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Fermion determinant for general background gauge fields
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An exact representation of the Euclidean fermion determinant in two dimensions for centrally symmetric,
finite-ranged Abelian background fields is derived. Input data are the wave function inside the field’s range and
the scattering phase shift with their momenta rotated to the positive imaginary axis and fixed at the fermion
mass for each partial wave. The determinant’'s asymptotic limit for strong coupling and small fermion mass for
square-integrable, unidirectional magnetic fields is shown to depend only on the chiral anomaly. The concept
of duality is extended from one- to two-variable fields, thereby relating the two-dimensional Euclidean deter-
minant for a class of background magnetic fields to the pair production probability in four dimensions for a
related class of electric pulses. Additionally, the “diamagnetic” bound on the two-dimensional Euclidean
determinant is related to the negative signgdin Syz/dm? in four dimensions in the strong coupling, small
mass limit, whereS. is the one-loop effective action.
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[. INTRODUCTION the determinant itself in the nonperturbative domain dis-
cussed below could be used as a sensitive test of the many
Within the standard model fermion determinants are enfattice discretizations of the Dirac operator now in use.

countered in the calculation of every physical process. Be- In addition, we develop further the concept of duality and
cause of their nonlocal dependence on the gauge fields theglate the Euclidean QEDOleterminant to the pair production
are difficult to calculate. Consequently the practice has beeprobability in QED, for a class of electric pulses. Thus, the
to either ignore them—the quenched approximation—or tcEuclidean QEDR determinant contains nonperturbative
expand them in power series. Ultimately they will have to bephysical information in four dimensions.
confronted nOﬂpertUrbatiVEly, as lattice theorists are now do- Fermion determinants are obtained by integrating over the
ing with faster machines, in order to obtain reliable predic-fermion fields to produce the one-loop effective Euclidean
tions with known computational error. action Syy= —Indet, where det is formally the ratio dét(

The current status of fermion determinants is reviewed in_ eA+m)/det@®+m) of Fredholm determinants of Euclid-

[11' To |r!d|cate Just how bad our knoyvledgg of these det.er'ean Dirac operators. We assume that the continuation to the
minants is, not even the strong coupling limit of the massiv

Euclidean QED determinant in two dimensions is known exe-}EUC“dean metric has been done. When det is properly de-

cept for a constant background magnetic field and for a mag];—'(;]r?nde('jt flrf)r:trr:gnIgtC:AtigK]Ctl?’:oc?ljléhghfeI?rﬁ Sisrtrzgrrlgfgryms
netic field confined to the surface of a cylind&]. There- P wr

fore, it seems that this is as good a starting point as any to g&gat are absent in two (?lmen_slons. Since the determinant is
better insight into the properties of fermion determinants and@@'t of the gauge field’s actiomy, and F,, are random
to understand their physics. fields. We have discussed elsewhg2¢s,7] how the need to
There are other reasons why the two-dimensional QEC¥egulate in any dimension above 1 allows one to assume
(QED,) determinant should be of general interest. Name|y,smooth potentials and fields. In order to make further
if there were precise nonperturbative information on at leasprogress we assume in addition tkgt, is centrally symmet-
one continuum, infinite-volume determinant then the algo+ic and that it has a finite range
rithms of lattice theorists for calculating determinants could This paper is organized as follows. In Sec. Il we define
be tested by extrapolating their output to zero lattice spacinghe determinant and indicate our strategy for calculating it by
and infinite volume. Algorithms for determinants can be easfirst assumingna<1 and then lettinde®|>1, wherem is
ily adjusted to any dimensionality, and if some fail to coin- the fermion mass an® is the flux of the background mag-
cide with known results for an Abelian background field in netic fieldF,. This is the really interesting limit as it takes
two dimensions then they are certainly useless. one deep into the nonperturbative regime. In Sec. Il the
Work in this direction has already begyB] with the low-energy scattering phase shifts required to calculate the
computation of the fermion determinant for massless fermideterminant are obtained. Section IV deals with the small
ons on a torus using the Neuberger-Dirac operator and theass, strong coupling expansion of the determinant, while
higher-order overlap Dirac operator and the comparison ofec. V presents the explicit form it takes in this limit. Section
the results with the exact massless QEieterminant on a VI generalizes the concept of duality from one- to two-
torus[4]. In massive two-flavor QEPthe determinant was variable fields, thereby allowing the QEEuclidean deter-
calculated explicitly to study the masses of the trigfgon)  minant to be related to physics in four dimensions. Section
and singlet(eta bound states using the overlap and fixedVII summarizes our results while the asymptotic form of the
point Dirac operatorf5]. Presumably the continuum limit of determinant given in Sec. V is derived in the Appendix.
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II. REPRESENTATION OF THE DETERMINANT whereAezcb(r)/Zwr,
A. Green'’s functions

The exact calculation of det in QEDcontinued to the P 2
Euclidean metric reduces to the scattering problem of a H. I:_d__li _[I—eCD(r)lzw] TeB(r), (4)
charged particle confined to a plane pierced by a magnetic o dr2 rdr r2
field, namely[8],
and

a—ilndetz Ef d2r<p(92<p+2m2f d2ro(r){r|[(H, +m?)~! .
T <I>(r)=27rf dssHs). (5)
—(H_+m?)Yr), (1) ’

The calculation is simplified by introducing the Green’s

where the supersymmetric operator pair. =(P—eA)? .
persy P pair. =( ) I function

FeB are obtained from the two-dimensional Pauli Hami
tonian (P—eA)?— o;eB. Hence, the subscripts d# in Eq.
(1) refer to positive and negative chirality. The auxiliary po-
tential ¢ is related to the vector potential by, =«€,,d,¢ Goa(kr,r) =G (k;r,r'), (6)
and to the magnetic field b= — ¢ or

where

1
o=— o= | Ermr-rlae), @ Gk = (0= ) ) )

with €;,=1. Expansion of Eq(1) in powers ofe yields the and
standard one-loop effective action given by the Feynman
rules. The first term on the right-hand side of Hf) is

dlindet/ge of the massless Schwinger modél. Due to the @2 [I—-ed(r)2m]?— 1
1/r falloff of A, when®+#0 an integration by parts is not Hej=—— “TeBr). (8
justified in this case. As we will see in Sec. V, the presence of o dr? r2

the mass dependent term profoundly modifies the determi-
nant, ultimately cancelling the first term wheetb|>1. The  The outgoing-wave Green’s functiorgs. | are constructed
invariance of Eq(1) undergo— ¢+ c, wherec is a constant, from [11]
gives the index theorem on a two-dimensional Euclidean
manifold[8,10].
We now assume thaB is centrally symmetric and that e(k,r ) FF)(Kkre)
B(r)=0 for r>a. To ensure finite flux we assun® is Gea(kir,r’)=— 7K , €)
square integrable in view of the inequalityd?

2,2 2 H : . . . .
<2ma’[g drr B*(r). Referring to Eq.(1), define the \herey is a regular solution anéf™) an irregular outgoing-
Green'’s function wave solution, of

10 k2_H+ -1 ,10,
(r,6|( <) 7,6 Ho f=K2f; (10

1 < o
=3 > (rl(KR=H. )~ Yr e = Jis the associated Jost function and,r . denote the lesser
== and larger values af,r’. Here and below we will occasion-
ally suppress the subscripts and | to reduce notational

1 < ,
=5= G. (k:r,r')el=99 3 clutter.
2m 'Z“’ =t : ® Regular solutions of Eq.10) are

Ri(kvr)
R.(k,a)’ (11)
VITHW(KE) + Sy H(kn)1, r>a,

e (l=W2) | Ja[Hy(ka) +S. Hy(ka)]

22

(Pt,l(kir):
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where

Si:eiw(w—m)ezmﬁ; (12)
H,, and Hy, denote the Hankel functionsl{}) and H{?,
respectively; 5, are the scattering phase shiftsy=|l
—e®/27|; and®=®(a) is the total flux ofB. The interior
wave functions R..
lim, _or %2~ “‘R

functions ofH . | in Eq. (4), zpiJ—qpiJ/\/F correspond to
physical wave functionfl1]. That is,

satisfy the boundary condition
(=1. These will be discussed further be-
low. The structure ofp. | for r>a ensures that the eigen-

with the differential

PHYSICAL REVIEW 7, 065017 (2003

assumes the asymptotic form fors oo,

(K r)~—1 elkry ! f.(k, 0)e* (14)
- 2 277'\/F - ,
where
2 i /4 S 167 i S* il 6
fo(k,0)= o |—§7 e'’ sing; e’ (15

scattering cross sectioda/d(Q)

- =|f.(k,0)|2
b (k,r)= 1 2 oo (kr)el? (13) AssumingR. | are known, irregular outgoing-wave solu-
B NP IE tions of Eq.(10) can be found by standard means, giving
R+(k,r) 4i
a Hy(ka) = Hy(ka)+S.Hy(ka)] 'R.(k,a)R. krf r<a,
(Gl Va Hy(ka) g5+ Slwka )R (k@R (k) | Rz(ks) 16
VI H(kn), r>a.
|
Near the regular singular point at=0 of Eq. (10), f(iﬂ) 1 (a d(s)
~constx r V27111, 5| ds—— <&
Equations(11) and(16) give the Jost function o(r) d)r . (20
—2—|n a , r>a
a
iv2
j:W(f(-%—)'QD):_?\/—elﬂ-(H—W/2), (17)

which is independent of chiralityy on the left-hand side is
the Wronskian. It may be verified that Eq®), (11), (16),
and(17) combine to satisfy the basic condition

d "
G (nr 0=, 18

In order to make contact with the determinant in ED.
we now analytically continud in G.. |(k,r) into the upper
half of the complex plane by Iettlng mée™2. Then Egs.
(1), (3), and(6) give

J a
%Indet= —ZeJ0 drro(r)B(r)

—2m? f‘”dw(r) > [G. (mé™r)
0 I=—c
—G_(mé™ )], (19

while Eq. (2) gives

Because of the invariance of Indet under> ¢ +c we have
adjustede(r) so thate(a)=0.
Forr>a, Egs.(9), (11, (16), and(17) give

Gy (me™r) =G |(mé™r)

ir . 4 -
:; e—|7-r|l|((_:‘2|5|+_62|5I )K\ZN(mr)’ (21)

whereK,y is a modified Bessel function and we udd@]

. 2
HJv(rme'”’z)z—;ef"’W’ZKW(mr). (22)

The phase shifts in E¢21) are understood to be analytically
continued as well.

It is convenient to separate the energy-independent
Aharonov-Bohm phase shiff40,13 from &, . Without loss
of generality we assumed>0. Then, modulor,
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g(|l|—W)+A|+(k), | £[ed/27],

8K =1 (23
5 (e®2m)+A[ (k) |=[ed/2m],

5|‘(k)=g(|||—W)+A,‘(k), all 1, (24)

where[x] stands for the nearest integer less tiamith [0]
=0. The energy-dependent phase shifs(k) will be cal-
culated in Sec. lII.

PHYSICAL REVIEW D 67, 065017 (2003

Eqg. (21 for r<a may be dealt with as for>a, this time
using[12]

) ) 4 )
Hy(amé™2)H, (amé™?)= —ze"”WK\zN(am)
v

4i
~ —lw(amKu(am),
29

where |,y is a modified Bessel function. Fa®/27=N
+e, N=0,1,...,6ce<1, the final result from Eqs(19),

The Green’s function difference on the left-hand side of(20), (21), (23), and(24) is

L indet= —2¢e [ 16 R.4(1) 2_(R_(r) 2
aelndet— ZeLdrrcp(r)B(rHZam fodrcp(r)EI Iw(am)Ky,(am) R.(2) R (a)
i2am? (a . o+ [Ry(r)\? — [R_(r)\?
2 3, ¢ itam| -6 B0 1o 40
izam® a 4 [Ru(n)? — [R_(r)\?
e'“KE(am)JOdrcp(r)[(l—ez'”fez'AN)(—R+((a) —(1—62|AN)(—R((a)
a a ds a ds im2d (= :
2 2 _p2 —i7TW
+2m fodrgo(r)zl‘, R+(r)J’r Ri(s) R,(s)fr ~N + = fa drrln(r/a)ghe
At = i 2(1) . L+ . - o
X (e —e A K3 (mr)+ Im—z(e'“ez'AN—e*'“ez'AN)f drrIn (r/a)K3(mr). (26)
a a

The interior wave function®. and the phase shifts;” are

abbreviations foR.. ;(mé™2,r) andA;"(mée™?).

For the fields considered here and the small mass expansions
of A{” made in Sec. Ill there is complete agreement with Eq.

The representatiof26) is exact. Its advantage over other (27).
representations of determinants based on scattering data is

that it involves no integration over phase shift energy. It is

particularly relevant to a study of the chiral limmha<<1.

B. Small mass expansions

Anticipating what follows, the integrals can be interchanged We now commence the expansion of Indet wham
with the sums for the class of fields considered here, allow<1. This does not mean an expansion in powersmdf

ing the integrals in the exterior regiar>a to be done im-

Such an expansion does not exist as Indet has a branch be-

mediately. Only information about the interior wave func- ginning atm=0 [14]. Rather, we are referring to a collection
tions Is requ|red to calculate the determinant exaCtly, an@f |eading terms inm such asm”Inm, »>0, as well as

these are known explicitly foma<1 as in Eq.(29) below.

The right-hand side of Eq26) must be real since it is a
Euclidean determinant. This imposes the nontrivial con

straints

iTWo—2iA; (me 172

e e

= e imWR2A (ME™) | 5 Losw
I #N for + chirality,
i‘n'/2)

e—ime—zmg(me* _ _eiwseziAg(méﬂ/2)+2 cosme,

Alt*(méTrIZ):Ali(mefiﬂ'/Z). (27)

integral powers ofm?.

Since Eq.(10) depends only ok? and the boundary con-
dition lim, _or “""*?R. =1 is independent ok,R.. ,(k,r)
is a regular function of k?. Therefore we set
R. (mé™r)=R. (m?r) and begin an expansion in
powers ofm?:

R(m?,r)=Ry(r)[1+(ma)2y(r)+O(ma?*]. (29

For m=0, exact positive chirality solutions dft, R
=0 are known forl>0 [13]; the remaining cases can be
dealt with similarly. The results are, up to irrelevant normal-
ization constants that cancel in Eg6),
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R, =r!"12gee( =0, For |=0(e®/27) or larger the barrier inv disappears
and the growth of," for e®/27>1 slows down. This must

e [T 1 ee(s) happen sincely, /dI<0 for all e. ForI>1 the integral in

Ry =T e fodssz e e, 1>0, Eq. (31) is dominated in the rangess, giving x;
=0O(1N). For the special case &(r)=B, r<a and zero

; otherwise, we find
R,,|=r_'+1lze_e‘°(')J' dSSZl—leZeqo(S)' >0,
0

xi (=<4~ tnl+0(1n), (33
R_ _ =r!tl2g=ee()  |=Q, (29 forl>ed/27—1,1>2, O=r=a. _
’ To reiterate, care must be taken that every term in the
Noting Eq. (20), R, | is square integrable far=0, ... N small mass expansion makes sense, either by satisfying the

—1 fored/2m=N+ €. This is in accord with the Aharonov- Pound (30) or by making sure that the offending term is

Casher theorem which states that the number of positivéancelled by other terms.

(negative chirality square-integrable zero modes is

[|e®|/27], depending on wheth&d® >0 or (e®<0) [15]. 1. LOW-ENERGY PHASE SHIFTS

These zero modes will be shown to play a dominant role in

the strong coupling limit of Indet. ; : : .
We Wan'F to calculate Indet i_n the limiba<<1 followed by _ \(/:v(l)lrlwneeneign'ifli Ir(é\\//veftnteorg:tj%/epggzioiglfgs{ From here on it is

ed>1. This must be done with care as there may be ratios

of terms like @m)zeeq’/[lzr(am)zee‘b] which when further Ho o =K20. (34)

expanded in powers aih® grows exponentially withed.

There is one firm guiding principle here, namely, that thewhereH . | is defined by Eq(4) and ¢.. | are connected to

determinant is an entire function efof order 2[16,17]. This  the regular solution§ll) of Eq. (10) by

means that for any complex value of, |det

<A(e)exd K(e€)|e|?"€] for any >0 and A(€),K(e) are e (k)

constants. Therefore, any growth of Indet faster than qua- P a(kor)= T (35

dratic in e means that the expansion one is making is inad-

In order to take the small mass limit of det in Eg6) we

more precise bound are related to the zero-energy solutioffsof Eq. (34) by
e’|[B||? Ri(r)
- <Indet<0, 30 O(py=
s (30) PP(r) T (36)

for any B with ||B||2=fd?rB2(r)<«. There are additional From Eqgs.(11), (12), (23), (24), and(35), for r>a,
technical assumptions underlying Eg0) that the fields con- 18 il .
sidered here satisfy. The right-hand side is the “diamag- #i(k,r)=2""e"1e""Jy(kr)cosA = Yy(kr)sinA,],

netic” bound[17-20 and the left-hand side follows from the (37)
general operator structure of det and some standard inequali-
ties[1]. whereY\, is a Bessel function of the second kind. This holds

The warning cited above materializes forx0<e®/2w  for all | and both chiralities except for positive chirality when
when B(r)=0. There may be other cases. In the positivel =N, which has to be dealt with separately. Then
chirality sectory,” in Eq. (28) is
_ ndwka) —kady(ka)

C s tanA, - : (38
i (n=a 2 ds a0 w91, (@ yYuka)—kaYy(ka)
0 0
where
for r<a. What happens is that the effective potential
= 1)a
[l —ed(r)/2m]*— ; 2
V(r)= . —eB(r) (32)  (r g1 0) f"" 0
= 1) drri(r)ga(k,r)
' T @uka)do

has a high and wide barrier beginning in the rangea and =0+ (ka)2y{?+ (ka)*yY+ O(ka)®, (39
extending out tor~2a for e®/27>1. This gives rise to
quasi-stationary states. As a consequence the wave functiemd from Eq.(28)
is enhanced inside<a andy,” can become large for strong 0 5 4
coupling. P (Kr) =y (r[1—(ka)<x(r)+O(ka)*].  (40)
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Equations(29) and (36) give

( ed
| ==, =0
L 0) 2
LA ed adr [r) 2 -1
|- —+ f— —) e~ 2ee(n) <0
L 2 ofr l\a
(ed adr [r)? -1
——l+ f— —| e?ee >0
2 ol \a
7 ©=1 ®
e
— -1, <0,
\ 27
(41

and Eqgs.(39),(40) give, for both chiralities,
a 0 r 2
7|(2)=—a’zf drr( lp:)( )) ,
0 Jr(a)

e [\
yM=a ZJOdrr(m> [a(r)—xi(@)]. (42

The norms of the square-integrable zero modes are, from

Egs.(36), (29) and (20),

1112~ | "drrlyfleran
adr [r\2+1
[
1

r o2ee(r)
J’_ J—
2(W—1)"

a

1=0,...N—-1. (43

With Egs. (38), (39), (41), (42), ed/2r=N+e>1, (ka)?

<e, (ka)’<1— € the following low-energy phase shifts are

obtained:
. m  [ka|?V 2 1
Ar=- 2 oz T w
rz2wyl 2 )] |2(ka)? W
1 [4(W—1)2(2—W)] 1 +24?

+ +
(1-W)[|/]|2 [yl

+0(ka)?} +0ka)*V =4 1=0,..., N—2, (44)

ka

2

™

T'?(1+e€)

2+2e¢ 2 1
Aﬁ—lz_ {

+
|y 1l|?(ka)?  1te

1 [462(1—6)]—1+2yg,421]
ellyn-4lI? [ynall*

m2cotme ka

B 4F4<1+e>llw‘N’_1ll“(7

4e
) +0(ka)®, (45)

PHYSICAL REVIEW D 67, 065017 (2003

provided e> 1/|In(ka)|;

A+_ T 2J<adr r 2N+1 2e<p+ ka 2—2¢
g tala el
+0(ka)*~ %, (46)
provided 1- e>1/|In(ka)|; and
adr [ r|2N+1
2 R 2ep
e>(ka) fo a\a ec?, (47)

This may seem impossible to satisfy for largebut it turns
out that the integral in Eqi47) decreases as a power Mf
(see the Appendix Continuing,

+_27T(ka/2)2W+2fadr r 21+1
' r2(1+w) Joala
xe?®?+0(ka)®V ™ I=N+1N+2,...,
(48)
and
2W Al
Ar:M zfaﬂ r lle*Zew_i
I'2(W) ol la w
+0[(ka)*V,(ka)?VW*?], I=-1,—2,... . (49
For negative chirality,
m(ka/2)?V[ radr(r)? -1
L PY LA RS
2
r3(w+1)| Jorla w
+0[(ka)*V,(ka)®W*?], 1=1,... N, (50)
_ m(ka/2)®™W[ radr(r\? 1
|:—2f__ eze‘P__
2
(W) orl\a w
+0O[(ka)*WV,(ka)®W*?2], I=N+1N+2,...,
(51)
2’7T(ka/2)2W+2 adr/r 2l[+1
r:—f R e—28<p
r’(W+1) Joala
+0(ka)?V*4, 1=0,-1,... . (52)
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The negative values af;” for I=1, ... N can be quali- The main observation here is the presence of & (>
tatively understood as due to the repulsive barrievimen-  factors inA," for =0, ... N—1 which cause each of the
tioned in Sec. IIl. The apparent polesA whenW is inte-  corresponding partial-wave Green’s functicﬁ)§|(mé”’2,r)
gral disappear when a careful limit is taken. For examplejn Eq. (19) to develop a simple pole im? at the origin.

going back to the basic definitia38), These are of course expected due tokhsquare-integrable
adr (1| 2N-1 1 zero modes of, ;. . ' .
imAY_,== In(ka/2)+y j - 26<p} We have learned from this calculation that the precise
e—0 ala form of these phase shifts is necessary if large cancellations

is further discussed in Sec. IV.

are to go through in the calculation of the determinant. This

© In3(ka)|’

ar
lim A, +0 ,
weo | 2In(ka) (Inz(ka)

1 IV. SMALL-MASS, STRONG-COUPLING EXPANSION OF
(53 Indet

Because of the rapid falloff of the low-energy phase shifts
wherey is Euler’s constant. The general rule is that simplewith | the sums and integrals in E@6) can be interchanged.
poles inA;” whenW is integral are replaced with logarithms Using entries 5.54.2 of Ref21] and 1.12.3.3 of Ref[22]
of the type Inka). one obtains

a fxdrrln( )Kw(mr) 1Kw+1(ma)KW(ma) EKW(ma)KWH(ma)

a

J J
*oma Kw+1(ma) WKw(ma)_Kw(ma)ﬁTvKWH(ma) (54)
W) ma T Wy + mWeotmW—2Win| ) — w1
=" 16 |2/ T16sinaw|2WHW)+mWeotm "2 *
ma -2 FZ(W) (m )22W
X|—| + — +0O[(ma)* 2" (ma)°], 1#N 55
> B1_W)(2- W), 2 [(ma) (ma)~] (59
_ T%e—1)(ma) ) ool ma oot 1 ma) 2
716 |2 T i6singe| 2@ F mecotmen2eln| 5|~ 2e+ 1| -
T w2 ma) 2 I'%(e) ma) 2~ 2¢
8esinme  16I'2(2+ €)(sinme)? 8(1—€)(2—¢)?
+0[(ma)®*2¢,(ma)*~2<], =N, (56)
|
where(z)=1"(2)/T'(z) and 0<e<1. Apparent singulari- 1 22/2 w(2/2)2W
ties in Egs/(55) and(56) at integral values 0¥V cancel when Iw(2)Kw(z)= W 1+ 5>~ > -
careful limits are taken. Also required are the following ex- 1-we WI(W)sinmW
pansiong 12]:
(22 +0(4, 222 |, (59
KW(z)——I‘(W)( 22" W 1+ T oz 4)}

The pole atm?=0 in G, ;(k=mé™?r) from the factors
(ka)~2in A" in Egs.(44) and(45) make the positive chiral-
ity terms forl=0, ... N—1 in Eqg.(26) the dominant ones
(57 when ma<1. Using Egs.(44)—(52), (55—(58) and (28)
when it makes sense—as discussed at the end of Sec. Il and
and below—we obtain, from Eq(26),

w(zI2)V
2I‘(W+1 smTrW W+1

+O(z4)
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P a N-1 where lim,,_o[R/In(ma]=0 [23]. Now consider the case
glndetz—Zef drro(r)B(r)+ >, %In||:,//,°||2 when e=0 and e®/27=N. Then the dominant mass-
0 1=0 dependent term in Eq26) for ma<1 occurs al =N—1,

eb o r>a.
+—In(ma)—=—[2 +mecotme+1—2
- (ma) 277'[ ey(e)+ mecotme € 2

(9| d
—In =
Je el-1

> (AN-1TiARZ = Ay,

+2€In2]+0O[(ma)?In(ma),(ma)?~2¢ .

xIn(may),(ma)?ln(ed)], (59 » r

+--~)f drr In(g>K§(mr), (61)

provided [In(ma)| 1<e<1—|In(ma)| 1. Recall thated/27 :

=N+e. where Ay, are continued tk=me ™2 From Egs.(50),
Regarding the remainder in EG9), there are 12 cases to (53) and

consider: positive/negative chirality, regions inside/outside

the range ofB, and the angular momentum randes—1, [ .,

0<I=<N, I=N+1 for ed>1. The terms of a fa drrInf 2 ]Ki(mn)

order (Ma)*In(ma) and (Ma)?> %<In(ma come from

positive chirality, |=N,N—1 for r>a. The term [In(ma/2)+ y]?>+In(ma/2) + y+1

of order (ma)?In(ed) comes from the =

2
Jdr o(r)R% () f2ds/R% |(s) terms in Eq.(26) summed 2(ma)
over values of in the neighborhood of-e®/27. The pres- ma, y 3 -
ence of the factor IP) is tentative: there may be subtle + Zln(T) 7 g TOL(man“(ma)], (62
cancellations between the positive and negative chirality sec-
tors that will eliminate the logarithm. All of th®©(ma)? one gets
remainder estimates are based on what we consider the worst
case, namehB(r)=0, which causes(r) to be positive and d @
monotonically decreasing for<r <a. Zandek-1=5—In(ma)+0(1), (63

Our second comment on E@59) concerns large indi-
vidual terms in the mass expansion wresh>1. Consider in accord with Eq(60).
the second term in Eq.(26) and the ratio Next, consider the case wh&®/2m=N+¢, 0<e<l.
Ry (m?r)/R, ;(m?a). As discussed in Sec. Il B, ; can As e—1 a pole atm*=0 begins to develop i1, y and
exponentially increase foe®>1 for O<I=<e®/27. How- A} (k)~/[2 Inka)]. Fored®/2z=N+1 we find
ever, this ratio am?=0 [R,(0,a)=a'"*?] and its leading
correctiony,” in Eq. (31) are cancelled for eadtby the third
term in Eq.(26). It remains to understand these cancellations
and to verify that they continue at ordem@)® and higher
orders. again in accord with Eq(60). Moreover, the same result is
The termsR? |(r)f2ds/R? ((s) for O<I<N in Eq.(26) ~ obtained in the limite—1. _
have not been expanded since there is no apparent cancella-'n the interval 6<e<1 the (e®/m)In(ma) term in Eq.
tion mechanism. We have found that in one of the worst59) comes from thd =N, r>a contribution todndet/se.
cases, wherB(r)=B for r<a and zero otherwise, these This term contrad_lcts Ed60) which was derlved_by holding
terms when left unexpanded vanish e®— . For [>N ed fixed and lettingma—0. Here we are settingna<1,
these terms remain bounded when expanded, and! for and then lettinge® increase indefinitely. By taking limits in
>ed/27 their leadingl behavior is cancelled by the nega- this way the Infna) term bepomes an infinitesimal_addition to
tive chirality sector since the distinction between the twolndet when compared to its growth due to the pileup of nor-
chiralities disappears ds- . malizable zero modes & increases, as we will see in Sec.
In the exactly solvable case of a magnetic field confinedV- For the present it is assumed that there are other infini-
to the surface of a cylinder the mass-dependent terms remalSimal terms not yet found that will result in the shift
subdominant whee®> 1 [2]. The study of the cancellation (€®/27)In(ma—(P/27)In(ma) in the range ofe indicated.
of large terms and the vanishing of ratios of large terms when We are confident that Eq(60) is the leading mass-
ed—x is still at a preliminary stage. The control of these dependent term in !ndet, and it will acqordmgly be added on
terms has much to teach us about the nonperturbative strutQ our strong coupling result for Indet in Sec. V.
ture of Indet.
Finally, we have previously shown that, fe® fixed and V. SMALL-MASS, STRONG-COUPLING LIMIT OF Indet
ma<l1,

] D
~gindef=5—In(ma)+0(1), (64)

Up to now we have assumed thB(r) is square inte-
e grable, centrally symmetric and finite ranged. Further ana-
e lytic analysis of Eq.(59) requires additional assumptions
= ! + ) . : .
Indet 2 In(ma)+R(m), (60 namely B(r)=0 with continuous first and second deriva-
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tives. Then we can show that fed— o, the first term in The minus sign in Eq689) is a reflection of the paramag-
Eqg. (59) is cancelled by the zero modes contributing to thenetism of charged fermions in a magnetic field. This is most
second term. clearly seen with Schwinger’s proper time definition of the

The demonstration is straightforward. Refer to E&§§),  determinan{25], namely
(36) and the first lines of Eqg43) and(29) and obtain

1 (=dt 2 2
N-1 w N-1 21 n2eq(r) Ind :_f _ A tm —Pt_ _ _ 2
d r?le2ee ndet e "M Tre exp[—[(P—eA)
> —|n||w°||2=2f drre(r) 2, : 2Jo
=0 de I 0 (=0 [7 @i+ 1a200(9)
—o3Blt}H]. (70

0
(65)

) Noting the minus sign in Eq68), Eq. (70) indicates that on
Now make use of the following theorem of Esl®4], spe-  average the spectrum of the Pauli operator is lowere® by
cialized here to the case of central symmetry: Bét)=0 relative to the field-free case. Therefore, the current usage of
be a compactly supported magnetic field with a continuousdiamagnetic” bound to describe the right-hand side of Eq.
first derivative. Define the ground-state density function (30) is a misnomer. The factqed| in Eq. (68) multiplying
the logarithm is related to the counting of zero modes. More

" r2lg2ee(r) will be said about the physics of E¢8) in Sec. VI.
P(r)= |:20 . : (66) The discussion of the remainder in E&9) in Sec. IV
fo dsg! Tle2ee(s) means that we cannot rule out the subdominant term

(ma)?|ed|In(|ed|) in Eq. (68); more detailed analysis is re-
quired to exclude the Iféd|) factor.

The remarkable thing about E(68) is that the limit is
universal for a broad class of fields. Since it only depends on
N1 . a global property of the background magnetic field—its total

v 0[12_ flux—we suspect that E68) is also the limit in the general
2 aeln”(//' ] —ZeJOdrrcp(r)B(r)ﬂLR(e), ®7) case of non-central, square-integrable fields.

Finally, the case of zero-flux background fields has not
for ed>1 and where lirg_..R(e)/e=0. Ther integral in  been considered in the literature to the author’s knowledge
Eq. (65) cuts off due to the finite range & Hence, Eq(67)  except for the case of massless QEih a torus[4] and a
leads to the promised cancellation in E§9). sphere[26]. Our limit seems to indicate that wheh=0

The really interesting question now is what is the remainthere are no square-integrable zero modes and hence no
der in Eq.(67)? Erds’ theorem is not yet sharp enough to mechanism to cancel the first term in E§9). In this case
state what it is. It had better be negative to be in accord wittone might suppose that it is this term—the Schwinger term—
the diamagnetic upper bound in E80). In the Appendix we that is dominant in the small-mass, strong-coupling limit.
investigate this problem by the method of steepest descenfdhis is the result irf4].
assumingB(r)>0 with two alternative sets of boundary
conditions:B(a)=0, lim,_,,_B’(r)<0, andB(a)>0. The
result in both cases is

ThenP(r)/e converges td(r) in LP for any 1sp<c as
e— o, According to this theorem

VI. DUALITY

The purpose of this section is to relate the Euclidean de-
terminant of QEL and some of the results of the previous
sections to physics in four dimensions. The term duality as
used in this section is distinct from Olive-Montonen electric-
+0(le®|,(ma)?ed|In(|ed|)). magnetic (_ju_alit}[27]. It is rather a dua_Iity closely related to

the analyticity of the one-loop effective action of QED in
(68)  two and four dimensions.
The Euclidean determinants in QERnd QED for the

The case wherB<0 i_s the mirror image of theB>0 case, background magnetic fielB=(0,0B(x;,x,)) are related by
and so we need only insert absolute value signs to cover both

cases. As discussed in Sec. IV, we have inserted the mass-
dependent term from Rdf23]. Comparing Eq(68) with the
constant field result

_ . led|
lim lim Indet= I In
led®|>1 ma<1 ™

led|
(ma)?

LsL,[Bl|%€?

J
—27—Inde =L4lL,Inde +
e bep,=Lsl4 beD, Lomm?

(71)

Indet= eBV| eB O(eB 69
net——HnE+ (eB), (69

where||B||?= [dx;dx,B?(X;,X;), L3L, is the volume of the
space-time box fok; andx,, and on-shell charge renormal-
we see that they are formally in accord on settifig ma? ization is used6]. HenceB must be at least square integrable
—o0, Of course we cannot say anything about the remainingn what follows. Assuming one can rotate energy contours in
mass-dependent terms in E§8) in this limit. the usual way, continue IndggD4 to the Lorentz metric by
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letting y,—1ivo, X4—€' (™ 9t, e—~0+ andL,—iT. On  with B(x;==*a,x,)=B(x;,x,=*b)=0. Following the
the right de<tgED2 remains a Euclidean determinant and so Eq.above rules
(71) now becomes

gz(xlla) o[ X1 X2
. Es||2—Es2 dx —=, =
d iLsT|Bl|%e? I g, x /a) a'b
—27——Inde B)=ilLsInde B+ ——, S
g, teo,(B) =iLzIndefep, (B) pp—
(72 BZJ q J'Ing(X3/a) (XS X4 )
—— X —, =
with the superscript& and L denoting Euclidean and Lor- i791(x3/a) a’em2;
entz metrics, respectively. Therefore, giveng@gg(B) we
can calculate dgED4(B) for a general unidirectional mag- __ig J dXSfTQZ(XS/a) ﬁ E
netic fieldB(r) by integrating Eq(72) overm? as described 791(x3/2) ar
in Ref.[6].
Now make the duality transformation from the static mag- =—il|E||?, (77)
netic field B(x1,x5) to the functionally equivalent electric
field E(x3,t) by letting where x,=bg;(x,/a), t=rg;(xg/a), i=1,2, define the
boundaries oB andE.
A= (A1(X1,%2),A2(X1,X2),00—(0,0A5(x3,1)),  (73) Equation (75) may seem to give nothing new, at least

when developed in a power-series expansiortints real

with VXA=B(Xq,X2)k, E=—Azk=B(x3,t)k and power enters when Inc@éDz(B) is known nonperturbatively

t as we will now see. Defining the one-loop Lorentz metric
As(X3,t)= —f dsB(x3,S). (74)  effective action byS.«= —i Indet, Eq.(75) gives
to
A change inty in Eq. (74) results in a gauge transformation 2 LSQED“ EV= —ilL.L.indeE=L (B—e 72
and does not affect the determinant. This duality transforma- T ome et (E) 1LzIndefep, (B— )
tion is implemented by the replacemenB(x;,Xy)
—e 'PE(x3,x4) in defep, , defep, and||B|| in Eq. (7)  Lybof[E|%e? 78
and the coordinate/momentum relabeling>3, 24, fol- 127rm?

lowed by continuation to the Lorentz metric, includityg
727, whereb is the range oB in the x, direction, and  As an example, consider the finite-range magnetic field
27 is the duration of the electric pul€g(xs,t). An example

is given in Eq.(77) below. If B has more than one range

parameter in the, direction then all of them must be con- B(X1,Xp) = ( 1-
tinued asb. The ruleB— e '"E in going from the Euclid-

ean metric back to the Lorentz metric is a consequence of the

definition of E above and the rotatior,—e'(™?~9t. UIti-  and the corresponding electric pulse
mately it is rooted in the fundamental prescriptiod— m?
—ie. Then Eq.(71) becomes

—e

2 2
X1t X5

5 )B, x2+x5<a?, (79

a

2 2
E(x3,t)= ( 1- w) E, x3+(ct)><a? (80
a

J )
— 27— Indefzp, (B—e ' "E)
am 4 whereB and E are constantsp = 7a’B/2 andcr=a. Both
fields are directed along theaxis. Forma—0 ande®>1

iml2
=LL,Indefep, ,(B—e T°E) we found the result68) for IndeéEDz(B). Then following

iL,L,||E[|%e? - the above rules set
12mm? IndeGep,(B—e ™' 7%E)
As an example consider the last terms in E@4) and(75) o i i
for the case of a magnetic field in a closed region with two - (ema/2)(e'™"7)(e E) In eme E
range parameters: Ao e,
f X1 X2 +O(eE)— e77'a7'EI E - O(eE a1
BOux) =Bl 35 ) (eB)=——g_—In| —|+O(eB), (8D
& t (76) where corrections 00((ma)?) have been ignored. Substi-

E(x3,t)=Bf

a'r tuting Eq.(81) in Eq. (78) gives fore E>m?
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The determinant dggDz retains its Euclidean metric since

+0(eb). the background field is static. For the case of a circular
82) boundary of radius (83) can be checked since there is a
reliable semiclassical approximation that is valid &R E

As far as we know there is nothing in the literature to directly> 7, namely[30]
check Eq.(82) with, or any other class of electric two-
variable pulses.

The minus sign in Eq(82) is universal for the class of
fields and their dual pulses considered in this paper. We now

emarlL L,E

oy In

d
QED, __ R
277—(9m2 Im S 7

LTe’E2 & 1

_ 2
—e nmTm</eE

QED; _
ImSy = 3 5
8 n=1 n

see that the physically reasonable result that the pair produc- s 9 2 eE|Y?
tion probability 1—exp(—2 ImSyy) decreases with increas- xX|ma-mal oE| erflal
ing fermion mass depends on the paramagnetism of charged 5
fermions in a magnetic field, as indicated by the minus sign " ”i(l_eazegn,,)] (84)
in Eq. (68) and discussed afterwards. We take this as direct eE '
physical evidence for the validity, at least in the strong-
coupling, low-mass domain, of the “diamagnetic” bound on Then fora?e E> m>m?a?,
the Euclidean determinant, namely@@g <1.
. . 2 , J LsTwa%eE

The diamagnetic bound also holds in the perturbative do- _o .~ |, gRFPa_ 3—[In(eE/m2)+O(1)]
main of large mass and weak coupling since the power series am? eff 4 '
expansion of Ind%ED2 is asymptotic and the overall sign of (85

the second-order term is negatiied]. : . . . :
A mechanical device that would simulate the pulses im-WhICh agrees by inspection with E¢S3) when combined

- : : 2
plied by the duality transforms on centrally symmetric mag-v_vlt:azig} ,T,(Z?ES)’ taking e®>0 and letting ®=ma’8
netic fields would be two parallel conducting plates of large '
extent initially very close together, then pulled apart and then
pushed together again. These plates have the unusual prop- ViI. SUMMARY
erty of having opposite surface-charge densities varying with - An exact representation of the Euclidean fermion deter-
time and their spatial separation. minant in two dimensions for centrally symmetric, finite-
Duality has been considered recently by Dunne and Halfanged Abelian background gauge fields has been obtained
[28] for nonconstant fields in their study of the exactly solv- hat depends only on the interior partial-wave functions and
able single-variable magnetic fiek{(x) =B seck(x/\). Al scattering phase shifts continued to the upkeplane by
though the asymptotic boundary conditions are different insettingk=mée ™2, wherem is the fermion mass. In the non-
the magnetic and electric field cases, they allow the analytigerturbative limit of small fermion mass these are known
continuations required for duality in this example. In a |aterexplicitly, thereby making the determinant amenable to nu-
paper [29] they go beyond exactly solvable backgroundmerical analysis. For the sequence of limits of small fermion
fields by using a WKB approach to approximate the specmass followed by strong coupling we have been able to ob-
trum of the Pauli operatorR—eA)?. The authors are aware tajn the explicit asymptotic limit of the determinant when the
that such an approach cannot prove duality in the singlenackground field is unidirectional and nonvanishing except
variable case, but it does give an insight into just how nonpn its boundary. The result is universal, depending only on
trivial duality is. Presumably the final justification of duality the two-dimensional chiral anomaggb/27. It should be an
in both the one- and two-variable cases is the validity of theaasy task to obtain the determinant's asymptotic limit for
Wick rotation in the presence of external fields. fluctuating magnetic fields since one only needs to numeri-
The question arises as to whether there is a duality trangg|ly evaluate the second term in E9). These results
formation of the typeB(x;,X,)—€~'™?E(xy,Xz), whereE  should be a useful nonperturbative check on lattice algo-
is directed along the third axis. The answer is “no” exceptrithms for fermion determinants when the output is extrapo-
for the special case whe(x;,x;) is constant within the |ated to infinite volume and zero lattice spacing.
boundary parallel to the direction of the field. Otherwise, the By extending the concept of duality to two variables we
Bianchi identity excludes such fields. So 8rconstant over  have been able to relate the Euclidean determinant in two
a finite spatial region, duality takes the simple form, from dimensions for a wide class of background magnetic fields to

Eq. (72), the pair production probability in four dimensions for a re-
lated class of electric pulses. We have also connected the
_ZWLSQED4(B_)e,iw/2E) “diamagnetic” bound on the Euclidean two-dimensional de-
om2eff terminant to the negative sign @flm Sy/dm? in four di-

mensions, thereby providing a physical basis for this bound
L;T||E||%e? in the strong-coupling, small-mass limit.
PP Central to this work was the ability to count zero modes
127mm . . . . :
in two dimensions. Further analytic progress in three and
(83 four dimensions will be hindered, if not blocked, until there

=L3T Indefep, (B—e ' ™%E) —
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are theorems for counting zero modes. In four dimensionsincef”(r*)=—2eB(r*)<0. Hence fori>1,
more is needed than just the difference of positive and nega-

tive chirality zero modes, while in three dimensions there
may be some as yet undiscovered topological invariant that

will count them.
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| = \/2— ™)1+ 0(1N)].
2|f"( *)l

To calculate the point* for each admissiblé note that for
|—N, r*—a. So expand the right-hand side of E#6)
aboutr* =a by settingr*=a(1—5). LetI=N—-m—1, m

Lang for helpful correspondence, and M. Peardon, S. Ryas>1, m<N. AssumingB(r) has continuous first and second

and |. Sachs for helpful discussions.

APPENDIX

Here we will derive the asymptotic limit68). Referring
to Eq. (43 let

adr 21+1
| = foz 3 e?ee(n), (A1)
Then,
d d -1
< o122 14—
se il =Zgin = o= * 2 (W 1 2|)
1 1
_E —1+§ £|n| (A2)

Consider the first term in EqA2). Referring to Eq.(59)
consider

N—1 g A 9 N—1 P
—Inl=2, —Inl+ —Inl, A3
25Tt R e 8
where A>1 and where fol<N—-1, W=e®/(27)—1=N
+e—1. Refer to the first sum in EJA3). By inspection of
Eq. (A1), I(I=0)=0(e**™), where M=maxe(r), O=<r
<a, with ¢(r) given by Eq.(20). Hence,d In [/de=0O(M).

For I=O(N—vyN), where y<1 we find later on in Eqg.

(A40) with m=N—1-1=0(yN) that dInl/de=0(/y).
These two results indicate thiahas exponential growth ia
for this range ofl. Thus, dInl/ge=0(1) or less for G=I
<A and

Ay
Z ZeIni=0(A). (Ad)

Now for the second sum in E§A3). For A large enough

derivatives with B(a)=0 and B'(a)<0 then &

={2/a%B’'(a)|]}¥4m/e)¥2+ O(m/e) and
1)) )1/2m3/2

1/2
f(re)y=o| ——— ol — A8
() 3(7ra3|B’(a)| " (N) - A8

W
and
et 7T|B/(a)| 1/2 m 1/2
[f(r*)|=4 T) JmN 1+0 N) } (A9)

Inserting Eqs(A8),(A9) in Eq. (A7) gives form<N

=P 1/4( " e 4 P 123
=l — m exXp5| ———| —
4a%B’(a)| 3\ ma®B'(a)] N

m\ 112 m) /2
5 (ol

By definition (A1), dl/dm>0 for O=<m<N-—1. This will be
true for the estimat€A10) provided

+0 (A10)

1/3

3R’
ma’|B'(a)| NY3=CNY3

Sib (A1)

in addition tom<<N.
Now return to the second sum in E@\3) and write it as
the following sum using Eq(A7):

we can use the method of steepest descents to caldulate

except near the point=N-—1. Referring to Eq(Al), let

f(r)= (2I+1)In +2ep(r). (A5)

AssumeB(r)>0 so thatd(r) given by Eq.(5) is monotoni-
cally increasing withr. Thenf(r) is maximized at point*
for which

1
|+ §=e<D(r*)/27-r, (AB)

N-1 N—CNY® N3
> —inl={ > +2 )—Inl (A12)
I=A+1 d€ ISA+1  m=
_ 1/3 _ 1/3
'S -2 S e
I=A+1 de (ri 2 | 2351 oe ("
1/3
CcN 1
+ 2 &—InI+O (A13)
=0

Consider the first term in EGA13). We need not rely on Eq.
(A8) yet because EqA7) holds irrespective of where the
rootsr; of Eq. (A6) lie in (0,a). The important point is that
they are closely spaced over the entire intervab)for
ed/27>1 and for®(r) monotonically increasing with.
Hence, ther; can be considered to be nearly continuous
across (@) for | in the range indicated with
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N—CN3 WN

d P p
dl= D(ry dr¥=eB(r*)r*dry . Al4 _ "oeF )| = _ "
2 dr Pdrf=eB(r{)ridr . (Al4) |:(12 el m:a o nlf"(r)l.

(A21)
Referring to Eqs(A5), (A6), and(20),

The range of m inA21) is such that(A9) is valid so that
J
ﬁf(rl*)=2<p(r|*), (A15) N—CNL/3 i ® yzN .
FeT (= 7 2 5o

and so I=(1T-y)N J€
N—(:Nl/3 N-CNY3 ® I
|7;+1 f(rl ) 2 E (rik) —5”'\""0(1)
N (A22)
a
=2ef dr* r*B(r*)e(r*)+0(1). This completes the sum in EGA17) and the second sum in
0
Eqg. (A13).
(A16) Finally, consider the last sum in EA13). This requires

thatl be estimated near the end polirtN—1 orm=0. For
When Eqs(A16), (A13), (A2) are combined we already see N>1 and with ¢(r) monotonically decreasing to zero
the promised cancellation of the first term in H§9), as  [¢’(r)=—®(r)/(2#r)], the integral in Eq(Al) is domi-
guaranteed by Erdotheorem[24]. We now turn to the cal- nated near =a. Sincee’(a)#0, ¢(r) has a first-order zero

culation of the remainder. atr=a: o(r)~(1—r/a)®/2m, r—a. Hence, forN>1
Consider the second sum in E&13) and break it up into
two sums: 2(N+e)
|(m:0)~2—2N(N+e)-zNe2<N+f)J dxx@N"le X,
N—CN3 (1-y)N  N—-CN3 0
J 1% (A23)
—In|f"(rf)|= + —In|f"(r{)],
2 el (Eﬂ o )aelml

where y<1. Now deal with the first sum and recall that 2N*e  N—1—x_
f'(rf)=—2eB(r{). From Eg. (A6) for I=A+1, fo ™ Te = (2N-1)! -T@N.2AN+e)),
O(rf)/®=(A+3)/(N+¢€) which implies rf=0 for N (A24)
>A, and hencef”(r")=—2eB(0). For theupper limit | ] ) ) )
=(1- )N, Eq. (A6) givesd(r})/d=1—y+O(1/N) and wherel“(a,x) is the |.ncompltlate gamma .funct|on given by
hencer =a. So entry 6.5.3 in[12]. Using entries 8.356.2 if21] and 6.5.35
in [12],
MiekN ’ * * 2
£(ry") 2eB(a)—2eB'(a)(r{ —a)+O(r —a) F(2N,2(N+e))=e*2N(2N)2N*1[\/erO(l)].

=—2¢|B'(a)|(a—rf)+O(r} —a)? (A25)
(A18) Combining Egs(A23)—(A25) with Stirling’s formula gives
and 1
o
O(rF)=d+2maB(a)(rf —a)+ = B(a)+aB'(a)] H(m=0)~ E\[ﬁ[”o(”mn’ N=>1. (A26)

X(rf—a)?+0(rf —a)® This is an overestimate as we integrated over all of the range
[0,a] instead of a patch near=a, and therefore the factor
Jml2 in Eq. (A26) cannot be trusted. However, the result
demonstrates tha{m=0) falls off as a power oN and not
exponentially. Since |(m=0)<I(m=CNY3 and I(m
=CNY3)=0(N" %3 we can state thatIn I/de=0O(1/N) for

112 0=<m=<CN" and so

—(1—9)®+O(1NN), (A19)

and soa—r}={y®/[7a|B’'(a)|]}*2 Substituting this re-
sult into Eq.(A18) gives

®|B'(a
fr(rr)= —2e(% 10(ey).  (A20) e
Z 7 i =0O(N~23), (A27)
Thusf”(r)=0(e) for A+1<I<(1—y)N and so the first =0 de
sum in Eq.(A17) gives a contribution oD(1).
Next consider the second term in H&17). With |=N Combining Egs(A3), (A4), (A13), (A16), (Al17), (A21),
-m-—1, (A22), (A27) and intermediate results gives
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N—-1

Zau—zfads q>|e¢
I:Oﬁn—eo rr (r)go(r)—mnz

N 2
+0(A), > [m+e+g(m)]’l=§lnN+O(1). (A33)

i3
(A28)

Finally, consider the last sum in EGA30). Again because
where A>1 but e independent. This completes the sum ofg,(m)<% $h30).- Ag

the first term in Eq(A2).

The sum of the second term in EGA2) is straightfor- N-1 N-1
ward: > [mtetg(yN)] 1< > [m+etg(m)]™
N-1 N-1 N N
1 -y 1 N1
<o W-1 G N+e-I-1 <> [m+et+tg(N-1)]"%
yN
N—1
-y 1 (A34)
m=0 M+e€

As g(m)=1/(21) and CN*3*<m=yN<N, we can use Eq.

ed (A10) and conclude
=In| =—|+0(1). (A29)
2m 112
,ya3|Br(a)| 1/4 N 4 q),y3
Now consider the sum of the third term in Ed2). Letting 9N =\—72-5 ] N %exy — 3| TR
m=N—1—-1, m ma’|B’(a)]
N-1 _ CN13 N N-1
ed 1\t < +0(y*?) [[1+0(y*?)]. (A35)
— -1+ =] = + +
|§o (277 ZI) ( mzzo C%/s % )
X[m+ e+g(m)] 2 Hence, g(N—1)<g(yN)=0(N¥%e"*N) where A\=0(1).

Simple estimates applied to the first and last sums in Eq.
(A30)  (A34) give
where 1g(m)=2I andg’'(m)<0 for O=sm=N-1, y<1, N—1
andC is given by Eq.(A11). Consider the first sum: S [m+etg(m)] t=—Iny+O(IN). (A36)
yN

CN1/3 CN1/3
-1 1/3y71—-1
2, [mtetg(m] i< X [m+etg(CNY) Combining Eqs(A30), (A31), (A33) and (A36) gives
» CNY3+g(CNY¥¥)+ ¢ Nil (ed) _ -1 2 Mo A37)
n ——l-1+=| =zIn .
g(CNP)+ ¢ “ |2 21l T3 (1)
1 We now turn to the sum of the final term in E(A2).
+0 Using previous definitions we can write this as
g(CNY3) gp
=0(1), (A31) " 1,719
> —(W—l——) —Inl
since by the definition ofg and Eq. (A10), g(CN3) =o 2l 21 oe
=0O(NY). _ _ ) CNY® )N N-1
Next consider the second sum in E(A30). Since s iy s g(m) ilnl
g’(m)<0 we have m=0 cnis N | Mte+tg(m)de

YN N

A38
> [m+e+g(CNY)] 1< D) [m+et+g(m)]t -
CNY/3 CNB

Consider the first sum in EqA38). We have previously

N noted thatd In1/ge=0(1/N) for the range ofm indicated.
<> [m+e+g(yN)] L Since 0<g(m)/[m+e+g(m)]<1, then
CN1/3
1/3
(432 S ﬂilnlzom*m) (A39)
The last sum is bounded by elementary means by noting that m=0 M+e+g(m) de '

g(yN)<g(CNY3)=0(N¥® and henceg(yN)/N¥3*=0(1)
or less. Then by inspection the right-hand side is bounded by The range ofmin the second sum in EgA38) allows the
£InN+0O(1). Likewise so is the first sum, and hence use of Eq.(A10) for I, and hence
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. » @ @ g\ﬁ m)| 2
%n __87TN_8’7Tm+247TC3/2 N N
1 m
4—0(:ﬁﬁﬁ,gﬁﬁ , (A40)

where C is defined by Eq(A11l). Then the second sum in
Eq. (A38) is
5 am 4

————— —In|
cntie M+ e+g(m) de

e N (1 1 \/ﬁ 1 (m) 3?2

:‘%C%B[Wa‘c 3’2[ N_§(N> }
1 Vym g(m)

O(mv)}m A

For the range ofm indicated, g(m)=1/(2l) is given
by Eq. (A10) and has the functional formg(m)
= a(mN)Yexp(— Bm*%N), where a, B are constants.
Note thaf m+ e+g(m)]~t<m™1. Then the first sum in Eq.
(A41) vanishes adl— o by inspection. Over the range of
indicated, Wh=<C *2Jm/N and @/N)¥?<(m/N)2
Therefore the remaining sums in E&41) are dominated by
=M \wag(m)//mN which, when approximated by an inte-
gral, is of O(1) and so
Z gm 4
—Inl=

e M+ e+g(m) de o).

(A42)

Finally, we deal with the last sum in EGA38). It is for
0<I<(1-1y)N, and following Eq. (A3) we estimated
dIn1/9e=0(1) or less for thid range. We have already noted
that g(yN)=0O(N¥%e ™) and thatg’(m)<0. Hence we
conclude

N-1 N-1

m 1% m) J
z L)_“'”gE L)_| [
YN M+ e+g(m) de N oe

— O(N1/26—)\N) .
(A43)

In summary, Eqs(A38), (A39), (A42), (A43) give

-1

—shi1=0(1).  (A44)

Nil Lwo1s 2
“h 21 21
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Combining Egs(A2), (A28), (A29), (A37), (A44) gives for
ed/27>1

N—-1
1% a D ed
_ 0112= - nl ==
|§:O aeln”l/j'” ZeLdrrB(r)(p(r) 4wln(277>

+O(A), (A45)

where A>1 but e independent. Now combine E@A45)
with Eqg. (59), integrate and combine this with our previous
result in Eqg.(60) to get forma<1 followed bye®>1

ed

+eq>| 2
2m) T gy N(ma)

Indet= e<1>|
n et——ﬂn

+0(ed,(ma)?ed In(ed)). (A46)
The justification for the inclusion of the Im@? term was
discussed following Eq60). Also, as discussed immediately
after Eq.(59), there may be subtle cancellations that will
eliminate the In¢d) factor in the remainder term
(ma)2ed In(ed). The case whered <0 is included by re-
placinge® in Eq. (A46) everywhere withed|.

This analysis is for field8(r)>0 for r<a with continu-
ous first and second derivatives and wiiia)=0, B’ (a)
<0. For the cas8(a)>0 the analysis is almost identical to
the preceding case and is also a little simpler. The main
changes are

(e — T2 +o(m3 (A47)
)= il
(r) 27Na?B(a) N2/’
47NB(a) m
|f”(r*)|=—(b +O(N” (A48)
and
d )1/2 m?d m3)
= ——— exg ———+0| —
2Na’B(a) 2mNa’B(a) N?
N
x|1+0| T | (A49)

provided[a?B(a)/®]Y°NY?><m<N. The result is the same
as Eq.(A45).
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