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Domain wall lattices
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We construct lattices with alternating kinks and antikinks. The lattice is shown to be stable in certain models.
We consider the forces between kinks and antikinks and find that the lattice dynamics is that of a Toda lattice.
Such lattices are exotic metastable states in which the system can get trapped during a phase transition.
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Domain walls are among the simplest topological defectsvhere® is anSU(N) adjoint andV(®) is invariant under
known and have often been used as a test-bed for studying
nonperturbative effects. An example of a domain wall is the G=SU(N)XZ;. v
“ % kink” trivially extended to three spatial dimensions.
This solution is often thought to typify all domain walls. N=3 is taken to be odd, and the parameter&/iare such
However, it has recently become clear that the properties dhat® has an expectation value that can be chosen to be
¢* kinks do not simply carry over to more complicated sys-

tems[1—6], including condensed matter systems such as He 2 Nl 0
[7]. Po=n VW=D 0 (D)1, (€)

While kink solutions must exist for topological reasons in
models with spontaneously broken discrete symmetries, the
precise form of the minimum energy kink solution dependswheren=(N—1)/2, 1, is thepX p identity matrix andy is
on the details of the model and on any continuous symmean energy scale determined by the minima of the potewtial
tries that may be present. Topology only says that kinks ar&uch an expectation value spontaneously breaks the symme-
solutions that connect two points on the disconnected partisy down to
of the vacuum manifold. If the disconnected parts of the
vacuum manifold contain more than a single point, then to- H=[SUn+1)XSUN)XU(L1)/Zy,1XZ,. 4)
pological arguments alone are not sufficient to say which two
points should be connected, that is, to specify the boundarWwe will chooseV(®d) to be a quartic polynomial:
conditions that the kink satisfies. More elaborate analysis is
needed if one wants to know which of the boundary condi-  V(®)=—m?Tr[ ®2]+h(T{®2]) 2+ AT P4+ V, (5)
tions can lead to the minimal energy soluti(8].

As we show in this paper, the enhanced structure of kinksvhereV, is a constant chosen so that the minimum of the
in SU(N)XZ, (for odd N) allows for the construction of potential hasv=0. The Lagrangian is symmetric undér
lattices of kinks and antikinks. In related models the kink— —® and it is the breaking of thiZ, symmetry that gives
lattice is also perturbatively stable. The lattices we are conrise to topological domain wall solutions. We could also ex-
structing are different from other known lattices such as artend the model by making it locally gauge invariant. The
Abrikosov lattice [8]. The total topological charge of an solutions described below will still be valid with the gauge
Abrikosov lattice is nonvanishing. In contrast, the kink lat- fields set to zero; the stability analysis will change.
tice we will construct will have a zero topological charge.  While our analysis can easily be carried out for genbial
This means that we can construct the kink lattice in a boxhe physics is more transparent for a specific choic&.of
with periodic boundary conditions, and also that the lattice isHence we will choos& =5 and, where relevant, remark on
topologically equivalent to the vacuum. Hence if we start outthe case of gener&l.! Then the desired symmetry breaking
in an unbroken symmetry phase, with a vanishing net topoto
logical charge, there is a chance that, after the symmetry is
spontaneously broken, the system will be trapped in the lat- H=[SU3)XSU(2)XU(1)]/[Z3XZ,] (6)
tice phase instead of the true vacuum. From the lattice phase,
the system can then only reach the true vacuum by quantuig achieved in the parameter range
tunneling.

We start with arSU(N) X Z,, field theory whose Lagrang-
ian is The corresponding quartic model witi=3 has an accidental

SO(8) symmetry. We could consideN=3 if (Tr(®%))? and
Tr(®5) terms were added to the potential. We have chosen to work
L=Tr((9MCI>)2—V(<I>) (1) with quartic potentials and with the larger valueof
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h N2+3 7 =+5 if i#]. (14)
X>—W_—1)|N=5=—§)- (7
The sign of the trace tells us if the force between the kink
The vacuum expectation val(éEV) @, is (up to any gauge and antikink is attractivéminus or repulsive(plus). Hence
rotation the force between a kink and an antikink with different ori-
entations {(#]) is repulsive. This observation is key to the
7 construction of kink lattices.
<I>0=\/?)d|aq2,2,2,— 3,-3) tS) In Ref.[4], the repulsive potential between a kink and an
antikink at rest was derived. When the kink and antikink
with p=m/yN" and separationR, is large, the result reduces to
N2+3 7 2m®
)\,Eh+m|,\|:5k:h+§)7\. 9) UR)=4 Te ZvemR, (15

In Refs.[1-3] it was found that there are several domain To construct a kink lattice, we now need to arrange a
wall solutions in this model but a solution with least energyperiodic sequence of kink charges such that the nearest
is achieved ifd(—x)=d_=d; and neighbor interactions are repulsive. Kinks that are not nearest

neighbors but are further apart will also interact, and perhaps
n . even attract each other. However the forces between kinks
(I)(+00)E<I>+:—Edlaqz,—S,—S,Z,Z). (10 and antikinks fall off exponentially fast and just taking
nearest-neighbor interactions into account should be suffi-
Two features ofd, are worthy of note. First, there is a cient, at least for Igttice spacing larger than the kink width.
minus sign in front. This put®, and®_ in disconnected SO NOW we can write down a sequence of charges that can
parts of the vacuum manifold. The second feature is that tw&'m @ kink lattice. This is
blocks of entries ofb , are permuted with respect to those of — _ _
®_ . In other words,®_ and —®, are related by a non- .. QWQBIQPQMQ™QE) . (16)
trivial gauge rotation. Furthermore, the kink solutia@m, do-
main wall solution, in more than one dimensiaan be writ-
ten down explicitly in the case whem'\ = —3/20[1,2]:

and the sequence just repeats itself. Alternately, we could

have a finite lattice if the kinks were in a compact space,

such as a compact higher dimension, or 8ehat arises in
1—tanH ox) 1+tanh ox) evaluating the partition function in statistical mechanics.

k= 2 - 2 D, (11 The sequence listed above is the minimum sequence for

which the nearest neighbor interactions are repulsive. The

whereo=m/ /2. For other values of the coupling constants,'€Peating length of 6 kinks is independentMfin SU(N)
the solution has been found numerically. since it is clear that we need at least, and no more than, 3

The topological charge of a kink can be defined as different kinds of kink charges. _ o
Another way to write the kink sequence is to write it as a
60 sequence of Higgs field expectation values. We write this
Q= ;(‘DR—CDL), (120 sequence for the above minimal lattice:

where ®y and ®, are the asymptotic values of the Higgs = +(22273-3)-—(2-3-322

field to the right(R) and left(L) of the kink. (The rescaling
has been done for conveniencghen the charge of the kink
in Eq. (11 is

—+(-3,2,2-32——(2,—-3,2,2-3)

—+(2,2-3,-3,2——(—3,—-3,2,2,2
QW=diag —4,1,1,1,D. (13

4 (222-3-3)— ... . (17)
Similarly, one can construct kinks with charge matrices
Q" (i=1,... 5)which have—4 as theii entry and+1 in We have constructed the solution for the minimal kink
the remaining diagonal entries. Hence there are kink solutattice numerically in one spatial dimension with periodic
tions with 5 different topological charge matrices. Individu- boundary conditions. In Fig. 1 we show the total energy of
ally, the kinks can be gauge rotated into one another. Buthe minimal lattice as a function of lattice spacing.
when two kinks are present, the different charges are physi- The minimal lattice of 6 kinks is easily generalized to
cally relevant. This is most easily seen by noting that thegonger sequences. A sequence of 10 kinks inNke5 case is
interaction between a kink with char@") and an antikink  aesthetic in the sense that it uses all the 5 different charge
with chargeQW=— Q) is proportional to TrQ"Q()) [4].  matrices democratically:
Then we have o o o o o

o . -Q(l)Q(s)Q(s)Q(4)Q(Z)Q(l)Q(S)Q(B)Q(A)Q(Z) o
Tr(QWQW)=—-20 if i=] (18
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T T T T into Qg after which the kink and antikink can annihilgte.
] This understanding of the instability also suggests a reso-
lution: if the rotational zero modes are sufficiently sup-
pressed or absent, the lattice will become stable. To suppress
the rotational zero modes, we could break the symmetry fur-
ther so that the kink is no longer invariant under rotations.
We can also consider a case where the zero modes are com-
pletely absent right from the start. We will discuss this latter
case as it is simpler to deal with and provides an explicit
example of a field theory with stable kink lattices.

Consider the model with four real scalar fields,

lattice energy / kink mass

I 1 4
1
i ] L=3 3 (3,f02+V(T1 105,00 (19

and

interkink separation / kink width

7

30f3+f§f§

N
+ SglA(fi+ ) +9f3]f

FIG. 1. The energy of the minimal lattice versus lattice spacing 4
for h/\=—-3/20,\=0.5 andyp=1.
m2

E
2
+ 27 (20

3

N
There can be longer sequences as well. Similarly one can * Efo“v

construct sequences in the gendvatase.

We have also numerically studied the dynamics of therpis model has been obtained by truncating the fibldc-
lattice by giving one of the kinks an initial velocity. We find curring in Eq.(1) to its diagonal elements. The fields and
that the kink scatters elastically on the neighboring antikink,

f, correspond to the diagonal generatogsand g of SU(3
and the motion propagates down the lattice. Indeed, Iatticf P 129 g § 8 (3)

f—

. ! ) . ) “3ee Eq.6)] in the Gell-Mann basisf; corresponds to the
of masses interacting via exponentially decaying repulsiv

N ‘ iagonal generator; of SU(2), andf, corresponds to the
forces[see Eq.(15)] have been studied in the literature and :
are kn[own ag (Toc)i]a latticd®]. Hence the kink lattice is a generator olJ(1). Now ourfour field model does not have

Toda latti the continuousS U(5) symmetry of the model in Eq1). The
*We now discuss the stability of the lattice. A detailed sta-O"Y_rémnant of theSU(5) symmetry corresponds to the
bility analysis shows that the lattice in E({L.G) has three permutation of the five diagonal entries®df In addition, the

; . . odel also has th&, symmetry under whichf;— —f;.
unstable modes, corresponding to rotations in the 1-3, 1- 4ence the model has @x Z, symmetr
3-5 blocks. To clarify the instability, we draw an analogy 25y Y-

. . : A vacuum of the model is given by;=0=f,=f; and
between the kink lattice and a lattice of bar magriEtg. 2). . .
Each bar magnet on its own has a zero mode that corr {4#0. This breaks the symmetry 8XxS,, corresponding

o . , $q permutations ofp in the SU(3) andSU(2) blocks. The
sponds to rotations in three dimensional space. When placev%cuum manifold consists of 52/31% 21 =20 discrete

in the lattice shown in Fig. 2, rotational zero modes turn into” . ) e
unstable modes. Similarly, an isolated kink has zero modeRO!Nts: If_we fix the vacua at=—, this implies tha.t there
corresponding to rotations in gauge space—for example, € 20 kink solutions in the model. All these 20 kink solu-
kink with chargeQ; can be rotated into the kink with charge tions have been described in RE3].

. : : : The construction of kink lattices proceeds exactly as in
Qs without any COSt_Ir_] energy. ern a kink of chargg is the SU(5) case above because the off-diagonal components
placed near an antikink of chardg@;, the zero mode be-

SO of @ vanish there. Hence th&<Z, model contains kink
comes an unstable mode, making it favorableQgrto rotate  |5tice solutions. Furthermore, these lattices are stable be-

cause the dangerous rotational perturbations are absent by
f the very construction of the model.
The occurrence of stable kink lattices with net vanishing
IN sl Is NI topological charge implies that there are metastable states in
J the field theory. Generally metastable states are present in

FIG. 2. A linear row of bar magnets placed North to North and 2If the SU(5) was a local gauge symmetry, these unstable modes
South to South has an instability towards rotations in the transverseould still be present. In addition, unstable modes due to the gauge
directions as shown. fields could arise.
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the j annihilating pairs andh—j surviving pairs and multi-
plying by the probability of annihilatiori1/3) and survival
(2/3). The result is that the probability of exactlypairs
annihilating is:"C;(1/3)'(2/3)""!. Summing this expression
from j=0 ton—3 gives the total probability for obtaining a
lattice provided we have r2 kinks. The sum can easily be
evaluated. The interesting limit is whem2s large. In that
case, the probability tends to unity. Hence a kink lattice is
certain to form if there are a large number of kinks. Further,
the number of kinks is large if a large number of correlation
domains are produced during the phase transition.

It would be interesting to test these ideas in a laboratory
systems in which a kink lattice can exist. Periodic boundary
field theories due to features in the potential. Here, howevegonditions could be achieved if a toroidal sample were to
the metastable states are non-perturbative features of th&dergo a phase transition.
model. Finally we mention the implications of a domain wall

The existence of domain wall lattices is of interest in thelattice produced during a cosmological phase transition. If
context of phase transitions. What is the probability that sspacetime iR*x S'and the wall lattice resides in tigmal)
domain wall lattice will form during a phase transition? The compact dimension, there will be an effective cosmological
answer depends on the Comp|icated dynamics of a domaigenstant in theR* due to invariance under Lorentz boosts of
wall network in three spatial dimensions. For example, thehe wall Refs[10,11]. The effective cosmological constant
model admits wall junctions of the kind shown in Fig[s  may be time dependent if the coupling constantvere to
and different walls can have different tensions. We first notgun with energy scale, or to depend on the dynamics of the
that the kinks with charge given in E¢L3) (and permuta- spacetime, or on another field. Yet another source of time
tions thereof are the lightest kinks in the system havidig ~ dependence can come via the number of walls in the lattice
topology. Hence, it is likely that only they will survive at the since the wall lattice is not protected by topology or any
end of the phase transition. Furthermore, since there a,@onserved number. So the number of walls in the lattice can
more repelling kink-antikink pairs than attracting ones, a||ca_lscad§ down and. eventuall){ b_ecome zero. The difficulty
attracting walls will eventually annihilate and remaining With this cosmological scenario is that the extra compact
walls would be repelling. In future work we plan to study dimension will not be static and will lead to an effective

lattice formation in theSs model in three spatial dimension Newton’s gravitational constant that is time dependent. Since
by computer simulations. the metric of the system is not yet known, it is not possible to

A simpler situation to consider is the formation in one say if the time variation can be slow enough for the scenario
spatial dimension for th&s model. We only need to consider to be viable. _
the lightest kinks in the model—other kinks will decay into  In conclusion, we have shown that stable lattices of do-
these kinks upon evolution. So we can restrict our attentiofnain walls can exist in a wide class of field theories. These
to a sequence of kinks with charges given in Et@) and ~ are exotic metastable states in which the system can get
permutations. Now let us assume that we have a kink witdrapped with high probability during a phase transition.

chargeQ,. A neigboring antikink can have char@ , Q, or T.V. is grateful to Craig Copi, Jaume Garriga, Tom
Qs [see Eq.(17)]. Of these only the first is unsuitable for a Kibble, Arthur Lue, Harsh Mathur, Glenn Starkman, and
lattice and has a probability 1/3. Therefore if the phase tranAlex Vilenkin for discussions. We thank the organizers of the
sition produces & kinks, then the probability of having ex- ESF COSLAB School in Cracow where a part of this project
actly 2j kinks that annihilate andr2-2j survive to form a  was completed. T.V. was supported by DOE grant number
lattice is derived by finding the number of ways of choosingDEFG0295ER40898 at CWRU.
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FIG. 3. The distribution of Higgs expectation values in three
domains can lead to a wall junctids]. In the SU(5) model, the
dashed line is a nontopological wg8]. In the S; model the dashed
line denotes a topological wall but withodt, charge.
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