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Domain wall lattices
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We construct lattices with alternating kinks and antikinks. The lattice is shown to be stable in certain models.
We consider the forces between kinks and antikinks and find that the lattice dynamics is that of a Toda lattice.
Such lattices are exotic metastable states in which the system can get trapped during a phase transition.
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Domain walls are among the simplest topological defe
known and have often been used as a test-bed for stud
nonperturbative effects. An example of a domain wall is
‘‘ f4 kink’’ trivially extended to three spatial dimension
This solution is often thought to typify all domain walls
However, it has recently become clear that the propertie
f4 kinks do not simply carry over to more complicated sy
tems@1–6#, including condensed matter systems such as3

@7#.
While kink solutions must exist for topological reasons

models with spontaneously broken discrete symmetries,
precise form of the minimum energy kink solution depen
on the details of the model and on any continuous sym
tries that may be present. Topology only says that kinks
solutions that connect two points on the disconnected p
of the vacuum manifold. If the disconnected parts of t
vacuum manifold contain more than a single point, then
pological arguments alone are not sufficient to say which
points should be connected, that is, to specify the bound
conditions that the kink satisfies. More elaborate analysi
needed if one wants to know which of the boundary con
tions can lead to the minimal energy solution@3#.

As we show in this paper, the enhanced structure of ki
in SU(N)3Z2 ~for odd N) allows for the construction o
lattices of kinks and antikinks. In related models the ki
lattice is also perturbatively stable. The lattices we are c
structing are different from other known lattices such as
Abrikosov lattice @8#. The total topological charge of a
Abrikosov lattice is nonvanishing. In contrast, the kink la
tice we will construct will have a zero topological charg
This means that we can construct the kink lattice in a b
with periodic boundary conditions, and also that the lattice
topologically equivalent to the vacuum. Hence if we start o
in an unbroken symmetry phase, with a vanishing net to
logical charge, there is a chance that, after the symmetr
spontaneously broken, the system will be trapped in the
tice phase instead of the true vacuum. From the lattice ph
the system can then only reach the true vacuum by quan
tunneling.

We start with anSU(N)3Z2 field theory whose Lagrang
ian is

L5Tr~]mF!22V~F! ~1!
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whereF is anSU(N) adjoint andV(F) is invariant under

G[SU~N!3Z2 . ~2!

N>3 is taken to be odd, and the parameters inV are such
that F has an expectation value that can be chosen to b

F05hA 2

N~N221!S n1n11 0

0 2~n11!1nD , ~3!

wheren5(N21)/2, 1p is thep3p identity matrix andh is
an energy scale determined by the minima of the potentiaV.
Such an expectation value spontaneously breaks the sym
try down to

H5@SU~n11!3SU~n!3U~1!#/Zn113Zn . ~4!

We will chooseV(F) to be a quartic polynomial:

V~F!52m2Tr@F2#1h~Tr@F2# !21lTr@F4#1V0 ~5!

whereV0 is a constant chosen so that the minimum of t
potential hasV50. The Lagrangian is symmetric underF
→2F and it is the breaking of thisZ2 symmetry that gives
rise to topological domain wall solutions. We could also e
tend the model by making it locally gauge invariant. T
solutions described below will still be valid with the gaug
fields set to zero; the stability analysis will change.

While our analysis can easily be carried out for generaN,
the physics is more transparent for a specific choice ofN.
Hence we will chooseN55 and, where relevant, remark o
the case of generalN.1 Then the desired symmetry breakin
to

H5@SU~3!3SU~2!3U~1!#/@Z33Z2# ~6!

is achieved in the parameter range

1The corresponding quartic model withN53 has an accidenta
SO(8) symmetry. We could considerN53 if „Tr(F3)…2 and
Tr(F6) terms were added to the potential. We have chosen to w
with quartic potentials and with the larger value ofN.
©2003 The American Physical Society12-1
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N213

N~N221!
uN5552

7

30
. ~7!

The vacuum expectation value~VEV! F0 is ~up to any gauge
rotation!

F05
h

A60
diag~2,2,2,23,23! ~8!

with h[m/Al8 and

l8[h1
N213

N~N221!
uN55l5h1

7

30
l. ~9!

In Refs.@1–3# it was found that there are several doma
wall solutions in this model but a solution with least ener
is achieved ifF(2`)[F25F0 and

F~1`![F152
h

A60
diag~2,23,23,2,2!. ~10!

Two features ofF1 are worthy of note. First, there is
minus sign in front. This putsF1 and F2 in disconnected
parts of the vacuum manifold. The second feature is that
blocks of entries ofF1 are permuted with respect to those
F2 . In other words,F2 and 2F1 are related by a non
trivial gauge rotation. Furthermore, the kink solution~or, do-
main wall solution, in more than one dimension! can be writ-
ten down explicitly in the case whenh/l523/20 @1,2#:

Fk5
12tanh~sx!

2
F21

11tanh~sx!

2
F1 ~11!

wheres5m/A2. For other values of the coupling constan
the solution has been found numerically@1#.

The topological charge of a kink can be defined as

Q5A60

h
~FR2FL!, ~12!

where FR and FL are the asymptotic values of the Higg
field to the right~R! and left ~L! of the kink. ~The rescaling
has been done for convenience.! Then the charge of the kink
in Eq. ~11! is

Q(1)5diag~24,1,1,1,1!. ~13!

Similarly, one can construct kinks with charge matric
Q( i ) ( i 51, . . . ,5) which have24 as theii entry and11 in
the remaining diagonal entries. Hence there are kink s
tions with 5 different topological charge matrices. Individ
ally, the kinks can be gauge rotated into one another.
when two kinks are present, the different charges are ph
cally relevant. This is most easily seen by noting that
interaction between a kink with chargeQ( i ) and an antikink
with chargeQ̄( j )52Q( j ) is proportional to Tr(Q( i )Q̄( j )) @4#.
Then we have

Tr~Q( i )Q̄( j )!5220 if i 5 j
06501
o
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515 if iÞ j . ~14!

The sign of the trace tells us if the force between the k
and antikink is attractive~minus! or repulsive~plus!. Hence
the force between a kink and an antikink with different o
entations (iÞ j ) is repulsive. This observation is key to th
construction of kink lattices.

In Ref. @4#, the repulsive potential between a kink and
antikink at rest was derived. When the kink and antiki
separation,R, is large, the result reduces to

U~R!54A2m3

l
e22A2mR. ~15!

To construct a kink lattice, we now need to arrange
periodic sequence of kink charges such that the nea
neighbor interactions are repulsive. Kinks that are not nea
neighbors but are further apart will also interact, and perh
even attract each other. However the forces between k
and antikinks fall off exponentially fast and just takin
nearest-neighbor interactions into account should be s
cient, at least for lattice spacing larger than the kink wid
So now we can write down a sequence of charges that
form a kink lattice. This is

. . . Q(1)Q̄(5)Q(3)Q̄(1)Q(5)Q̄(3) . . . ~16!

and the sequence just repeats itself. Alternately, we co
have a finite lattice if the kinks were in a compact spa
such as a compact higher dimension, or theS1 that arises in
evaluating the partition function in statistical mechanics.

The sequence listed above is the minimum sequence
which the nearest neighbor interactions are repulsive.
repeating length of 6 kinks is independent ofN in SU(N)
since it is clear that we need at least, and no more tha
different kinds of kink charges.

Another way to write the kink sequence is to write it as
sequence of Higgs field expectation values. We write t
sequence for the above minimal lattice:

. . . →1~2,2,2,23,23!→2~2,23,23,2,2!

→1~23,2,2,23,2!→2~2,23,2,2,23!

→1~2,2,23,23,2!→2~23,23,2,2,2!

→1~2,2,2,23,23!→ . . . . ~17!

We have constructed the solution for the minimal ki
lattice numerically in one spatial dimension with period
boundary conditions. In Fig. 1 we show the total energy
the minimal lattice as a function of lattice spacing.

The minimal lattice of 6 kinks is easily generalized
longer sequences. A sequence of 10 kinks in theN55 case is
aesthetic in the sense that it uses all the 5 different cha
matrices democratically:

. . . Q(1)Q̄(5)Q(3)Q̄(4)Q(2)Q̄(1)Q(5)Q̄(3)Q(4)Q̄(2) . . . .
~18!
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There can be longer sequences as well. Similarly one
construct sequences in the generalN case.

We have also numerically studied the dynamics of
lattice by giving one of the kinks an initial velocity. We fin
that the kink scatters elastically on the neighboring antiki
and the motion propagates down the lattice. Indeed, latt
of masses interacting via exponentially decaying repuls
forces@see Eq.~15!# have been studied in the literature a
are known as Toda lattices@9#. Hence the kink lattice is a
Toda lattice.

We now discuss the stability of the lattice. A detailed s
bility analysis shows that the lattice in Eq.~16! has three
unstable modes, corresponding to rotations in the 1-3,
3-5 blocks. To clarify the instability, we draw an analog
between the kink lattice and a lattice of bar magnets~Fig. 2!.
Each bar magnet on its own has a zero mode that co
sponds to rotations in three dimensional space. When pla
in the lattice shown in Fig. 2, rotational zero modes turn in
unstable modes. Similarly, an isolated kink has zero mo
corresponding to rotations in gauge space—for exampl
kink with chargeQ1 can be rotated into the kink with charg
Q3 without any cost in energy. When a kink of chargeQ1 is
placed near an antikink of chargeQ̄3, the zero mode be
comes an unstable mode, making it favorable forQ1 to rotate

FIG. 1. The energy of the minimal lattice versus lattice spac
for h/l523/20, l50.5 andh51.

FIG. 2. A linear row of bar magnets placed North to North a
South to South has an instability towards rotations in the transv
directions as shown.
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into Q3 after which the kink and antikink can annihilate.2

This understanding of the instability also suggests a re
lution: if the rotational zero modes are sufficiently su
pressed or absent, the lattice will become stable. To supp
the rotational zero modes, we could break the symmetry
ther so that the kink is no longer invariant under rotatio
We can also consider a case where the zero modes are
pletely absent right from the start. We will discuss this lat
case as it is simpler to deal with and provides an expl
example of a field theory with stable kink lattices.

Consider the model with four real scalar fields,

L5
1

2 (
i 51

4

~]m f i !
21V~ f 1 , f 2 , f 3 , f 4! ~19!

and

V52
m2

2 (
i 51

4

f i
21

h

4S (i 51

4

f i
2D 2

1
l

8 (
a51

3

f a
4

1
l

4F 7

30
f 4

41 f 1
2f 2

2G1
l

20
@4~ f 1

21 f 2
2!19 f 3

2# f 4
2

1
l

A5
f 2f 4S f 1

22
f 2

2

3 D 1
m2

4
h2. ~20!

This model has been obtained by truncating the fieldF oc-
curring in Eq.~1! to its diagonal elements. The fieldsf 1 and
f 2 correspond to the diagonal generatorsl3 andl8 of SU(3)
@see Eq.~6!# in the Gell-Mann basis,f 3 corresponds to the
diagonal generatort3 of SU(2), and f 4 corresponds to the
generator ofU(1). Now ourfour field model does not have
the continuousSU(5) symmetry of the model in Eq.~1!. The
only remnant of theSU(5) symmetry corresponds to th
permutation of the five diagonal entries ofF. In addition, the
model also has theZ2 symmetry under whichf i→2 f i .
Hence the model has anS53Z2 symmetry.

A vacuum of the model is given byf 1505 f 25 f 3 and
f 4Þ0. This breaks the symmetry toS33S2, corresponding
to permutations ofF in the SU(3) andSU(2) blocks. The
vacuum manifold consists of 5!32/3!32!520 discrete
points. If we fix the vacua atx52`, this implies that there
are 20 kink solutions in the model. All these 20 kink sol
tions have been described in Ref.@3#.

The construction of kink lattices proceeds exactly as
the SU(5) case above because the off-diagonal compon
of F vanish there. Hence theS53Z2 model contains kink
lattice solutions. Furthermore, these lattices are stable
cause the dangerous rotational perturbations are absen
the very construction of the model.

The occurrence of stable kink lattices with net vanishi
topological charge implies that there are metastable state
the field theory. Generally metastable states are presen

2If the SU(5) was a local gauge symmetry, these unstable mo
would still be present. In addition, unstable modes due to the ga
fields could arise.
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field theories due to features in the potential. Here, howe
the metastable states are non-perturbative features of
model.

The existence of domain wall lattices is of interest in t
context of phase transitions. What is the probability tha
domain wall lattice will form during a phase transition? T
answer depends on the complicated dynamics of a dom
wall network in three spatial dimensions. For example,
model admits wall junctions of the kind shown in Fig. 3@5#
and different walls can have different tensions. We first n
that the kinks with charge given in Eq.~13! ~and permuta-
tions thereof! are the lightest kinks in the system havingZ2
topology. Hence, it is likely that only they will survive at th
end of the phase transition. Furthermore, since there
more repelling kink-antikink pairs than attracting ones,
attracting walls will eventually annihilate and remainin
walls would be repelling. In future work we plan to stud
lattice formation in theS5 model in three spatial dimensio
by computer simulations.

A simpler situation to consider is the formation in on
spatial dimension for theS5 model. We only need to conside
the lightest kinks in the model—other kinks will decay in
these kinks upon evolution. So we can restrict our atten
to a sequence of kinks with charges given in Eq.~13! and
permutations. Now let us assume that we have a kink w
chargeQ1. A neigboring antikink can have chargeQ̄1 , Q̄4 or
Q̄5 @see Eq.~17!#. Of these only the first is unsuitable for
lattice and has a probability 1/3. Therefore if the phase tr
sition produces 2n kinks, then the probability of having ex
actly 2j kinks that annihilate and 2n22 j survive to form a
lattice is derived by finding the number of ways of choosi

FIG. 3. The distribution of Higgs expectation values in thr
domains can lead to a wall junction@5#. In the SU(5) model, the
dashed line is a nontopological wall@3#. In theS5 model the dashed
line denotes a topological wall but withoutZ2 charge.
s.
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the j annihilating pairs andn2 j surviving pairs and multi-
plying by the probability of annihilation~1/3! and survival
~2/3!. The result is that the probability of exactlyj pairs
annihilating is:nCj (1/3)j (2/3)n2 j . Summing this expression
from j 50 to n23 gives the total probability for obtaining
lattice provided we have 2n kinks. The sum can easily b
evaluated. The interesting limit is when 2n is large. In that
case, the probability tends to unity. Hence a kink lattice
certain to form if there are a large number of kinks. Furth
the number of kinks is large if a large number of correlati
domains are produced during the phase transition.

It would be interesting to test these ideas in a laborat
systems in which a kink lattice can exist. Periodic bound
conditions could be achieved if a toroidal sample were
undergo a phase transition.

Finally we mention the implications of a domain wa
lattice produced during a cosmological phase transition
spacetime isR43S1 and the wall lattice resides in the~small!
compact dimension, there will be an effective cosmologi
constant in theR4 due to invariance under Lorentz boosts
the wall Refs.@10,11#. The effective cosmological constan
may be time dependent if the coupling constantl were to
run with energy scale, or to depend on the dynamics of
spacetime, or on another field. Yet another source of t
dependence can come via the number of walls in the lat
since the wall lattice is not protected by topology or a
conserved number. So the number of walls in the lattice
cascade down and eventually become zero. The diffic
with this cosmological scenario is that the extra comp
dimension will not be static and will lead to an effectiv
Newton’s gravitational constant that is time dependent. Si
the metric of the system is not yet known, it is not possible
say if the time variation can be slow enough for the scena
to be viable.

In conclusion, we have shown that stable lattices of d
main walls can exist in a wide class of field theories. The
are exotic metastable states in which the system can
trapped with high probability during a phase transition.
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