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[. INTRODUCTION renormalization group equations in general gauge field theo-
ries. This includes theg functions of parameters with and
Renormalization group equationSRGES provide a  without a mass dimension. The results[iil] can then be
unique method in the analysis of particle physics. A comprefeadily reproduced.
hensive analysis of RGEs confirmed the behavior of In Sec. I, we present essential notations and definitions,
asymptotic freedom in QCD, which played a pivotal role in along with a discussion of the differences betwgen9| and
establishing a non-Abelian gauge theory for the strong interour analysis. In Sec. Ill, we present thefunctions of the
action[1]. The running of the coupling constants and massscalar and fermion fields. In Sec. IV, we present gh&unc-
parameters is crucial in the global analysis of high precisioriions of dimensionless parameters and in Sec. V those of
electroweak experimentg2]. On the other hand, a RGE dimensional parameters. In Sec. VI the results are extended
analysis extrapolated to extremely high energy provides & semisimple groups. We conclude in Sec. VII.
possible, in some cases the only feasible, test for physics
beyond the standard modg@M). RGEs are a natural ingre- II. NOTATION AND DEFINITIONS
dient in the analysis of grand unification theories and string ) ) _ )
theories. For more than ten years, it has been known that We start with a general renormalizable field theory with
gauge couplings do not unify within the SM. This gives extragauge fieldsv), of a compact simple grou@, scalar fields,
evidence against simple grand unification theories such aga, and two-component fermion fields . In Sec. VI, these
SU(5) without supersymmetry, in addition to the nonobsertesults will be extended to semisimple groups. The Lagrang-
vation of proton decay. On the other hand, gauge couplingi&n of the theory can be conveniently divided into three parts,
seem to unify at a scale 2x 10'® GeV in the minimal su- .
persymmetric standard model, which can be interpreted as L= Lo+ L1+ (gauge fixing+ ghost terms, @
indirect evidence for supersymmetry as well as unification . _ . .
theories[3-5]. where L contams. no .d|mer)5|onal parameters azhg!n—
Computations of RGEs in gauge theories have been pef:_ludes all terms with dimensional parameters. Explicitly,
formed for various models to different orders of perturbation.
Persistent efforts yielded recently a four-loop result for ghe Lo=—
function of the strong coupling constdi]. Two-loop RGEs
of dimensionless couplings in general gauge theory as well 1
as in Fhe specmc_case of the SM were calculated long ago in - (Y?k¢jg¢k¢a+ H.c)— 47)\abcd¢a¢b¢c¢d’
a series of classic papers by Machacek and Vayghi9). :
By introducing a nonpropagating gauge-singlet “dummy” 2)
scalar field, two-loop RGEs of dimensional couplings can be
readily inferred from dimensionless results0,11. These where{= *io,. Unlike [7-9], we have included an overall
were used to derive the RGEs of supersymmetric theories & factor in the Yukawa coupling terms. The gauge field

1 .
FRVFA,+ 5D ¢aD ot i oD i,

N~ B

decade latef10]. strengths are defined to be
Recently[11], we recalculated the two-loop RGEs in the
SM, using a combination of the general result§ B£9] and Fh,=d,Vo—3d,Va+gfiBViVe, 3

direct calculations from Feynman diagrams. A new coeffi-

cient was found in the function of the quartic coupling and Where fABC are the structure constants of the gauge group
a class of gauge invariants were found to be absent iBthe andg is the gauge coupling constant. Choosing the standard
functions of hadronic Yukawa couplings. We also presente®; gauge, the gauge field propagator is

the two-loopB function of the Higgs boson mass parameter ki

in complete form, which provided a partial but useful check AB 1\ _ oAB| _ PR

on the calculation of the quartic coupling. Whenever discrep- Dl (k)= & Gurt (178) KK @
ancy with results in the literature appeared, we carefully in-

spected the relevant Feynman diagrams to ensure consigthereé is the gauge parameter. The covariant derivatives of
tency. In this paper, we present the complete set of two-loophe matter fields are
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D, a=0,ba—190a,Vhdp, (5)
D=, —1gth Vi, (6)

where bothé?, andt]k are Hermitian matrices, which form
representations of the gauge group on the scalar and fermio
fields, respectively. Since any complex scalar fields can al-
ways be decomposed in terms of real ones, scalars in this FIG. 1. Fermion radiative corrections to the scalar propagator
paper are assumed to be reéf. are thus purely imaginary

and antisymmetric. For later convenience, we define the fol- 1 | 1

(a) (b)

_ 1
lowing gauge invariants: N G2 + (am?Yi +ey (16)
ab A AB__ A nB
CEAS) = facfly,  Sa(S)S"=TH 0", (M \where ¥l and y!' are one- and two-loop contributions, re-
A AB_ A+B spectively.
(F)_tacth’ S(F)oF=T], ®) The constraint on the Yukawa coupling matrices imposed
C,(G) &B=fFACDFBCD, ) by gauge invariance is given by

Cgb(R) is block diagonal for each irreducible representation

R(=S,F) of eigenvalues oC,(R).

YJkaa-‘rY t|k+t _0 (17)

In this paper, we use dimensional regularization and thaVhen a fermion is involved simultaneously with a Yukawa

modified minimal subtraction algorithm. The renormalize
coupling constantg, in d=4-—2e€ are related to the corre-
sponding bare coupling constam% by

XOp ~PRE= X+ aﬁ”)in, (10)
n=1 €

where u is an arbitrary mass scale paramejgs=1(2) for

gauge and Yukawdscalar quartit coupling constants, and

aﬁ”) are to be calculated perturbatively. TAdunctions ofx,

are defined to be

dxy
,BXKZMW (11)
e=0
It is easy to see that
(1)
2 pIX| x| —pra). (12
Perturbatively, one has
R (13
X (477)2 X (4,“.)4 X

whereﬁ!(k and ,B'X'k are one- and two-loop contributions, re-

spectively. The wave function renormalization constgnof
theith field can be expressed as

= 1
z=1+2, c" 5
n=1 €

(14
The corresponding anomalous dimension is
d C(l)

Y=g H g, 100Zi= - E X (19)

Also perturbatively, one has

gcoupling and a gauge coupling, one usually has the combi-

nation Yﬁt|k+t That is to say, in these case§; is
always preceded bytﬁ* or followed by at”. Equation(17)

can thus be used to simplify the gauge structure of Feynman
diagrams. I7-9], fermion fields are implicitly assumed to
be real sa” are pure imaginary and antlsymmetmﬁ was
replaced by—t and Eq.(17) is reduced to
=0.

ijeba+Y]Itlk t) (18)

k=
However, in most physical theories, fermions are in general
Weyl and complex, with only the possible exceptions of neu-
trinos and gauginos as real Majorona fermions. Fortunately,
close inspections of Feynman diagrams show that both ap-
proaches yield the same final results in most cases. In cases
where they differ, we will retairlA'*

By assuming real fermion fields, the direction of a fer-
mion propagator need not be discriminated either. Shown in
Fig. 1 are two fermion loop diagrams that contribute to the
propagators of scalar fields. The two diagrams are different
for complex fermions and the total result is proportional to

1
Y3b(s)= Tr(Y*aYb+Y+bYa) (19

Y3P(S) forms a Hermitian matrix and is block diagonal for
each irreducible representation of the eigenvaly€S). For
real fermions, the two terms mrgb(S) become equal and
they reduce to a common factor ¥{(2YP). Again, we will
retain Eq.(19) and other similar combinations.

The second part of the Lagrangian is

abc

3 | ¢a¢b ¢C
(20)

[(mf)1k¢]§¢k+H C]_ 2| d’ad’b

In principle, theg functions of my) ., mgb, andh,. can be
calculated directly. But this would be tedious and can be
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avoided. To do so, we introduce a nonpropagating dummynir factors as C3°(S) instead of C,(S)d8,, and
real scalar fieldpg with no gauge interactions and rewrite the C3%(S)CSP(S) instead ofC3(S) 8,5, to accommodate reduc-

Lagrangian as ible representations.
(ijdfjgdfkd)d—k H.c)— Zk)'dd badpdidq B. Fermion wave function renormalization
To one loop, the anomalous dimensions of fermions are
Aabcd
¢a¢b¢c¢d (21)

1 ay+a 2
=§Y YT e+g°Cy(F)éE. (28)

with the substitutions onﬂz(mf)ij, Napg=2m2,, and
Nabca=Nape- The B functions of my, mgb, and hyp, are To two loops,
equal to those of the new Yukawa couplig, the quartic

scalar coupling\ ;paa, andi ,pcy- The latter can be readily F_ } ayv+byby+a_ E av -+ byab
obtained from the3 functions of Y2 and X\ 5,4 by suppress- =g Y Y 2 Y TNZ(S)
ing both the summations of the-type indices and related 9 7

gauge couplings. +¢? Ec‘;"(s,)\(a\(“’— 7Ca(F)Y2y e

11l. WAVE FUNCTION RENORMALIZATION 1
. o — S Y3C(F)Y™?
A. Scalar wave function renormalization 4

To one loop, the anomalous dimensions of scalars are 25
+9Cy(F) ( +28+ + éz)Cz(G) 2kSy(F)
Yar=2kY3°(S)—g%(3—£)C5%(S). (22

1 3
To two loops, - ZSZ(S)} - Eg“[CZ(F)]Z. (29

10
3 2%~ Z§2)C2(G)— 3 #SAF) Here the only modification is in th&3°(S), which appears
in the first line of Eq.(29). This is due to one-loop fermion
subdiagrams in scalar field propagators.

35
Yan=—9*C3 S>[

—1—lsz<8> + A2 (S)+ = g*C3(9)CS(9)
12 ab 2g

2 — 2 2F IV. DIMENSIONLESS PARAMETERS
—3kHg,(S) —2kHZ(S) + 10kg“Y5,(S), (23

A. The gauge coupling constant

where«x=1/2 (1) for two-(four-)component fermions, and The 3 function for the gauge coupling constants has been

extensively studied. Recent results are up to the fourth order.

(S) acde}\bcde, (24) Here we include the two-loop results for completeness:
g° [11 1
1 B(g)= T am)? { Cao(G)— KSz(F)— 552(9
H2,(S)= Tr(YaY+bY°Y+°+ Y Faybyteyey, (25)
2k g° (34 .
B . (4 )2Y4(F) T anf g[cz(G)] — k| 4C,(F)
Hib(S)zzTr(YaY“YbY“vL Y Faycy tbyc) (26) 20 1
+ ng(G)}Sz(F)—[ZCz(SH ng(G)}Sz(S)],
1
Y2E(9)= ETr[cz(lr)(\(awb+waa)]. (27) (30)

— whereY ,(F) is defined through
In contrast with[7], Y2%(S), H2,(S), HZ,(S), and YZ(S) () g

are modified so that they are Hermitian for complex fermi-

ons. As mentioned above, this is because complex fermion Y4(F)=

lines have two distinct directions in Feynman diagrams. The d(G)
contributions of the two parts are Hermitian conjugate to

each other. For real fermions, both contributions are real. Sd(G) is the dimension of the group. Note that, although the
they are equal and can be combined. A similar structure apYukawa couplings are normalized differently, E@O) as-
pears in later results. Here and hereafter, we express the Caatmes the same form as E§.1) of [7].

—Tr[C,(F)YaY™2a]. (31
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B. The Yukawa couplings

1
a_ + a a by/+ayb byv/ab
The B functions of the Yukawa couplings can be ex- Bi _Z[YZ(F)Y Y R(F)]+2YIY A 26XV (S)

pressed as )

—399{Ca(F), Y4, (33

Ba: ,ya+ ,y+ FYa+ Ya,yF+ ,yngb, (32)
where

where v? are the anomalous dimensions of the operators
dathi L, and y" andyj, are the anomalous dimensions of Y, (F)=Y"ay?, (34
the corresponding fermions and bosons, respectively. To one
loop, To two loops,

B3 =2YCYtbya(y teyb_ytbyc) Oy, (F)Y A+ Y TayS (F)]YP— %[Y%(F)Y*by%r Y3Y*TPY S (F)YP]
—4KkY3Y(S)YPYFOYP— 24 YPHZ (S) - gKch( S)(YPY TCYa+Y3YTOYP) — 34 YPH2Z, (S)— 2\ 1peaYPY TEOYY
—A2b<S>Yb+ 39%{C,(F),YPY " 2YPL 4 5g?YP{C,(F), Y "4} YP— _gz[cz(F)Yz (F)Y2+Y2Y,(F)Cy(F)]
- %gZ[YbCZ( F)Y*PY2+YaY*PC,(F) Y]+ 6g2H 3+ 10kg2YPYL(S) + 697 CE(S) YPY FaY°— 2C3%(S) YPY *oYP]
+ 29262°<S><va+°va+ ey *ey?) gg“{[czwnz,v% 69°C5"(S)/{C2(F).Y"}

+9

4 o7 10 11 a 21 4~ab bc c
— 5 Ca(G)+ kS,(F) + 5529 |{CalF). Y2} = 5 g*CEAS)CEYS)Y

+94Cab(5)[ Ca(G)—2kSy(F) — —Sz(S)}Yb (39

where ﬁabcd Aabcd 8KHabcd""ZKAabcd 39 abcd
a _ A% yay +biAx /b by Ay +bvasA
Se=1"FYAY T YPHYPITY TEY AR, (36) +3g Asved, (38)

The second term in the fourth line, the first term in the sixth,ynere
line, and the second term in the tenth line, are expressed in

terms of the Hermitian gauge mvanarl’d;gb(S) H2 26(S), Aabcd ! E Nabeefcds (39
andeb(S) respectively. They are all from the functions 8 perms

of the scalar fields. They differ from the fourth line and the 1

ninth line of (3.3) in [8], which included only parts of the Habc= Z Tr(YaYy toycydy,
expressions. IH3,, in front of Y2 and Y® one hast* in- 4 perms

stead oft?, again due to the fact that fermions are complex. (40
Y _ .
C. The scalar quartic couplings Aabed™ 2. Y2(1)Napeds (42)
The B functions of the scalar quartic couplings can be

expressed as abcd 2 CZ('))\abcda (42)

Babcd™ YabedT 2| ')’S(i )N abeds (37) 1

Aabcd™ § p;ms{eA’ eB}ab{ 0A- 0B}cd-

where y,cq are the anomalous dimensions of the operators (43)
babpdeby, and y>(i) is the anomalous dimension of the
scalar fieldi. To one loop, To two loops,
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abcd Aabcd 4KAabcd_l—K 8Habcd 2 [3H2(|)+2H2(|)])\abcd

1
ﬂgbcdzz EI AZ(i)N

+g?

2A25 —6A%0 4+ 4x(HS, —H 10 2Y2F 3—5c G—E) F
Abed BASDcqt Ak(Hpeq— Hapeo) + 10k (i)Nabeaf —9* 3 2(G) 3K52( )

5 1
SZ(S)}Aabcd 2Aabcd 2Aabcd_EK;\bcd+4K(ngcd_10§;bcd)]

PHYSICAL REVIEW 7, 065019 (2003

+4K(Habcd+ 2Habcd+ 2H bcd)

161 32 7 15 g
+g _CZ(G) KSZ(F)_ §SZ(S) Aabcd 2 Aabcd+ 27Aabcd ' (44)
|
whereA2(i), H2(i), HZ(i), andY?(i) are the eigenvalues N 1 T,
of the invariants ofA2,(S), H2,(S), H2,(S), and Y2£(S), Aabed= 7 p;ms)‘abef{a 107 ed 67,6} ca, (56)
respectively. The other invariants are defined by
— 1
1 Agbcd: 4 eErms)\abef{eAv 6’B}ce{ HAYHB}dfv (57)
Aabcd_4 p;ms)\abefhcegr?\dfgha (45) P
1
1 Babed= g 2 {0467 ap Tt 1 Yoy e
/T?k;cdz g 2 Y;g(s))\abef)\cdegy (46)
perms +thAtBY+d], (58)
1 1
Habcd™ 3 > NaperTr(YCY eydy Bloca=7 2 {04 0%)ap T YOL2Y 1Y), (59)
perms perms
+Y+cYeY+de), (47) s '
Aabcd:Ei Ca(i)Aabcds (60)
Hases= 21 THY2(F)Y*2YPY ey, (489)
Adbed= —f’*CEfBDE > {0l 0°0%)ca. (6D
perms
H _ } 2 Tr(YeY+aYeY+bYCY+d ) v ) )
abed™ o s In the first term ofB), .4, Y© is preceded by**t®* instead
of t*t®, since the fermions are complex. Similarly,By
+eyay+eyby+cyd ! Hidbed?
HYTEYEYTEYRYTEY), 49 yeis preceded by** instead oft". Since there is only one
1 t factor in this case, this introduces one extra minus sign.
Hi o= = D Tr(Y2y*byeyteydy+e) (50  Therefore, the relative sign betwes, . andBY, .4 in Eq.
2 perms (44) is minus while it was plus in[9]. In addition to
L Egb(S), H2,(S), andY2E(S), HY,.4is also reexpressed to
Nt e Hermitian.
Aggcd: g p;mscfzg(s)habef)\cdegv (51) II
V. DIMENSIONAL PARAMETERS
! pA A. Fermi
AReq= 8 p;ms)\abef)\cdgheegafh’ (52) - Fermion mass
The B functions of the fermion mass can be inferred from
those of the Yukawa couplings by taking thendices to be
Hped= 2 C(i1)Hapcas (53  dummies. The trilinear scalar terms start to contribute from
two loops. The one-loop result is
1
HEbed= p;ms TH{C,(F), Y& Y Pyey*d], (54 Bm=5LY3 (F)Mi+meYo(F)]+2Ym{ YO+ kYO Tr(my Y®
+meY*P) =393 C,(F),m}. (62
abcd 2 [C2(|)] Aabcd: (55)

The two-loop result is
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1
me = 2YOY TP (YT OYP =YY — YLV o (F)m( +my Y5 (F)TYP— S[YPYo(F) Y Pmy+meY "0V (F)Y°]
by +cyb +yC +c 3 bc by +c +cyb 3 b +b +v+ b
= 2kYPY YO TH(m{ Yo+ meY T 0) = S kY39 (YPY T omp+ meY oY) — S YO TILY 5(F) Y *Pme+ myi Y5 (F)YP]
1
— KYPTr(Ym{ YOY TP+ Y em Y TOYP) — 2hy . YPY FeYd+ 1_2hcde>\bcdeYb+ 3g%{C,(F),Y’m; YP}

7 1
+5g°YP{Cy(F),m{ }YP— Zgz[Cz(F)Yz*(F)mﬁmez(F)Cz(F)]— Zgz[YbCZ(F)Y+bmf
+ MY TPC,(F)YP]+ 62 tA* meY T PtA* YO 4+ YPHAY *Pm tA] + 5cg2YP T C,(F) (MY TP+ YPm[ )]

3 9
+6g°C3%(S)YPmy Yo = Sg*{[Ca(F) ] i} + 5 g°CRS) (YY" “my+ myY*€Y®)

J 97 10 11
+0°) =5 Cal )+ 5 kS,(F)+ 158:(S)|{C(F).my). 63

B. Trilinear scalar couplings

The B functions of trilinear scalar couplings can be in-
ferred from those of the quartic couplings by taking one of
the four indices to be a dummy. The fermion masses contrib- 4
ute from one loop. The one-loop result is 9

+1o,<2i Y2F(i)habc]

35 10
3 CoG)~ 3 kS,(F)~ I 52(8>}Aabc

8kH ot 2kAY, . —309%A3.., (64 3 5 1
Bh abc Habe Rape™ 29 Rabe ( ) _§A§k§c_ EAabc 2Aabc+4K(Babc 1OBab<)]
where the invariants are defined as (69)
Adpe= E )\abeihefca (65  where the invariants are defined as
1 b +yb -
Habczz 2 Tr(me+aY Y+C+Yamf Y Y+C). Aabc_z p;ms()\abef)\ceglhfgl+7\aegl)\bfglhcef)i (70)
perms
(66)
abc E Y2(|)habc, (67) abc E Y2 (S))\abefhcegv (71)
abc E Cao(i)hapc- (68) ﬁabc E )\abefTr(YcY+eme+f+m y*teycy*f
The two-loop result is +Y+CYemf+Yf+mf+YeY+°Y ), (72)
ZA(u)h —4kAZY o 1L by +eyCy+f o -+ byen + oyl
Bhop= abe— Adpe— 4K Ay Habe=7 > haer Tr(YPY Teyey tipytbyey eyt
perms
(73
+K 8Habc+8Habc 2 [3H2(|)+2H2(|)]habc
+Ak(HYp o+ 2RY, o+ 2H3, ) HY o= 2 Tr[Yz(F)(mf Y2Y Pyt yFam ytbye
g 2Aabc 6Aabc+4K(H§bC_Hgbc) +Y+amef+Yc+Y+aYbY+cmf)]’ (74)
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TWO-LOOP RENORMALIZATION GROUP EQUATIONS IN . ..

1
Hipe=> > Tr(Y’m

b
abe 2 perms

I

F‘YeY+aYbY+C

+ Yey-%—aYemf+ YbY+C+ YeY+aYeY+bme+C

+Yeyrayeytbyem!t 4 H.c), (75)

1
2 Tr( me+aYeY+bYCY+e

abc™ 2 perms

H

+Yam?’YeY+bYCY+E+ YaY+bYem?'YCY+e
+YaY+bYeY+Cme+e), (76)
1 fq
Aabc 2 p;ms C2 (S)haef)\bceg- (77)
29 1 A A
Aabczz pezrms haef)\bcgleegefl ) (78)
abc E Cz(l)Habm (79)

HE = Z Tr[{c2 (F),mg} Y ayby+e

+{Cy(F),Y3m/ YPY*°©
+{C,(F),Y3} Y Pmy*e

+{C,(F), Y3 Y*PYm(], (80)
AZ5e= 2 [CalD)hape, (81)
Abpe= 2 _Paed 0%, 6% el 0%, 6%}c, (82)
A= 5 2 Paed 0% 0%el 0%, 0%} (83)

1
Bloe= 7 > 10465 Tr(t™* tB*myy e

4 perms

+mABY O A BR YO+ YAt m, ),

(84)
BY ! A pB Ax By +c
Babc:Z E {6%,60°} ap Tr(t™* met®Y
perms
A YeEm, ). (85)

C. Scalar mass

The B functions of scalar masses can also be inferred
from those of the quartic couplings by taking two of the four

PHYSICAL REVIEW 7, 065019 (2003

ﬁmgb: M2\ abert Naeber—4kHap—392A 5+ 2k A Yy,

(86)
where the invariants are defined as

Hap=Tr (YAY TP+ YPY O Ymm + (Y ayP

+ YY) mEme+ Y2m, YPm, + myY tam Y *P],

(87)
AZp= 2 Cali)myy, (89
A= Yali)mi,. (89
The two-loop contribution is
I 1 203 2 1_3 A2Y
Bz =5 ZI AP(mZp— 5AZ,—4KAZ]
+K 4ﬁgb—2 [3H2(i)+2ﬁ2(i)]m§b]
+2xk(HYp+2HY, +2H3)
+0% 2A%5—6A53+2k(H3,—HEp)
+10k, YZF(i)mgb}
|
435cc; 10 . 11 o las
9|3 2( )—gksz( )~ 1552(5) [Azy
3 5, 1 \
(90)

where the invariants are defined as

—
AZb= NabetegiNig+ Zmﬁzaf)\aegl)\bfgl_l' 2h,eihigiNpegl

+ 2hpeigiNaegls (91

KgE:Ygg(S)(mgg)\abef'*' haefhbeg)i (92)

— 1
Hgbzz)\abefTr( m¢Y emY* T+ H.c)
m2, Tr(Y2Y " eYPY 4+ H.c)

+haes THCYPY e Y T+ H.c)

indices to be dummies. From one loop, both fermion masses

and trilinear terms contribute. The one-loop result is

+hpes THYAY "emY T+ H.c), (93
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HY =2 T{{Y,(F),m; m (Y ayP4+ Y bya)] BY,={6%, 65} ., Tr(t™ tB* mim; + mtAtBm/"),
(109
+2 TIY(F)Y  2me (Y Pme+ my YP)
RY _f1pA pB Ax Bt
+Yo(F)Y Pme(Y 2me+mf Y?) VI. EXTENSION TO NONSIMPLE GROUPS
+Y,(F)mYP(Y " 2mi+m{Y?)], (94) So far, the gauge group was assumed to be simple. These
results can be extended to semisimple groups by assigning
_;(b:Tr[(YeY+aYeY+b+YeY+ byey+a)m,m;’ appropriate substitution rules, based upon close inspection of
the relevant Feynman diagrarfisz-9|.
+Yem; Yem, (YaY TP+ YPy*a) Assume the gauge group is a direct product of simple
. bt b groups,G;1X - - - XG,, with corresponding gauge coupling
FYEYTEY e (YoM +mgY ) constantsg;, . ..,g,. The substitution rules for the gauge
YEmEYEY Y Bme 4 myy P coupling constants are
+YOYTPYe MY (YAm{ + meY "9 9°C2(G)—6kC2( G, (109
+Yem Yoy tP(Yqm +mY*3) +H.cl, (95) 9°S,(R)—giS5(R), (107
5 2 5 2
Hgb:Tr[(YaY+b+YbY+a)Yem;rme+e g [CZ(G)] _)gk[CZ(Gk)] 1 (108)
+memYe(Y YO+ Y FPya)y e 9°Ca(G)Sx(R)—GyCa(GS5(R) (
109
+Yam; Ye(Y Pm+mYP)y e
+ MY T 2YS(Y Pmy, + m Y)Y e 9°Co(R1S(R)— 2 gig/ Co(RISH(R).
+YPm/ Ye(Y am+m] Y)Yy te (110
+meY TOYE(Y P am A m Y)Y e (96) Here and hereaftek and| are subgroup indice®® can be
f ’ eitherSor F.
“25_ For otherp and y functions, we first have the following
AZ5=C2(SNabeMegt Co(S)hacthbeg, (97 general substitution rules:
29 _ 2 A pA
Aab )\abefn]gl_l—haefhbgleegefl’ (98) QZCZ(R)_)EK gﬁCE(R), (111)
2= 2 Cali)Has, (99)

4C2(G)Cz(R)—>E giCx(GCE(R), (112
HE,=2 T{{Cy(F), Y3 Y Pmim/
H{Co(F), YORYmymy g*SRICR) -3 giSRICKR), (113
+{C,(F),m¢ym (Y3Y *P4 YPy+a)
+{C(F),Y3m{ (YPm{ +m,Y*P) . NoS 2gPCERICHR’
+{Co(F),mY+2(YPm, +meY*P) ICARICAR) = & idiC2RIC2(RY). (114

+{C,(F),YPIm/ (Y3m; + m;Y*?) Sy .
In HZt’ Babcd' Babc' Bab' Babcd' BabC! andBab' the sub-

+{C2(F)'mf}Y+b(Yamf++me+a)]’ (100 stitution rules are
. 0 — o, 65— 0P,
o= [C(i)]2m2,, (101
' tAoth, Bt
A)\b mef{aA aB}ef{aA GB}ab, (102) (tA**)tﬁ*, *)t| )
Abp=mad 0", 0%} ol 07, 0%}, (103 g'—giof (115
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For examplegB/,.4 is substituted by

—E gidf E {00 0P TR P YOV 0 Yty ),
(116

In quartic coupling, trilinear coupling and scalar mass-

PHYSICAL REVIEW 7, 065019 (2003

and geAgbcd by

E 2 gRCh( |)— E 9tg’, Er:ms(Alac,englf,bd

+ Abe g Db er)- (123

squared terms, further substitution rules are needed. We in-

troduce a new tensor

Aapca= (0™ ac 0)pg

so the gauge invarians,,.4 can be rewritten as

(117

1
Aabca=7 2 (Aac,efAef,bd+Aae,fdAeb,cf)- (118
4 perms

The substitution rule fon 5p ¢4 is

ngab,cd_’; gﬁAgb,cd' (119
Thus,g*A,,cq can be substituted by
1
Z ; gkgl 2 (Aac efAefbd+Aaef Ieb,cf)a (120)

QGSZ(R)Aabcd by

1
2 % 9eg7S5(R) E (A cefA fbd+AaefdAebcf)
(121
QGCZ(G)Aabcd by

2 9¢97C2(Gy) E (AacefA fbd+AaefdAebcf)
(122

Finally, one has

g abcd_>2 gkAabcd(k)- (124)

VII. CONCLUSIONS

We have now presented the complete set of two-loop
renormalization group equations in general gauge theories.
This includes the3 functions of parameters with and without
a mass dimension. We have so far restricted the gauge groups
to be semisimple. If the gauge group contains more than one
U(1) group, the situation is subtle. If there are no kinetic
mixings between the (1) groups after renormalization,
these results can be applied by straightforward extension. If
there are kinetic mixings, these results have to be applied
with caution. In general, modifications will be warranted
[12]. In the case of the SM where one has only ond)U
group, one readily reproduces the result$lif].
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