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(Super) oscillator on CPN and a constant magnetic field

Stefano Bellucci
INFN-Laboratori Nazionali di Frascati, P.O. Box 13, 1-00044, Italy

Armen Nersessian
Yerevan State University, Alex Manoogian St., 1, Yerevan 375025, Armenia
and Yerevan Physics Institute, Alikhanian Brothers St., 2, Yerevan 375036, Armenia
(Received 15 November 2002; published 26 March 2003

We define the “maximally integrable” isotropic oscillator on ¥Rnd discuss its various properties, in
particular, the behavior of the system with respect to a constant magnetic field. We show that the properties of
the oscillator on CP qualitatively differ in theN>1 andN=1 cases. In the former case we construct the
“axially symmetric” system which is locally equivalent to the oscillator. We perform the Kustaanheimo-Stiefel
transformation of the oscillator on €Rnd construct some generalized MIC-Kepler problem. We also define a
N=2 superextension of the oscillator on ®£Bnd show that folN>1 the inclusion of a constant magnetic
field preserves the supersymmetry of the system.
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[. INTRODUCTION of two well-separated Bogomol'nyi-Prasad-Sommerfield
(BPS monopoles and dyons. The latter problem was consid-
The harmonic oscillator plays a distinguished role in the-ered in a well-known paper by Gibbons and Man{af,

oretical and mathematical physics, due to its overcomplet#here the existence of a hidden Coulomb-like symmetry was
symmetry group. The wide number of hidden symmetriesestablishedsee alsd8]). Let us mention also the key role of
provides the oscillator with unique properties, e.g., closedhe Hurwitz transformatiortand of the second Hopf mam
classical trajectories, the degeneracy of the quantunthe recently proposed higher-dimensional quantum Hall ef-
mechanical energy spectrum, and the separability of varifect[9] (see alsd10,11)).
ables in a few coordinate systems. The overcomplete sym- The oscillator is a distinguished system, also with respect
metry allows one to preserve the exact solvability of theto supersymmetrization. A supersymmetric oscillator is
oscillator, even after some deformation of the potentiaispecified by the splitting of fermionic and bosonic degrees of
breaking the initial symmetry of the system. Particulary, thefreedom. Thus it inherits the hidden symmetries of the initial
oscillator remains exactly solvable after coupling to a con-System. We notice that the construction of integrable super-
stant magnetic field, though the latter removes the hidde@ymmetric mechanics is interesting not only in a field-
symmetries of the system. The reduction of the oscillator tdheoretical context. Being in deep connection with the fac-
low dimensions allows one to construct new integrable systorization problem, the supersymmetrization of integrable
tems with hidden symmetrieén fact, almost all integrable systems could yield a new set of integrable systems with
systems of classical and quantum mechanics are related withospectral potentials. Since the list of references on super-
either the free particle case, or the oscillafdr]. There is a  Symmetric mechanics is enormous, we refer to the introduc-
nontrivial relation between oscillator and Coulomb systemstory reviews[12] (mostly devoted to the connection of su-
the (N+1)-dimensional Coulomb problem can be obtainedpersymmetric quantum mechanics with the factorization
from the 2N-dimensional oscillator by the so-called Levi- problem and[13] (containing the most complete list of ref-
Civita (or Bohlin), Kustaanheimo-Stiefel and Hurwitz trans- erences on field-theoretical aspects of supersymmetric me-
formations, whenN=1,2,4[2]. The transformations corre- chanics.
spond to the reduction of the oscillator by the actiong of Recent progress in string theory inspired interest for non-

U(1) andSU(2) groups, respectively, and are based on theommutative field theoriefl4] and, in particular, for non-
Hopf maps SYZ,=S!, S¥U(1)=CP'=s?, S//SuU(2) commutative quantum mechani¢s5]. The oscillator was

=HP'=S"* (relating the angular parts of the oscillator and found to be a distinguished case in noncommutative quantum
Coulomb problems Indeed, reducing the oscillators we get Mechanics too: at the moment it is the only exactly solved
some parametric families of Coulomb-like systems, specifiedeven in the presence of a constant magnetic ffietthcom-

by the presence of a magnetic ﬂux fN:l, by a Dirac mutative quantum mechanical SyStem with a nonzero pOten-
monopole folN =2 (the MIC-Kepler system and by a Yang tial [16]. o o _

monopolé for N=4 (see, respectively, Ref§4,5,6). It There is nontrivial generalization of the oscillator on the
could be checked easily, that the MIC-Kepler system, ini-SPhere and the two-sheet hyperboldfgseudospheje{17]
tially introduced by Zwanziger for the description of the rela- 9iven by the potential
tive motion of two Dirac dyons, also describes the scattering

! w’ry x2 11
osc™ 2 X§+1' ( . )
lUnder “Yang monopole” we mean a five-dimensionglJ(2)
generalization of a Dirac monopof8]. Here x,xq4, 1 are the(pseudgEuclidean coordinates of the
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ambient spac& " (R4 Y): ex?+x3, ,=r3, with e=+1 for  to a constant magnetic fieldhe oscillator on C®, in con-

the spheree=—1 for the pseudosphere. trast with the one on & does not admit th&/=4 supersym-
This system has a nonlinear hidden symmetry algebranetrizatior). We show that, in contrast with th&=2 sup-

providing it with properties similar to those of a conventional eroscillator on Cb=S?, the N'=2 superoscillator on CP

oscillator. Applying to the oscillator on th@seudasphere N>1 allows coupling to a constant magnetic field, without

the standard Levi-Civita, Kustaanheimo-Stiefel and Hurwitzbreaking supersymmetry.

transformations, one can obtain the generalization of flux-

Coulomb, MIC-Kepler and Yang-Coulomb systems on the Il. OSCILLATOR ON CP N
(pseudgsphere[18].2 In the present paper we define the os- , o i )
cillator on complex projective spaces &From the require- This section is devoted to the construction of the oscilla-

ment that it possesses hidden symmetries generalizing thol@ System on the complex projective space 'CBur con-

of the planar oscillator, and consider its behavior with re-Sideration essentially exploits the fact that the complex pro-

spect to the coupling to a constant magnetic field. jective space is a constant curvaturehka manifold. Hence,
The oscillator on CP=$? coincides with the Higgs oscil-  OU" model could be easily adopted for the formulation of the

lator on the spher&? (note that CP=S?). The oscillator on oscillator system on the other spaces of that sort.

CPY, N>1 is defined by the potential Let us recall that the Kaer manifoldM is equipped with
’ the metric, which could be locally represented in the form
u(z,2)=w’rszz, 1.2 7
AP =—=dAd2Z, 2.1
wherez?,72 are inhomogeneous coordinates of\CRorre- Gab 0729z 2.2

sponding to the Fubini-Study metric
,dzdz ,(zdz)(zd2

and with the associated Poisson bracket

gaEdZadEb:ro —Io 2 (1.3 :-&_f ab &g__ 99 Eba_f aby __ ca
1+zz 7 (1422 1.9b0=1 7= 9" 5~ 59" =, 9O -

In contrast to the case of the oscillator on'&Rs? which is 2.2

defined on the diskz|<1, the oscillator on CP, N>1 is  The |ocal real functiork (z,Z) is called the Kaler potential.
defined on the whole chart. The transition to another chart of The complex projective space &Rould be equipped

CP" transforms the oscillator into the system with the potenith the Fubini-Study metric, given by the Ktr potential
tial

K=r3log(1+z2). 2.3
1 2252 4 NN olog( ’2) 2.9
U=org| ot t ——51 | The scalar curvature of CHs related with the parametef
as follows: R=N(N+1)/r3. The isometries of the Kder
which has the oscillator symmetry algebra. structure are generated by thelomorphic Hamiltonian vec-

The Kustaanheimo-Stiefel transformation of the oscillatortor fields
on CP yields a generalization of the MIC-Kepler system,
which can be transformed into the MIC-Kepler system on the
three-dimensional hyperboloid.

The oscillator on CP admits, because of its Kéer struc- (2.4
ture, a simple coupling to a constant magnetic field. This can
be achieved by carrying out the following replacement of theVNere
symplectic structureﬂo—@ofiBgagdzaDdEb. The_ cou- V,={h,, Jo, {h,h,}o=C h,,
pling to a constant magnetic field preserves the kinematical " " " g
su(N) symmetries of the oscillatdfor the free particle case, 92h
i.e., =0, the coupling preserves the whole symmetry alge- - TS —~E=0. (2.5
brasu(N+1)], although it breaks the hidden symmetries. Jz°0z 7z

Below, we construct thé/=2 supersymmetric oscillator The real functions,, are called Killing potentials.

on CP' and study its behavior, with respect to the coupling The symmetry algebra of &Hs su(N+1). This algebra
is defined by the Killing potentials

[ 1%
. _ A
VM_VZ(Z)E—FV?L@&?' [V/J,!VV]_C;LVV)\'

ah

2I__et us remind, that _the Coulomb system on thseudgsphere is h= Tgbhgb— tr 1‘-, hel‘: h, + h; , hgz i(hy — h;r),
defined by the potentidll9]
(2.6
Uo=— L 204, where
ro ||
- - 77 2 b
Quantum mechanics of the oscillator and Coulomb system on the = =2 =2 h:=r
D-dimensional sphere and pseudosphere is considered in detail in a0+ 2T 014777 ATl 01477
Ref.[20]. (2.7
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andT areNx N Hermitian matricesTa?=Tb2, (i) B=0, N=1,2..., U(x)=cyx+cCg,
The algebra ohg, ,h, reads
fozcl.
{hab ,hcato=1 Faghvc— i Sephaa » o
(2.9  Taking into account thak(=Tr1+TrJ?2r§, we get the fol-
{ha .hy Jo=18mp(r§—trhg) +ihg, lowing generalizations of the oscillator on &P
- . . CPL. The oscillator is defined by the Hamiltonian system
{ha ;hpto=0, {hz ,hucto=Fihy Gap. _ 52—
(1+Z22%mm  o’rgzz o
Let us equip the cotangent bundlg CP with the sym- = Z A=272" Qp=dzOd7+dzOd 7.
plectic structure 0 217

Qg=dZ*0dm, + dZ0d 7, +iBgapd 20d7Z, (2.9 The symmetry algebra is given by th&(1) generator]

which defines, together with the Hamiltonian and the complexor vectoria) constant of motiori =

_ JZ 2r222
D=g**mm, 210 J=i(mz—7D), | = O (3L} = % 2il.
2 T (1-z9% U =

the dynamics of a free particle on &Pin the presence of a

constant magnetic fielB. The isometries of a Kaer struc- (o, IH P
: ; ; {I_1,}=4i| 0 J+ —— =—|. (2.18
ture define the Noether’s constants of motion of a free par- r 2r3
ticle
; \ This is nothing but the well-known Higgs oscillator on the
. D.J =0 2_
_ _\a a— S =0, sphereS?=CP' [17].
Ju= 3t Bh, =V, matV, ot Bhy: {JM.JV}=CI‘WJ}\. CPY, N>1. The oscillator is defined by the Hamiltonian
(2.1  system
Explicitly, we have H=g0m,mp+ 0’227, Qo=dZ0dm,+d20d7,.
Jap=—i2Pm +im22, 13} =m+ 7 (zm), (2.19
o Its symmetries are given by the constants of motion
—iJy =m+2%(zm). (2.12
; : ; — (b = ~_Jad 2,258 b
Notice that the vector fields generatedffy are independent Jap=1(Z°ma— 2%, lap= 2 +wryz°z’,
0
onB (2.20
V=Va(z) 9 Ve J +Va(z) s Vir i which define the nonlineaiquadratig algebra
9z% PTG, g2 b qgm,
(2.13 {Jab ,Jeat =1 0aadoc—i Scpdad s

Hence, the inclusion of a constant magnetic field preserves (.53 =18 sg—i6.d 6
the whole symmetry algebra of a free particle moving in a - @' ed/ "~ “cbrad "Tadich:
Kahler space. _ e g e oo
. . . . . laplcdt =T o cpdag— 107 05gd
Now, let us consider tha(N)-invariant Hamiltonian {lap Tedh =1 @ dcpdaa—1 0" Gaadey
+il cp(Jagt Jo8a)/ 15—l aq(Jept JoSep) /T

_qab_ —
H=9*mym,+U(22), (2.149 2.21)
and require it to have the hidden symmetgjmilar to the
one of the oscillatgrgiven by either one of the constants of

motion

It is convenient to introduce the generators

=T, Jo=Trd, 1;I=T Py, lo=Trl,
() 1 =TTt +1. (2972, (2.22

(2.19 whereT; are tracelesbl X N Hermitian matrice$the genera-
tors of thesu(N) algebrd. The above generators belonging
to the center of algebra read

(i) 1ap=J5 Jy +fo(222°2".

Straightforward calculations immediately yield the following
constraints:

S | Trd?+ 32 -
(i) B=0, N=1, U(X)=cyx/(1—xX)2+Co, 0=i(Zm=72), Hn-1=lot —57—. (.23

fo=cy/(1—X%)2, (2.16  Also the following equality holds:
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Triz+ wZTI’jZ=|(2)+ wzJ(z). (2.24 The kinetic term is covariant with respect to the above trans-
formation, while the potential term is not. As a result, we get

We have got the “maximally integrable” generalization of tgﬁi;r::egrable system on CPN>1 defined by the Hamil-

the oscillator on complex projective spaces, i.e., the system

with the highest possible number of functionally independent — 1 2224 NN
constants of motiofi. Hpao= 9Ty + 03| =g + —————
We established the following essential properties of the zz zz
latter system. (2.28
The oscillator on CB, N>1 is well-defined on the whole This system inherits the whole symmetry algebra of the os-
chart of the complex projective spaces(¢|<o. The oscil-  cillator, i.e., it is a “maximally integrable” system. Its con-

lator on CP~$? (as well as on higher-dimensional spheres stants of motion can be obtained by a straightforward trans-
is defined on the (_j|s¢z|<1 onIy._The constan_t magnetic formation of those of the oscillator, given in E@.20. Note
field removes the hidden symmetries of the oscillator ol CP that, in spite of its “maximal integrability,” the system is not
for anyN, while it respects them in the case of a free particle,invariant under “spatial”u(N) rotations.
i.e., whenw=0. On the Lobachewski spacg", N>1 there is no analog
The above construction could be easily extended for thef this system. The “ambient” space for the Lobachewski
noncompact version of CP provided by the Lobachewski plane is V. The transitiong2.26) transform the oscillator
spaceLN=SU(1N)/U(1)XSU(N). For this purpose, we on 2N into a system on the space with the signatiire—,

should replace the Fubini-Study metric with the one gener-+ . . +).
ated by the Khler potentialK = — rg log(1-zz), and subse-
qguently replace the Killing potentials and Noether constants CP?: Kustaanheimo-Stiefel transformation

of CPY with the ones ofZN. The Killing potentials ofcN are

defined by the functions As we mentioned in the Introduction, the oscillator on

two-, four-, and eight-dimensional planes and spheres could
—a be reduced to the two-, three- and five-dimensional Coulomb

ash a
2% hT=—r2 z hr=—r2——_ systems, and their generalizations specified by the presence
ab ) ;> la Mo ;> la Mo — - .
1-zz 1-zz 1-zz of monopoles. Particularly, the oscillator & =CP" and

(2.25  AdS,=L can be reduced, by the so-called Levi-Civita trans-
formation, to the Coulomb systems on two-dimensional hy-
Globally, the complex projective space B covered by  perboloid (Lobachewski plane £. Similarly, the
N+1 charts, marked by the indic&=0a. The transition  Kustaanheimo-Stiefel transformation of the oscillator on a
functions from thebth chart to thétth one are of the form  four-dimensional sphere and a four-dimensional two-sheet
hyperboloid leads to the generalization of the MIC-Kepler
problem on a three-dimensional two-sheet hyperbdla&.
) _ where Z‘?a): 1. (2.26 Let us consider the behavior Qf the oscillator qanWith
respect to the Kustaanheimo-Stiefel transformation. The con-
stants of motion of the oscillator on &Rire given by the
generators

(V2

i

2=

°1c-z

N

(b)

On CP the transition functions take the simple form
—1/z, corresponding to the transition from one hemisphere J.od_
to the other. The respective transformation of the momenta i3 = 5 +w2r320?, J=izom—imoz, Jo=izm—izm,

m— —z?7r. The Hamiltonian of the oscillator on &Rs ob- Fo 22
viously invariant under the above transformation. In higher- (2.29
dimensions we get a rather different picture, since the potengynere o denotes standard Pauli matrices.
tial term is not covariant under the transitiGh26. Let us Their algebra reads
consider this transformation in more details.
The transition functiong2.26) define the following ca- {301 ={30,3} =0, {I,d1}=2€mIm,
nonical transformation, which is singular on thE=0
“axes:” {1, di}=2€qml m» (2.30
A, w2 zm), PP, {11} = €am(20230= 31 nJo 15+ 103 /7).
N R In order to reduce this system by the Hamiltonian action of
ma—Z Ty a=2,..N. (2.27) Jo, we have to fix its value
JOZZS, (23])

3In the theory of integrable systems such systems are called
“maximally superintegrable systems.” We prefer to suppress theand then factorize the level surface by td¢l) group ac-
prefix “super” in this context, in order to avoid any confusion with tion. The resulting six-dimensional phase spagav ™ can
supersymmetric systems. be parametrized by the followind (1)-invariant functions:
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o zom+ Oz while the Hamiltonian of the above obtained generalization
X=207, p=——F5=—" {X,Jo} ={p,Jo} =0. of MIC-Kepler problem(2.36) takes the form
(2.32 (1—x3)2 2, s? . s?\1+x? ¢?
. . = P+ 2| =\ YT 52| 20— 4.4
In these coordinates the reduced symplectic structure and the '« 32§ X 2rg) 4rgx  4rg
generators of the angular momentum are given by the ex- (2.41
pressions This is nothing but the Hamiltonian of the MIC-Kepler prob-
lem on the three-dimensional hyperbolditi8] constructed
XX dx X dx X . . : )
Q= dpOdx+s — Jreg=J2=pXX+S—. by the Kustaanheimo-Stiefel transformation of the oscillator
x| || on a four-dimensional sphere.
(2.33 Performing the Kustaanheimo-Stiefel transformation of

tge system(2.28 on CP, we get the following expression

Thus the reduced system is specified by the presence offor the reduced Hamiltonian:

Dirac monopole.

The reduced Hamiltonian is given by the expression (1+x) . , o 1+X
Hpack=——2—[XP“+(Xp) ]+ ——~ + 20 oS+ x
o (1+x)[ 24 (xp)2] 4 2(1+X)2+ - o roX 3
= X X s roX,
red (2 prr P 2x 00 —w?rg, Xg#X. (2.42
where In conformal coordinate§2.38 the latter takes the form
x=|x|. (2.34 :x(1+x)2p2 @ (x+1)4 22 (1+x)2
cBack 4r 4rox(x—1)2 02(x+X3)
Let us fix the constant energy surface
— w?r3. (2.43

H=Egsc. (2.39
. /=2 SUPERSYMMETRIC OSCILLATOR ON CP N

Then, dividing by ZSX, we can represent it in the form ) . )
In this section we construct th&=2 superextension of

(1+X) (xp)? 52 ¥ the oscillator on CP® coupled to a constant magnetic field. It
Huc=¢, HM'CZT 24 x 252 12y is well known that any Hamiltonian system of the form
0 0 0 B .
(2.36 Ho=g"(pip;+W,;W;), Q%%=dpldx (3.1
where we introduced the notation could be easily extended to the system with exset2 su-
persymmetry

_ Q22 _one_ 24 2.4
y=Eosd2—- 51§, —26=0w’+s%rg. (2.3 Q"0 }=H, {Q*,Q%}=0. 3.2

The Hamiltoniarfy,c can be interpreted as the Hamiltonian e fynctionw(x) is called superpotential. The oscillator on

of some generalized MIC-Kepler problem. Notice that itsa spheres® belongs to the above class of systems. Its super-
potential energy term has the same form, as the one of thﬁotential is given by the expression

conventional(flat) MIC-Kepler problem. The hidden sym-

metries of the system are given by the reduced genergtors o  2+X?
Let us perform the canonical transformatiorx, ) W=7 log5—a. (33
—(X,p), going to the coordinates where the metric takes a
conformally-flat form: wherex denotes the conformal coordinates of the spigre
For the supersymmerization of the systé®ul), we have
~ _ (Xp) to define the supersymplectic structure
X=f(X)X, p=fp+f’Tx, (2.39
1 ) : .
Q=dp0dx + 5 Rjj 65 6 dx0dx*+g;; D6, 0D ¢,
where 2
i _ i i gk gy _
1 \/m_l Dei—d0t+l“k|0tdx, a=1,2
roo= X J1+x+1" (239 and the supercharged. =(p;=iW )6, which obey the
condition {Q- ,Q.}=0. Then, we immediately get th&
In this case, the reduced Hamiltonian reads =2 supersymmetric Hamiltonian
X(1+X)2p2 5 (X+1)4 4(1)2rgX H:{Q+,Q,}:H0+Wi’j(9i+0j,+Rijk| 0L950I+
= + <1 oo
red 4rd S 4rox(1—x)2  (1—x) =5 The inclusion of a magnetic fiel@—Q+F;; ¢, ¢/ breaks

(240  the N'=2 supersymmetry of the system
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{Q..Q.}=F 6.0., {Q, ,Q_}=H+iFij6’i+ 9 . where el are the einbeins of the 'Kider structure:
_ _ _ eS8 B =Jap.

For the construction of the supersymmetric oscillator on * ST)mirb1 or?jagr to quantize the svstem. one chooses
CPV, let us represent the initi#gbosonio Hamiltonian in the ' q y '

form . ( d _B(?K) ( P +'B&K>
b, — Pa=—1lZma—Ib—z|, a= | =T'b=/|,
H=g(m 1+ W, W). (3.4 9z 9z 0z 0z

[Am 2n-

If the superpotential can be represented in the foviiz, z) Xa Xple=06""p.
=W, (2) +W_(z), then one can construct thi€=4 super-
generalization of the system on Kar space/21]. Other-
wise, the system can be endowed with= 2 supersymmetry.
Hence, we can construct thé=4 supersymmetric oscillator
on CV choosing the superpotentiaM?= wz?+ wz2. How-
ever, we cannot construct ttiantiholomorphic superpoten- _ EIp *

tial for the oscillator on CP and, conseqpuently, pob{:)ain its Q:=CosNOy +sinn 8, , 38
N=4 superextension. On the other hand, for the oscillatorgyhere

on CV and CP one can find the superpotentials with explicit

In order to construct the system with the exAét2 super-
symmetry(3.2), we have to find the appropriate candidates
for Q*, which obey the equation§Q*,Q*}=0. Let us
search the realization of supercharges among the functions

su(N) symmetry, OF =m0, W7, OF =T, 8 +id W2,
= = 77 N — -
W=wK=wzz for C 01,07, (3.9
2W=wrolog(1-22/(1+22) for CP* and\ is some parameter. Calculating the Poisson brackets of

the functions, we get

Q) =i(sin2ABg,p+ 2w cos AW, ) 7275
By using such functions, we shall construct the=2 super- Q@1 =i Jab ab)nz (3.10

symmetric oscillators on CP We shall see that the linear {Q*,Q 1 =H2 syt COS ABg2—SiN 2\ Z;. (3.11)

dependence of the superpotentfdion the Kdler potential

K leads to an interesting behavior of the supersymmetri¢dere and in the following, we use the notation

system, with respect to a constant magnetic field. Thus, the

superoscillator on B N>1 has more similarities with the ~ HSusv=H ~ Rabsa 73757575~ 1Wain 75 75+ iWa 73775

planar one, than the oscillator on £P
Let us consider a (8-2N).-dimensional phase space +B=, (3.12

equipped with the symplectic structure 2

Q=dm,0d 2+ d7,00Z +i(Bgsp+iRapeqnS 70 d20dz>  Where denotes the oscillator Hamiltonian on CRee the
expressions in Eq$2.17),(2.19], and

; —b_ _a—b : —b_ _a—b
F3=i0an( 7573~ 1575),  Z3=IWap( 7571~ 7575),

W=wK=wrylog(1+zz for CP\,N>1. (3.5

+0apD 720D 7%, (3.6)

whereD 75 =d 75+ T§.n%dZ, a=1,2, andl'};,Rapeq are, .
respectively, the connection and curvature of théhlga 9=i9ap75 770 - (3.13
structure. The corresponding Poisson brackets are defined
the following nonzero relationgand their complex conju-
gates:

b .
I|¥what follows, we will also need the generators

Fr=igaminy, F-=Fi, (3.14
by_ b by_ _ b _c
{7, 2= 0, {ma,7ab="Tacna, which obey the commutation relations
{7, Mo} =1(BUap+ iRapeae7%), (Fo Fl=%2iF., {F..F.l=iF (3.19
(72 =000, {05, F2}=0, {0 Fil=*ie0;,
The symplectic structuré3.6) becomes canonical in the co- {07, F}==+i0], (3.16

ordinates p,,x)

i {7 .0t={%5.9}=0,
Po=ma= 5040, XP=el7: S
2 {0 gt=—i(mni—i9.W73), and so on. (3.17
Qscar dpa0d 2+ dpa0d 2 + B gpd 20d2+ dy "Odx ™, Comparing Eqgs(3.10,(3.11) with Eq. (3.2), we can con-
(3.7  struct theA’=2 supersymmetric oscillator on &p
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Superoscillator on CP. Consider the supersymmetriza-
tion of the oscillator on the complex projective plane'CP

Comparing Eq(3.10 with Eg. (3.2), we get

Sin2A==*1.
(3.18

{Q*,Q*}=0=B=0, cosa=0,

Hence, we could chood®ro copies of the supercharges and

Hamiltonians

. 0i-(-10;

Q;:T,

{Qu Qu}=H=Hsysyt(—1)°Z5, =12

(3.19

We constructed two copies of thé=2 supersymmetric os-
cillator on CP. The inclusion of a constant magnetic fidd
breaks theitV=2 supersymmetry down td/= 1.

Note that

{Qs 1Q§}:26aﬁzi Z.=Az29F., Z3=A(z9)F3,

where A(Z2) = w((1+ (22?]/(1—Z2?). Hence, in the pla-

PHYSICAL REVIEW D 67, 065013 (2003

-+ + + — B
{Qi .Q}=20F., {Qi.Q;}=c0s AoHgysyt 50
(3.29

where the Poisson brackets betwegn, andQ,, look as
follows:

{Qa Fu}=0, {QF . F=}=*e.pQ5 .

{Q, . F}==+iQ; . (3.26

In the absence of a magnetic field, i.e., B0, cos2,
=0, sin\o=—1, the two systems form the superalgebra

{Qx Qs =2we s 7,

{Q% \Q4}=usH3usy 0op0?Fs,
{QF Fu}=0, {Q7 Fi}=*e€,Q5,
{Q% Fa==iQy,

{Fi vfi}:i]:?;!

(3.27)
(Fo Fol=*iF..

The symmetry superalgebra of the oscillator Shaincides

nar limit, one has A—w, so that the generators vt the above one in any dimension, i.e., once again, we

Q. ,Z.,Z3,’H form a closed Lie superalgebra.
Superoscillator on CB, N>1. On higher-dimensional
complex projective spaces one has

Wyp=00ap, ={Q",Q"}=0<Bsin2\+2wcos A =0.
(3.20
Let us introduce the parametep
~ B/2 i )
COSAg=——=——=, SINAj=— ——7u—=,
O Jw?+(Bl2)? " Jo?+(BR2)?
(3.21
so that
N=Not(—=1)*m2, a=1,2. (3.22
Hence, we get the following supercharges:
Q. =cos\g®7 +(—1)*sin\g0, , (3.23

and the pair of corresponding=2 supersymmetric Hamil-
tonians

HEusv=1Q0 Q1 =H2ysy— (—1)°

B
X cosZ\OEg—sinZ}\ow}'g . (3.29

find a quite different behavior for the oscillators on‘Gihd
CPY, N>1 spaces, respectively.

Finally, we give the explicit expression of the Noether
constants of motion corresponding to the(N) symmetry

*h,p

usy _
jiﬁ =Jant oz oy’ (3.28

IV. CONCLUSION

We proposed an integrable system on"CRith 4N—1
functionally independent constants of motion, which could
be viewed as the generalization of &l-2limensional oscil-
lator. On the complex projective plane &PS? this system
coincides with the Higgs oscillator; the Kustaanheimo-
Stiefel transformation of the system on TRads to the
three-dimensional Coulomb-like system, which is equivalent
to the MIC-Kepler problem on the three-dimensional hyper-
boloid obtained by the Kustaanheimo-Stiefel transformation
of the oscillator or5*. On the other hand, while the spherical
oscillator remains unchanged upon transition from one hemi-
sphere to another, the oscillator on N> 1, after transi-
tion to another chart, yields a system which, in spite of the
absence of a rotational symmetry, remains “maximally inte-
grable.”

The oscillators on CPand CP, in our opinion, deserve a
separate study due to their relevance to the higher-
dimensional quantum Hall effe¢®]. This theory, based on
the quantum mechanics of the particle $hinteracting with

We constructed, on higher-dimensional complex projeca SU(2) monopole field, lately has been extended td'CP

tive spaces, two copies of exabt=2 supersymmetric oscil-
lators coupled to a constant magnetic field.
Calculating the commutators 6J; andQ, we get

spaces in the presence of a constdiiil) (magnetig field
[10]. Since CB can be viewed as a fiber bundle 8t with
$? in the bundle, the four-dimensional quantum Hall system

065013-7
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can be formulated as a system on%[ﬂ?O,lJ}. Performing H=g2P(7 77+ 023,K3pK),

the Hurwitz transformation of the oscillator on €Rve will B

get the five-dimensional Coulomb-like system witlsb(2)  WhereK is a Kéhler potential of the metric.

Yang monopole. This system will have a degenerate ground Therefore, from the viewpoint a=2 supersymmetry,
state, hence it will be suitable for the developing of the five-the above Hamiltonian could be viewed as the generalization
dimensional quantum Hall effect in the Coulomb fiéiid the of the pscﬂlator on an arbitrary I’@er manifold. Iq that case,
present versions of higher-dimensional quantum Hall theoryth€ existence of hidden symmetries of the oscillator oft cP
the potential field is used for the reduction to lower dimen-could be viewed as an “accidental” one. Simultaneously, it is
sions. clear that the oscillators on otheymmetrlcaKah.Ier spaces,
The Kzhler structure makes the study of the coupling of aSa, on the Lobachewski spacésor Grassmanians @fv,
constant magnetic field to the oscillator on"cRuch sim- will have hidden symmetries, due to the translational invari-
pler than on A-dimensional SRgzre. Inplparticular, we have ance of the above spaces.

shown that the oscillators on“Cand CP, N>1 coupled

with a constant magnetic field behave similarly, with respect ACKNOWLEDGMENTS

to N'=2 supersymmetrization. While a constant magnetic We thank Erni Kalnins for stimulating questions that
field breaks theN=2 supersymmetry of the oscillator on prompted us to undertake this study, Pierre-Yves Casteill for
sphere(and on the CP=S?), it preserves theV'=2 super- checking the relation§2.21),(2.30) on MATHEMATICA and
symmetry of the oscillators on PN>1 and C'. On the  Anton Galajinsky for the interest in this work. The work of
other hand, in the absence of a magnetic field, the oscillatag.B. was supported in part by the European Community’s
on CY allows us to introducé/=4 supersymmetry, while the Human Potential Program under contract HPRN-CT-2000-
oscillators on spheres and ERdmit only V=2 superexten- 00131 Quantum Spacetime, the INTAS-00-0254 grant and
sions. It is easy to see that the similarity of the oscillators orthe NATO Collaborative Linkage Grant PST.CLG.979389.
CN and CP!, N>1, in their behavior with respect to super- The work of A.N. was supported by grants INTAS 00-00262
symmetrization, is due to the special form of the Hamil-and ANSEF PS124-01. A.N. thanks INFN-LNF for hospital-
tonian ity during the completion of this work.

[1] A. M. Perelomov,Integrable Systems of Classical Mechanics bra: An introductory review,” hep-th/0205017.

and Lie AlgebragBirkhauser, Boston, 1990 [14] A. Connes, M. R. Douglas, and A. Schwarz, J. High Energy
[2] T. Levi-Civita, Opere Mathematichg 411(1906); P. Kustaan- Phys.02, 003(1998; N. Seiberg and E. Witteribid. 09, 032
heimo, E. Stiefel, and J. Reine, Angew Ma#18 204 (1965 (1999.
A. Hurwitz, Mathematische Werk@Birkhauser, Basel, 1933  [15] M. Chaichian, M. M. Sheikh-Jabbari, and A. Tureanu, Phys.
Band I, p. 641. Rev. Lett.86, 2716(2001); J. Gamboa, M. Loewe, and J. C.
[3] C. N. Yang, J. Math. Phy49, 320(1978. Rojas, Phys. Rev. B4, 067901(2001); B. Morariu and A. P.
[4] A. Nersessian, V. Ter-Antonian, and M. M. Tsulaia, Mod. Polychronakos, Nucl. PhyB610 531(2001); R. lengo and R.
Phys. Lett. All, 1605(1996; A. Nersessian and V. M. Ter- Ramachandran, J. High Energy Ph§2, 017(2002; P. M. Ho
Antonian, Phys. At. Nucl61, 1756(1998. and H. C. Kao, Phys. Rev. Le@8, 151602(2002; S. Bellucci
[5] D. Zwanziger, Phys. Re76, 1480(1968; H. V. McIntosh and A. Nersessian, Phys. Lett. B2, 295 (2002; P. A. Hor-
and A. Cisneros, J. Math. PhyEl, 896(1970; T. Iwai and Y. vathy, Ann. Phys(N.Y.) 299 128 (2002; A. A. Deriglazov,
Uwano, ibid. 27, 1523 (1986; A. Nersessian and V. Ter- Phys. Lett. B530, 235(2002; 555, 83 (2003.
Antonian, Mod. Phys. Lett. 8, 2431(1994); 10, 2633(1995. [16] V. P. Nair and A. P. Polychronakos, Phys. Lett.5B5 267
[6] T. lwai, J. Geom. PhysZ, 507(1990; L. G. Mardoyan, A. N. (2002); S. Bellucci, A. Nersessian, and C. Sochichiigl. 522,
Sissakian, and V. M. Ter-Antonyan, Phys. At. Nugl, 1746 345(200Y); C. Duval and P. A. Horvathy, J. Phys.34, 10 097
(1998. (200D; A. Smailagic and E. Spallucci, Phys. Rev. @5,
[7] G. W. Gibbons and N. S. Manton, Nucl. PhyB274, 183 107701 (2002; R. Banerjee, Mod. Phys. Lett. A7, 631
(1986. (2002.
[8] L. G. Feher and P. A. Horvathy, Phys. Lett1B2, 183(1987); [17] P. W. Higgs, J. Phys. A2, 309(1979; H. I. Leemon,ibid. 12,
B. Cordani, L. G. Feher, and P. A. Horvathpjd. 201, 481 489(1979.
(1988; J. Math. Phys31, 202(1990. [18] A. Nersessian and G. Pogosyan, Phys. Re83A020103R)
[9] S. C. Zhang and J. P. Hu, Scien2@4, 823(2001). (200D); A. Nersessian, Phys. At. Nud5, 1070(2002.
[10] D. Karabali and V. P. Nair, Nucl. Phy&641, 533 (2002. [19] E. Schrainger, Proc. R. Ir. Acad., Sect. A6, 9 (1941); 46,
[11] B. A. Bernevig, C. H. Chern, J. P. Hu, N. Toumbas, and S. C. 183(1941); 47, 53 (1941).
Zhang, Ann. Phys(N.Y.) 300, 185(2002. [20] E. G. Kalnins, W. Miller, and G. S. Pogosyan, J. Math. Phys.
[12] F. Cooper, A. Khare, and U. Sukhatme, Phys. R, 267 41, 2629(2000; Phys. At. Nucl.65, 1086(2002.
(1995. [21] S. Bellucci and A. Nersessian, Phys. Rev.6B, 021702ZR)

[13] R. de Lima Rodrigues, “The quantum mechanics SUSY alge- (2009); Nucl. Phys. B(Proc. Supp). 102, 227 (200)).

065013-8



