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Fermion determinant for general background gauge fields

M. P. Fry
School of Mathematics, University of Dublin, Dublin 2, Ireland

~Received 9 December 2002; published 27 March 2003!

An exact representation of the Euclidean fermion determinant in two dimensions for centrally symmetric,
finite-ranged Abelian background fields is derived. Input data are the wave function inside the field’s range and
the scattering phase shift with their momenta rotated to the positive imaginary axis and fixed at the fermion
mass for each partial wave. The determinant’s asymptotic limit for strong coupling and small fermion mass for
square-integrable, unidirectional magnetic fields is shown to depend only on the chiral anomaly. The concept
of duality is extended from one- to two-variable fields, thereby relating the two-dimensional Euclidean deter-
minant for a class of background magnetic fields to the pair production probability in four dimensions for a
related class of electric pulses. Additionally, the ‘‘diamagnetic’’ bound on the two-dimensional Euclidean
determinant is related to the negative sign of] Im Seff /]m2 in four dimensions in the strong coupling, small
mass limit, whereSeff is the one-loop effective action.
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I. INTRODUCTION

Within the standard model fermion determinants are
countered in the calculation of every physical process.
cause of their nonlocal dependence on the gauge fields
are difficult to calculate. Consequently the practice has b
to either ignore them—the quenched approximation—or
expand them in power series. Ultimately they will have to
confronted nonperturbatively, as lattice theorists are now
ing with faster machines, in order to obtain reliable pred
tions with known computational error.

The current status of fermion determinants is reviewed
@1#. To indicate just how bad our knowledge of these de
minants is, not even the strong coupling limit of the mass
Euclidean QED determinant in two dimensions is known
cept for a constant background magnetic field and for a m
netic field confined to the surface of a cylinder@2#. There-
fore, it seems that this is as good a starting point as any to
better insight into the properties of fermion determinants a
to understand their physics.

There are other reasons why the two-dimensional Q
(QED2) determinant should be of general interest. Name
if there were precise nonperturbative information on at le
one continuum, infinite-volume determinant then the alg
rithms of lattice theorists for calculating determinants co
be tested by extrapolating their output to zero lattice spac
and infinite volume. Algorithms for determinants can be e
ily adjusted to any dimensionality, and if some fail to coi
cide with known results for an Abelian background field
two dimensions then they are certainly useless.

Work in this direction has already begun@3# with the
computation of the fermion determinant for massless fer
ons on a torus using the Neuberger-Dirac operator and
higher-order overlap Dirac operator and the comparison
the results with the exact massless QED2 determinant on a
torus @4#. In massive two-flavor QED2 the determinant was
calculated explicitly to study the masses of the triplet~pion!
and singlet~eta! bound states using the overlap and fix
point Dirac operators@5#. Presumably the continuum limit o
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the determinant itself in the nonperturbative domain d
cussed below could be used as a sensitive test of the m
lattice discretizations of the Dirac operator now in use.

In addition, we develop further the concept of duality a
relate the Euclidean QED2 determinant to the pair productio
probability in QED4 for a class of electric pulses. Thus, th
Euclidean QED2 determinant contains nonperturbativ
physical information in four dimensions.

Fermion determinants are obtained by integrating over
fermion fields to produce the one-loop effective Euclide
action Seff52 lndet, where det is formally the ratio det(P”
2eA” 1m)/det(P” 1m) of Fredholm determinants of Euclid
ean Dirac operators. We assume that the continuation to
Euclidean metric has been done. When det is properly
fined it is a nonlocal function of the field strengthFmn

formed from the potentialAm , modulo Chern-Simons term
that are absent in two dimensions. Since the determinan
part of the gauge field’s action,Am and Fmn are random
fields. We have discussed elsewhere@2,6,7# how the need to
regulate in any dimension above 1 allows one to assu
smooth potentials and fields. In order to make furth
progress we assume in addition thatFmn is centrally symmet-
ric and that it has a finite rangea.

This paper is organized as follows. In Sec. II we defi
the determinant and indicate our strategy for calculating it
first assumingma!1 and then lettingueFu@1, wherem is
the fermion mass andF is the flux of the background mag
netic fieldF12. This is the really interesting limit as it take
one deep into the nonperturbative regime. In Sec. III
low-energy scattering phase shifts required to calculate
determinant are obtained. Section IV deals with the sm
mass, strong coupling expansion of the determinant, w
Sec. V presents the explicit form it takes in this limit. Secti
VI generalizes the concept of duality from one- to tw
variable fields, thereby allowing the QED2 Euclidean deter-
minant to be related to physics in four dimensions. Sect
VII summarizes our results while the asymptotic form of t
determinant given in Sec. V is derived in the Appendix.
©2003 The American Physical Society17-1
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II. REPRESENTATION OF THE DETERMINANT

A. Green’s functions

The exact calculation of det in QED2 continued to the
Euclidean metric reduces to the scattering problem o
charged particle confined to a plane pierced by a magn
field, namely@8#,

]

]e
lndet5

e

pE d2rw]2w12m2E d2rw~r !^r u~H11m2!21

2~H21m2!21ur &, ~1!

where the supersymmetric operator pairH65(P2eA)2

7eB are obtained from the two-dimensional Pauli Ham
tonian (P2eA)22s3eB. Hence, the subscripts onH in Eq.
~1! refer to positive and negative chirality. The auxiliary p
tential w is related to the vector potential byAm5emn]nw
and to the magnetic field byB52]2w or

w~r !52
1

2pE d2r 8lnur2r 8uB~r 8!, ~2!

with e1251. Expansion of Eq.~1! in powers ofe yields the
standard one-loop effective action given by the Feynm
rules. The first term on the right-hand side of Eq.~1! is
] lndet/]e of the massless Schwinger model@9#. Due to the
1/r falloff of Am when FÞ0 an integration by parts is no
justified in this case. As we will see in Sec. V, the presence
the mass dependent term profoundly modifies the dete
nant, ultimately cancelling the first term whenueFu@1. The
invariance of Eq.~1! underw→w1c, wherec is a constant,
gives the index theorem on a two-dimensional Euclide
manifold @8,10#.

We now assume thatB is centrally symmetric and tha
B(r )50 for r .a. To ensure finite flux we assumeB is
square integrable in view of the inequalityF2

<2p2a2*0
a drr B2(r ). Referring to Eq. ~1!, define the

Green’s function

^r ,uu~k22H6!21ur 8,u8&

5
1

2p (
l 52`

`

^r u~k22H6,l !
21ur 8&eil (u2u8)

5
1

2p (
l 52`

`

G6,l~k;r ,r 8!eil (u2u8), ~3!
06501
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whereAu5F(r )/2pr ,

H6,l52
d2

dr2
2

1

r

d

dr
1

@ l 2eF~r !/2p#2

r 2
7eB~r !, ~4!

and

F~r !52pE
0

r

dssB~s!. ~5!

The calculation is simplified by introducing the Green
function

G6,l~k;r ,r 8!5Arr 8G6,l~k;r ,r 8!, ~6!

where

G~k;r ,r 8!5^r u~k22H6,l !
21ur 8& ~7!

and

H6,l52
d2

dr2
1

@ l 2eF~r !/2p#22 1
4

r 2
7eB~r !. ~8!

The outgoing-wave Green’s functionsG6,l are constructed
from @11#

G6,l~k;r ,r 8!52
w~k,r ,! f (1)~k,r .!

J~k!
, ~9!

wherew is a regular solution andf (1) an irregular outgoing-
wave solution, of

H6,l f 5k2f ; ~10!

J is the associated Jost function andr , ,r . denote the lesse
and larger values ofr ,r 8. Here and below we will occasion
ally suppress the subscripts6 and l to reduce notationa
clutter.

Regular solutions of Eq.~10! are
w6,l~k,r !5
eip(u l u2W/2)

2A2 H Aa@HW
2~ka!1S6HW

1~ka!#
R6~k,r !

R6~k,a!
, r ,a,

Ar @HW
2~kr !1S6HW

1~kr !#, r .a,

~11!
7-2



e-
-

-

FERMION DETERMINANT FOR GENERAL BACKGROUND . . . PHYSICAL REVIEW D67, 065017 ~2003!
where

S65eip(W2u l u)e2id l
6

; ~12!

HW
1 and HW

2 denote the Hankel functionsHW
(1) and HW

(2) ,
respectively; d l

6 are the scattering phase shifts;W5u l
2eF/2pu; andF5F(a) is the total flux ofB. The interior
wave functions R6,l satisfy the boundary condition
limr→0r 21/22u l uR6,l51. These will be discussed further b
low. The structure ofw6,l for r .a ensures that the eigen
functions ofH6,l in Eq. ~4!, c6,l5w6,l /Ar , correspond to
physical wave functions@11#. That is,

c6~k,r !5
1

A2p
(

l 52`

`

c6,l~k,r !eil u ~13!
06501
assumes the asymptotic form forr→`,

c6~k,r !;
1

2p
eik•r1

1

2pAr
f 6~k,u!eikr , ~14!

where

f 6~k,u!5A 2

pk
eip/4 (

l 52`

`

eid l
6

sind l
6eil u, ~15!

with the differential scattering cross sectionds/dV
5u f 6(k,u)u2.

AssumingR6,l are known, irregular outgoing-wave solu
tions of Eq.~10! can be found by standard means, giving
f 6,l
(1)~k,r !5H Aa HW

1~ka!
R6~k,r !

R6~k,a!
1

4i

pAa
@HW

2~ka!1S6HW
1~ka!#21R6~k,a!R6~k,r !E

r

a ds

R6
2 ~k,s!

, r ,a,

Ar H W
1~kr !, r .a.

~16!
y

ent
Near the regular singular point atr 50 of Eq. ~10!, f 6,l
(1)

;const3r 1/22u l u.
Equations~11! and ~16! give the Jost function

J5W~ f (1),w!52
iA2

p
eip(u l u2W/2), ~17!

which is independent of chirality;W on the left-hand side is
the Wronskian. It may be verified that Eqs.~9!, ~11!, ~16!,
and ~17! combine to satisfy the basic condition

]

]r
G6,l~r ,r 8!ur 5r 820

r 5r 810
51. ~18!

In order to make contact with the determinant in Eq.~1!
we now analytically continuek in G6,l(k,r ) into the upper
half of the complex plane by lettingk5meip/2. Then Eqs.
~1!, ~3!, and~6! give

]

]e
lndet522eE

0

a

drrw~r !B~r !

22m2 E
0

`

drw~r ! (
l 52`

`

@G1,l~meip/2,r !

2G2,l~meip/2,r !#, ~19!

while Eq. ~2! gives
w~r !5H 1

2pEr

a

ds
F~s!

s
, r ,a,

2
F

2p
lnS r

aD , r .a.

~20!

Because of the invariance of lndet underw→w1c we have
adjustedw(r ) so thatw(a)50.

For r .a, Eqs.~9!, ~11!, ~16!, and~17! give

G1,l~meip/2,r !2G2,l~meip/2,r !

5
ir

p
e2 ipu l u~e2id l

1

2e2id l
2

!KW
2 ~mr!, ~21!

whereKW is a modified Bessel function and we used@12#

HW
1~rmeip/2!52

2i

p
e2 ipW/2KW~mr!. ~22!

The phase shifts in Eq.~21! are understood to be analyticall
continued as well.

It is convenient to separate the energy-independ
Aharonov-Bohm phase shifts@10,13# from d l

6 . Without loss
of generality we assumeeF.0. Then, modulop,
7-3
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d l
1~k!55

p

2
~ u l u2W!1D l

1~k!, lÞ@eF/2p#,

p

2
~eF/2p!1D l

1~k!, l 5@eF/2p#,
~23!

d l
2~k!5

p

2
~ u l u2W!1D l

2~k!, all l , ~24!

where@x# stands for the nearest integer less thanx with @0#
50. The energy-dependent phase shiftsD l

6(k) will be cal-
culated in Sec. III.

The Green’s function difference on the left-hand side
er
ta
i

e
w

c-
n

n

06501
f

Eq. ~21! for r ,a may be dealt with as forr .a, this time
using @12#

HW
1~ameip/2!HW

2~ameip/2!5
4

p2
e2 ipWKW

2 ~am!

2
4i

p
I W~am!KW~am!,

~25!

where I W is a modified Bessel function. ForeF/2p5N
1e, N50,1, . . . ,0<e,1, the final result from Eqs.~19!,
~20!, ~21!, ~23!, and~24! is
]

]e
lndet522eE

0

a

drrw~r !B~r !12am2E
0

a

drw~r !(
l

I W~am!KW~am!F S R1~r !

R1~a! D
2

2S R2~r !

R2~a! D
2G

1
i2am2

p E
0

a

drw~r ! (
lÞN

e2 ipWKW
2 ~am!F ~12e2iD l

1

!S R1~r !

R1~a! D
2

2~12e2iD l
2

!S R2~r !

R2~a! D
2G

1
i2am2

p
e2 ipeKe

2~am!E
0

a

drw~r !F ~12e2ipee2iDN
1

!S R1~r !

R1~a! D
2

2~12e2iDN
2

!S R2~r !

R2~a! D
2G

12m2E
0

a

drw~r !(
l

FR1
2 ~r !E

r

a ds

R1
2 ~s!

2R2
2 ~s!E

r

a ds

R2
2 ~s!

G1
im2F

p2 E
a

`

drr ln ~r /a!(
lÞN

e2 ipW

3~e2iD l
1

2e2iD l
2

!KW
2 ~mr!1

im2F

p2
~eipee2iDN

1

2e2 ipee2iDN
2

!E
a

`

drr ln ~r /a!Ke
2~mr!. ~26!
ions
q.

be-
n

-

n

e
al-
The interior wave functionsR6 and the phase shiftsD l
6 are

abbreviations forR6,l(meip/2,r ) andD l
6(meip/2).

The representation~26! is exact. Its advantage over oth
representations of determinants based on scattering da
that it involves no integration over phase shift energy. It
particularly relevant to a study of the chiral limitma!1.
Anticipating what follows, the integrals can be interchang
with the sums for the class of fields considered here, allo
ing the integrals in the exterior regionr .a to be done im-
mediately. Only information about the interior wave fun
tions is required to calculate the determinant exactly, a
these are known explicitly forma!1 as in Eq.~29! below.

The right-hand side of Eq.~26! must be real since it is a
Euclidean determinant. This imposes the nontrivial co
straints

eipWe22iD l
6(me2 ip/2)

52e2 ipWe2iD l
6(meip/2)12 cospW,

lÞN for 1 chirality,

e2 ipee22iDN
1

~me2 ip/2!52eipee2iDN
1(meip/2)12 cospe,

D l
6* ~meip/2!5D l

6~me2 ip/2!. ~27!
is
s

d
-

d

-

For the fields considered here and the small mass expans
of D l

6 made in Sec. III there is complete agreement with E
~27!.

B. Small mass expansions

We now commence the expansion of lndet whenma
!1. This does not mean an expansion in powers ofm2.
Such an expansion does not exist as lndet has a branch
ginning atm50 @14#. Rather, we are referring to a collectio
of leading terms inm such asmn ln m, n.0, as well as
integral powers ofm2.

Since Eq.~10! depends only onk2 and the boundary con
dition limr→0r 2u l u21/2R6,l51 is independent ofk,R6,l(k,r )
is a regular function of k2. Therefore we set
R6,l(meip/2,r )[R6,l(m

2,r ) and begin an expansion i
powers ofm2:

Rl~m2,r !5Rl~r !@11~ma!2x l~r !1O~ma!4#. ~28!

For m50, exact positive chirality solutions ofH1,lR1,l
50 are known forl .0 @13#; the remaining cases can b
dealt with similarly. The results are, up to irrelevant norm
ization constants that cancel in Eq.~26!,
7-4
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R1,l5r l 11/2eew(r ), l>0,

R1,2 l5r 2 l 11/2eew(r )E
0

r

dss2l 21e22ew(s), l .0,

R2,l5r 2 l 11/2e2ew(r )E
0

r

dss2l 21e2ew(s), l .0,

R2,2 l5r l 11/2e2ew(r ), l>0. ~29!

Noting Eq. ~20!, R1,l is square integrable forl 50, . . . ,N
21 for eF/2p5N1e. This is in accord with the Aharonov
Casher theorem which states that the number of pos
~negative! chirality square-integrable zero modes
@ ueFu/2p#, depending on whethereF.0 or (eF,0) @15#.
These zero modes will be shown to play a dominant role
the strong coupling limit of lndet.

We want to calculate lndet in the limitma!1 followed by
eF@1. This must be done with care as there may be ra
of terms like (am)2eeF/@11(am)2eeF# which when further
expanded in powers ofm2 grows exponentially witheF.
There is one firm guiding principle here, namely, that t
determinant is an entire function ofe of order 2@16,17#. This
means that for any complex value ofe, udetu
,A(e)exp@K(e)ueu21e# for any e.0 and A(e),K(e) are
constants. Therefore, any growth of lndet faster than q
dratic in e means that the expansion one is making is in
missible. In fact, for real values ofe lndet must satisfy the
more precise bound

2
e2uuBuu2

4pm2
< lndet<0, ~30!

for any B with uuBuu25*d2rB2(r ),`. There are additiona
technical assumptions underlying Eq.~30! that the fields con-
sidered here satisfy. The right-hand side is the ‘‘diam
netic’’ bound@17–20# and the left-hand side follows from th
general operator structure of det and some standard ineq
ties @1#.

The warning cited above materializes for 0, l ,eF/2p
when B(r )>0. There may be other cases. In the posit
chirality sectorx l

1 in Eq. ~28! is

x l
1~r !5a22E

0

r

dsE
0

s

dt~ t/s!2l 11e2e[w(t)2w(s)] , ~31!

for r ,a. What happens is that the effective potential

V~r !5
@ l 2eF~r !/2p#22 1

4

r 2
2eB~r ! ~32!

has a high and wide barrier beginning in the ranger ,a and
extending out tor;2a for eF/2p@1. This gives rise to
quasi-stationary states. As a consequence the wave fun
is enhanced insider ,a andx l

1 can become large for stron
coupling.
06501
e

n

s

a-
-

-

ali-

ion

For l 5O(eF/2p) or larger the barrier inV disappears
and the growth ofx l

1 for eF/2p@1 slows down. This must
happen sincedx l

1/dl,0 for all e. For l @1 the integral in
Eq. ~31! is dominated in the ranget&s, giving x l

1

5O(1/l ). For the special case ofB(r )5B, r ,a and zero
otherwise, we find

x l
1~r !<~4l !21ln l 1O~1/l !, ~33!

for l .eF/2p21, l .2, 0<r<a.
To reiterate, care must be taken that every term in

small mass expansion makes sense, either by satisfying
bound ~30! or by making sure that the offending term
cancelled by other terms.

III. LOW-ENERGY PHASE SHIFTS

In order to take the small mass limit of det in Eq.~26! we
will need the low-energy phase shifts. From here on it
convenient to revert to the solutions of

H6,lc6,l5k2c6,l , ~34!

whereH6,l is defined by Eq.~4! andc6,l are connected to
the regular solutions~11! of Eq. ~10! by

c6,l~k,r !5
w6,l~k,r !

Ar
. ~35!

For any chirality the zero-energy solutions~29! of Eq. ~10!
are related to the zero-energy solutionsc l

0 of Eq. ~34! by

c l
0~r !5

Rl~r !

Ar
. ~36!

From Eqs.~11!, ~12!, ~23!, ~24!, and~35!, for r .a,

c l~k,r !5221/2eid leipu l u/2@JW~kr !cosD l2YW~kr !sinD l #,

~37!

whereYW is a Bessel function of the second kind. This hol
for all l and both chiralities except for positive chirality whe
l 5N, which has to be dealt with separately. Then

tanD l5
g lJW~ka!2kaJW8 ~ka!

g lYW~ka!2kaYW8 ~ka!
, ~38!

where

g l5~r ] rc l /c l !a

5~r ] rc l
0/c l

0!a2
k2

c l
0~a!c l~k,a!

E
0

a

drrc l
0~r !c l~k,r !

[g l
(0)1~ka!2g l

(2)1~ka!4g l
(4)1O~ka!6, ~39!

and from Eq.~28!

c l~k,r !5c l
0~r !@12~ka!2x l~r !1O~ka!4#. ~40!
7-5
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Equations~29! and ~36! give

g l
1(0)5H l 2

eF

2p
, l>0

l 2
eF

2p
1F E

0

adr

r S r

aD 22l

e22ew(r )G21

, l ,0,

g l
2(0)5H eF

2p
2 l 1F E

0

adr

r S r

aD 2l

e2ew(r )G21

, l .0,

eF

2p
2 l , l<0,

~41!

and Eqs.~39!,~40! give, for both chiralities,

g l
(2)52a22E

0

a

drr S c l
0~r !

c l
0~a!

D 2

,

g l
(4)5a22E

0

a

drr S c l
0~r !

c l
0~a!

D 2

@x l~r !2x l~a!#. ~42!

The norms of the square-integrable zero modes are, f
Eqs.~36!, ~29! and ~20!,

uuc l
0uu25E

0

`

drr uc l
0u2/a2l 12

5E
0

adr

a S r

aD 2l 11

e2ew(r )

1
1

2~W21!
, l 50, . . . ,N21. ~43!

With Eqs. ~38!, ~39!, ~41!, ~42!, eF/2p5N1e@1, (ka)2

!e, (ka)2!12e the following low-energy phase shifts ar
obtained:

D l
152

p

G2~W!
S ka

2 D 2WH 2

uuc l
0uu2~ka!2

1
1

W

1
1

~12W!uuc l
0uu2

1
@4~W21!2~22W!#2112g l

(4)

uuc l
0uu4

1O~ka!2J 1O~ka!4W24, l 50, . . . ,N22, ~44!

DN21
1 52

p

G2~11e!
S ka

2 D 212eH 2

uucN21
0 uu2~ka!2

1
1

11e

2
1

euucN21
0 uu2

1
@4e2~12e!#2112gN21

(4)

uucN21
0 uu4 J

2
p2cotpe

4G4~11e!uucN21
0 uu4

S ka

2 D 4e

1O~ka!6e, ~45!
06501
m

providede.1/u ln(ka)u;

DN
15

p

G2~12e!
F2E

0

adr

a S r

aD 2N11

e2ew1
1

e21G S ka

2 D 222e

1O~ka!424e, ~46!

provided 12e.1/u ln(ka)u; and

e.~ka!2E
0

adr

a S r

aD 2N11

e2ew. ~47!

This may seem impossible to satisfy for largee, but it turns
out that the integral in Eq.~47! decreases as a power ofN
~see the Appendix!. Continuing,

D l
15

2p~ka/2!2W12

G2~11W!
E

0

adr

a S r

aD 2l 11

3e2ew1O~ka!2W14, l 5N11,N12, . . . ,

~48!

and

D l
15

p~ka/2!2W

G2~W!
F2E

0

adr

r S r

aD 2u l u

e22ew2
1

WG
1O@~ka!4W,~ka!2W12#, l 521,22, . . . . ~49!

For negative chirality,

D l
252

p~ka/2!2W

G2~W11!
F2E

0

adr

r S r

aD 2l

e2ew1
1

WG21

1O@~ka!4W,~ka!2W12#, l 51, . . . ,N, ~50!

D l
25

p~ka/2!2W

G2~W!
F2E

0

adr

r S r

aD 2l

e2ew2
1

WG
1O@~ka!4W,~ka!2W12#, l 5N11,N12, . . . ,

~51!

D l
25

2p~ka/2!2W12

G2~W11!
E

0

adr

a S r

aD 2u l u11

e22ew

1O~ka!2W14, l 50,21, . . . . ~52!
7-6
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The negative values ofD l
6 for l 51, . . . ,N can be quali-

tatively understood as due to the repulsive barrier inV men-
tioned in Sec. II. The apparent poles inD l

6 whenW is inte-
gral disappear when a careful limit is taken. For examp
going back to the basic definition~38!,

lim
e→0

DN21
1 5

p

2 F ln~ka/2!1g2E
0

adr

a S r

aD 2N21

e2ewG21

1OS 1

ln3~ka!
D ,

lim
W→0

D l
25

p

2 ln~ka!
1OS 1

ln2~ka!
D , ~53!

whereg is Euler’s constant. The general rule is that simp
poles inD l

6 whenW is integral are replaced with logarithm
of the type ln(ka).
x

06501
,

The main observation here is the presence of the (ka)22

factors inD l
1 for l 50, . . . ,N21 which cause each of th

corresponding partial-wave Green’s functionsG1,l(meip/2,r )
in Eq. ~19! to develop a simple pole inm2 at the origin.
These are of course expected due to theN square-integrable
zero modes ofH1,l .

We have learned from this calculation that the prec
form of these phase shifts is necessary if large cancellat
are to go through in the calculation of the determinant. T
is further discussed in Sec. IV.

IV. SMALL-MASS, STRONG-COUPLING EXPANSION OF
lndet

Because of the rapid falloff of the low-energy phase sh
with l the sums and integrals in Eq.~26! can be interchanged
Using entries 5.54.2 of Ref.@21# and 1.12.3.3 of Ref.@22#
one obtains
a22E
a

`

drr lnS r

aDKW
2 ~mr!5

1

2
KW11~ma!KW8 ~ma!2

1

2
KW~ma!KW118 ~ma!

1
W

2maFKW11~ma!
]

]W
KW~ma!2KW~ma!

]

]W
KW11~ma!G ~54!

5
G2~W21!

16 S ma

2 D 22W

1
p

16 sinpW F2Wc~W!1pW cotpW22W lnS ma

2 D22W11G
3S ma

2 D 22

1
G2~W!

8~12W!~22W!2 S ma

2 D 222W

1O@~ma!422W,~ma!0#, lÞN ~55!

5
G2~e21!

16 S ma

2 D 22e

1
p

16 sinpe F2ec~e!1pe cotpe22e lnS ma

2 D22e11G S ma

2 D 22

2
p

8e sinpe
1

p2

16G2~21e!~sinpe!2 S ma

2 D 2e

1
G2~e!

8~12e!~22e!2 S ma

2 D 222e

1O@~ma!212e,~ma!422e#, l 5N, ~56!
I and
wherec(z)5G8(z)/G(z) and 0,e,1. Apparent singulari-
ties in Eqs.~55! and~56! at integral values ofW cancel when
careful limits are taken. Also required are the following e
pansions@12#:

KW~z!5
1

2
G~W!~z/2!2WF11

~z/2!2

12W
1O~z4!G

2
p~z/2!W

2G~W11!sinpW F11
~z/2!2

W11
1O~z4!G

~57!

and
-
I W~z!KW~z!5

1

2WF11
z2/2

12W2
2

p~z/2!2W

WG2~W!sinpW

1O~z4,z2W12!G . ~58!

The pole atm250 in G1,l(k5meip/2,r ) from the factors
(ka)22 in D l

1 in Eqs.~44! and~45! make the positive chiral-
ity terms for l 50, . . . ,N21 in Eq. ~26! the dominant ones
when ma!1. Using Eqs.~44!–~52!, ~55!–~58! and ~28!
when it makes sense—as discussed at the end of Sec. I
below—we obtain, from Eq.~26!,
7-7
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]

]e
lndet522eE

0

a

drrw~r !B~r !1 (
l 50

N21
]

]e
lnuuc l

0uu2

1
eF

p
ln~ma!2

F

2p
@2ec~e!1pe cotpe1122e

12e ln 2#1O@~ma!2eln~ma!,~ma!222e

3 ln~ma!,~ma!2ln~eF!#, ~59!

provided u ln(ma)u21,e,12uln(ma)u21. Recall thateF/2p
5N1e.

Regarding the remainder in Eq.~59!, there are 12 cases t
consider: positive/negative chirality, regions inside/outs
the range ofB, and the angular momentum rangesl<21,
0< l<N, l>N11 for eF@1. The terms of
order (ma)2eln(ma) and (ma)222eln(ma) come from
positive chirality, l 5N,N21 for r .a. The term
of order (ma)2ln(eF) comes from the
*0

adr w(r )R6,l
2 (r )* r

ads/R6,l
2 (s) terms in Eq.~26! summed

over values ofl in the neighborhood of2eF/2p. The pres-
ence of the factor ln(eF) is tentative: there may be subt
cancellations between the positive and negative chirality s
tors that will eliminate the logarithm. All of theO(ma)2

remainder estimates are based on what we consider the w
case, namely,B(r )>0, which causesw(r ) to be positive and
monotonically decreasing for 0<r ,a.

Our second comment on Eq.~59! concerns large indi-
vidual terms in the mass expansion wheneF@1. Consider
the second term in Eq. ~26! and the ratio
R1.l(m

2,r )/R1,l(m
2,a). As discussed in Sec. II B,R1,l can

exponentially increase foreF@1 for 0< l &eF/2p. How-
ever, this ratio atm250 @R1(0,a)5al 11/2# and its leading
correctionx l

1 in Eq. ~31! are cancelled for eachl by the third
term in Eq.~26!. It remains to understand these cancellatio
and to verify that they continue at order (ma)6 and higher
orders.

The termsR1,l
2 (r )* r

ads/R1,l
2 (s) for 0< l<N in Eq. ~26!

have not been expanded since there is no apparent can
tion mechanism. We have found that in one of the wo
cases, whenB(r )5B for r ,a and zero otherwise, thes
terms when left unexpanded vanish aseF→`. For l .N
these terms remain bounded when expanded, and fl
@eF/2p their leadingl behavior is cancelled by the neg
tive chirality sector since the distinction between the t
chiralities disappears asl→`.

In the exactly solvable case of a magnetic field confin
to the surface of a cylinder the mass-dependent terms rem
subdominant wheneF@1 @2#. The study of the cancellation
of large terms and the vanishing of ratios of large terms w
eF→` is still at a preliminary stage. The control of the
terms has much to teach us about the nonperturbative s
ture of lndet.

Finally, we have previously shown that, foreF fixed and
ma!1,

lndet5
ueFu
2p

ln~ma!1R~m!, ~60!
06501
e

c-

rst

s

lla-
t

d
in

n

c-

where limm50@R/ ln(ma)#50 @23#. Now consider the case
when e50 and eF/2p5N. Then the dominant mass
dependent term in Eq.~26! for ma!1 occurs atl 5N21,
r .a:

]

]e
lndetN215

2m2F

p2
~DN21

1 1 iDN21
12 2DN21

2

1••• !E
a

`

drr lnS r

aDK1
2~mr!, ~61!

where DN21
6 are continued tok5meip/2. From Eqs.~50!,

~53! and

a22E
a

`

drr lnS r

aDK1
2~mr!

5
@ ln~ma/2!1g#21 ln~ma/2!1g11

2~ma!2

1
1

4
lnS ma

2 D1
g

4
2

3

8
1O@~ma!2ln2~ma!#, ~62!

one gets

]

]e
lndetN215

F

2p
ln~ma!1O~1!, ~63!

in accord with Eq.~60!.
Next, consider the case wheneF/2p5N1e, 0,e<1.

As e→1 a pole atm250 begins to develop inG1,N and
DN

1(k);p/@2 ln(ka)#. For eF/2p5N11 we find

]

]e
lndetN5

F

2p
ln~ma!1O~1!, ~64!

again in accord with Eq.~60!. Moreover, the same result i
obtained in the limite→1.

In the interval 0,e,1 the (eF/p)ln(ma) term in Eq.
~59! comes from thel 5N, r .a contribution to] lndet/]e.
This term contradicts Eq.~60! which was derived by holding
eF fixed and lettingma→0. Here we are settingma!1,
and then lettingeF increase indefinitely. By taking limits in
this way the ln(ma) term becomes an infinitesimal addition
lndet when compared to its growth due to the pileup of n
malizable zero modes aseF increases, as we will see in Se
V. For the present it is assumed that there are other infi
tesimal terms not yet found that will result in the sh
(eF/2p)ln(ma)→(F/2p)ln(ma) in the range ofe indicated.

We are confident that Eq.~60! is the leading mass
dependent term in lndet, and it will accordingly be added
to our strong coupling result for lndet in Sec. V.

V. SMALL-MASS, STRONG-COUPLING LIMIT OF lndet

Up to now we have assumed thatB(r ) is square inte-
grable, centrally symmetric and finite ranged. Further a
lytic analysis of Eq.~59! requires additional assumption
namely B(r )>0 with continuous first and second deriv
7-8
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tives. Then we can show that foreF→`, the first term in
Eq. ~59! is cancelled by the zero modes contributing to t
second term.

The demonstration is straightforward. Refer to Eqs.~59!,
~36! and the first lines of Eqs.~43! and ~29! and obtain

(
l 50

N21
]

]e
lnuuc l

0uu252E
0

`

drrw~r ! (
l 50

N21
r 2le2ew(r )

E
0

`

dss2l 11e2ew(s)

.

~65!

Now make use of the following theorem of Erdo¨s @24#, spe-
cialized here to the case of central symmetry: LetB(r )>0
be a compactly supported magnetic field with a continu
first derivative. Define the ground-state density function

P~r !5 (
l 50

N21
r 2le2ew(r )

E
0

`

dss2l 11e2ew(s)

. ~66!

Then P(r )/e converges toB(r ) in Lp for any 1<p,` as
e→`. According to this theorem

(
l 50

N21
]

]e
lnuuc l

0uu252eE
0

a

drrw~r !B~r !1R~e!, ~67!

for eF@1 and where lime→`R(e)/e50. The r integral in
Eq. ~65! cuts off due to the finite range ofB. Hence, Eq.~67!
leads to the promised cancellation in Eq.~59!.

The really interesting question now is what is the rema
der in Eq.~67!? Erdös’ theorem is not yet sharp enough
state what it is. It had better be negative to be in accord w
the diamagnetic upper bound in Eq.~30!. In the Appendix we
investigate this problem by the method of steepest desc
assumingB(r ).0 with two alternative sets of boundar
conditions:B(a)50, limr→a2B8(r ),0, andB(a).0. The
result in both cases is

lim
ueFu@1

lim
ma!1

lndet52
ueFu
4p

lnS ueFu

~ma!2D
1O„ueFu,~ma!2ueFu ln~ ueFu!….

~68!

The case wheneB,0 is the mirror image of theeB.0 case,
and so we need only insert absolute value signs to cover
cases. As discussed in Sec. IV, we have inserted the m
dependent term from Ref.@23#. Comparing Eq.~68! with the
constant field result

lndet52
eBV

4p
lnS eB

m2D 1O~eB!, ~69!

we see that they are formally in accord on settingV5pa2

→`. Of course we cannot say anything about the remain
mass-dependent terms in Eq.~68! in this limit.
06501
s
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The minus sign in Eq.~68! is a reflection of the paramag
netism of charged fermions in a magnetic field. This is m
clearly seen with Schwinger’s proper time definition of t
determinant@25#, namely

lndet5
1

2E0

`dt

t
e2tm2

Tr†e2P2t2exp$2@~P2eA!2

2s3B#t%‡. ~70!

Noting the minus sign in Eq.~68!, Eq. ~70! indicates that on
average the spectrum of the Pauli operator is lowered bB
relative to the field-free case. Therefore, the current usag
‘‘diamagnetic’’ bound to describe the right-hand side of E
~30! is a misnomer. The factorueFu in Eq. ~68! multiplying
the logarithm is related to the counting of zero modes. M
will be said about the physics of Eq.~68! in Sec. VI.

The discussion of the remainder in Eq.~59! in Sec. IV
means that we cannot rule out the subdominant te
(ma)2ueFu ln(ueFu) in Eq. ~68!; more detailed analysis is re
quired to exclude the ln(ueFu) factor.

The remarkable thing about Eq.~68! is that the limit is
universal for a broad class of fields. Since it only depends
a global property of the background magnetic field—its to
flux—we suspect that Eq.~68! is also the limit in the genera
case of non-central, square-integrable fields.

Finally, the case of zero-flux background fields has n
been considered in the literature to the author’s knowle
except for the case of massless QED2 on a torus@4# and a
sphere@26#. Our limit seems to indicate that whenF50
there are no square-integrable zero modes and henc
mechanism to cancel the first term in Eq.~59!. In this case
one might suppose that it is this term—the Schwinger term
that is dominant in the small-mass, strong-coupling lim
This is the result in@4#.

VI. DUALITY

The purpose of this section is to relate the Euclidean
terminant of QED2 and some of the results of the previou
sections to physics in four dimensions. The term duality
used in this section is distinct from Olive-Montonen electr
magnetic duality@27#. It is rather a duality closely related t
the analyticity of the one-loop effective action of QED
two and four dimensions.

The Euclidean determinants in QED4 and QED2 for the
background magnetic fieldB5„0,0,B(x1 ,x2)… are related by

22p
]

]m2
lndetQED4

5L3L4lndetQED2
1

L3L4uuBuu2e2

12pm2
,

~71!

whereuuBuu25*dx1dx2B2(x1 ,x2), L3L4 is the volume of the
space-time box forx3 andx4, and on-shell charge renorma
ization is used@6#. HenceB must be at least square integrab
in what follows. Assuming one can rotate energy contours
the usual way, continue lndetQED4

to the Lorentz metric by
7-9
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letting g4→ ig0 , x4→ei (p/22e)t, e→01 and L4→ iT. On
the right detQED2

remains a Euclidean determinant and so E
~71! now becomes

22p
]

]m2
lndetQED4

L ~B!5 iL 3lndetQED2

E ~B!1
iL 3TuuBuu2e2

12pm2
,

~72!

with the superscriptsE and L denoting Euclidean and Lor
entz metrics, respectively. Therefore, given detQED2

E (B) we

can calculate detQED4

L (B) for a general unidirectional mag

netic fieldB(r ) by integrating Eq.~72! overm2 as described
in Ref. @6#.

Now make the duality transformation from the static ma
netic field B(x1 ,x2) to the functionally equivalent electri
field E(x3 ,t) by letting

A5„A1~x1 ,x2!,A2~x1 ,x2!,0…→„0,0,A3~x3 ,t !…, ~73!

with “3A5B(x1 ,x2) k̂, E52Ȧ3k̂5B(x3 ,t) k̂ and

A3~x3 ,t !52E
t0

t

dsB~x3 ,s!. ~74!

A change int0 in Eq. ~74! results in a gauge transformatio
and does not affect the determinant. This duality transform
tion is implemented by the replacementB(x1 ,x2)
→e2 ip/2E(x3 ,x4) in detQED4

E , detQED2

E and uuBuu in Eq. ~71!

and the coordinate/momentum relabeling 1↔3, 2↔4, fol-
lowed by continuation to the Lorentz metric, includingb
→eip/2t, whereb is the range ofB in the x2 direction, and
2t is the duration of the electric pulseE(x3 ,t). An example
is given in Eq.~77! below. If B has more than one rang
parameter in thex2 direction then all of them must be con
tinued asb. The ruleB→e2 ip/2E in going from the Euclid-
ean metric back to the Lorentz metric is a consequence o
definition of E above and the rotationx4→ei (p/22e)t. Ulti-
mately it is rooted in the fundamental prescriptionm2→m2

2 i e. Then Eq.~71! becomes

22p
]

]m2
lndetQED4

E→L ~B→e2 ip/2E!

5L1L2lndetQED2

E→L ~B→e2 ip/2E!

2
iL 1L2uuEuu2e2

12pm2
. ~75!

As an example consider the last terms in Eqs.~71! and ~75!
for the case of a magnetic field in a closed region with t
range parameters:

B~x1 ,x2!5B fS x1

a
,
x2

b D ,

E~x3 ,t !5B fS x3

a
,

t

t D , ~76!
06501
.

-

a-

he

with B(x156a,x2)5B(x1 ,x256b)50. Following the
above rules

uuBuu25B2E
2a

a

dx1E
bg1(x1 /a)

bg2(x1 /a)

dx2f 2S x1

a
,
x2

b D
→2B2E

2a

a

dx3E
i tg1(x3 /a)

i tg2(x3 /a)

dx4f 2S x3

a
,

x4

eip/2t
D

52 iB2E
2a

a

dx3E
tg1(x3 /a)

tg2(x3 /a)

dt f2S x3

a
,

t

t D
52 i uuEuu2, ~77!

where x25bgi(x1 /a), t5tgi(x3 /a), i 51,2, define the
boundaries ofB andE.

Equation ~75! may seem to give nothing new, at lea
when developed in a power-series expansion inE. Its real
power enters when lndetQED2

E (B) is known nonperturbatively

as we will now see. Defining the one-loop Lorentz met
effective action bySeff52 i lndet, Eq.~75! gives

22p
]

]m2
Seff

QED4~E!52 iL 1L2lndetQED2

E→L ~B→e2 ip/2E!

2
L1L2uuEuu2e2

12pm2
. ~78!

As an example, consider the finite-range magnetic field

B~x1 ,x2!5S 12
x1

21x2
2

a2 D B, x1
21x2

2<a2, ~79!

and the corresponding electric pulse

E~x3 ,t !5S 12
x3

21~ct!2

a2 D E, x3
21~ct!2<a2, ~80!

whereB andE are constants,F5pa2B/2 andct5a. Both
fields are directed along thez axis. Forma→0 andeF@1
we found the result~68! for lndetQED2

E (B). Then following

the above rules set

lndetQED2

E→L ~B→e2 ip/2E!

52
~epa/2!~eip/2t!~e2 ip/2E!

4p
lnS epe2 ip/2E

m2 D
1O~eE!52

epatE

8p
lnS eE

m2D 1O~eE!, ~81!

where corrections ofO„(ma)2
… have been ignored. Subst

tuting Eq.~81! in Eq. ~78! gives foreE@m2
7-10
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2p
]

]m2
Im Seff

QED452
epatL1L2E

8p
lnS eE

m2D 1O~eE!.

~82!

As far as we know there is nothing in the literature to direc
check Eq. ~82! with, or any other class of electric two
variable pulses.

The minus sign in Eq.~82! is universal for the class o
fields and their dual pulses considered in this paper. We n
see that the physically reasonable result that the pair pro
tion probability 12exp(22 ImSeff) decreases with increas
ing fermion mass depends on the paramagnetism of cha
fermions in a magnetic field, as indicated by the minus s
in Eq. ~68! and discussed afterwards. We take this as dir
physical evidence for the validity, at least in the stron
coupling, low-mass domain, of the ‘‘diamagnetic’’ bound o
the Euclidean determinant, namely detQED2

E <1.

The diamagnetic bound also holds in the perturbative
main of large mass and weak coupling since the power se
expansion of lndetQED2

E is asymptotic and the overall sign o

the second-order term is negative@14#.
A mechanical device that would simulate the pulses

plied by the duality transforms on centrally symmetric ma
netic fields would be two parallel conducting plates of lar
extent initially very close together, then pulled apart and th
pushed together again. These plates have the unusual
erty of having opposite surface-charge densities varying w
time and their spatial separation.

Duality has been considered recently by Dunne and H
@28# for nonconstant fields in their study of the exactly so
able single-variable magnetic fieldB(x)5B sech2(x/l). Al-
though the asymptotic boundary conditions are differen
the magnetic and electric field cases, they allow the anal
continuations required for duality in this example. In a la
paper @29# they go beyond exactly solvable backgrou
fields by using a WKB approach to approximate the sp
trum of the Pauli operator (P” 2eA” )2. The authors are awar
that such an approach cannot prove duality in the sin
variable case, but it does give an insight into just how n
trivial duality is. Presumably the final justification of dualit
in both the one- and two-variable cases is the validity of
Wick rotation in the presence of external fields.

The question arises as to whether there is a duality tra
formation of the typeB(x1 ,x2)→e2 ip/2E(x1 ,x2), whereE
is directed along the third axis. The answer is ‘‘no’’ exce
for the special case whenE(x1 ,x2) is constant within the
boundary parallel to the direction of the field. Otherwise,
Bianchi identity excludes such fields. So forB constant over
a finite spatial region, duality takes the simple form, fro
Eq. ~72!,

22p
]

]m2
Seff

QED4~B→e2 ip/2E!

5L3T lndetQED2

E ~B→e2 ip/2E!2
L3TuuEuu2e2

12pm2
.

~83!
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The determinant detQED2
retains its Euclidean metric sinc

the background field is static. For the case of a circu
boundary of radiusa ~83! can be checked since there is
reliable semiclassical approximation that is valid fora2eE
@p, namely@30#

Im Seff
QED45

L3Te2E2

8p3 (
n51

`
1

n2
e2npm2/eE

3H pa22p2aS n

eED 1/2

erf FaS eE

np D 1/2G
1

np2

eE
~12e2a2eE/np!J . ~84!

Then fora2eE@p@m2a2,

22p
]

]m2
Im Seff

QED45
L3Tpa2eE

4p
@ ln~eE/m2!1O~1!#,

~85!

which agrees by inspection with Eq.~83! when combined
with Eq. ~68!, taking eF.0 and letting F5pa2B
→pa2e2 ip/2E.

VII. SUMMARY

An exact representation of the Euclidean fermion det
minant in two dimensions for centrally symmetric, finite
ranged Abelian background gauge fields has been obta
that depends only on the interior partial-wave functions a
scattering phase shifts continued to the upperk plane by
settingk5meip/2, wherem is the fermion mass. In the non
perturbative limit of small fermion mass these are kno
explicitly, thereby making the determinant amenable to n
merical analysis. For the sequence of limits of small ferm
mass followed by strong coupling we have been able to
tain the explicit asymptotic limit of the determinant when t
background field is unidirectional and nonvanishing exc
on its boundary. The result is universal, depending only
the two-dimensional chiral anomalyeF/2p. It should be an
easy task to obtain the determinant’s asymptotic limit
fluctuating magnetic fields since one only needs to num
cally evaluate the second term in Eq.~59!. These results
should be a useful nonperturbative check on lattice al
rithms for fermion determinants when the output is extrap
lated to infinite volume and zero lattice spacing.

By extending the concept of duality to two variables w
have been able to relate the Euclidean determinant in
dimensions for a wide class of background magnetic field
the pair production probability in four dimensions for a r
lated class of electric pulses. We have also connected
‘‘diamagnetic’’ bound on the Euclidean two-dimensional d
terminant to the negative sign of] Im Seff /]m2 in four di-
mensions, thereby providing a physical basis for this bou
in the strong-coupling, small-mass limit.

Central to this work was the ability to count zero mod
in two dimensions. Further analytic progress in three a
four dimensions will be hindered, if not blocked, until the
7-11
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are theorems for counting zero modes. In four dimensi
more is needed than just the difference of positive and ne
tive chirality zero modes, while in three dimensions the
may be some as yet undiscovered topological invariant
will count them.
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APPENDIX

Here we will derive the asymptotic limit~68!. Referring
to Eq. ~43! let

I 5E
0

adr

a S r

aD 2l 11

e2ew(r ). ~A1!

Then,

]

]e
lnuuc l

0uu25
]

]e
ln I 2

F

2p~W21!
1

F

2p S W211
1

2I D
21

2
1

2I S W211
1

2I D
21 ]

]e
ln I . ~A2!

Consider the first term in Eq.~A2!. Referring to Eq.~59!
consider

(
l 50

N21
]

]e
ln I 5(

l 50

L
]

]e
ln I 1 (

l 5L11

N21
]

]e
ln I , ~A3!

whereL@1 and where forl<N21, W5eF/(2p)2 l 5N
1e2 l . Refer to the first sum in Eq.~A3!. By inspection of
Eq. ~A1!, I ( l 50)5O(e2eM), where M5maxw(r), 0<r
<a, with w(r ) given by Eq.~20!. Hence,] ln I/]e5O(M).
For l 5O(N2gN), where g!1 we find later on in Eq.
~A40! with m5N2 l 215O(gN) that ] ln I/]e5O(Ag).
These two results indicate thatI has exponential growth ine
for this range ofl. Thus, ] ln I/]e5O(1) or less for 0< l
<L and

(
l 50

L
]

]e
ln I 5O~L!. ~A4!

Now for the second sum in Eq.~A3!. For L large enough
we can use the method of steepest descents to calculI
except near the pointl 5N21. Referring to Eq.~A1!, let

f ~r !5~2l 11!lnS r

aD12ew~r !. ~A5!

AssumeB(r ).0 so thatF(r ) given by Eq.~5! is monotoni-
cally increasing withr. Then f (r ) is maximized at pointr *
for which

l 1
1

2
5eF~r * !/2p, ~A6!
06501
s
a-
e
at

n

e

since f 9(r * )522eB(r * ),0. Hence forl @1,

I 5A 2p

a2u f 9~r * !u
ef (r* )@11O~1/N!#. ~A7!

To calculate the pointr * for each admissiblel, note that for
l→N, r * →a. So expand the right-hand side of Eq.~A6!
about r * 5a by settingr * 5a(12d). Let l 5N2m21, m
@1, m!N. AssumingB(r ) has continuous first and secon
derivatives with B(a)50 and B8(a),0 then d
5$2/@a3uB8(a)u#%1/2(m/e)1/21O(m/e) and

f ~r * !5
4

3 S F

pa3uB8~a!u
D 1/2

m3/2

AN
1OS m

ND 1/2

, ~A8!

and

u f 9~r * !u54S puB8~a!u
aF D 1/2

AmNF11OS m

ND 1/2G . ~A9!

Inserting Eqs.~A8!,~A9! in Eq. ~A7! gives form!N

I 5S pF

4a3uB8~a!u
D 1/4

~mN!21/4expF4

3 S F

pa3uB8~a!u
D 1/2

m3/2

AN

1OS m

ND 1/2G F11OS m

ND 1/2G . ~A10!

By definition~A1!, ]I /]m.0 for 0<m<N21. This will be
true for the estimate~A10! provided

m.S pa3uB8~a!u
64F D 1/3

N1/3[CN1/3, ~A11!

in addition tom!N.
Now return to the second sum in Eq.~A3! and write it as

the following sum using Eq.~A7!:

(
l 5L11

N21
]

]e
ln I 5S (

l 5L11

N2CN1/3

1 (
m50

CN1/3 D ]

]e
ln I ~A12!

5 (
l 5L11

N2CN1/3

]

]e
f ~r l* !2

1

2 (
l 5L11

N2CN1/3

]

]e
u f 9~r l* !u

1 (
m50

CN1/3

]

]e
ln I 1OS 1

N2D . ~A13!

Consider the first term in Eq.~A13!. We need not rely on Eq
~A8! yet because Eq.~A7! holds irrespective of where th
rootsr l* of Eq. ~A6! lie in (0,a). The important point is that
they are closely spaced over the entire interval (0,a) for
eF/2p@1 and for F(r ) monotonically increasing withr.
Hence, ther l* can be considered to be nearly continuo
across (0,a) for l in the range indicated with
7-12
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dl5
e

2p

d

drl*
F~r l* !drl* 5eB~r l* !r l* drl* . ~A14!

Referring to Eqs.~A5!, ~A6!, and~20!,

]

]e
f ~r l* !52w~r l* !, ~A15!

and so

(
l 5L11

N2CN1/3

]

]e
f ~r l* !52 (

l 5L11

N2CN1/3

w~r l* !

52eE
0

a

dr* r * B~r * !w~r * !1O~1!.

~A16!

When Eqs.~A16!, ~A13!, ~A2! are combined we already se
the promised cancellation of the first term in Eq.~59!, as
guaranteed by Erdo¨s’ theorem@24#. We now turn to the cal-
culation of the remainder.

Consider the second sum in Eq.~A13! and break it up into
two sums:

(
l 5L11

N2CN1/3

]

]e
lnu f 9~r l* !u5S (

l 5L11

(12g)N

1 (
l 5(12g)N

N2CN1/3 D ]

]e
lnu f 9~r l* !u,

~A17!

where g!1. Now deal with the first sum and recall th
f 9(r l* )522eB(r l* ). From Eq. ~A6! for l 5L11,
F(r l* )/F5(L1 1

2 )/(N1e) which implies r l* *0 for N
@L, and hencef 9(r l* ).22eB(0). For theupper limit l
5(12g)N, Eq. ~A6! givesF(r l* )/F512g1O(1/N) and
hencer l* &a. So

f 9~r l* !522eB~a!22eB8~a!~r l* 2a!1O~r l* 2a!2

522euB8~a!u~a2r l* !1O~r l* 2a!2

~A18!

and

F~r l* !5F12paB~a!~r l* 2a!1p@B~a!1aB8~a!#

3~r l* 2a!21O~r l* 2a!3

5~12g!F1O~1/N!, ~A19!

and soa2r l* 5$gF/@pauB8(a)u#%1/2. Substituting this re-
sult into Eq.~A18! gives

f 9~r l* !522eS gFuB8~a!u
pa D 1/2

1O~eg!. ~A20!

Thus f 9(r l* )5O(e) for L11, l ,(12g)N and so the first
sum in Eq.~A17! gives a contribution ofO(1).

Next consider the second term in Eq.~A17!. With l 5N
2m21,
06501
(
l 5(12g)N

N2CN1/3

]

]e
lnu f 9~r l* !u5 (

m5CN1/3

gN
]

]e
lnu f 9~r l* !u.

~A21!

The range of m in~A21! is such that~A9! is valid so that

(
l 5(12g)N

N2CN1/3

]

]e
lnu f 9~r l* !u5

F

4p (
CN1/3

gN
1

m
1O~1!

5
F

6p
ln N1O~1!.

~A22!

This completes the sum in Eq.~A17! and the second sum in
Eq. ~A13!.

Finally, consider the last sum in Eq.~A13!. This requires
that I be estimated near the end pointl 5N21 or m50. For
N@1 and with w(r ) monotonically decreasing to zer
@w8(r )52F(r )/(2pr )#, the integral in Eq.~A1! is domi-
nated nearr 5a. Sincew8(a)Þ0, w(r ) has a first-order zero
at r 5a: w(r );(12r /a)F/2p, r→a. Hence, forN@1

I ~m50!;222N~N1e!22Ne2(N1e)E
0

2(N1e)

dxx2N21e2x.

~A23!

But

E
0

2(N1e)

dxx2N21e2x5~2N21!! 2G„2N,2~N1e!…,

~A24!

where G(a,x) is the incomplete gamma function given b
entry 6.5.3 in@12#. Using entries 8.356.2 in@21# and 6.5.35
in @12#,

G„2N,2~N1e!…5e22N~2N!2N21@ApN1O~1!#.
~A25!

Combining Eqs.~A23!–~A25! with Stirling’s formula gives

I ~m50!;
1

2
Ap

N
@11O~1/AN!#, N@1. ~A26!

This is an overestimate as we integrated over all of the ra
@0,a# instead of a patch nearr 5a, and therefore the facto
Ap/2 in Eq. ~A26! cannot be trusted. However, the resu
demonstrates thatI (m50) falls off as a power ofN and not
exponentially. Since I (m50),I (m5CN1/3) and I (m
5CN1/3)5O(N21/3) we can state that] ln I/]e5O(1/N) for
0<m<CN1/3 and so

(
m50

CN1/3

]

]e
ln I 5O~N22/3!. ~A27!

Combining Eqs.~A3!, ~A4!, ~A13!, ~A16!, ~A17!, ~A21!,
~A22!, ~A27! and intermediate results gives
7-13
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(
l 50

N21
]

]e
ln I 52eE

0

a

drrB~r !w~r !2
F

12p
lnS eF

2p D1O~L!,

~A28!

whereL@1 but e independent. This completes the sum
the first term in Eq.~A2!.

The sum of the second term in Eq.~A2! is straightfor-
ward:

(
l 50

N21
1

W21
5 (

0

N21
1

N1e2 l 21

5 (
m50

N21
1

m1e

5 lnS eF

2p D1O~1!. ~A29!

Now consider the sum of the third term in Eq.~A2!. Letting
m5N2 l 21,

(
l 50

N21 S eF

2p
2 l 211

1

2I D
21

5S (
m50

CN1/3

1 (
CN1/3

gN

1 (
gN

N21 D
3@m1e1g~m!#21,

~A30!

where 1/g(m)52I and g8(m),0 for 0<m<N21, g!1,
andC is given by Eq.~A11!. Consider the first sum:

(
m50

CN1/3

@m1e1g~m!#21, (
m50

CN1/3

@m1e1g~CN1/3!#21

, lnFCN1/31g~CN1/3!1e

g~CN1/3!1e
G

1OS 1

g~CN1/3!
D

5O~1!, ~A31!

since by the definition ofg and Eq. ~A10!, g(CN1/3)
5O(N1/3).

Next consider the second sum in Eq.~A30!. Since
g8(m),0 we have

(
CN1/3

gN

@m1e1g~CN1/3!#21, (
CN1/3

gN

@m1e1g~m!#21

, (
CN1/3

gN

@m1e1g~gN!#21.

~A32!

The last sum is bounded by elementary means by noting
g(gN),g(CN1/3)5O(N1/3) and henceg(gN)/N1/35O(1)
or less. Then by inspection the right-hand side is bounded
2
3 ln N1O(1). Likewise so is the first sum, and hence
06501
f

at

y

(
CN1/3

gN

@m1e1g~m!#215
2

3
ln N1O~1!. ~A33!

Finally, consider the last sum in Eq.~A30!. Again because
g8(m),0,

(
gN

N21

@m1e1g~gN!#21, (
gN

N21

@m1e1g~m!#21

, (
gN

N21

@m1e1g~N21!#21.

~A34!

As g(m)51/(2I ) and CN1/3,m5gN!N, we can use Eq.
~A10! and conclude

g~gN!5S ga3uB8~a!u
4pF D 1/4

N1/2expF2
4

3 S Fg3

pa3uB8~a!u
D 1/2

N

1O~g1/2!G @11O~g1/2!#. ~A35!

Hence, g(N21),g(gN)5O(N1/2e2lN) where l5O(1).
Simple estimates applied to the first and last sums in
~A34! give

(
gN

N21

@m1e1g~m!#2152 ln g1O~1/N!. ~A36!

Combining Eqs.~A30!, ~A31!, ~A33! and ~A36! gives

(
l 50

N21 S eF

2p
2 l 211

1

2I D
21

5
2

3
ln N1O~1!. ~A37!

We now turn to the sum of the final term in Eq.~A2!.
Using previous definitions we can write this as

(
l 50

N21
1

2I S W212
1

2I D
21 ]

]e
ln I

5S (
m50

CN1/3

1 (
CN1/3

gN

1 (
gN

N21 D g~m!

m1e1g~m!

]

]e
ln I .

~A38!

Consider the first sum in Eq.~A38!. We have previously
noted that] ln I/]e5O(1/N) for the range ofm indicated.
Since 0,g(m)/@m1e1g(m)#<1, then

(
m50

CN1/3

g~m!

m1e1g~m!

]

]e
ln I 5O~N22/3!. ~A39!

The range ofm in the second sum in Eq.~A38! allows the
use of Eq.~A10! for I, and hence
7-14
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]

]e
ln I 52

F

8pN
2

F

8pm
1

F

24pC3/2F3Am

N
2S m

ND 3/2G
1OS 1

AmN
,
Am

N3/2D , ~A40!

whereC is defined by Eq.~A11!. Then the second sum i
Eq. ~A38! is

(
CN1/3

gN
g~m!

m1e1g~m!

]

]e
ln I

52
F

8p (
CN1/3

gN H 1

N
1

1

m
2C23/2FAm

N
2

1

3 S m

ND 3/2G
1OS 1

AmN
,
Am

N3/2D J g~m!

m1e1g~m!
. ~A41!

For the range ofm indicated, g(m)51/(2I ) is given
by Eq. ~A10! and has the functional formg(m)
5a(mN)1/4exp(2bm3/2/AN), where a, b are constants
Note that@m1e1g(m)#21,m21. Then the first sum in Eq
~A41! vanishes asN→` by inspection. Over the range ofm
indicated, 1/m<C23/2Am/N and (m/N)3/2,(m/N)1/2.
Therefore the remaining sums in Eq.~A41! are dominated by
(gN

CN1/3g(m)/AmN which, when approximated by an inte
gral, is ofO(1) and so

(
CN1/3

gN
g~m!

m1e1g~m!

]

]e
ln I 5O~1!. ~A42!

Finally, we deal with the last sum in Eq.~A38!. It is for
0, l ,(12g)N, and following Eq. ~A3! we estimated
] ln I/]e5O(1) or less for thisl range. We have already note
that g(gN)5O(N1/2e2lN) and thatg8(m),0. Hence we
conclude

(
gN

N21
g~m!

m1e1g~m!

]

]e
ln I< (

gN

N21
g~m!

m

]

]e
ln I

5O~N1/2e2lN!.
~A43!

In summary, Eqs.~A38!, ~A39!, ~A42!, ~A43! give

(
l 50

N21
1

2I S W211
1

2I D
21 ]

]e
ln I 5O~1!. ~A44!
06501
Combining Eqs.~A2!, ~A28!, ~A29!, ~A37!, ~A44! gives for
eF/2p@1

(
l 50

N21
]

]e
lnuuc l

0uu252eE
o

a

drrB~r !w~r !2
F

4p
lnS eF

2p D
1O~L!, ~A45!

where L@1 but e independent. Now combine Eq.~A45!
with Eq. ~59!, integrate and combine this with our previou
result in Eq.~60! to get forma!1 followed byeF@1

lndet52
eF

4p
lnS eF

2p D1
eF

4p
ln~ma!2

1O„eF,~ma!2eF ln~eF!…. ~A46!

The justification for the inclusion of the ln(ma)2 term was
discussed following Eq.~60!. Also, as discussed immediate
after Eq. ~59!, there may be subtle cancellations that w
eliminate the ln(eF) factor in the remainder term
(ma)2eF ln(eF). The case wheneF,0 is included by re-
placingeF in Eq. ~A46! everywhere withueFu.

This analysis is for fieldsB(r ).0 for r ,a with continu-
ous first and second derivatives and withB(a)50, B8(a)
,0. For the caseB(a).0 the analysis is almost identical t
the preceding case and is also a little simpler. The m
changes are

f ~r * !5
m2F

2pNa2B~a!
1OS m3

N2D , ~A47!

u f 9~r * !u5
4pNB~a!

F F11OS m

ND G ~A48!

and

I 5S F

2Na2B~a!
D 1/2

expF m2F

2pNa2B~a!
1OS m3

N2D G
3F11OS m

ND G , ~A49!

provided@a2B(a)/F#1/2N1/2,m!N. The result is the same
as Eq.~A45!.
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