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„Super… oscillator on CPN and a constant magnetic field
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We define the ‘‘maximally integrable’’ isotropic oscillator on CPN and discuss its various properties, in
particular, the behavior of the system with respect to a constant magnetic field. We show that the properties of
the oscillator on CPN qualitatively differ in theN.1 andN51 cases. In the former case we construct the
‘‘axially symmetric’’ system which is locally equivalent to the oscillator. We perform the Kustaanheimo-Stiefel
transformation of the oscillator on CP2 and construct some generalized MIC-Kepler problem. We also define a
N52 superextension of the oscillator on CPN and show that forN.1 the inclusion of a constant magnetic
field preserves the supersymmetry of the system.
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I. INTRODUCTION

The harmonic oscillator plays a distinguished role in th
oretical and mathematical physics, due to its overcomp
symmetry group. The wide number of hidden symmetr
provides the oscillator with unique properties, e.g., clos
classical trajectories, the degeneracy of the quant
mechanical energy spectrum, and the separability of v
ables in a few coordinate systems. The overcomplete s
metry allows one to preserve the exact solvability of t
oscillator, even after some deformation of the poten
breaking the initial symmetry of the system. Particulary,
oscillator remains exactly solvable after coupling to a co
stant magnetic field, though the latter removes the hid
symmetries of the system. The reduction of the oscillato
low dimensions allows one to construct new integrable s
tems with hidden symmetries~in fact, almost all integrable
systems of classical and quantum mechanics are related
either the free particle case, or the oscillator! @1#. There is a
nontrivial relation between oscillator and Coulomb system
the (N11)-dimensional Coulomb problem can be obtain
from the 2N-dimensional oscillator by the so-called Lev
Civita ~or Bohlin!, Kustaanheimo-Stiefel and Hurwitz tran
formations, whenN51,2,4 @2#. The transformations corre
spond to the reduction of the oscillator by the actions ofZ2 ,
U(1) andSU(2) groups, respectively, and are based on
Hopf maps S1/Z25S1, S3/U(1)5CP1>S2, S7/SU(2)
5HP1>S4 ~relating the angular parts of the oscillator a
Coulomb problems!. Indeed, reducing the oscillators we g
some parametric families of Coulomb-like systems, speci
by the presence of a magnetic flux forN51; by a Dirac
monopole forN52 ~the MIC-Kepler system!; and by a Yang
monopole1 for N54 ~see, respectively, Refs.@4,5,6#!. It
could be checked easily, that the MIC-Kepler system,
tially introduced by Zwanziger for the description of the re
tive motion of two Dirac dyons, also describes the scatter

1Under ‘‘Yang monopole’’ we mean a five-dimensionalSU(2)
generalization of a Dirac monopole@3#.
0556-2821/2003/67~6!/065013~8!/$20.00 67 0650
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of two well-separated Bogomol’nyi-Prasad-Sommerfie
~BPS! monopoles and dyons. The latter problem was cons
ered in a well-known paper by Gibbons and Manton@7#,
where the existence of a hidden Coulomb-like symmetry w
established~see also@8#!. Let us mention also the key role o
the Hurwitz transformation~and of the second Hopf map! in
the recently proposed higher-dimensional quantum Hall
fect @9# ~see also@10,11#!.

The oscillator is a distinguished system, also with resp
to supersymmetrization. A supersymmetric oscillator
specified by the splitting of fermionic and bosonic degrees
freedom. Thus it inherits the hidden symmetries of the init
system. We notice that the construction of integrable sup
symmetric mechanics is interesting not only in a fie
theoretical context. Being in deep connection with the fa
torization problem, the supersymmetrization of integra
systems could yield a new set of integrable systems w
isospectral potentials. Since the list of references on su
symmetric mechanics is enormous, we refer to the introd
tory reviews@12# ~mostly devoted to the connection of su
persymmetric quantum mechanics with the factorizat
problem! and @13# ~containing the most complete list of re
erences on field-theoretical aspects of supersymmetric
chanics!.

Recent progress in string theory inspired interest for n
commutative field theories@14# and, in particular, for non-
commutative quantum mechanics@15#. The oscillator was
found to be a distinguished case in noncommutative quan
mechanics too: at the moment it is the only exactly solv
~even in the presence of a constant magnetic field! noncom-
mutative quantum mechanical system with a nonzero po
tial @16#.

There is nontrivial generalization of the oscillator on t
sphere and the two-sheet hyperboloid~pseudosphere! @17#
given by the potential

Uosc5
v2r 0

2

2

x2

xd11
2 . ~1.1!

Here x,xd11 are the~pseudo!Euclidean coordinates of th
©2003 The American Physical Society13-1
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ambient spaceRd11(Rd•1):ex21xd11
2 5r 0

2, with e511 for
the sphere,e521 for the pseudosphere.

This system has a nonlinear hidden symmetry alge
providing it with properties similar to those of a convention
oscillator. Applying to the oscillator on the~pseudo!sphere
the standard Levi-Civita, Kustaanheimo-Stiefel and Hurw
transformations, one can obtain the generalization of fl
Coulomb, MIC-Kepler and Yang-Coulomb systems on t
~pseudo!sphere@18#.2 In the present paper we define the o
cillator on complex projective spaces CPN, from the require-
ment that it possesses hidden symmetries generalizing t
of the planar oscillator, and consider its behavior with
spect to the coupling to a constant magnetic field.

The oscillator on CP15S2 coincides with the Higgs oscil
lator on the sphereS2 ~note that CP15S2). The oscillator on
CPN, N.1 is defined by the potential

u~z,z̄!5v2r 0
2zz̄, ~1.2!

whereza,z̄a are inhomogeneous coordinates of CPN, corre-
sponding to the Fubini-Study metric

gab̄dzadz̄b5r 0
2 dzdz̄

11zz̄
2r 0

2 ~ z̄dz!~zdz̄!

~11zz̄!2 . ~1.3!

In contrast to the case of the oscillator on CP15S2 which is
defined on the diskuzu,1, the oscillator on CPN, N.1 is
defined on the whole chart. The transition to another char
CPN transforms the oscillator into the system with the pote
tial

U5v2r 0
2S 1

z1z̄1 1
z2z̄21¯zNz̄N

z1z̄1 D ,

which has the oscillator symmetry algebra.
The Kustaanheimo-Stiefel transformation of the oscilla

on CP2 yields a generalization of the MIC-Kepler system
which can be transformed into the MIC-Kepler system on
three-dimensional hyperboloid.

The oscillator on CPN admits, because of its Ka¨hler struc-
ture, a simple coupling to a constant magnetic field. This
be achieved by carrying out the following replacement of
symplectic structure:V0→V01 iBgab̄dza∧dz̄b. The cou-
pling to a constant magnetic field preserves the kinemat
su(N) symmetries of the oscillator@for the free particle case
i.e., v50, the coupling preserves the whole symmetry al
bra su(N11)], although it breaks the hidden symmetries

Below, we construct theN52 supersymmetric oscillato
on CPN and study its behavior, with respect to the coupli

2Let us remind, that the Coulomb system on the~pseudo!sphere is
defined by the potential@19#

UC52
g

r0

xd11

uxu
.

Quantum mechanics of the oscillator and Coulomb system on
D-dimensional sphere and pseudosphere is considered in det
Ref. @20#.
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to a constant magnetic field~the oscillator on CPN, in con-
trast with the one on CN, does not admit theN54 supersym-
metrization!. We show that, in contrast with theN52 sup-
eroscillator on CP15S2, the N52 superoscillator on CPN,
N.1 allows coupling to a constant magnetic field, witho
breaking supersymmetry.

II. OSCILLATOR ON CP N

This section is devoted to the construction of the osci
tor system on the complex projective space CPN. Our con-
sideration essentially exploits the fact that the complex p
jective space is a constant curvature Ka¨hler manifold. Hence,
our model could be easily adopted for the formulation of t
oscillator system on the other spaces of that sort.

Let us recall that the Ka¨hler manifoldM is equipped with
the metric, which could be locally represented in the form

gab̄dzadz̄b5
]2

]za] z̄b dzadz̄b, ~2.1!

and with the associated Poisson bracket

$ f ,g%05 i
] f

] z̄a gāb
]g

]zb2 i
]g

]zb gāb
] f

] z̄a , gābgbc̄5d c̄
ā .

~2.2!

The local real functionK(z,z̄) is called the Ka¨hler potential.
The complex projective space CPN could be equipped

with the Fubini-Study metric, given by the Ka¨hler potential

K5r 0
2 log~11zz̄!. ~2.3!

The scalar curvature of CPN is related with the parameterr 0
2

as follows: R5N(N11)/r 0
2. The isometries of the Ka¨hler

structure are generated by theholomorphic Hamiltonian vec-
tor fields

Vm5Vm
a ~z!

]

]za 1V̄m
ā ~ z̄!

]

] z̄a , @Vm ,Vn#5Cmn
l Vl ,

~2.4!

where

Vm5$hm , %0 , $hm ,hn%05Cmn
l hl ,

]2hm

]za]zb 2 Gab
c ]hm

]zc 50. ~2.5!

The real functionshm are called Killing potentials.
The symmetry algebra of CPN is su(N11). This algebra

is defined by the Killing potentials

hT5Tābhāb2tr T̂, ha
15ha

21ha
1 , ha

25 i ~ha
22ha

1!,

~2.6!

where

hāb5r 0
2 zaz̄b

11zz̄
, ha

25r 0
2 za

11zz̄
, ha

15r 0
2 z̄a

11zz̄
,

~2.7!

e
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and T̂ areN3N Hermitian matrices:Tāb5Tb̄a.
The algebra ofhāb ,ha

6 reads

$hāb ,hc̄d%05 id ādhb̄c2 id c̄bhād ,
~2.8!

$ha
2 ,hb

1%05 id āb~r 0
22tr hāb!1 ihāb ,

$ha
6 ,hb

6%050, $ha
6 ,hb̄c%057 ihb

6dab .

Let us equip the cotangent bundleT* CPN with the sym-
plectic structure

VB5dza∧dpa1dz̄a∧dp̄a1 iBgab̄dza∧dz̄b, ~2.9!

which defines, together with the Hamiltonian

D5gab̄pap̄b , ~2.10!

the dynamics of a free particle on CPN, in the presence of a
constant magnetic fieldB. The isometries of a Ka¨hler struc-
ture define the Noether’s constants of motion of a free p
ticle

Jm5Jm1Bhm5Vm
a pa1V̄m

ā p̄ ā1Bhm : H $D,Jm%50,

$Jm ,Jn%5Cmn
l Jl .

~2.11!

Explicitly, we have

Jab̄52 izbpa1 i p̄bz̄a, iJa
15pa1 z̄a~ z̄p̄ !,

2 iJa
25p̄a1za~zp!. ~2.12!

Notice that the vector fields generated byJm are independen
on B

Ṽ5Va~z!
]

]za2V,b
a pa

]

]pa
1V̄a~ z̄!

]

] z̄a2V̄
,b̄

a
p̄a

]

]p̄a
.

~2.13!

Hence, the inclusion of a constant magnetic field preser
the whole symmetry algebra of a free particle moving in
Kähler space.

Now, let us consider theu(N)-invariant Hamiltonian

H5gab̄pap̄b1U~zz̄!, ~2.14!

and require it to have the hidden symmetry~similar to the
one of the oscillator! given by either one of the constants
motion

~ i! I ab
1 5Ja

1Jb
11 f 1~zz̄!z̄az̄b,

~2.15!
~ ii ! I ab̄5Ja

1J
b̄

2
1 f 0~zz̄!z̄azb.

Straightforward calculations immediately yield the followin
constraints:

~ i! B50, N51, U~x!5c1x/~12x!21c0 ,

f 15c1 /~12x!2, ~2.16!
06501
r-

es

~ ii ! B50, N51,2 . . . , U~x!5c1x1c0 ,

f 05c1 .

Taking into account thatH5Tr Î 1Tr Ĵ2/2r 0
2, we get the fol-

lowing generalizations of the oscillator on CPN.
CP1. The oscillator is defined by the Hamiltonian syste

H5
~11zz̄!2pp̄

r 0
2 1

v2r 0
2zz̄

~12zz̄!2 , V05dz∧dp1dz̄∧dp̄.

~2.17!

The symmetry algebra is given by theU(1) generatorJ
and the complex~or vectorial! constant of motionI 6

J5 i ~pz2p̄ z̄!, I 15
J1

2

r 0
2 2

v2r 0
2z̄2

~12zz̄!2 : $J,I 6%562i I 6 ,

$I 2 ,I 1%54i S v2J1
JH
r 0

2 2
J3

2r 0
4D . ~2.18!

This is nothing but the well-known Higgs oscillator on th
sphereS25CP1 @17#.

CPN, N.1. The oscillator is defined by the Hamiltonia
system

H5gab̄pap̄b1v2r 0
2zz̄, V05dza∧dpa1dz̄a∧dp̄a .

~2.19!

Its symmetries are given by the constants of motion

Jab̄5 i ~zbpa2p̄bz̄a!, I ab̄5
Ja

1Jb
2

r 0
2 1v2r 0

2z̄azb,

~2.20!

which define the nonlinear~quadratic! algebra

$Jāb ,Jc̄d%5 id ādJb̄c2 id c̄bJād ,

$I ab̄ ,Jcd̄%5 idcb̄I ad̄2 idad̄I cb̄ ,

$I ab̄ ,I cd̄%5 iv2dcb̄Jad̄2 iv2dad̄Jcb̄

1 i I cb̄~Jad̄1J0dad̄!/r 0
22 i I ad̄~Jcb̄1J0dcb̄!/r 0

2.

~2.21!

It is convenient to introduce the generators

Ji5Ti
ab̄Jab̄ , J05Tr Ĵ, I i5Ti

ab̄I ab̄ , I 05Tr Î ,
~2.22!

whereTi are tracelessN3N Hermitian matrices@the genera-
tors of thesu(N) algebra#. The above generators belongin
to the center of algebra read

J05 i ~zp2p̄ z̄!, HN.15I 01
Tr Ĵ21J0

2

2r 0
2 . ~2.23!

Also the following equality holds:
3-3
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Tr Î 21v2Tr Ĵ25I 0
21v2J0

2. ~2.24!

We have got the ‘‘maximally integrable’’ generalization
the oscillator on complex projective spaces, i.e., the sys
with the highest possible number of functionally independ
constants of motion.3

We established the following essential properties of
latter system.

The oscillator on CPN, N.1 is well-defined on the whole
chart of the complex projective space, 0,uzu,`. The oscil-
lator on CP1;S2 ~as well as on higher-dimensional sphere!
is defined on the discuzu,1 only. The constant magneti
field removes the hidden symmetries of the oscillator on CN

for anyN, while it respects them in the case of a free partic
i.e., whenv50.

The above construction could be easily extended for
noncompact version of CPN, provided by the Lobachewsk
spaceLN5SU(1.N)/U(1)3SU(N). For this purpose, we
should replace the Fubini-Study metric with the one gen
ated by the Ka¨hler potentialK52r 0

2 log(12zz̄), and subse-
quently replace the Killing potentials and Noether consta
of CPN with the ones ofLN. The Killing potentials ofLN are
defined by the functions

hāb52r 0
2 zaz̄b

12zz̄
, ha

252r 0
2 za

12zz̄
, ha

152r 0
2 z̄a

12zz̄
.

~2.25!

Globally, the complex projective space CPN is covered by
N11 charts, marked by the indicesã50,a. The transition
functions from theb̃th chart to thec̃th one are of the form

z~ c̃!
ã 5

z
~ b̃!

ã

z
~ b̃!

c̃ , where z~ ã!
ã 51. ~2.26!

On CP1 the transition functions take the simple formz
→1/z, corresponding to the transition from one hemisph
to the other. The respective transformation of the moment
p→2z2p. The Hamiltonian of the oscillator on CP1 is ob-
viously invariant under the above transformation. In high
dimensions we get a rather different picture, since the po
tial term is not covariant under the transition~2.26!. Let us
consider this transformation in more details.

The transition functions~2.26! define the following ca-
nonical transformation, which is singular on thez150
‘‘axes:’’

z1→1/z1, p1→2z1~zp!, zâ→zâ/z1,

p â→z1p â â52,...,N. ~2.27!

3In the theory of integrable systems such systems are ca
‘‘maximally superintegrable systems.’’ We prefer to suppress
prefix ‘‘super’’ in this context, in order to avoid any confusion wit
supersymmetric systems.
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The kinetic term is covariant with respect to the above tra
formation, while the potential term is not. As a result, we g
the integrable system on CPN, N.1 defined by the Hamil-
tonian

HBack5gab̄pap̄b1v2r 0
2S 1

z1z̄1 1
z2z̄21¯1zNz̄N

z1z̄1 D .

~2.28!

This system inherits the whole symmetry algebra of the
cillator, i.e., it is a ‘‘maximally integrable’’ system. Its con
stants of motion can be obtained by a straightforward tra
formation of those of the oscillator, given in Eq.~2.20!. Note
that, in spite of its ‘‘maximal integrability,’’ the system is no
invariant under ‘‘spatial’’u(N) rotations.

On the Lobachewski spaceLN, N.1 there is no analog
of this system. The ‘‘ambient’’ space for the Lobachews
plane is C1•N. The transitions~2.26! transform the oscillator
on LN into a system on the space with the signature~2,2,
1, . . . ,1!.

CP2: Kustaanheimo-Stiefel transformation

As we mentioned in the Introduction, the oscillator o
two-, four-, and eight-dimensional planes and spheres co
be reduced to the two-, three- and five-dimensional Coulo
systems, and their generalizations specified by the pres
of monopoles. Particularly, the oscillator onS25CP1 and
AdS25L can be reduced, by the so-called Levi-Civita tran
formation, to the Coulomb systems on two-dimensional h
perboloid ~Lobachewski plane! L. Similarly, the
Kustaanheimo-Stiefel transformation of the oscillator on
four-dimensional sphere and a four-dimensional two-sh
hyperboloid leads to the generalization of the MIC-Kep
problem on a three-dimensional two-sheet hyperboloid@18#.

Let us consider the behavior of the oscillator on CP2, with
respect to the Kustaanheimo-Stiefel transformation. The c
stants of motion of the oscillator on CP2 are given by the
generators

I5
J1sJ2

r 0
2 1v2r 0

2zsz̄, J5 izsp2 i p̄sz̄, J05 izp2 i z̄p̄,

~2.29!

wheres denotes standard Pauli matrices.
Their algebra reads

$J0 ,I k%5$J0 ,Jk%50, $Jk ,Jl%52eklmJm ,

$I k ,Jl%52eklmI m , ~2.30!

$I k ,I l%5eklm~2v2Jm23I mJ0 /r 0
21I 0Jm /r 0

2!.

In order to reduce this system by the Hamiltonian action
J0 , we have to fix its value

J052s, ~2.31!

and then factorize the level surface by theU(1) group ac-
tion. The resulting six-dimensional phase spaceT* M red can
be parametrized by the followingU(1)-invariant functions:

d
e

3-4
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x5zsz̄, p5
zsp1p̄sz̄

2zz̄
: $x,J0%5$p,J0%50.

~2.32!

In these coordinates the reduced symplectic structure and
generators of the angular momentum are given by the
pressions

V red5dp∧dx1s
x3dx3dx

uxu3 , Jred5J/25p3x1s
x

uxu
.

~2.33!

Thus the reduced system is specified by the presence
Dirac monopole.

The reduced Hamiltonian is given by the expression

Hred5
~11x!

r 0
2 @xp21~xp!2#1s2

~11x!2

r 0
2x

1v2r 0
2x,

where

x[uxu. ~2.34!

Let us fix the constant energy surface

H5Eosc. ~2.35!

Then, dividing by 2r 0
2x, we can represent it in the form

HMIC5E, HMIC5
~11x!

2r 0
4 Fp21

~xp!2

x G1
s2

2r 0
4x22

g

r 0
2x

,

~2.36!

where we introduced the notation

g5Eosc/22s2/r 0
2, 22E5v21s2/r 0

4. ~2.37!

The HamiltonianHMIC can be interpreted as the Hamiltonia
of some generalized MIC-Kepler problem. Notice that
potential energy term has the same form, as the one of
conventional~flat! MIC-Kepler problem. The hidden sym
metries of the system are given by the reduced generatorI i .

Let us perform the canonical transformation (x,p)
→( x̃,p̃), going to the coordinates where the metric take
conformally-flat form:

x̃5 f ~x!x, p5 f p̃1 f 8
~xp̃!

x
x, ~2.38!

where

f ~x!5
1

x

A11x21

A11x11
. ~2.39!

In this case, the reduced Hamiltonian reads

Hred5
x~11x!2p2

4r 0
2 1s2

~x11!4

4r 0
2x~12x!2 1

4v2r 0
2x

~12x!2 , x,1,

~2.40!
06501
he
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while the Hamiltonian of the above obtained generalizat
of MIC-Kepler problem~2.36! takes the form

HMIK5
~12x2!2

32r 0
4 S p21

s2

x2D2S g1
s2

2r 0
2D 11x2

4r 0
2x

2
s2

4r 0
4 .

~2.41!

This is nothing but the Hamiltonian of the MIC-Kepler prob
lem on the three-dimensional hyperboloid@18# constructed
by the Kustaanheimo-Stiefel transformation of the oscilla
on a four-dimensional sphere.

Performing the Kustaanheimo-Stiefel transformation
the system~2.28! on CP2, we get the following expression
for the reduced Hamiltonian:

HBack5
~11x!

r 0
2 @xp21~xp!2#1s2

11r

r 0
2x

12v2r 0
2 11x

x1x3

2v2r 0
2, x3Þx. ~2.42!

In conformal coordinates~2.38! the latter takes the form

HcBack5
x~11x!2p2

4r 0
2 1s2

~x11!4

4r 0
2x~x21!2 1v2r 0

2 ~11x!2

2~x1x3!

2v2r 0
2. ~2.43!

III. NÄ2 SUPERSYMMETRIC OSCILLATOR ON CP N

In this section we construct theN52 superextension o
the oscillator on CPN coupled to a constant magnetic field.
is well known that any Hamiltonian system of the form

H05gi j ~pipj1W,iW, j !, Vcan5dpi∧dxi ~3.1!

could be easily extended to the system with exactN52 su-
persymmetry

$Q1,Q2%5H, $Q6,Q6%50. ~3.2!

The functionW(x) is called superpotential. The oscillator o
a sphereSD belongs to the above class of systems. Its sup
potential is given by the expression

W5
v

2
log

21x2

22x2 , ~3.3!

wherex denotes the conformal coordinates of the sphereSD.
For the supersymmerization of the system~3.1!, we have

to define the supersymplectic structure

V5dpi∧dxi1
1

2
Ri jkl u1

k u2
l dxi∧dxk1gi j Du1

i ∧Du2
j ,

Du6
i [du6

i 1Gkl
i u6

k dxl , a51,2

and the superchargesQ65(pi6 iW,i)u6
i , which obey the

condition $Q6 ,Q6%50. Then, we immediately get theN
52 supersymmetric Hamiltonian

H5$Q1 ,Q2%5H01Wi , ju1
i u2

j 1Ri jkl u2
i u2

k u1
l .

The inclusion of a magnetic fieldV→V1Fi j u1
i u2

j breaks
the N52 supersymmetry of the system
3-5
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$Q6 ,Q6%5Fi j u6
i u6

j , $Q1 ,Q2%5H1 iF i j u1
i u2

j .

For the construction of the supersymmetric oscillator
CPN, let us represent the initial~bosonic! Hamiltonian in the
form

H5gab̄~pap̄b1]aW]̄bW!. ~3.4!

If the superpotential can be represented in the formW(z,z̄)
5W1(z)1W2( z̄), then one can construct theN54 super-
generalization of the system on Ka¨hler space@21#. Other-
wise, the system can be endowed withN52 supersymmetry.
Hence, we can construct theN54 supersymmetric oscillato
on CN choosing the superpotential 2W5vz21v z̄2. How-
ever, we cannot construct the~anti!holomorphic superpoten
tial for the oscillator on CPN and, consequently, obtain it
N54 superextension. On the other hand, for the oscilla
on CN and CPN one can find the superpotentials with explic
su(N) symmetry,

W5vK5vzz̄ for CN

2W5vr 0 log~12zz̄!/~11zz̄! for CP1

W5vK5vr 0 log~11zz̄! for CPN,N.1. ~3.5!

By using such functions, we shall construct theN52 super-
symmetric oscillators on CPN. We shall see that the linea
dependence of the superpotentialW on the Kähler potential
K leads to an interesting behavior of the supersymme
system, with respect to a constant magnetic field. Thus,
superoscillator on CPN, N.1 has more similarities with the
planar one, than the oscillator on CP1.

Let us consider a (2N•2N)C-dimensional phase spac
equipped with the symplectic structure

V5dpa∧dza1dp̄a∧dz̄a1 i ~Bgab̄1 iRab̄cd̄ha
c h̄a

d !dza∧dz̄b

1gab̄Dha
a∧Dh̄a

b , ~3.6!

whereDha
a5dha

a1Gbc
a ha

adza, a51,2, andGbc
a ,Rab̄cd̄ are,

respectively, the connection and curvature of the Ka¨hler
structure. The corresponding Poisson brackets are define
the following nonzero relations~and their complex conju-
gates!:

$pa ,zb%5da
b , $pa ,ha

b%52Gac
b ha

c ,

$pa ,p̄b%5 i ~Bgab̄1 iRab̄cd̄ha
d h̄a

d !,

$ha
a ,h̄b

b%5gab̄dab .

The symplectic structure~3.6! becomes canonical in the co
ordinates (pa ,xk)

pa5pa2
i

2
]ag, x i

m5eb
mh i

b :

VScan5dpa∧dza1dp̄ā∧dz̄ā1 iBgab̄dza∧dz̄b1dxa
m∧dx̄a

m̄ ,

~3.7!
06501
n

rs

ic
e

by

where ea
m are the einbeins of the Ka¨hler structure:

ea
mdmm̄ē

b̄

m̄
5gab̄ .

So, in order to quantize the system, one chooses

p̂a52 i S ]

]za2 iB
]K

]zaD , ā52 i S ]

] z̄ā 1 iB
]K

] z̄aD ,

@ x̂a
m ,xC b

n̄ #15dmn̄dab .

In order to construct the system with the exactN52 super-
symmetry~3.2!, we have to find the appropriate candidat
for Q6, which obey the equations$Q6,Q6%50. Let us
search the realization of supercharges among the functio

Q65coslQ1
61sinlQ2

6 , ~3.8!

where

Q1
15pah1

a1 i ]̄aWh̄2
a , Q2

15p̄ah̄2
a1 i ]aWh1

a ,

Q1,2
2 5Q̄1,2

1 , ~3.9!

andl is some parameter. Calculating the Poisson bracket
the functions, we get

$Q1,Q1%5 i ~sin 2lBgab̄12v cos 2lWab̄!h1
ah2

b
~3.10!

$Q1,Q2%5HSUSY
0 1cos 2lBg/22sin 2lZ3 . ~3.11!

Here and in the following, we use the notation

HSUSY
0 5H2Rab̄cd̄h1

ah̄1
bh2

ch̄2
d2 iWa;bh1

ah2
b1 iWā;b̄h̄1

ah̄2
b

1B
F3

2
, ~3.12!

whereH denotes the oscillator Hamiltonian on CPN @see the
expressions in Eqs.~2.17!,~2.19!#, and

F35 igab̄~h1
ah̄1

b2h2
ah̄2

b!, Z35 iWab̄~h1
ah̄1

b2h2
ah̄2

b!,

g5 igab̄ha
a h̄a

b . ~3.13!

In what follows, we will also need the generators

F15 igab̄h1
ah̄2

b , F25F̄1 , ~3.14!

which obey the commutation relations

$F6 ,F3%572iF6 , $F1 ,F2%5 iF3 ~3.15!

$Qa
6 ,F6%50, $Qa

6 ,F7%56 i eabQb
7 ,

$Qa
6 ,F3%56 iQa

6 , ~3.16!

$F6 ,g%5$F3 ,g%50,

$Qa
1 ,g%52 i ~pah1

a2 i ]̄aWh̄2
a!, and so on. ~3.17!

Comparing Eqs.~3.10!,~3.11! with Eq. ~3.2!, we can con-
struct theN52 supersymmetric oscillator on CPN.
3-6
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Superoscillator on CP1. Consider the supersymmetriza
tion of the oscillator on the complex projective plane CP1.
Comparing Eq.~3.10! with Eq. ~3.2!, we get

$Q6,Q6%50⇒B50, cos 2l50, sin 2l561.
~3.18!

Hence, we could choosetwo copies of the supercharges an
Hamiltonians

Qa
65

Q1
62~21!aQ2

6

&
,

$Qa
1 ,Qa

2%[Ha5HSUSY
0 1~21!aZ3 , a51,2.

~3.19!

We constructed two copies of theN52 supersymmetric os
cillator on CP1. The inclusion of a constant magnetic fieldB
breaks theirN52 supersymmetry down toN51.

Note that

$Qa
6 ,Qb

6%52eabZ6 Z65A~zz̄!F6 , Z35A~zz̄!F3 ,

where A(zz̄)5v„@11(zz̄)2#/(12zz̄)2
…. Hence, in the pla-

nar limit, one has A→v, so that the generator
Qa

6 ,Z6 ,Z3 ,H form a closed Lie superalgebra.
Superoscillator on CPN, N.1. On higher-dimensiona

complex projective spaces one has

Wab̄5vgab̄ , ⇒$Q6,Q6%50⇔B sin 2l12v cos 2l50.
~3.20!

Let us introduce the parameterl0

cos 2l05
B/2

Av21~B/2!2
, sin 2l052

v

Av21~B/2!2
,

~3.21!

so that

l5l01~21!ap/2, a51,2. ~3.22!

Hence, we get the following supercharges:

Qa
65cosl0Q1

61~21!a sinl0Q2
6 , ~3.23!

and the pair of correspondingN52 supersymmetric Hamil-
tonians

HSUSY
a 5$Qa

1 ,Qa
2%5HSUSY

0 2~21!a

3S cos 2l0

B

2
g2sin 2l0vF3D . ~3.24!

We constructed, on higher-dimensional complex proj
tive spaces, two copies of exactN52 supersymmetric oscil
lators coupled to a constant magnetic field.

Calculating the commutators ofQ1
6 andQ2

6 we get
06501
-

$Q1
6 ,Q2

6%52vF6 , $Q1
1 ,Q2

2%5cos 2l0HSUSY
0 1

B

2
g,

~3.25!

where the Poisson brackets betweenF6 , and Qa
6 look as

follows:

$Qa
6 ,F6%50, $Qa

6 ,F7%56eabQb
6 ,

$Qa
6 ,F3%56 iQa

6 . ~3.26!

In the absence of a magnetic field, i.e., forB50, cos 2l0
50, sinl0521, the two systems form the superalgebra

$Qa
6 ,Qb

6%52veabF6 ,

$Qa
6 ,Qb

7%5dabHSUSY
0 2sab

3 v2F3 ,

$Qa
6 ,F6%50, $Qa

6 ,F7%56eabQb
6 ,

$Qa
6 ,F3%56 iQa

6 , ~3.27!

$F6 ,F7%5 iF3 , $F6 ,F3%56 iF6 .

The symmetry superalgebra of the oscillator on CN coincides
with the above one in any dimension, i.e., once again,
find a quite different behavior for the oscillators on CP1 and
CPN, N.1 spaces, respectively.

Finally, we give the explicit expression of the Noeth
constants of motion corresponding to thesu(N) symmetry

J
ab̄

SUSY
5Jab̄1

]2hab̄

]zc] z̄d hcs3h̄d. ~3.28!

IV. CONCLUSION

We proposed an integrable system on CPN, with 4N21
functionally independent constants of motion, which cou
be viewed as the generalization of a 2N-dimensional oscil-
lator. On the complex projective plane CP15S2 this system
coincides with the Higgs oscillator; the Kustaanheim
Stiefel transformation of the system on CP2 leads to the
three-dimensional Coulomb-like system, which is equival
to the MIC-Kepler problem on the three-dimensional hyp
boloid obtained by the Kustaanheimo-Stiefel transformat
of the oscillator onS4. On the other hand, while the spheric
oscillator remains unchanged upon transition from one he
sphere to another, the oscillator on CPN, N.1, after transi-
tion to another chart, yields a system which, in spite of
absence of a rotational symmetry, remains ‘‘maximally in
grable.’’

The oscillators on CP3 and CP4, in our opinion, deserve a
separate study due to their relevance to the high
dimensional quantum Hall effect@9#. This theory, based on
the quantum mechanics of the particle onS4 interacting with
a SU(2) monopole field, lately has been extended to CN

spaces in the presence of a constantU(1) ~magnetic! field
@10#. Since CP3 can be viewed as a fiber bundle ofS4 with
S2 in the bundle, the four-dimensional quantum Hall syste
3-7
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can be formulated as a system on CP3 @10,11#. Performing
the Hurwitz transformation of the oscillator on CP4, we will
get the five-dimensional Coulomb-like system with aSU(2)
Yang monopole. This system will have a degenerate gro
state, hence it will be suitable for the developing of the fiv
dimensional quantum Hall effect in the Coulomb field~in the
present versions of higher-dimensional quantum Hall the
the potential field is used for the reduction to lower dime
sions!.

The Kähler structure makes the study of the coupling o
constant magnetic field to the oscillator on CPN much sim-
pler than on 2N-dimensional sphere. In particular, we ha
shown that the oscillators on CN and CPN, N.1 coupled
with a constant magnetic field behave similarly, with resp
to N52 supersymmetrization. While a constant magne
field breaks theN52 supersymmetry of the oscillator o
sphere~and on the CP15S2), it preserves theN52 super-
symmetry of the oscillators on CPN, N.1 and CN. On the
other hand, in the absence of a magnetic field, the oscill
on CN allows us to introduceN54 supersymmetry, while the
oscillators on spheres and CPN admit onlyN52 superexten-
sions. It is easy to see that the similarity of the oscillators
CN and CPN, N.1, in their behavior with respect to supe
symmetrization, is due to the special form of the Ham
tonian
cs

d.
-

-

C

ge

06501
d
-

y,
-

t
c

or

n

-

H5gab̄~pap̄b1v2]aK ]̄bK !,

whereK is a Kähler potential of the metric.
Therefore, from the viewpoint ofN52 supersymmetry,

the above Hamiltonian could be viewed as the generaliza
of the oscillator on an arbitrary Ka¨hler manifold. In that case
the existence of hidden symmetries of the oscillator on CN

could be viewed as an ‘‘accidental’’ one. Simultaneously, it
clear that the oscillators on othersymmetricalKähler spaces,
say, on the Lobachewski spacesL, or Grassmanians GrN•M ,
will have hidden symmetries, due to the translational inva
ance of the above spaces.
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Band II, p. 641.

@3# C. N. Yang, J. Math. Phys.19, 320 ~1978!.
@4# A. Nersessian, V. Ter-Antonian, and M. M. Tsulaia, Mo

Phys. Lett. A11, 1605 ~1996!; A. Nersessian and V. M. Ter
Antonian, Phys. At. Nucl.61, 1756~1998!.

@5# D. Zwanziger, Phys. Rev.176, 1480 ~1968!; H. V. McIntosh
and A. Cisneros, J. Math. Phys.11, 896 ~1970!; T. Iwai and Y.
Uwano, ibid. 27, 1523 ~1986!; A. Nersessian and V. Ter
Antonian, Mod. Phys. Lett. A9, 2431~1994!; 10, 2633~1995!.

@6# T. Iwai, J. Geom. Phys.7, 507 ~1990!; L. G. Mardoyan, A. N.
Sissakian, and V. M. Ter-Antonyan, Phys. At. Nucl.61, 1746
~1998!.

@7# G. W. Gibbons and N. S. Manton, Nucl. Phys.B274, 183
~1986!.

@8# L. G. Feher and P. A. Horvathy, Phys. Lett. B182, 183~1987!;
B. Cordani, L. G. Feher, and P. A. Horvathy,ibid. 201, 481
~1988!; J. Math. Phys.31, 202 ~1990!.

@9# S. C. Zhang and J. P. Hu, Science294, 823 ~2001!.
@10# D. Karabali and V. P. Nair, Nucl. Phys.B641, 533 ~2002!.
@11# B. A. Bernevig, C. H. Chern, J. P. Hu, N. Toumbas, and S.

Zhang, Ann. Phys.~N.Y.! 300, 185 ~2002!.
@12# F. Cooper, A. Khare, and U. Sukhatme, Phys. Rep.251, 267

~1995!.
@13# R. de Lima Rodrigues, ‘‘The quantum mechanics SUSY al
.

-

bra: An introductory review,’’ hep-th/0205017.
@14# A. Connes, M. R. Douglas, and A. Schwarz, J. High Ener

Phys.02, 003 ~1998!; N. Seiberg and E. Witten,ibid. 09, 032
~1999!.

@15# M. Chaichian, M. M. Sheikh-Jabbari, and A. Tureanu, Ph
Rev. Lett.86, 2716 ~2001!; J. Gamboa, M. Loewe, and J. C
Rojas, Phys. Rev. D64, 067901~2001!; B. Morariu and A. P.
Polychronakos, Nucl. Phys.B610, 531~2001!; R. Iengo and R.
Ramachandran, J. High Energy Phys.02, 017~2002!; P. M. Ho
and H. C. Kao, Phys. Rev. Lett.88, 151602~2002!; S. Bellucci
and A. Nersessian, Phys. Lett. B542, 295 ~2002!; P. A. Hor-
vathy, Ann. Phys.~N.Y.! 299, 128 ~2002!; A. A. Deriglazov,
Phys. Lett. B530, 235 ~2002!; 555, 83 ~2003!.

@16# V. P. Nair and A. P. Polychronakos, Phys. Lett. B505, 267
~2001!; S. Bellucci, A. Nersessian, and C. Sochichiu,ibid. 522,
345~2001!; C. Duval and P. A. Horvathy, J. Phys. A34, 10 097
~2001!; A. Smailagic and E. Spallucci, Phys. Rev. D65,
107701 ~2002!; R. Banerjee, Mod. Phys. Lett. A17, 631
~2002!.

@17# P. W. Higgs, J. Phys. A12, 309~1979!; H. I. Leemon,ibid. 12,
489 ~1979!.

@18# A. Nersessian and G. Pogosyan, Phys. Rev. A63, 020103~R!
~2001!; A. Nersessian, Phys. At. Nucl.65, 1070~2002!.

@19# E. Schrödinger, Proc. R. Ir. Acad., Sect. A46, 9 ~1941!; 46,
183 ~1941!; 47, 53 ~1941!.

@20# E. G. Kalnins, W. Miller, and G. S. Pogosyan, J. Math. Ph
41, 2629~2000!; Phys. At. Nucl.65, 1086~2002!.

@21# S. Bellucci and A. Nersessian, Phys. Rev. D64, 021702~R!
~2001!; Nucl. Phys. B~Proc. Suppl.! 102, 227 ~2001!.
3-8


