!

L̄ab
2Y5Y2

f g~S!~meg
2 labe f1hae fhbeg!, ~92!

H̄ab
l 5

1

2
labe f Tr~mfY

1emfY
1 f1H.c.!

1me f
2 Tr~YaY1eYbY1 f1H.c.!

1hae f Tr~YbY1emfY
1 f1H.c.!

1hbe f Tr~YaY1emfY
1 f1H.c.!, ~93!
9-7
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Hab
Y 52 Tr@$Y2~F !,mf

1mf%~Y1aYb1Y1bYa!#

12 Tr@Y2~F !Y1amf~Y1bmf1mf
1Yb!

1Y2~F !mf
1Ya~Y1bmf1mf

1Yb!

1Y2~F !Y1bmf~Y1amf1mf
1Ya!

1Y2~F !mf
1Yb~Y1amf1mf

1Ya!#, ~94!

H̄ab
Y 5Tr@~YeY1aYeY1b1YeY1bYeY1a!mfmf

1

1Yemf
1Yemf

1~YaY1b1YbY1a!

1YeY1aYemf
1~Ybmf

11mfY
1b!

1Yemf
1YeY1a~Ybmf

11mfY
1b!

1YeY1bYemf
1~Yamf

11mfY
1a!

1Yemf
1YeY1b~Yamf

11mfY
1a!1H.c.#, ~95!

Hab
3 5Tr@~YaY1b1YbY1a!Yemf

1mfY
1e

1mfmf
1Ye~Y1aYb1Y1bYa!Y1e

1Yamf
1Ye~Y1bmf1mf

1Yb!Y1e

1mfY
1aYe~Y1bmf1mf

1Yb!Y1e

1Ybmf
1Ye~Y1amf1mf

1Ya!Y1e

1mfY
1bYe~Y1amf1mf

1Ya!Y1e#, ~96!

L̄ab
2S5C2

f g~S!labe fmeg
2 1C2

f g~S!hae fhbeg, ~97!

Lab
2g5labe fmgl

2 1hae fhbglueg
A u f l

A , ~98!

Hab
S 5(

i
C2~ i !Hab , ~99!

Hab
F 52 Tr@$C2~F !,Ya%Y1bmfmf

1

1$C2~F !,Yb%Y1amfmf
1

1$C2~F !,mf%mf
1~YaY1b1YbY1a!

1$C2~F !,Ya%mf
1~Ybmf

11mfY
1b!

1$C2~F !,mf%Y
1a~Ybmf

11mfY
1b!

1$C2~F !,Yb%mf
1~Yamf

11mfY
1a!

1$C2~F !,mf%Y
1b~Yamf

11mfY
1a!#, ~100!

Lab
SS5(

i
@C2~ i !#2mab

2 , ~101!

Aab
l 5me f

2 $uA,uB%e f$u
A,uB%ab , ~102!

Āab
l 5me f

2 $uA,uB%ae$u
A,uB%b f , ~103!
06501
Bab
Y 5$uA,uB%ab Tr~ tA* tB* mfmf

11mft
AtBmf

1!,
~104!

B̄ab
Y 5$uA,uB%ab Tr~ tA* mft

Bmf
1!. ~105!

VI. EXTENSION TO NONSIMPLE GROUPS

So far, the gauge group was assumed to be simple. T
results can be extended to semisimple groups by assig
appropriate substitution rules, based upon close inspectio
the relevant Feynman diagrams@7–9#.

Assume the gauge group is a direct product of sim
groups,G13•••3Gn , with corresponding gauge couplin
constantsg1 , . . . ,gn . The substitution rules for the gaug
coupling constants are

g3C2~G!→gk
3C2~Gk!, ~106!

g3S2~R!→gk
3S2

k~R!, ~107!

g5@C2~G!#2→gk
5@C2~Gk!#

2, ~108!

g5C2~G!S2~R!→gk
5C2~Gk!S2

k~R!,
~109!

g5C2~R!S2~R!→(
l

gk
3gl

2C2
l ~R!S2

k~R!.

~110!

Here and hereafter,k and l are subgroup indices;R can be
eitherS or F.

For otherb andg functions, we first have the following
general substitution rules:

g2C2~R!→(
k

gk
2C2

k~R!, ~111!

g4C2~G!C2~R!→(
k

gk
4C2~Gk!C2

k~R!, ~112!

g4S2~R!C2~R8!→(
k

gk
4S2

k~R!C2
k~R8!, ~113!

g4C2~R!C2~R8!→(
k,l

gk
2gl

2C2
k~R!C2

l ~R8!. ~114!

In H2t
a , Babcd

Y , Babc
Y , Bab

Y , B̄abcd
Y , B̄abc

Y , andB̄ab
Y , the sub-

stitution rules are

uA→uk
A , uB→u l

B ,

tA→tk
A , tB→t l

B ,

~ tA* →tk
A* , tB* →t l

B* !,

g4→gk
2gl

2 . ~115!
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For example,g4Babcd
Y is substituted by

1

4 (
k,l

gk
2gl

2 (
perms

$uk
A ,u l

B%ab Tr~ tk
A* t l

B* YcY1d1Yctk
At l

BY1d!.

~116!

In quartic coupling, trilinear coupling and scalar mas
squared terms, further substitution rules are needed. We
troduce a new tensor

Lab,cd5~uA!ac~uA!bd ~117!

so the gauge invariantsAabcd can be rewritten as

Aabcd5
1

4 (
perms

~Lac,e fLe f,bd1Lae, f dLeb,c f!. ~118!

The substitution rule forLab,cd is

g2Lab,cd→(
k

gk
2Lab,cd

k . ~119!

Thus,g4Aabcd can be substituted by

1

4 (
k,l

gk
2gl

2 (
perms

~Lac,e f
k Le f,bd

l 1Lae, f d
k Leb,c f

l !, ~120!

g6S2(R)Aabcd by

1

4 (
k,l

gk
4gl

2S2
k~R! (

perms
~Lac,e f

k Le f,bd
l 1Lae, f d

k Leb,c f
l !,

~121!

g6C2(G)Aabcd by

1

4 (
k,l

gk
4gl

2C2~Gk! (
perms

~Lac,e f
k Le f,bd

l 1Lae, f d
k Leb,c f

l !,

~122!
t.

06501
-
in-

andg6Aabcd
S by

(
k

(
i

gk
2C2

k~ i !
1

4 (
l ,m

gl
2gm

2 (
perms

~Lac,e f
l Le f,bd

m

1Lae, f d
l Leb,c f

m !. ~123!

Finally, one has

g6Aabcd
g →(

k
gk

6Aabcd
g ~k!. ~124!

VII. CONCLUSIONS

We have now presented the complete set of two-lo
renormalization group equations in general gauge theor
This includes theb functions of parameters with and withou
a mass dimension. We have so far restricted the gauge gr
to be semisimple. If the gauge group contains more than
U~1! group, the situation is subtle. If there are no kine
mixings between the U~1! groups after renormalization
these results can be applied by straightforward extension
there are kinetic mixings, these results have to be app
with caution. In general, modifications will be warrante
@12#. In the case of the SM where one has only one U~1!
group, one readily reproduces the results in@11#.
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