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Bootstrapping perturbative perfect actions

Hidenori Sonoda*
Physics Department, Kobe University, Kobe 657-8501, Japan

~Received 25 December 2002; published 26 March 2003!

We study the exact renormalization group of the four dimensionalf4 theory perturbatively. We reformulate
the differential renormalization group equations as integral equations that define the continuum limit of the
theory directly with no need for a bare theory. We show how the self-consistency of the integral equations leads
to the determination of the interaction vertices in the continuum limit. The inductive proof of the existence of
a solution to the integral equations amounts to a proof of perturbative renormalizability, and it consists of
nothing more than counting the scale dimensions of the interaction vertices. Universality is discussed within a
context of the exact renormalization group.
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I. INTRODUCTION

Renormalization theory has more than fifty years of h
tory starting from the studies of ultraviolet divergences
QED. Originally thought of as a cookbook recipe for obta
ing finite results free of ultraviolet divergences, the idea
renormalization took a long time for its full acceptance un
its physical meaning was clarified and its relation to univ
sality in critical phenomena was understood. In his serie
lectures@1# Wilson explains how to construct the continuu
limit of a quantum field theory by taking a classical statis
cal model to the limit of criticality. The so-called scalin
functions are what particle physicists call renormaliz
Green functions from which scattering cross sections of
ementary particles can be computed.

One thread of development, lattice simulation of fie
theory, was started immediately after Wilson’s work
renormalization, and the field thrives to this day. Anoth
development started somewhat later when Polchinski app
Wilson’s exact renormalization group~ERG! equation to the
study of perturbative renormalization@2#.

The central idea in Wilson’s renormalization theory is t
theory space that consists of all possible theories with a fi
cutoff scheme. Flows of the renormalization group are g
erated in the theory space under the rescaling of distance
keep track of the renormalization group flows exactly, t
theory space must contain an infinite number of dimensi
allowing for all possible interaction vertices. But only a fini
dimensional subspace, denoted asS(`) in Sec. 12 of Ref.
@1#, is of fundamental importance. This is the space of flo
originating from an ultraviolet fixed point. It is parametrize
by a finite number of parameters, called relevant parame
Any theory in this subspace can be traced backward alon
renormalization group flow to the fixed point, and the theo
gives a continuum limit. In more recent literature, the the
ries in S(`) are called~quantum! perfect actions, implying
that they contain the physics of continuous space despite
use of a finite momentum cutoff. For a review on perfe
actions, see Ref.@3# and references therein.

In Ref. @2# Polchinski rendered Wilson’s exact differenti
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renormalization group equations to a form more managea
for perturbative studies. Polchinski used his form of equ
tions to obtain a quantitative estimate for how the flows fro
bare theories approachS(`). Strictly speaking the theory
considered,f4, has no ultraviolet fixed point, butS(`) ex-
ists perturbatively, and the distance between the flows
S(`) has been shown to behave ase22t, where t is the
logarithmic momentum scale so that the physical cutoff m
mentum iset times the physical renormalization scale@10#.
Polchinski’s work brought Wilson’s physical insight int
renormalization to the perturbative renormalization theo
which had been mostly diagrammatic and calculational.

The purpose of the present work is to simplify the pert
bative study of the exact renormalization group~ERG! even
further by reformulating the ERG differential equations
integral equations that define the continuum limitS(`) di-
rectly. As is well known, an integral equation is nothing mo
than a differential equation together with an initial~or
asymptotic! condition, but the rewriting brings a great adva
tage in this case. The advantage is that the integral equa
incorporate ‘‘renormalizability’’ of the theory manifestly. I
the equations have a solution, the theory is renormaliza
automatically. The issue is not the ultraviolet finiteness of
theory, but it is the existence of a solution.

The existence of a solution to the integral equations
proved using perturbation theory. A recursive solution of t
integral equations is what we call perturbation theory. T
integral equations are self-contained, and can determ
themselves. Using the word ‘‘bootstrap’’ as a mnemonic
the self-determining nature, we can say that the integ
equations bootstrap themselves.

A careful examination of the original work of Polchinsk
has been made in Ref.@4# where the issues of perturbativ
analyticity, unitarity, and causality have also been studi
The emphasis of the present paper is on the new formula
of the ERG in terms of integral equations and on the n
insights given by the formulation, and we do not aim at t
rigor exemplified in Ref.@4#. Our ‘‘proof’’ in Sec. IV is a
‘‘physicist’s proof’’ which should be acceptable to almo
any physicist.

The present paper is organized as follows. In Sec. II
review the perturbative treatment of Wilson’s ERG b
Polchinski. In Sec. III we introduce the reformulation of th
©2003 The American Physical Society11-1
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ERG as integral equations. In Sec. IV we prove inductiv
that the integral equations have a solution. In Sec. V
discuss universality in the context of the integral ERG eq
tions. Finally in Sec. VI we conclude the paper with com
ments for further developments of the integral equation
proach.

II. EXACT RENORMALIZATION GROUP EQUATIONS

A large amount of literature is available on the exa
renormalization group~see Ref.@5# and references therein!,
and the main purpose of this section is to set the notation
the rest of the paper. Please note that unlike what is com
in the field theory literature, a rescaling is done after ea
step of renormalization to keep the momentum cutoff c
stant.

A. Brief review of Polchinski’s rendition of Wilson’s
differential ERG equation

We consider aZ2 invariant scalar field theory in four di
mensional Euclidean space. The propagator of the sc
field f is given by

K~p!

p21m2
~1!

where the momentum cutoff functionK(p) is a smooth sca-
lar function that is monotonically decreasing inp2 and has
the property

K~p!5H 1 for p2,1,

0 for p2.22.
~2!

The cutoff functionK(p) is fixed once and for all for all the
theories in the theory space.

Each point in the theory space corresponds to an inte
tion action given in the following form:

2Sint@f#

5 (
n51

`
1

~2n!!

3E
p1 , . . . ,p2n21

f~p1! . . . f~p2n!V2n~p1 , . . . ,p2n!

~3!

wherep2n[2(p11•••1p2n21), and the momentum inte
grals are taken only over the 2n21 independent momenta
The notation

E
p
f ~p![E d4p

~2p!4
f ~p! ~4!

is used for the momentum integral. We will callV2n an in-
teraction vertex from now on.f(p) is the Fourier transform
of the scalar field in the momentum space. Once the inte
06501
y
e
-

-

t

or
on
h
-

lar

c-

c-

tion action Sint is given, the generating functional of th
Green functions is obtained as

Z@J#5expS 1

2Ep

K~p!

p21m2

d

df~p!

d

df~2p!D
3 e2Sint[f] 1*pJ(2p)f(p)U

f50
~5!

and the 2n-point Green function is given by

^f~p1! . . . f~p2n21!f&m2,V

5expS 1

2Ep

K~p!

p21m2

d

df~p!

d

df~2p!D
3f~p1! . . . f~p2n21!fe2Sint[f]U

f50
. ~6!

Since the cutoff functionK is fixed, a theory is specified
by the choice of the squared massm2 and the interaction
actionSint . The latter is characterized by an infinite numb
of interaction vertices$V2n%, and the theory space is infinit
dimensional.

The ERG transformation by scaleeDt, where Dt is an
infinitesimal positive constant, is defined so that the mom
tum p corresponds to the higher momentumpeDt under the
transformation. In the case of free theory, all the vertic
$V2n% vanish, and only the squared mass scales as

m2→m2e2Dt ~7!

under the renormalization. In the presence of interactions,
must transform the vertices$V2n% to $V2n1DV2n% so that the
Green functions are related by

^f~p1! . . . f~p2n21!f&m2,V

5e(4n2y2n)Dt^f~p1eDt! . . . f~p2n21eDt!f&m2e2Dt,V1DV
~8!

where we define

y2n[422n. ~9!

The infinitesimal change of the interaction actio
DSint@f# corresponding to the infinitesimal change of t
interaction vertices$DV2n% was given by Wilson in Ref.@1#.
In this paper we will consider the particular form given b
Polchinski in Ref.@2#:

2DSint5Dt•
1

2Ep

22p2
dK~p!

dp2

p21m2

3H dSint

df~2p!

dSint

df~p!
2

d2Sint

df~p!df~2p!J . ~10!
1-2
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@This is exactly the same as Eq.~18! of Ref. @2# rewritten in
our notation.# We can obtain the ERG equations for the i
dividual vertices$V2n% by substituting the perturbative ex
pansion~3! into the above.

Let us introduce a logarithmic scale parametert to define
a one-parameter family of vertices$V2n(t)%. At t, the squared
mass is given bym2e2t. Polchinski’s equation~10! implies
the following differential equations for the vertices:

d

dt
„e2y2ntV2n~ t;p1et, . . . ,p2net!…

5 (
k50

[(n21)/2]

(
partitions:

I 1J5$2n%

e2y2(k11)tV2(k11)„t;pI 1
et, . . . ,pI 2k11

3et,2~pI 1
1 •••1pI 2k11

!et
…

3
D~~pI 1

1•••1pI 2k11
!2e2t!

~pI 1
1•••1pI 2k11

!21m2
e2y2(n2k)tV2(n2k)

3„t;pJ1
et, . . . ,pJ2(n2k)21

et,~pI 1
1 •••1pI 2k11

!et
…

1
1

2Eq

D~qet!

q21m2
e2y2(n11)tV2(n11)

3~ t;qet,2qet,p1et, . . . ,p2net! ~11!

where the sum over partitions is the sum over all poss
ways of splittingp1 , . . . ,p2n into two groups, andI and J
stand for the groups of 2k11, 2(n2k)21 elements,
respectively. Later we will introduce a shorthand notati
pI to mean either the list ofpI 1

, . . . ,pI 2k11
or the sum

pI 1
1 ••• 1pI 2k11

. The same goes forpJ . The function

D(p) is defined by

D~p![22p2
d

dp2
K~p!. ~12!

The Gauss symbol@(n21)/2# denotes the largest intege
less than or equal to (n21)/2.

Two comments are in order:
~1! Given the requirement~8!, the ERG transformation is

not uniquely determined due to a potential change of fie
and it depends on a choice of convention. Here we h
adopted a particular convention so that all the renormal
tion effects, including the renormalization of the squar
mass and wave function, are included in the renormaliza
of the interaction vertices$V2n%.

~2! The constanty2n defined by Eq.~9! is the scale dimen-
sion of the vertexV2n . For example, we find

y252, y450, y6522, y8524, . . . . ~13!

The left-hand side of the ERG equation~11! implies that the
effect of V2n(0) on the vertices$V2n(t)% at the logarithmic
scalet is of orderey2nt. Hence,V2 is relevant,V4 is marginal,
andV2n>6 are irrelevant. This point will be explained aga
at the end of Sec. III.
06501
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B. Conventional use of the ERG equations

In Ref. @2# the ERG equation~10! was used to prove the
perturbative renormalizability of thef4 theory. As the start-
ing point of a renormalization group flow we choose a ba
theory defined by the squared massm2e2t0 and the vertices

V2~ t0 ;p!5a2~ t0 ;l!1m2e2t0zm~ t0 ;l!1p2zf~ t0 ;l!
~14!

V4~ t0 ;p1 , . . . ,p4!5~2l!@11zl~ t0 ;l!# ~15!

V2n>6~ t0 ;p1 , . . . ,p2n!50 ~16!

where t0 is a largenegativeconstant, anda2 , zm , zf , and
zl are perturbative series in the coupling constantl. We run
the ERG to obtain$V2n(t50)%. If $V2n(0)% exist in the limit
t0→2`, we call the theory renormalizable. Polchins
showed that the limit exists if we choosea2 , zm , zf , andzl

as appropriate power series inl and t0, and that the ap-
proach to the limit behaves as e2t0 with power corrections in
t0 at each order of perturbation theory.

In the next section we will introduce a more direct way
obtaining the continuum limit$V2n(0)%. We will not define
the continuum limit by taking the infrared limit of a bar
theory as above, but we will define it in terms of integr
equations that the continuum limit must obey. The integ
equations constructS(`) without the help of any bare
theory.

III. CONSTRUCTION OF INTEGRAL EQUATIONS

We construct integral equations from the different
equation~10! @or equivalently Eqs.~11!# by following a stan-
dard procedure. An integral equation is a combination o
differential equation with an initial condition, and in our ca
it is the ultraviolet asymptotic behavior of the vertex fun
tions that plays the role of the initial condition.

If the theory had a good honest ultraviolet fixed point, t
asymptotic behavior of the vertex functions would be simp

V2n~2t;p1 , . . . ,p2n!→V2n* ~p1 , . . . ,p2n! as t→1`
~17!

where$V2n* % are the fixed-point vertices. The perturbativef4

theory does not have an ultraviolet fixed point, and we m
replace the above asymptotic conditions by alternative c
ditions. We impose that the vertices be given by

V2n~2t;p1 , . . . ,p2n!→A2n~2t;p1 , . . . ,p2n!

1m2e22tB2n~2t;p1 , . . . ,p2n!

1 ••• ~18!

as t→1` where
~1! The right-hand side is an expansion in powers

m2e22t.
~2! A2n andB2n , independent ofm2, are finite order poly-

nomials oft at each order in perturbation theory.
~3! A2n and B2n are local, i.e., they can be expanded

powers of momenta if the momenta are small compared to
1-3
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We will construct integral equations using the above
sumptions, and in Sec. IV we will justify the assumptio
using the integral equations themselves.

Here is a comment on the sign convention for the para
etert. The parametert was introduced in the previous sectio
to denote the logarithmic renormalization scale. It grows
we go downstream toward infrared on the RG flow. Since
will need to go upstream to write down integral equatio
we will mainly deal with negativet in the rest of the paper
Since we easily forget thatt is negative, we denote it explic
itly as 2t so thatt.0 when we go upstream on the RG flow

The asymptotic behavior~18! implies in particular

e2tV2~2t;pe2t!→e2tA2~2t;0!1p2
d

dp2
A2~2t;p!U

p250

1m2B2~2t;0! ~19!

V4~2t;p1e2t, . . . ,p4e2t!→A4~2t;0,0,0,0! ~20!

ey2ntV2n~2t;p1e2t, . . . ,p2ne2t!→0 for 2n>6
~21!

as t→1` where the corrections are suppressed bye22t

~with powers oft). Here we recall that the squared mass t
goes with the vertices$V2n(2t)% is m2e22t, and the above
expansions are taken in powers ofm2e22t and momenta
pe2t. The last equation is valid because ofy2n,0 and the
assumed polynomial behavior ofV2n(2t).

The above asymptotic behavior makes the followi
equations trivially valid:
06501
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e2tV2~2t;pe2t!

5 lim
T→`

F „e2tV2~2t;pe2t!2e2(t1T)V2~2t2T;pe2t2T!…

1e2(t1T)A2~2t2T;0!1p2
d

dp2
A2~2t2T;p!U

p250

1m2B2~2t2T;0!G ~22!

V4~2t;p1e2t, . . . ,p4e2t!

5 lim
T→`

@„V4~2t;p1e2t, . . . ,p4e2t!

2V4~2t 2T;p1e2t2T, . . . ,p4e2t2T!…

1A4~2t2T;0,0,0,0!# ~23!

ey2ntV2n~2t;p1e2t, . . . ,p2ne2t!

5 lim
T→`

@ey2ntV2n~2t;p1e2t, . . . ,p2ne2t!

2ey2n(t1T)V2n~2t2T;p1e2t2T, . . . ,p2ne2t2T!#.

~24!

The differences of the vertices on the right-hand sides
obtained by integrating the differential ERG equations~11!
of the previous section. We obtain
e2tV2~2t;pe2t!5 lim
T→`

F E
0

T

dt8H e2(t1t8)V2~2t2t8;pe2t2t8!
D~pe2t2t8!

p21m2
e2(t1t8)V2~2t2t8;pe2t2t8!

1
1

2Eq

D~qe2t2t8!

q21m2
V4~2t2t8;qe2t2t8,2qe2t2t8,pe2t2t8,2pe2t2t8!J

1e2(t1T)A2~2t2T!1p2C2~2t2T!1m2B2~2t2T!G ~25!

V4~2t;p1e2t, . . . ,p4e2t!5 lim
T→`

F E
0

T

dt8H (
i 51

4

e2(t1t8)V2~2t2t8;pie
2t2t8!

D~pie
2t2t8!

pi
21m2

V4~2t2t8;p1e2t2t8, . . . ,p4e2t2t8!

1
1

2Eq

D~qe2t2t8!

q21m2
e22(t1t8)V6~2t2t8;qe2t2t8,2qe2t2t8,p1e2t2t8,•••,p4e2t2t8!J

1A4~2t2T!G ~26!
1-4
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ey2ntV2n~2t;p1e2t, . . . ,p2ne2t!5 lim
T→`

E
0

T

dt8H (
k50

[(n21)/2]

(
partitions:

I 1J5$2n%

ey2(k11)(t1t8)V2(k11)~2t2t8;pIe
2t2t8!

3
D~pIe

2t2t8!

pI
21m2

ey2(n2k)(t1t8)V2(n2k)~2t2t8;pJe
2t2t8!1

1

2
E

q

D~qe2t2t8!

q21m2
ey2(n11)(t1t8)

3V2(n11)~2t2t8;qe2t2t8,2qe2t2t8,p1e2t2t8, . . . !J ~27!
yet,
rms
-

ent
-
e

r

where we have introduced the notation

A2~2t ![A2~2t;0!, B2~2t ![B2~2t;0!,

C2~2t ![
]

]p2
A2~2t;p!U

p250

~28!

A4~2t ![A4~2t;0,0,0,0! ~29!
and the short-hand notationspI ,pJ have been used.
The above integral equations are not self-contained

since the right-hand sides depend on the asymptotic fo
A2 , B2 , C2, and A4 which are known only after the left
hand sides, i.e.,V2 andV4, are known.

A crucial observation is to be made now: the requirem
that the limitsT→1` to exist for the above equations de
termines the asymptotic forms. We will explain this in th
remainder of this section.

For largeT, we find the following asymptotic behavio
using Eq.~18!:
1

2
E

q

D~qe2t2T!

q21m2
V4~2t2T;qe2t2T,2qe2t2T,pe2t2T,2pe2t2T!

→
1

2
e2(t1T)E

q

D~q!

q2
A4~2t2T;q,2q,0,0!1p2

1

2 S d

dp2
E

q

D~q!

q2
A4~2t2T;q,2q,p,2p!D

p250

1m2
1

2
E

q
D~q!S 1

q2
B4~2t2T;q,2q,0,0!2

1

q4
A4~2t2T;q,2q,0,0!D , ~30!

1

2
E

q

D~qe2t2T!

q21m2
e22(t1T)V6~2t2T;qe2t2T,2qe2t2T,p1e2t2T, . . . ,p4e2t2T!

→ 1

2Eq

D~q!

q2
A6~2t2T;q,2q,0,0,0,0!. ~31!

In deriving this it is important to note thatD(q) is nonvanishing only for 1,uqu,2.
The above asymptotic behavior determines thet dependence of the asymptotic formsA2 , B2 , C2, andA4 so that the limit

T→1` of the integral equations exist. We must therefore obtain

2
d

dt
„e2tA2~2t !…5e2t

1

2Eq

D~q!

q2
A4~2t;q,2q,0,0! ~32!

065011-5
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2
d

dt
B2~2t !5

1

2Eq
D~q!S 1

q2
B4~2t;q,2q,0,0!2

1

q4
A4

~2t;q,2q,0,0!D ~33!

2
d

dt
C2~2t !5

1

2

]

]p2Eq

D~q!

q2
A4~2t;q,2q,p,2p!U

p250

~34!

2
d

dt
A4~2t !5

1

2Eq

D~q!

q2
A6~2t;q,2q,0,0,0,0!.

~35!

Thus, the asymptotic forms are determined by the asympt
forms of the higher point vertices up tot-independent con-
stants. Hence, we obtain

e2tA2~2t !52E t

dt8e2t8
1

2Eq

D~q!

q2
A4~2t8;q,2q,0,0!

~36!

B2~2t !5E
0

t

dt8
1

2Eq
D~q!S 2

1

q2
B4~2t8;q,2q,0,0!

1
1

q4
A4~2t8;q,2q,0,0!D 1B2~0! ~37!

C2~2t !52E
0

t

dt8
1

2

d

dp2Eq

D~q!

q2

3A4~2t8;q,2q,p,2p!U
p250

1C2~0! ~38!

A4~2t !52E
0

t

dt8
1

2Eq

D~q!

q2
A6~2t8;q,2q,0,0,0,0!

1A4~0!. ~39!

Here,B2(0), C2(0), andA4(0) aret-independent constant
which cannot be determined by the differential Eq
~33!,~34!,~35!. The constantsB2(0),C2(0) have to do with
finite renormalization of the squared mass and wave fu
tion, respectively. The constantA4(0) is the self-coupling
06501
tic

.

c-

constant, and together withm2 it parametrizes the space o
continuum limit S(`). We will discuss more about thes
finite constants in Sec. V.

The determination ofA2(2t) by Eq.~36! needs an expla-
nation. As it is, the integral overt8 is ambiguous by a con
stant, which implies thatA2(2t) is ambiguous by a constan
multiple of e22t. From Eq.~19! the larget behavior of the
two-point vertex at zero momentum is given by

V2~2t;0!→A2~2t !1m2e22tB2~2t !. ~40!

Hence, the ambiguity of ordere22t in A2(2t) has the same
order of magnitude as theB2(2t) term. We wish to remove
the ambiguity in such a way that only the term proportion
to m2 gives the ordere22t contribution to the asymptotic
form of V2(2t;0) above. This choice is equivalent to th
mass independent scheme, and it turns out that with
choice the massless theory is given bym250 @11#. To com-
plete the definition ofA2(2t), we must first define akth
order polynomialTk(t) by the condition

d

dt
„e2tTk~ t !…5e2ttk. ~41!

Imposing thatTk(t) be a polynomial, we have removed th
potential ambiguity of ordere22t. Now, given a power series
expansion int

1

2Eq

D~q!

q2
A4~2t;q,2q,0,0!5 (

k50

`

tkPk ~42!

we defineA2(2t) unambiguously by

A2~2t ![2 (
k50

`

Tk~ t !Pk . ~43!

This is the precise meaning of Eq.~36!. For a concrete ex-
pression of the polynomialTk(t), please refer to Appendix
B.

We have thus obtained the following integral equation
1-6



BOOTSTRAPPING PERTURBATIVE PERFECT ACTIONS PHYSICAL REVIEW D67, 065011 ~2003!
e2tV2~2t;pe2t!5E
0

`

dt8Fe2(t1t8)V2~2t2t8;pe2t2t8!
D~pe2t2t8!

p21m2
e2(t1t8)V2~2t2t8;pe2t2t8!1

1

2Eq
D~qe2t2t8!

3H 1

q21m2
V4~2t2t8;qe2t2t8,2qe2t2t8,pe2t2t8,2pe2t2t8!2

1

q2

3A4~2t2t8;qe2t2t8,2qe2t2t8,0,0!2p2e22(t1t8)
1

q2

]

]p2
A4~2t2t8;qe2t2t8,2qe2t2t8,p,2p!U

p250

2m2e22(t1t8)S 1

q2
B4~2t2t8;qe2t2t8,2qe2t2t8,0,0!2

1

q4
A4~2t2t8;qe2t2t8,2qe2t2t8,0,0!D J G

1e2tA2~2t !1p2C2~2t !1m2B2~2t !, ~44!

V4~2t;p1e2t, . . . ,p4e2t!5E
0

`

dt8F(
i 51

4

e2(t1t8)V2~2t2t8;pie
2t2t8!

D~pie
2t2t8!

pi
21m2

V4~2t2t8;p1e2t2t8, . . . ,p4e2t2t8!

1
1

2Eq
D~qe2t2t8!H 1

q21m2
e22(t1t8)V6~2t2t8;qe2t2t8,2qe2t2t8,p1e2t2t8, . . . ,p4e2t2t8!

2
1

q2
e22(t1t8)A6~2t2t8;qe2t2t8,2qe2t2t8,0, . . . ,0!J G1A4~2t !, ~45!

ey2ntV2n~2t;p1e2t, . . . ,p2ne2t!5E
0

`

dt8H (
k50

[ ~n21!/2]

(
partitions:

I 1J5$2n%

ey2(k11)(t1t8)V2(k11)~2t2t8;pIe
2t2t8!

D~pIe
2t2t8!

pI
21m2

3ey2(n2k)(t1t8)V2(n2k)~2t2t8;pJe
2t2t8!1

1

2Eq

D~qe2t2t8!

q21m2

3ey2(n11)(t1t8)V2(n11)~2t2t8;qe2t2t8,2qe2t2t8,p1e2t2t8, . . . !J ~46!
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where A2(2t) is given by Eqs.~36!,~43!, B2(2t) by Eq.
~37!, C2(2t) by Eq. ~38!, and A4(2t) by Eq. ~39!. The
constantsB2(0), C2(0), andA4(0) are input parameters t
be discussed further in Sec. V. These integral equations
self-contained in the sense that they admit a perturbative
lution as explained in the next section.

Before we end this section, let us make two observatio
We first observe how the relevance, marginality, and irr
evance of vertices manifest themselves in the above inte
equations. We notice that the 2n-point vertexV2n(2t2t8)
always appears multiplied by the exponential fac
ey2n(t1t8). Thus, at scale2t the effect of the two-point ver-
tex V2(2t2t8) at scale2t2t8 is of order e2t8@1 if t8
@1, and it is relevant. The effect of the four-point vert
V4(2t2t8) at scale2t is unsuppressed or marginal. But th
effect ofV2n>6(2t2t8) is only of orderey2nt8!1, and it is
irrelevant.

We also observe the mechanism behind the finitenes
the integrals overt8 in the integral equations. The right-han
06501
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ral

r
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sides of the integral equations have two parts. The first p
consists of products of two vertices. For any external m
mentump, D(pe2t8) vanishes for larget8 sinceD(p)50
for upu,1. Hence, the first part is finite upon integratio
over t8. The second part consists of a loop integral over
momentumq. For larget8 the integrand of thet8 integral
behaves ase22t8 either by the exponential factorey2(n11)t8 or
by the subtractions of asymptotic forms. Thus, the sec
part is also finite upon integration overt8.

IV. SOLUTION OF INTEGRAL EQUATIONS

In this section we wish to show that the integral equatio
~44!–~46! derived in the previous section determine the v
tex functions order by order in perturbation theory.

A. Flow of perturbative solutions

To solve the integral equations~44!–~46! for the vertex
functions$V2n(t50)% at scalet50, we must determine the
1-7
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HIDENORI SONODA PHYSICAL REVIEW D67, 065011 ~2003!
vertex functions along the entire renormalization group fl
from t51` leading up to the end pointt50. Each renor-
malization flow is parametrized by the squared massm2, and
the constantsB2(0), C2(0), andA4(0). In order to solve the
integral equations perturbatively in powers of the coupl
constantl, we must assume that these constants can be
panded in powers ofl as

B2~0!5 (
k51

`

~2l!kzm
(k) ~47!

C2~0!5 (
k51

`

~2l!kzf
(k) ~48!

A4~0!52l1 (
k51

`

~2l!11kzl
(k) ~49!

wherezm
(k) , zf

(k) , andzl
(k) are arbitrary constants. The choic

of these constants correspond to a convention or a renor
ization scheme as will be discussed more fully in Sec. V. O
choice convenient for explicit calculations is our version
the ‘‘minimal subtraction’’ scheme defined by

B2~0!5C2~0!50, A4~0!52l. ~50!

In the following discussion, however, we will not choose t
minimal subtraction scheme, and we will keep our choice
B2(0),C2(0),A4(0) arbitrary@12#.

Let us recall the recursive solution of an integral equat

f ~x!5l1E dyG~x,y! f ~y!2 ~51!

whereG is a known integration kernel. The recursive so
tion gives f (x) as a power series inl:

f ~x!5l1 (
k51

`

l11kf k~x!. ~52!

If f (x) is determined to orderln21, we can use it to com-
pute the right-hand side up to orderln. Thus, f (x) is ob-
tained to orderln. The recursive method works because t
integral is quadratic inf.

The structure of our integral equations~44!–~46! is simi-
lar to the simple integral equation above. The starting po
of the perturbative calculations of the vertices is the fo
point vertexV4 at orderl:

V4~2t;p1 , . . . ,p4!5A4~2t !52l. ~53!

Everything bootstraps from this.
Let us briefly sketch the perturbative procedure leav

details to the next subsection.~Lowest order calculations ar
given in Appendix A.! Suppose we have computed all th
vertices up to orderln21 at which only V2 , . . . ,V2n are
nonvanishing. At orderln(n>1), we must start from
V2(n11) which is given explicitly by the tree-level Feynma
diagrams withn vertices (2l) and n21 internal propaga-
tors
06501
x-

al-
e
f

f

n

-

e

t
-

g

12K~p!

p21m2e22t
.

For example, we find

e22tV6~2t;p1e2t, . . . ,p6e2t!

5~2l!2S 12K„~p11p21p3!e2t
…

~p11p21p3!21m2
19 permutationsD

~54!

e24tV8~2t;p1e2t, . . . ,p8e2t!

5~2l!3S 12K„~p11p21p3!e2t
…

~p11p21p3!21m2

3
12K„~p41p51p6!e2t

…

~p41p51p6!21m2
1279 permutationsD .

~55!

We can obtain these by solving the tree-level integral eq
tions

ey2ntV2n~2t;p1e2t, . . . ,p2ne2t!

5E
0

`

dt8H (
k50

[(n21)/2]

(
partitions:

I 1J5$2n%

ey2(k11)(t1t8)

3V2(k11)~2t2t8;pIe
2t2t8!

D~pIe
2t2t8!

pI
21m2

ey2(n2k)(t1t8)

3V2(n2k)~2t2t8;pJe
2t2t8!J ~56!

FIG. 1. Flow of perturbative calculations: every vertex upstre
is necessary to determine a vertex.
1-8
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BOOTSTRAPPING PERTURBATIVE PERFECT ACTIONS PHYSICAL REVIEW D67, 065011 ~2003!
where there is no loop integral overq on the right-hand side
The dependency of the vertices is such that we need only
tree-level verticesV4 , . . . ,V2n to constructV2(n11) at the
tree level.

The next vertex to compute at orderln is V2n . The right-
hand side of the integral equation~46! has two parts. To ge
an orderln contribution from the first part, we needV2 to
orderl, V4 to l2, V6 to l3, . . . ,V2(n21) to ln21, andV2n
to orderln21. All these suffice to be lower order inl than
ln since the first part consists of a product of two vertic
To get an orderln contribution from the second part, w
needV2(n11) to orderln, which is obtained by the previou
step. Proceeding analogously we can calcul
V2(n21) , . . . ,V2 up to orderln.

The flow of perturbative calculations sketched above
shown in Fig. 1. We will elaborate on this further in the ne
subsection.

B. Perturbative proof of the l,t dependence of the vertices

The purpose of this subsection is to prove the existenc
a perturbative solution to the integral equations~44!–~46! by
proving the followingl,t dependence of the vertex func
tions:

V2n~2t;p1 , . . . ,p2n!

5 (
k50

`

~2l!n211kv2n,k~2t;p1 , . . . ,p2n ;m2e22t!

~57!

wherev2n,k(2t;p1 , . . . ,p2n ;m2e22t) is an orderk polyno-
mial of t. v2n,k corresponds to thek-loop contribution to the
vertex. The only exception to Eq.~57! is for n51, for which
we take thel independent part vanishing:

v2,050. ~58!

Hence, forl50, all the verticesV2n vanish. The starting
point of the perturbative solution is given by

v4,051 ~59!

which is independent of the mass and momenta.
We note that by proving the abovel,t dependence we

also prove the assumption on the polynomial behavior of
asymptotic forms~18!. Equation~57! gives

A2n~2t;p1 , . . . ,p2n!

5 (
k50

`

~2l!n211kv2n,k~2t;p1 , . . . ,p2n ;0! ~60!
06501
he

.

e
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e

B2n~2t;p1 , . . . ,p2n!

5(
k50

`

~2l!n211k
]

]m2
v2n,k~2t;p1, . . . ,p2n ;m2!U

m250

.

~61!

From Eqs.~19!,~20! we also obtain

A2~2t !5 (
k51

`

~2l!kv2,k~2t;0,0;0! ~62!

B2~2t !5 (
k51

`

~2l!k
]

]m2
v2,k~2t;0,0;m2!U

m250

~63!

C2~2t !5 (
k51

`

~2l!k
]

]p2
v2,k~2t;p,2p;0!U

p250

~64!

A4~2t !52l1 (
k51

`

~2l!11kv4,k~2t;0,0,0,0;0!. ~65!

The inductive proof of thel,t dependence~57! is
straightforward. The dependence is valid for the start
point ~59! of induction. We wish to prove the validity of the
l,t dependence~57! for v2n,k assuming its validity for all
v2n8,k8 upstream in Fig. 1 where either

n81k8,n1k ~66!

or

n81k85n1k and k8,k. ~67!

~In Fig. 1, each column has the samen1k. As we go toward
right, n1k increases. As we go up,k increases, andn de-
creases.! There are three cases we must consider separa
n.2, n52, andn51. First we consider the casen.2. By
substituting the assumed results into the right-hand side
the integral equation~46! for V2n , we obtain

FIG. 2. Flows of ERG: the perfect actions make a 4-dimensio
subspace with coordinatesm2, B2(0), C2(0), A4(0).
1-9
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v2n,k~2t;p1 , . . . ,p2n ;m2!

5E
0

`

dt8Fe(y2n12)t8 (
j 50

[ ~n21!/2]

(
l 50

k

(
partitions:
I 1J5$2n

v2( j 11),l„2~ t1t8!;pIe
2t8;m2e22t8

…

3
D~pIe

2t8!

pI
21m2

v2(n2 j ),k2 l„2~ t1t8!;pJe
2t8;m2e22t8

…

1
1

2Eq

D~q!

q21m2e22t8
ey2nt8v2(n11),k21„2~ t1t8!;q,2q,p1e2t8, . . . ;m2e22t8

…G . ~68!

The right-hand side contains only the lower order vertices for which the induction hypothesis is assumed valid. The fi
gives at most ordertk, and the second loop integral gives onlytk21. Hence,v2n,k is an orderk polynomial of t.

Next we look at the special casen52. The integral equation~45! gives

v4,k~2t;p1 , . . . ,p4 ;m2!

5E
0

`

dt8Fe2t8(
i 51

4

(
l 51

k

v2,l„2~ t1t8!;pie
2t8,2pie

2t8;m2e22t8
…

D~pie
2t8!

pi
21m2

v4,k2 l„2~ t1t8!;p1e2t8, . . . ,p4e2t8;m2e22t8
…

1
1

2Eq
H D~q!

q21m2e22t8
v6,k21„2~ t1t8!;q,2q,p1e2t8, . . . ,p4e2t8;m2e22t8

…

2
D~q!

q2
v6,k21„2~ t1t8!;q,2q,0,0,0,0;0…J G1v4,k~2t;0,0,0,0;0!. ~69!

The first term in the integral gives at most ordertk, and the second loop integral at most ordertk21. The last term is obtained
from Eqs.~39!,~49! as

v4,k~2t;0,0,0,0;0!5zl
(k)2E

0

t

dt8
1

2Eq

D~q!

q2
v6,k21~2t8;q,2q,0,0,0,0;0!. ~70!

Sincev6,k21(2t;q,2q,0,0,0,0;0) is apolynomial of orderk21 by the induction hypothesis, the above equation implies
v4,k(2t;0,0,0,0;0) is an orderk polynomial.

Finally we consider the casen51. The integral equation~44! gives

v2,k~2t;p,2p;m2!5E
0

`

dt8Fe4t8(
l 51

k21

v2,l„2~ t1t8!;pe2t8,2pe2t8;m2e22t8
…

D~pe2t8!

p21m2

3v2,k2 l„2~ t1t8!;pe2t8,2pe2t8;m2e22t8
…1

1

2Eq
D~q!H 1

q21m2e22t8
e2t8

3v4,k21„2~ t1t8!;q,2q,pe2t8,2pe2t8;m2e22t8
…2

1

q2
e2t8v4,k21„2~ t1t8!;q,2q,0,0;0…2

1

q2
p2

3]

]p2
v4,k21„2~ t1t8!;q,2q,p,2p;0…U

p250

2
1

q2
m2

]

]m2
v4,k21„2~ t1t8!;q,2q,0,0;m2

…U
m250

1
1

q4
m2v4,k21„2~ t1t8!;q,2q,0,0;0…J G1v2,k~2t;0,0;0!1p2

]

]p2
v2,k~2t;p,2p;0!U

p250

1m2
]

]m2
v2,k~2t;0,0;m2!U

m250

. ~71!

The first sum gives at most ordertk, and the second loop integral overq gives at most ordertk21. The last line is obtained from
Eqs.~36!–~38! and Eqs.~47!,~48! as
065011-10
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e2tv2,k~2t;0,0;0!52E t

dt8e2t8
1

2Eq

D~q!

q2
v4,k21~2t8;q,2q,0,0;0! ~72!

]

]p2
v2,k~2t;p,2p;0!U

p250

5zf
(k)2E

0

t

dt8
1

2Eq

D~q!

q2

]

]p2
v4,k21~2t8;q,2q,p,2p;0!U

p250

~73!

]

]m2
v2,k~2t;0,0;m2!U

m250

5zm
(k)2E

0

t

dt8
1

2Eq
D~q!S 1

q2

]

]m2
v4,k21~2t8;q,2q,0,0;m2!U

m250

2
1

q4
v4,k21~2t8;q,2q,0,0;0!D . ~74!
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The precise meaning of the integral on the right-hand sid
Eq. ~72! has been given in the paragraph leading to Eq.~43!:
the integral convertst j into an orderj polynomialTj (t). The
induction hypothesis implies that the left-hand sides in
above are all at most ordertk. Hence, we have proven tha
v2,k is at most ordertk.

This concludes the inductive proof of thel,t dependence
given by ~57!. We have thus proven the existence of a p
turbative solution to the integral equations~44!–~46!. Since
the integral equations define a continuum limit directly, w
have proven the perturbative renormalizability of thef4

theory at the same time.

V. UNIVERSALITY

In the previous section we have shown the existence
perturbative solution of the ERG integral equations~44!–
~46!. In this section we consider two issues related to univ
sality: first we will count the independent degrees of freed
of the continuum limit, and second we will consider how t
Green functions depend~or not depend! on the choice of a
momentum cutoff functionK(p).

We first recall that each solution of the integral equatio
~44!–~46! gives an entire trajectory of the ERG flow in th
spaceS(`) of the continuum limit. Each trajectory is param
06501
of

e

-

a

r-

s

etrized by2t which ranges from2` to 0, and it is specified
by a squared massm2 and three input parametersB2(0),
C2(0), andA4(0). We canregardm2, andB2(0), C2(0),
A4(0) as the four coordinates of the end point of the ER
trajectory. Hence, the spaceS(`) is four dimensional~see
Fig. 2!. According to the usual understanding of thef4

theory, however, the continuum limit has only two para
eters: a squared massm2 and a self-coupling constantl. We
wish to reconcile this discrepancy.

Clearly the parameterA4(0) corresponds to the self
coupling constantl. The other two parametersB2(0) and
C2(0), which we can take as zero in the minimal subtracti
scheme~50!, are related to finite renormalization of th
squared mass and wave function, respectively.

Since the space of the continuum limitS(`) is physically
two-dimensional, there should be a two dimensional group
transformations which relate physically equivalent theori
More concretely, we should be able to find an infinitesim
change of the parametersm2, B2(0), C2(0), andA4(0) so
that the Green functions remain unchanged up to normal
tion. Such a transformation should map an entire ERG fl
to another physically equivalent ERG flow. Without deriv
tion, we write down the infinitesimal transformationV2n
→V2n1dV2n with the expected properties:
e2tdV2~2t;pe2t!5h~p21m2!1em21e2tV2~2t;pe2t!H 2h12„12K~pe2t!…S h1
em2

p21m2D J
2„e2tV2~2t;pe2t!…2

K~pe2t!„12K~pe2t!…

p21m2 S h1
em2

p21m2D
2

1

2Eq

K~qe2t!„12K~qe2t!…

q21m2 S h1
em2

q21m2D V4~2t;qe2t,2qe2t,pe2t,2pe2t! ~75!

and, for 2n>4,
1-11
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ey2ntdV2n~2t;p1e2t, . . . ,p2ne2t!5(
i 51

2n H 2
h

2
1„12K~pie

2t!…S h1
em2

pi
21m2D J ey2ntV2n~2t;p1e2t, . . . ,p2ne2t!

2 (
k50

[(n21)/2]

(
partitions:

I 1J5$2n%

ey2(k11)tV2(k11)~2t;pIe
2t!

K~pIe
2t!„12K~pIe

2t!…

pI
21m2

3H h1
em2

pI
21m2J ey2(n2k)tV2(n2k)~2t;pJe

2t!2
1

2Eq

K~qe2t!„12K~qe2t!…

q21m2

3H h1
em2

q21m2J ey2(n11)tV2(n11)~2t;qe2t,2qe2t,p1e2t, . . . ,p2ne2t! ~76!
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wheree,h are infinitesimal constants.
The above transformation satisfies the following tw

properties:
~1! The Green functions change only by normalization

^f~p1!•••f~p2n21!f&m2e22t,V(2t)

5~12nh!

3^f~p1!•••f~p2n21!f&m2(11e)e22t,(V1dV)(2t) . ~77!

~2! The transformed vertices (V2n1dV2n)(2t) satisfy the
ERG equations~11! for the squared massm2(11e)e22t.

~For a proof of the above properties, please refer to R
@6#.!

The infinitesimal transformation defined by Eqs.~75!,~76!
corresponds to the following infinitesimal change of the p
rameters:

m2→m2~11e! ~78!

B2~0!→~12h!B2~0!1e1h2
1

2Eq
K~q!„12K~q!…

3S ~2h1e!
1

q4
A4~0;q,2q,0,0!

1h
1

q2
B4~0;q,2q,0,0!D ~79!

C2~0!→~12h!C2~0!1h2h
1

2

]

]p2

3E
q

K~q!„12K~q!…

q2
A4~0;q,2q,p,2p!U

p250

~80!
06501
f.
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A4~0!→~122h!A4~0!

2h
1

2Eq

K~q!„12K~q!…

q2
A6~0;q,2q,0,0,0,0!.

~81!

These infinitesimal transformations generate equivale
classes of theories, and the space of the equivalence cla
is two-dimensional.

In Ref. @6# we will modify the ERG equations by intro
ducing a running squared mass and an anomalous scal
mension of the fieldf. With the modification we can no
longer takeB2(0) and C2(0) as arbitrary, and the spac
S(`) becomes two-dimensional.

We now proceed to the next issue. We recall that univ
sality usually means that the Green functions of the sc
field f is unique up to normalization of the field. In othe
words the Green functions in the continuum limit do n
depend on how the continuum limit is taken. In the pres
context universality demands that we get the same Gr
functions no matter what momentum cutoff functionK(p)
we use, as long asK(p) is 1 for smallupu and 0 for largeupu.
Under a change ofK, the Green functions should change
such a way that the differences can be compensated by
propriate finite change of the parameters and normaliza
of the field.

Let us consider the Green functions computed w
the vertices$V2n(2t)% using a modified propagator (K
1dK)(p)/(p21m2e22t), where the infinitesimal chang
dK(p) vanishes forupu,1 and for largeupu. The change of
the Green functions due to the modified propagator can
reproduced using the original cutoff functionK(p) but using
a different set of vertices$(V2n1dV2n)(2t)%:

^f~p1! . . . f~p2n21!f&K,m2e22t,(V1dV)(2t)

5^f~p1! . . . f~p2n21!f&K1dK,m2e22t,V(2t) . ~82!

The change$dV2n(2t)% of the vertices necessary for th
above equality is most easily obtained by a diagramm
consideration. By interpreting thedK not as part of a propa
1-12
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gator but as part of a vertex, we find that the appropri
infinitesimal change of the vertices is given by

ey2ntdV2n~2t;p1e2t, . . . ,p2ne2t!

52 (
k50

[(n21)/2]

(
partitions:

I 1J5$2n%

ey2(k11)tV2(k11)~2t;pIe
2t!

3
dK~pIe

2t!

pI
21m2

ey2(n2k)tV2(n2k)~2t;pJe
2t!

2
1

2Eq

dK~qe2t!

q21m2
ey2(n11)tV2(n11)

3~2t;qe2t,2qe2t,p1e2t, . . . ,p2ne2t!. ~83!

It is straightforward to check that the vertices$(V2n
1dV2n)(2t)% satisfy the ERG equations~11! with the
squared massm2e22t.

The above change of the vertices corresponds to the
lowing change of the input parameters to the integral E
equation:

dB2~0!52
1

2Eq
dK~q!S 1

q2
B4~0;q,2q,0,0!

2
1

q4
A4~0;q,2q,0,0!D ~84!

dC2~0!52
1

2

]

]p2Eq

dK~q!

q2
A4~0;q,2q,p,

2p!U
p250

~85!

dA4~0!52
1

2Eq

dK~q!

q2
A6~0;q,2q,0,0,0,0!.

~86!

Hence, the ERG trajectory specified bym2, B2(0), C2(0),
and A4(0) in S(`) with the cutoff K1dK is equivalent to
the ERG trajectory specified bym2, (B21dB2)(0), (C2
1dC2)(0), and (A41dA4)(0) in S(`) with the cutoff K.
Thus, with this equivalence, the space of theories in the c
tinuum limit is independent of the choice of a momentu
cutoff functionK. In other words the continuum limit is uni
versal.

VI. CONCLUSION

In this paper we have reformulated the exact renormal
tion group equation of Wilson in terms of integral equation
The advantage of the integral equations is that they de
the continuum limit of a theory directly. So far the exa
renormalization group has been studied as differential~or
difference! equations, and for perturbation theory it has be
used mainly as a method of regularization which is parti
06501
e

l-

n-

-
.
e

n
-

larly convenient for formal studies. The continuum limit h
to be constructed by first introducing a bare theory and t
taking the bare theory to a critical point. In comparison t
integral equation approach has two advantages: first we
construct the continuum limit directly, and second the in
gral equation naturally provides a self-determining pertur
tive procedure.

The integral equations are somewhat cumbersome
write down due to the subtractions necessary for the two-
four-point vertices. However, the analysis of the structure
the perturbative solution is straightforward, and the proof
the existence of a perturbative solution given in Sec. IV
one of the simplest proofs~if not the simplest! of renormal-
izability of f4 theory in the literature.

Some questions left unanswered in this paper will be
swered in a forthcoming paper@6#. In particular it should be
interesting to relate the ordinary renormalization group eq
tions of the renormalized parameters and fields to the e
renormalization group equations. The lowest order res
given in Ref.@7# will be extended to all orders in perturba
tion theory in Ref.@6# by modifying the exact renormaliza
tion group equation.

The exact renormalization group has been applied t
wide variety of theories such as gauge theories, chiral th
ries, theories with spontaneous symmetry breaking, su
symmetric theories, and theories with a real ultraviolet fix
point. ~For example, see Refs.@8,9# for applications to
gauge, chiral, and supersymmetric theories.! We expect that
the integral equation approach introduced in this paper
further simplify the perturbative studies of those theories
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APPENDIX A: LOWEST ORDER CALCULATIONS

We choose the minimal subtraction~MS! scheme:

B2~0!5C2~0!50, A4~0!52l. ~A1!

1. Order l

At order l we find

V4~2t;p1e2t, . . . ,p4e2t!5~2l!v4,0,

V2~2t;pe2t!5~2l!v2,1~2t ! ~A2!

where

v4,051 ~A3!
1-13
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e2tv2,1~2t !

5E
0

`

dt8
1

2Eq
FD~qe2(t1t8)!

q21m2
2

D~qe2(t1t8)!

q2

1m2
D~qe2(t1t8)!

q4 G2
1

2
e2tT0E

q

D~q!

q2

1tm2
1

2Eq

D~q!

q4

5
1

2Eq
F12K~qe2t!

q21m2
2

1

q2
1„12K~qe2t!…

m2

q4 G
1tm2

1

2Eq

D~q!

q4
~A4!

where we used

d

dt
K~pe2t!5D~pe2t! ~A5!

andT051/2 is defined by

d

dt
~e2tT0!5e2t. ~A6!

2. Order l2

Up to orderl2 we find
06501
V6~2t;p1e2t, . . . ,p6e2t!

5~2l!2v6,0~p1e2t, . . . ,p6e2t;m2e22t! ~A7!

V4~2t;p1e2t, . . . ,p4e2t!

5~2l!v4,01~2l!2v4,1~2t;p1e2t,•••,p4e2t;m2e22t!

~A8!

V2~2t;pe2t!

5~2l!v2,1~2t !1~2l!2

3v2,2~2t;pe2t,2pe2t;m2e22t!. ~A9!

We must start from the six-point function:

e22tv6,0~p1e2t, . . . ,p6e2t!

5
12K~~p11p21p3!e2t!

~p11p21p3!21m2
15 permutations. ~A10!

This implies the asymptotic form

A6~2t;q,2q,0,0,0,0!5~2l!2
6„12K~q!…

q2
. ~A11!

Hence, we obtain
v4,1~2t;p1e2t, . . . ,p4e2t;m2e22t!

5E
0

`

dt8(
i 51

4
D~pie

2(t1t8)!

pi
21m2

e2(t1t8)v2,1„2~ t1t8!…1E
0

`

dt8
1

2Eq
FD~q2(t1t8)!

q21m2
e22(t1t8)

3v6,0~qe2(t1t8),2qe2(t1t8),p1e2(t1t8), . . . ,p4e2(t1t8)!2
D~qe2(t1t8)!

q2

6„12K~qe2(t1t8)!…

q2 G
2t

1

2Eq

D~q!

q2

6„12K~q!…

q2

5(
i 51

4
12K~pie

2t!

pi
21m2

e2tv2,1~2t !1
1

2Eq
F12K~qe2t!

q21m2 S 12K„~p11p21q!e2t
…

~p11p21q!21m2
12 permutationsD

23
„12K~qe2t!…2

q4 G23tE
q

D~q!„12K~q!…

q4
~A12!

where we used

D~qe2t!„12K~qe2t!…52
d

dt

1

2
„12K~qe2t!…2. ~A13!

The expression forv2,2 is omitted.
1-14



ce

BOOTSTRAPPING PERTURBATIVE PERFECT ACTIONS PHYSICAL REVIEW D67, 065011 ~2003!
APPENDIX B: CONSTRUCTION OF Tk„t…

The k-th order polynomialTk(t) is defined by

d

dt
„e2tTk~ t !…5e2ttk. ~B1!

By substituting

Tk~ t !5(
l 50

k

cl t
k2 l ~B2!

into the definition, we obtain a recursion relation forcl
whose solution is

cl5~2 ! l
k~k21!•••~k2 l 11!

2l 11
⇔c05

1

2
, c152

k

4
,

c25
k~k21!

8
, . . . , ck5~2 !k

k!

2k11
. ~B3!
06501
Using Tk(t), we can construct a map from ann-th order
polynomialPn(t) to anothern-th order polynomial:

Pn~ t !5 (
k50

n

Pn,kt
k→Qn~ t !5 (

k50

n

Pn,kTk~ t !. ~B4!

By definition of Tk(t), this has the obvious consequence

d

dt
„e2tQn~ t !…5e2tPn~ t !. ~B5!

An important property of the above map is its invarian
under translation. Namely, if the polynomialPn(t) maps to
Qn(t), then the shifted polynomialPn(t2Dt), whereDt is a
constant, maps to the shifted polynomialQn(t2Dt). This
implies that the map fromPn(t) to Qn(t) is defined indepen-
dent of the choice of the origin of the variablet.
ed
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