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We study the exact renormalization group of the four dimensigfiaheory perturbatively. We reformulate
the differential renormalization group equations as integral equations that define the continuum limit of the
theory directly with no need for a bare theory. We show how the self-consistency of the integral equations leads
to the determination of the interaction vertices in the continuum limit. The inductive proof of the existence of
a solution to the integral equations amounts to a proof of perturbative renormalizability, and it consists of
nothing more than counting the scale dimensions of the interaction vertices. Universality is discussed within a
context of the exact renormalization group.
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I. INTRODUCTION renormalization group equations to a form more manageable
for perturbative studies. Polchinski used his form of equa-
Renormalization theory has more than fifty years of his-tions to obtain a quantitative estimate for how the flows from
tory starting from the studies of ultraviolet divergences inbare theories approacB(«). Strictly speaking the theory
QED. Originally thought of as a cookbook recipe for obtain-consideredg?*, has no ultraviolet fixed point, biB(«) ex-
ing finite results free of ultraviolet divergences, the idea ofists perturbatively, and the distance between the flows and
renormalization took a long time for its full acceptance until S(«) has been shown to behave a@s®, wheret is the
its physical meaning was clarified and its relation to univer-logarithmic momentum scale so that the physical cutoff mo-
sality in critical phenomena was understood. In his series ofnentum ise' times the physical renormalization sc4li].
lectures]1] Wilson explains how to construct the continuum Polchinski’'s work brought Wilson’s physical insight into
limit of a quantum field theory by taking a classical statisti- renormalization to the perturbative renormalization theory
cal model to the limit of criticality. The so-called scaling which had been mostly diagrammatic and calculational.
functions are what particle physicists call renormalized The purpose of the present work is to simplify the pertur-
Green functions from which scattering cross sections of elbative study of the exact renormalization groallgRG) even
ementary particles can be computed. further by reformulating the ERG differential equations as
One thread of development, lattice simulation of fieldintegral equations that define the continuum li{te) di-
theory, was started immediately after Wilson’s work onrectly. As is well known, an integral equation is nothing more
renormalization, and the field thrives to this day. Anotherthan a differential equation together with an initiébr
development started somewhat later when Polchinski appliedsymptoti¢ condition, but the rewriting brings a great advan-
Wilson’s exact renormalization groufeRG) equation to the tage in this case. The advantage is that the integral equations
study of perturbative renormalizatid@]. incorporate “renormalizability” of the theory manifestly. If
The central idea in Wilson’s renormalization theory is thethe equations have a solution, the theory is renormalizable
theory space that consists of all possible theories with a fixedutomatically. The issue is not the ultraviolet finiteness of the
cutoff scheme. Flows of the renormalization group are gentheory, but it is the existence of a solution.
erated in the theory space under the rescaling of distance. To The existence of a solution to the integral equations is
keep track of the renormalization group flows exactly, theproved using perturbation theory. A recursive solution of the
theory space must contain an infinite number of dimensionintegral equations is what we call perturbation theory. The
allowing for all possible interaction vertices. But only a finite integral equations are self-contained, and can determine
dimensional subspace, denoted3{s°) in Sec. 12 of Ref. themselves. Using the word “bootstrap” as a mnemonic for
[1], is of fundamental importance. This is the space of flowsthe self-determining nature, we can say that the integral
originating from an ultraviolet fixed point. It is parametrized equations bootstrap themselves.
by a finite number of parameters, called relevant parameters. A careful examination of the original work of Polchinski
Any theory in this subspace can be traced backward along laas been made in Ref4] where the issues of perturbative
renormalization group flow to the fixed point, and the theoryanalyticity, unitarity, and causality have also been studied.
gives a continuum limit. In more recent literature, the theo-The emphasis of the present paper is on the new formulation
ries in S(«) are called(quantum perfect actions, implying of the ERG in terms of integral equations and on the new
that they contain the physics of continuous space despite thiasights given by the formulation, and we do not aim at the
use of a finite momentum cutoff. For a review on perfectrigor exemplified in Ref[4]. Our “proof” in Sec. IV is a
actions, see Ref3] and references therein. “physicist's proof” which should be acceptable to almost
In Ref.[2] Polchinski rendered Wilson’s exact differential any physicist.
The present paper is organized as follows. In Sec. Il we
review the perturbative treatment of Wilson's ERG by
*Email address: sonoda@phys.sci.kobe-u.ac.jp Polchinski. In Sec. Ill we introduce the reformulation of the
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ERG as integral equations. In Sec. IV we prove inductivelytion action S;,; is given, the generating functional of the
that the integral equations have a solution. In Sec. V we&sreen functions is obtained as
discuss universality in the context of the integral ERG equa-

tions. Finally in Sec. VI we conclude the paper with com- 1 K(p) 5 P
ments for further developments of the integral equation ap- Z[J]=ex Ef SR 5=
proach. p p2+m? 6¢p(p) dé(—p)

IIl. EXACT RENORMALIZATION GROUP EQUATIONS X @ Sl S+ p)(=P)#(P) (5

$=0

A large amount of literature is available on the exact _ o
renormalization grougsee Ref[5] and references thergin and the 2-point Green function is given by
and the main purpose of this section is to set the notation for
the rest of the paper. Please note that unlike what is common (d(P1) - - d(P2n-1) D)2,y
in the field theory literature, a rescaling is done after each
step of renormalization to keep the momentum cutoff con- _ EJ K(p) g g
stant. 2J)p p?+m? 6¢(p) od(—p)

A. Brief review of Polchinski’s rendition of Wilson’s X $(py) ... ¢(p2n_1)¢e—5m[¢] . (6)

differential ERG equation $=0

We consider &, invariant scalar field theory in four di-
mensional Euclidean space. The propagator of the scal
field ¢ is given by

. Since the cutoff functiorK is fixed, a theory is specified
%y the choice of the squared masg and the interaction
actionS;,;. The latter is characterized by an infinite number

K(p) of interaction vertice§),,}, and the theory space is infinite
IR ) dimensional.
ps+m The ERG transformation by scal®!, where At is an

infinitesimal positive constant, is defined so that the momen-
where the momentum cutoff functid(p) is a smooth sca- tum p corresponds to the higher momentyra*! under the
lar function that is monotonically decreasing i and has  transformation. In the case of free theory, all the vertices
the property {V,} vanish, and only the squared mass scales as

K( )_ 1 for p2< l, (2) m2_)m2e2At (7)
P=10  for p?>22.

under the renormalization. In the presence of interactions, we
The cutoff functionK (p) is fixed once and for all for all the must transform the verticgs’,,} to {V,,+AV;,} so that the

theories in the theory space. Green functions are related by
Each point in the theory space corresponds to an interac-
tion action given in the following form: (d(p1) -+ P(P2n-1) D)m2,y
=Sl #] =Nyt g(p,ed) .. -¢(p2n—leM)d’>m2e2A‘,V+AV
= ®
:nZl (2n)! where we define
y2nE4_ 2n. (9)

The infinitesimal change of the interaction action
@) AS;[ #] corresponding to the infinitesimal change of the
interaction verticegAV,,} was given by Wilson in Ref.1].
In this paper we will consider the particular form given by
Polchinski in Ref[2]:

f(p)= f 4 p
Jp = ) @ . 007

27)* _

= AS‘”‘_MZL p2+m?
is used for the momentum integral. We will caly, an in- 5
teraction vertex from now onp(p) is the Fourier transform OSnt  OSim 6" Sint 10
of the scalar field in the momentum space. Once the interac- SPp(—p) dp(p) SPp(p)Sp(—p)]-

wherep,,=—(p1+ - +pPon_1), and the momentum inte-
grals are taken only over then2-1 independent momenta.
The notation
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[This is exactly the same as Ed.8) of Ref.[2] rewritten in
our notation] We can obtain the ERG equations for the in-
dividual vertices{V,,} by substituting the perturbative ex-
pansion(3) into the above.

Let us introduce a logarithmic scale paramdter define
a one-parameter family of verticg¢¥,,(t)}. At t, the squared
mass is given byn?e?'. Polchinski’s equatior{10) implies
the following differential equations for the vertices:

d . t t
a(e YanVon(t;pa€', . . . p2n€)))

[(n=1)/2]
= e Y2+t t:p, et ...,
kzo pa%ms: 2k+1) (G P Pi..
I+J={2n}

xe', = (p+ - +p,,,)e)

A((py - +piy,, )%

(Pt +Pi,, ) +m

X e*)/z(nfk)tvz(n_k)

X(t;py,€, - .-

I

X (t;q€',—qe',p €', ...

t t
Py ig-1® (Pt P, )€)

1

A(qe')
*3

q2+m2

e V20 V1)

P2n€") (11)
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B. Conventional use of the ERG equations

In Ref.[2] the ERG equatioril0) was used to prove the
perturbative renormalizability of the* theory. As the start-
ing point of a renormalization group flow we choose a bare
theory defined by the squared mas%?® and the vertices

Va(to;p)=ap(to;N) + Moz, (to;N) + p?z4(to;\)
(1

Va(toiP1, - - - P4 =(—MN[1+2,(tg;N)] (15

Von=6(t0:P1, - - - P2n) =0 (16)

wheret, is a largenegativeconstant, an@;, z,, z,, and
z, are perturbative series in the coupling constantVe run
the ERG to obtaifV,,(t=0)}. If {V,,(0)} exist in the limit
to— —, we call the theory renormalizable. Polchinski
showed that the limit exists if we choosg, z,, z,, andz,
as appropriate power series andt,, and that the ap-
proach to the limit behaves a&®with power corrections in
to at each order of perturbation theory.

In the next section we will introduce a more direct way of
obtaining the continuum limif),,(0)}. We will not define
the continuum limit by taking the infrared limit of a bare
theory as above, but we will define it in terms of integral
equations that the continuum limit must obey. The integral
equations construcB(ec) without the help of any bare
theory.

where the sum over partitions is the sum over all possible

ways of splittingp, - . . ,ps, into two groups, and andJ
stand for the groups of R+1, 2(h—k)—1 elements,
respectively. Later we will introduce a shorthand notation
p, to mean either the list ob,l, oo Py, OF the sum

Pi,t o TP, The same goes fop;. The function
A(p) is defined by

A(p)=-2p®
(p) p dp?

K(p). 12

The Gauss symbdl(n—1)/2] denotes the largest integer
less than or equal ton(-1)/2.

Two comments are in order:

(1) Given the requiremen(8), the ERG transformation is

IIl. CONSTRUCTION OF INTEGRAL EQUATIONS

We construct integral equations from the differential
equation(10) [or equivalently Eqs(11)] by following a stan-
dard procedure. An integral equation is a combination of a
differential equation with an initial condition, and in our case
it is the ultraviolet asymptotic behavior of the vertex func-
tions that plays the role of the initial condition.

If the theory had a good honest ultraviolet fixed point, the
asymptotic behavior of the vertex functions would be simply

as t—+x

17)
where{ V3, } are the fixed-point vertices. The perturbatiyé

Von(—t;P1, -+ - ,P2n) = Van(P1,s - - - P2n)

not uniquely determined due to a potential change of fieldsin€0ry does not have an ultraviolet fixed point, and we must
and it depends on a choice of convention. Here we hav&eplace the above asymptotic conditions by alternative con-

adopted a particular convention so that all the renormalizaditions. We impose that the vertices be given by
tion effects, including the renormalization of the squared . e
mass and wave function, are included in the renormalization Von(—t:P1, - - \Pon) = Aon(—tiP1, - . . P2n)

of the interaction vertice§),,}. +m2e 2B, (—t:py1, - . . ,Pon)
(2) The constany,,, defined by Eq(9) is the scale dimen-
sion of the vertex/,,. For example, we find e (18

Y2=2, ¥Y4=0, Ye=-2, yg=—4,.... (13

The left-hand side of the ERG equati@til) implies that the
effect of V,,(0) on the verticeV,,(t)} at the logarithmic
scalet is of ordere¥2n', Hence)), is relevant)), is marginal,
andV,,~¢ are irrelevant. This point will be explained again
at the end of Sec. Ill.

ast— + o where

(1) The right-hand side is an expansion in powers of

2,—2t

m“e
(2) A,, andB,,,, independent ofm?, are finite order poly-
nomials oft at each order in perturbation theory.
(3) Ay, andB,,, are local, i.e., they can be expanded in
powers of momenta if the momenta are small compared to 1.
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We will construct integral equations using the above ase?y,(—t;pe™!)
sumptions, and in Sec. IV we will justify the assumptions
using the integral equations themselves.

— i 2t . —t 2(t+T . —t-T
Here is a comment on the sign convention for the param- = lim [ (€*Vy(—t;pe™) =" Dyy(—t-Tipe 1))
etert. The parameterwas introduced in the previous section T
to denote the logarithmic renormalization scale. It grows as d
we go downstream toward infrar_ed on the_ RG flow. Sinqe we +e2M DA (—t—T;0)+ p2—2A2( —t—T:p)
will need to go upstream to write down integral equations, dp 020

we will mainly deal with negative in the rest of the paper.

Since we easily forget thatis negative, we denote it explic- ) .
itly as —t so thatt>0 when we go upstream on the RG flow. +mBy(—~t-T;0) (22
The asymptotic behavidil8) implies in particular
N - , d Va(—t;piet, ... pse )
eV (—t;pe )—e Ay —t;0)+ p——As(—t; . _ _
d=tipe ) A7HOP dp? 2A=tP) o =lim[(Vy(—t;pie™", ... pse™)
- T—ow
2 4
TmB,(~t0) 19 —Vu(—t —Tipie™T, .. peT )
A —t—T
Va(—tipie ™, ... pae ) —A(~1:00,00 (20 Ad—17T0.0.00] 29
Yont i —t -t
eanty, (—t;pe’, ... pppe H—0 for 2n=6 2 Von(—1ps€ S, - Pane )
(22) = lim [€/20'V(—t;p1e ", ... p2ne ")
T—oo
ast—+ where the corrections are suppressed eby' —eVnt DY, (—t—T;pe T, ... poe U
(with powers oft). Here we recall that the squared mass that (24)
goes with the vertice§V,,(—t)} is m?e~2, and the above
expansions are taken in powers wfe 2! and momenta
pe t. The last equation is valid becauseygf,<0 and the
assumed polynomial behavior ¥%,(—t). The differences of the vertices on the right-hand sides are
The above asymptotic behavior makes the followingobtained by integrating the differential ERG equatidhs)
equations ftrivially valid: of the previous section. We obtain
2t —t ; T 1] A2(t+t') ' —t—t’ A(peitit,) 2(t+t) ' —t—t’
e V(—t;pe )= Ilim dt’y e Vo(—t—t';pe )ﬁe Vo(—t—t';pe )
Tow| JO pc+m
1 A(qe_t_t,) —t—t’ —t—t’ —t—t’ —t—t’
+—fﬁv4(—t—t’;qe ,—qe " ,pe " ,—pe )
2 a g°+m
+e2(t+T)A2( —t_T)+DZCZ(_t—T)+mZBz(_t_T) (25)
T ‘ ’ ’ A 'e_t_t, ’ ’
Vi(—t;pre7h ... pae Y= lim f dt’! >, ey, (—t—t';pe ! )%m(—t—t’;ple“‘t Pt
To| JO =1 p+m?
1( A(ge Y , , , , .
+—f RM9E ) g2ty t-tige t —ge U pge - pae )
2 q q2+ m?
+AL—t=T) (26)
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[(n—1)/2]

&2V~ tipre!, ... Pone )= Iimf v X &2 OV (—t=t';pie )
T 0’0 k=0 partitions:
I+J={2n}
A(pe v 1 A(gett
xueyszk)(‘“/)v _(—t=t';peT )+ Memw)(t“’)
2 B 2(n—k) 1Py 5 > >
pr+m a g*+m
XVomen)(—t—t';q0e Y, —qe " pie Y, L) (27)
|
where we have introduced the notation and the short-hand notatiops,p; have been used.

The above integral equations are not self-contained yet,
since the right-hand sides depend on the asymptotic forms
A,, B,, C,, andA, which are known only after the left-
hand sides, i.e), and},, are known.
A crucial observation is to be made now: the requirement
(28) that the limitsT— + to exist for the above equations de-
termines the asymptotic forms. We will explain this in the
remainder of this section.
For largeT, we find the following asymptotic behavior
As(—t)=A4(—1;0,0,0,0 (29 using Eq.(18):

Ax(—t)=Ay(—1;0), By(—t)=By(-t;0),

1%
Col—t)=—Ax(~t;p)
&p P2=0

17 A(qe’ v ")
_f —V4(_t_T;qe7t7T,_qefth,pefth’_pefth)
2Ja g2+ m?
A(q) 1/ d A(g)
—>Eez“”)f ; Ad—t=Ti0,-0,0,0+p*> —J ” A4(—t—T;q,—q,p,—p))
a9 dp®’d q 020
1 1 1
+m2—f A(Q)| —B4(—t—T;q,—q,0,00— —A,(—t—-T;q,—q,0,0 |, (30)
2J)q 92 q*
11 Afge™™D) —2(t+T —t-T —t-T —t-T —t-T
—| ————e 2 DYs(—t-Ti;qge " T,—qe " Tpe T, L pet )
2Ja g2+ m?
10 A) _
2| —=A(-t-T;q,—9,0,0,0,0. (31)
2)q

In deriving this it is important to note that(q) is nonvanishing only for &|q|<2.
The above asymptotic behavior determinesttdependence of the asymptotic fors, B,, C,, andA, so that the limit
T— +o0 of the integral equations exist. We must therefore obtain

d 1A
—a(GZtAz(—t))=62t§fq ;g)A4(—t;q,—q,o,0) (32
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HIDENORI SONODA

dB —1JA 1B ; 0,0 1A
_a 2(_t)_§ q (q) ? 4(_t1q1_q1 1)_3 4

(—t;q,—q.0.0)) (33
14 [ Aa) _
_aCZ(_t)_E(y_pz . q2 A4(_t1q1_qvp!_p) o
(34
d 10 Aq) _
_aA4(—t)=§fq 7 Ag(—t;9,—q,0,0,0,0.
(39

PHYSICAL REVIEW D67, 065011 (2003

constant, and together witin? it parametrizes the space of
continuum limit S(e). We will discuss more about these
finite constants in Sec. V.

The determination of,(—t) by Eq.(36) needs an expla-
nation. As it is, the integral over is ambiguous by a con-
stant, which implies thah,(—t) is ambiguous by a constant
multiple of e 2'. From Eq.(19) the larget behavior of the
two-point vertex at zero momentum is given by

Vo(—1;0)—Ay(—t)+m?e 2B,(—t). (40)

Hence, the ambiguity of order 2! in A,(—t) has the same
order of magnitude as the,(—t) term. We wish to remove
the ambiguity in such a way that only the term proportional
to m? gives the order™?' contribution to the asymptotic

Thus, the asymptotic forms are determined by the asymptotigyrm of 1),(—t;0) above. This choice is equivalent to the

forms of the higher point vertices up teindependent con-
stants. Hence, we obtain

A
D p(~t'0-,00

t 1
eZtAz(—t):—f dt’e? —f
2Jq q

(36)

t 1 1
Bao(—1)= fodt'ELA(Q)( —;BA—t’;q,—q,0,0)

+B2(0) (37

1
+—4A4(—t’;q,—q,0,0)
q

1d

t
CZ(—t)Z—fodt Ed_pz 0 q

A(q)
2

+C,(0) (39
p2=0

XAL—t";09,—q,p,—p)

t o1 Adg) ..
Ay—t)=— Odtz q?AG(_t :q,—(,0,0,0,0

+A4(0). (39)

Here,B,(0), C,(0), andA,(0) aret-independent constants

mass independent scheme, and it turns out that with this
choice the massless theory is giveng=0 [11]. To com-
plete the definition ofA,(—t), we must first define &th
order polynomialT,(t) by the condition

% (e Ty(t))=e”'tk, (41)

Imposing thatT,(t) be a polynomial, we have removed the
potential ambiguity of ordee™?'. Now, given a power series
expansion int

1( A(g) .
Ef > Al(—1,0,-0,0,0= > t“P, (42)
a q k=0
we defineA,(—t) unambiguously by
Ao(—D)== 2 T(DP. (43

which cannot be determined by the differential EqQs.This is the precise meaning of E(B6). For a concrete ex-

(33),(34),(35). The constant8,(0),C,(0) have to do with

pression of the polynomial(t), please refer to Appendix

finite renormalization of the squared mass and wave funcB.

tion, respectively. The constart,(0) is the self-coupling

We have thus obtained the following integral equations:
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A(pe tY)

eZ(t+t’)V2(_t_tr;peftft’) . 5
pc+m

eZtVZ(—t;pe*t)zf dt’
0

! ! 1 ’
ey (—t—t';pe )+ §f A(ge™™")
q
1 ’ ! ’ ’ 1
><[—V4(—t—t’;qe‘t‘t ,—qe 7t peTtt —pe ! )——q2

q2+m2

’ ’ ! 1 (9 ’ !
XA (—t—t";qe !, —qe !, 0,00—p2e 2 = A, (—t—t";qe ", —qe !, p,—p)

q° 9p? b=
220ty L —t—t' —t—t’ 1 —t—t’ —t—t’
—mee ( ) _284(_t_tl,qe 1_qe !010)__4A4(_t_t”qe '_qe o ’O’O)
q q
+eXAy(—t)+p®Cy( —t) +m?By(—1), (44)
4 Y
=] , ’ A e t-t ’ !
Vi(—t;pet, ... ,p4e*t)=f dt’| >, 2ty (—t—t';pe )(pzl—z)Vzl(—t—t’;plffH P
0 =1 p; +m
1 ’ 1 ’ ’ ' ’ !
+ _f A(qe—t—t )[ 5 ze—2(t+t )Ve(_t_t/;qe—t—t ,_qe—t—t 'ple—t—t . ,p4e—t—t )
2Jq gqc+m
1 2 ! ! !
— e 2OAg(—t=t';qe” ", —qe 1,0, ... 0 | +AL(- 1), (45)
q
[(n-1)/2] et
* , . A(pe )
&/ Vyn(—tipe ,p2ne‘t)=f dt’[ 2 > @y (—t-tipe )(pzl—z
0 k=0 partitions: oh +m
I+J={2n}
/ L[ A(geY)
X @Y2(n-k(t+t") Ct_tlon it _f ae )
e Vom-ig(—t=t";pse )+2 0
XeYZ(n+1)(t+t’)v2(n+l)(_t_t!;qe*t*t’,_qeft*t’,ple*t*t’, . )} (46)

where A,(—t) is given by Egs.(36),(43), B,(—t) by Eq. sides of the integral equations have two parts. The first part
(37), Co(—t) by Eqg. (38), and A4,(—t) by Eqg. (39. The consists of products of two vertices. For any external mo-
constantsB,(0), C5(0), andA,(0) are input parameters t0 mentump, A(pe ') vanishes for large’ since A(p)=0

be discussed further in Sec. V. These integral equations agg, Ip|<1. Hence, the first part is finite upon integration
self-contained in the sense that they admit a perturbative s;,ert’ The second part consists of a loop integral over the

lution as explained in the next section. . momentumg. For larget’ the integrand of the’ integral
Before we end this section, let us make two observations. o ) %
either by the exponential facteY2cn+1" or

We first observe how the relevance, marginality, and irrel-Pe€haves as~= _
evance of vertices manifest themselves in the above integr® the subtractions of asymptotic forms. Thus, the second
equations. We notice that thenzoint vertexV,,(—t—t’)  Partis also finite upon integration over.
always appears multiplied by the exponential factor
e’2n*t) Thus, at scale-t the effect of the two-point ver-
tex V,(—t—t’) at scale—t—t’ is of ordere?'s>1 if t’ In this section we wish to show that the integral equations
>1, and it is relevant. The effect of the four-point vertex (44)—(46) derived in the previous section determine the ver-
Va(—t—t') at scale—t is unsuppressed or marginal. But the tex functions order by order in perturbation theory.
effect of V,,=¢(—t—1t") is only of ordere¥2t’ <1, and it is
irrelevant.

We also observe the mechanism behind the finiteness of To solve the integral equation(g4)—(46) for the vertex
the integrals ovet’ in the integral equations. The right-hand functions{},,(t=0)} at scalet=0, we must determine the

IV. SOLUTION OF INTEGRAL EQUATIONS

A. Flow of perturbative solutions
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vertex functions along the entire renormalization group flow 1-K(p)
from t=+o leading up to the end poirit=0. Each renor- -
malization flow is parametrized by the squared naésand p*+me

the constant8,(0), C,(0), andA,(0). Inorder to solve the

integral equations perturbatively in powers of the coupling ]
constant\, we must assume that these constants can be ekOr example, we find
panded in powers of as

” e Ve(—t;preh ... peeY)
B2(0)= 2, (—\)*z (47) t
k=1 1-K((p1+p2tpa)e”
=(—\)? (P P2+ o) )+9 permutation
- " (P1+Pat pa)+m?
Co(0)=2, (~M)'Z (48) (54
A4 0)= —A+k21 (—n)tkz( (49 e *Wy(—t;pre ..., pge Y
wherez{, 29, andz{" are arbitrary constants. The choice o[ 1= K((p1+p2tpa)e)
of these constants correspond to a convention or a renormal- ~{— ) (D1t Pyt pa)2t m?
1 2 3

ization scheme as will be discussed more fully in Sec. V. One
choice convenient for explicit calculations is our version of 1—K((pa+ps+ps)et)
the “minimal subtraction” scheme defined by X

> 5 1279 permutation);.
(Pa+Pstpg)°+m

B2(0)=C5(0)=0, A40)=—N\. (50) (55)
In the following discussion, however, we will not choose the

minimal subtraction scheme, and we will keep our choice of . ) .
B,(0),C,(0),A,(0) arbitrary[12]. We can obtain these by solving the tree-level integral equa-

Let us recall the recursive solution of an integral equatiorfONS

Yont ot -t —t
0=+ [ dyGoy)ty)? (5 & Va(TEPE P )
. [(n—1)/2]
whereG is a known integration kernel. The recursive solu- ~— fo dt'{ kzo par%ons. ez (7t
tion givesf(x) as a power series in: I+J={2n}
" e ApeY) :
f(X)=)\+2 )\”"fk(x). (52) XVour1)(—t=t';pe =t . . @Y2(n-ky(t+t’)
k=1 pi+m

If f(x) is determined to ordex" !, we can use it to com- Y

pute the right-hand side up to ordef. Thus, f(x) is ob- XVam-iy(—t=t";pse ) (56)
tained to ordei". The recursive method works because the

integral is quadratic ir.

2 3 e
The structure of our integral equatiot®)—(46) is simi- order 2 order A" order A

lar to the simple integral equation above. The starting point v v v v 3
of the perturbative calculations of the vertices is the four- 2 *21_’ fi*% t
point vertex), at order\: \
Va(—tp1, .. Pa)=Ag(—)=—N. (53 K 4v40\‘::-..,_ vf‘i :4’2 t2

Everything bootstraps from this. Y] \ v_, v

Let us briefly sketch the perturbative procedure leaving ~ © e B T 8T
details to the next subsectioft.owest order calculations are \f
given in Appendix A} Suppose we have computed all the y,  start here _ tree level
vertices up to orden""! at which onlyV;, ... V,, are 8 ... % independent of t
nonvanishing. At orderA"(n=1), we must start from :
Vam+1) Which is given explicitly by the tree-level Feynman '
diagrams withn vertices (-\) andn—1 internal propaga- FIG. 1. Flow of perturbative calculations: every vertex upstream
tors is necessary to determine a vertex.
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where there is no loop integral ovgron the right-hand side. B, (—t;p;, ... ,pan)
The dependency of the vertices is such that we need only the
tree-level vertices),, ... ,V,, to construct), 4y at the o P
tree level. , _ =2 (=) oo l(—tipas - P20 iM?)
The next vertex to compute at orde? is VV,,,. The right- k=0 am m2=0
hand side of the integral equatié#6) has two parts. To get (61)
an order\" contribution from the first part, we need, to
order\, VytoN? Vstor3 ... Vyu_1ytoN""%, andV,,  From Egs.(19),(20) we also obtain
to order\"" . All these suffice to be lower order ik than
A" since the first part consists of a product of two vertices. o
To get an orden" contribu.tion. from Fhe second part, we  A,(—t)= > (=) v,,(—1;0,0;0) (62)
needV; 1) to order\", which is obtained by the previous k=1
step. Proceeding analogously we can calculate
Vao(n-1)» - - - V> Up to order\".
The flow of perturbative calculations sketched above is
shown in Fig. 1. We will elaborate on this further in the next
subsection.

(63

” 9
Bz<—t)=k§l (—x)kﬁvz,u—t;o,o;m%

m2=0

[

B. Perturbative proof of the A,t dependence of the vertices : K J
Col=0)=2, (=N prat Ll

The purpose of this subsection is to prove the existence of
a perturbative solution to the integral equatigs4)—(46) by
proving the following\,t dependence of the vertex func-

p?=0

tions: -
As(—t)=—N+ > (—N) Ko, (—1,0,0,0,0,0. (65
k=1
Von(=tP1, - -+ \P2n) The inductive proof of thex,t dependence(57) is
o straightforward. The dependence is valid for the starting
_ )Ltk Dy, ... P m2e 2 point (59 of induction. We wish to prove the V§|I.dlty of the
k§=:o( ) vzni(~tipa Pzn ) \,t dependence&57) for vy, assuming its validity for all
(57) Uonr k Upstream in Fig. 1 where either
n'+k’'<n+k (66)
wherev,,  (—t;py, - - . ,Pon;m?e2Y) is an orderk polyno-
mial of t. v, corresponds to thk-loop contribution to the  or
vertex. The only exception to E¢G7) is for n=1, for which
we take the\ independent part vanishing:
P P g n'+k'=n+k and k'<k. (67)

v2,0=0. (58 .
’ (In Fig. 1, each column has the sam¢ k. As we go toward
right, n+Kk increases. As we go ufk increases, and de-
Hence, forn=0, all the vertices),, vanish. The starting creases.There are three cases we must consider separately:
point of the perturbative solution is given by n>2,n=2, andn=1. First we consider the case>2. By
substituting the assumed results into the right-hand side of
the integral equatio46) for V,,, we obtain

\ S(e )
4 dimensional

U 4’0: 1 (59)

which is independent of the mass and momenta.

We note that by proving the abovet dependence we subspace

also prove the assumption on the polynomial behavior of the
asymptotic formg18). Equation(57) gives incretasing G,

increasing \ 4\%« B,
A2n(_t;p1: B ,Pzn) mze 2

m
- — N1k, —t:Pqg, ... 0o 0 60 FIG. 2. Flows of ERG: the perfect actions make a 4-dimensional
IZO ( ) 2n P1 P2ni0) (€0 subspace with coordinates®, B,(0), C,(0), A4(0).

065011-9



HIDENORI SONODA PHYSICAL REVIEW D67, 065011 (2003

Vonk(—tiP1, - . PoniMP)
. [(n-1)/2] k
:f dt{e(yznﬂ)t’ > > > U2(j+1),|(_(t+t');p|eft’im2972t’)
0 J=0 I=0 partitions:
I+J={2n

A(pe™") o

X——— Vo jy k-1~ (t+t');pse” ;m%e~21)
P +m

1 A(Q) , , '
+ _f %eyz“t Vamsnyk-1(—(t+t);q,—q,pe”, ... mPe” )| (68)

2)q g?+m?e ™ ’

The right-hand side contains only the lower order vertices for which the induction hypothesis is assumed valid. The first sum
gives at most ordet*, and the second loop integral gives onfy *. Hence,v,,  is an orderk polynomial oft.
Next we look at the special case=2. The integral equatiod5) gives

var(—tip1, ... Pasm?)
- S A(pe ")
=J dt{em'z > vp(—(tHt)pet —pietmPe ) — v (—(t+t)pie L peimPe )
0 i=11=1 pi*‘m

1 A(9) - —t’ —t'. 2a—2t’
+§fq{mve,k1(—(t+t )id,—d,pe ", ... pee s meT )

A(q)

- Us,k—l(—(t+t');q,—q,0,0,0,0;0} +v4x(—1;0,0,0,0;0. (69)
q

The first term in the integral gives at most ord&rand the second loop integral at most ortfer*. The last term is obtained
from Eqgs.(39),(49) as

A(q) N _
e vex-1(—1":9,—0,0,0,0,0;0. (70)

v
v4k(—t;0,0.0,0;0=2§")—f dt’—f
, A3,

Sincevgk—1(—t;0,—0,0,0,00;0) is apolynomial of ordekk— 1 by the induction hypothesis, the above equation implies that
v4x(—1;0,0,0,0;0) is an ordek polynomial.
Finally we consider the case=1. The integral equatiof¥4) gives
k—1 4t
! ’ ’ ’ A e t
e IE va(—(t+t');pe", —pe " ;mPe? )M
=1

vz,k(—t;p,—p;m2)=f dt’ R
0 p2+m

’ ! ’ 1 1 ’
Xvgp- (= (t+t');pe™", —pe " ;mPe 2)+ —f A 53— e
' 2)q g2+ mle 2t

! ! ! 1 ! 1
Xva-1(—(t+1);0,—q,pe”", —pe " ;mPe ) — ?em vak-1(—(t+1);0,—9,0,0,0— Epz

X9 ’ 1 2 J ’ 2
_204,k*l(_(t+t )1q1_q!p1_p10) __2m _204,k71(_(t+t )qu_qvoaoam )
ap p2=0 q (?m m2=0
1 d
+Em2v4,k1(—(t+t’);q,—q.0,0;0)] +vz,k(—t;0,0;0)+pza—pzvz,k(—t;p.—p;O)
p2=0

+mziv (—t;0,0;m?) (71)
gm2 2 T

m2=0

The first sum gives at most orde and the second loop integral owegives at most ordet*~*. The last line is obtained from
Egs.(36)—(38) and Eqs.(47),(48) as
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t (A
e (—1;0,0,0=— | dt'e® 5 (—mwkfl(—t’;q,—q,0,0;O) (72)
i 2 q qz :
d ) t 1 A(g) @ ,
—vak(—t;p,—p;0) =24 | dU'5 5 5 Vak-1(—t;0,—a,p,—p;0) (73)
ap pZ:O 0 q q &p p2:O
J 2 (k) ! rl J ' 2
——U2k(—1,0,0m?) =zn'— | dU'5 ] A(@)| = ——vak-1(~10,70,0,0m")
am 20 0 q q° dm m2—0
1 ’
_Ev&kfl(_t ;0,—0,0,0;0) |. (74)

The precise meaning of the integral on the right-hand side oétrized by—t which ranges from-<c to 0, and it is specified
Eq. (72) has been given in the paragraph leading to (g§): by a squared massi’ and three input parameteB,(0),

the integral converts into an ordef polynomialT(t). The  C,(0), andA,(0). We canregardm?, andB,(0), C,(0),
induction hypothesis implies that the left-hand sides in the;q4(o) as the four coordinates of the end point of the ERG
abO\_/e are all at most ordéf. Hence, we have proven that trajectory. Hence, the spa@«) is four dimensionalsee
voy is at most ordet*. Fig. 2. According to the usual understanding of tigé

. This concludes the inductive proof of the_t dependence theory, however, the continuum limit has only two param-
given by (57). We have thus proven the existence of a per-

bati " he | | ; ; eters: a squared mas¥ and a self-coupling constakt We
turbative solution to the integra equ.atlom)._(%): Since  ish to reconcile this discrepancy.
the integral equations define a continuum limit directly, we

have proven the perturbative renormalizability of thé CofIﬁgrlycotzgtaiiraﬁﬁéeg?égr) t\,cv%rrezlro;r::tse ntgo (g;eazzlf—
theory at the same time. ping ' P 2

C,(0), which we can take as zero in the minimal subtraction
scheme(50), are related to finite renormalization of the
squared mass and wave function, respectively.

In the previous section we have shown the existence of a Since the space of the continuum lirSig) is physically
perturbative solution of the ERG integral equatiddg)—  two-dimensional, there should be a two dimensional group of
(46). In this section we consider two issues related to univeriransformations which relate physically equivalent theories.
sality: first we will count the independent degrees of freedonMore concretely, we should be able to find an infinitesimal
of the continuum limit, and second we will consider how thechange of the parametens?, B,(0), C,(0), andA,(0) so
Green functions depen@r not depenglon the choice of a that the Green functions remain unchanged up to normaliza-
momentum cutoff functiorK (p). tion. Such a transformation should map an entire ERG flow

We first recall that each solution of the integral equationso another physically equivalent ERG flow. Without deriva-
(44)—(46) gives an entire trajectory of the ERG flow in the tion, we write down the infinitesimal transformatios,,
spaceS(«) of the continuum limit. Each trajectory is param- — V,,+ 6V, with the expected properties:

V. UNIVERSALITY

m2
ez‘fwz(—t;pet)=7;(|02+m2)+em2+e2tvz(—t;pet)[_77+2(1—l<(pet))(71+ : 2)}
p+m

—t _ —t 2
— (@~ tpe h R PELLTKPE ))(71+ o )

p2+m? p2+m?

- EJ K(ge™)(1-K(ae™)
q

5m2 —t —t —t —t
2 ot 7t ) Vel Ttae  —aeper, —pe) (75)

q

and, for h=4,
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¥t sV, (—t;pet, ...

[(n—1)/2]

-2 >

k=0 partitions:
1+J={2n}

- em? — (-t - 1f
e n— _ —_ ; e PR —
n p,2+m2 2(n—k) PJ 2),

em?

X{n-ﬁ- >
gc+m

wheree,  are infinitesimal constants.

The above transformation satisfies the following two

properties:

(1) The Green functions change only by normalization:

(@(P1)- - d(P2n—1) D) m2e—2t 1~ 1)
=(1-nn)
X(P(P1)- - P(P2n-1) PYm2(1+ ee-2, v+ vy~ - (77)

(2) The transformed verticed%,+ 6V,,) (—t) satisfy the
ERG equationg11) for the squared mass?(1+ e)e 2.

2n
Pae = .21 { - g+ (1-K(pie™")

ev20 ) qy(—t;pre”")

2] eYz(n+1)tV2(n+1)(—t;qe’t,—qeft,plef y e

PHYSICAL REVIEW D67, 065011 (2003

em’ Yort i at —t
p2+m2 e’an VZn(_tiple y o+ -5P2n€ )

n+

K(pie H(@-K(pe™)
pi +m’

K(ge™H(1—-K(ge™))
q2+m2

! !p2ne7t) (76)

A4(0)—(1—27)A4(0)

1(K(@@a-K
- ”iqu%(o;q, -9,0,0,0,0.
(81)

These infinitesimal transformations generate equivalence
classes of theories, and the space of the equivalence classes
is two-dimensional.

In Ref. [6] we will modify the ERG equations by intro-
ducing a running squared mass and an anomalous scale di-
mension of the field$. With the modification we can no
longer takeB,(0) and C,(0) as arbitrary, and the space

(For a proof of the above properties, please refer to RefS(«) becomes two-dimensional.

[6].)
The infinitesimal transformation defined by E¢g5),(76)

We now proceed to the next issue. We recall that univer-
sality usually means that the Green functions of the scalar

corresponds to the following infinitesimal change of the paield ¢ is unique up to normalization of the field. In other

rameters:

m?>—m?(1+e) (79
1
52(0)—>(1_7I)Bz(0)+€+77_EJqK(Q)(l—K(Q))
1
X (_77+6)_4A4(01q1_q10!0)
q
1
+n¥B4(0;q,—q,O,0)) (79
19
Cz(o)—>(1—77)C2(0)+77—775a—p2
K 1-K
Xf MAll(oaqv_qvp!_p)
q q p2:0
(80)

words the Green functions in the continuum limit do not
depend on how the continuum limit is taken. In the present
context universality demands that we get the same Green
functions no matter what momentum cutoff functi&i{p)
we use, as long as(p) is 1 for small|p| and O for largdp.
Under a change ok, the Green functions should change in
such a way that the differences can be compensated by ap
propriate finite change of the parameters and normalization
of the field.

Let us consider the Green functions computed with
the vertices{V,,(—1)} using a modified propagatorK(
+ 8K)(p)/(p?>+m?e~?Y), where the infinitesimal change
SK(p) vanishes foip|<1 and for larggp|. The change of
the Green functions due to the modified propagator can be
reproduced using the original cutoff functiét{p) but using
a different set of vertice§(V,,+ 8V,,) (—1)}:

(D(P1) ... d(Pan—1) D)k m2e—2t, (14 ) (~1)

=(¢(P1) - - - d(Pon-1) D)kt ok,m2e-2t 1) - (82)
The change{5V,,(—1)} of the vertices necessary for the
above equality is most easily obtained by a diagrammatic
consideration. By interpreting th&K not as part of a propa-
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gator but as part of a vertex, we find that the appropriatdarly convenient for formal studies. The continuum limit has

infinitesimal change of the vertices is given by

et sV, (—t;pret, ... .pone )
[(n—=1)/2]
=— > > ey (~tipe
k=0 partitions:
I+d={2n}
SK(pie™") _
Xz—zeyz(”‘k)tvz(n—k)(—t;pJe b)
py+m

eY2(n+ 1)tV2(n+ 1)

1 oK(ge™")
_EL—

q2+m2

X(—t;qe t,—qe pe’l, ...

P2n€ ). (83
It is straightforward to check that the vertice§Vs,
+6V,,)(—t)} satisfy the ERG equationg$ll) with the

squared mass’e 2.

The above change of the vertices corresponds to the f
lowing change of the input parameters to the integral ER

equation:

1 1
6B,(0)=— EfqﬁK(q)(?le(O;q,—q,O,O)

1
- EA‘l(O;q,—q,O,O)) (84
1 9 oK(Q)
6C,(0)=— > &_pz qTA‘l(O;q’_q’p'
-p) (85)
p?=0
11 6K
SAL(0)=— EL %AG(O;q, -q,0,0,0,0.
(86)

Hence, the ERG trajectory specified by, B,(0), C,(0),
and A4(0) in S(«) with the cutoffK+ 6K is equivalent to
the ERG trajectory specified byn?, (B,+ 6B,)(0), (C,
+6C,)(0), and A4+ 5A,)(0) in S() with the cutoffK.

Thus, with this equivalence, the space of theories in the con-
tinuum limit is independent of the choice of a momentum
cutoff functionK. In other words the continuum limit is uni-

versal.

VI. CONCLUSION

In this paper we have reformulated the exact renormaliza-
tion group equation of Wilson in terms of integral equations.
The advantage of the integral equations is that they define

to be constructed by first introducing a bare theory and then
taking the bare theory to a critical point. In comparison the
integral equation approach has two advantages: first we can
construct the continuum limit directly, and second the inte-
gral equation naturally provides a self-determining perturba-
tive procedure.

The integral equations are somewhat cumbersome to
write down due to the subtractions necessary for the two- and
four-point vertices. However, the analysis of the structure of
the perturbative solution is straightforward, and the proof of
the existence of a perturbative solution given in Sec. IV is
one of the simplest proofgf not the simplest of renormal-
izability of ¢* theory in the literature.

Some questions left unanswered in this paper will be an-
swered in a forthcoming pap€8]. In particular it should be
interesting to relate the ordinary renormalization group equa-
tions of the renormalized parameters and fields to the exact
renormalization group equations. The lowest order results

o given in Ref.[7] will be extended to all orders in perturba-
Clﬁon theory in Ref[6] by modifying the exact renormaliza-
ion group equation.

The exact renormalization group has been applied to a
wide variety of theories such as gauge theories, chiral theo-
ries, theories with spontaneous symmetry breaking, super-
symmetric theories, and theories with a real ultraviolet fixed
point. (For example, see Ref48,9] for applications to
gauge, chiral, and supersymmetric theoji&¥e expect that
the integral equation approach introduced in this paper will
further simplify the perturbative studies of those theories.
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APPENDIX A: LOWEST ORDER CALCULATIONS

We choose the minimal subtractidlS) scheme:

the continuum limit of a theory directly. So far the exact

renormalization group has been studied as differeribal

difference equations, and for perturbation theory it has been

used mainly as a method of regularization which is particu-

B,(0)=C,(0)=0, A40)=—A\. (A1)
1. Order A
At order A we find
Va(—t;pie™' ... pae ) =(—N)vgy,
Vo(—tipe ) =(=Nvyy(—t) (A2)
where
v40=1 (A3)
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e?'v,4(—t) Ve(—t;pre ! ... pe€ Y
f vl f (qe ") A(ge ) =(—=N)?vedpie ", ... pee sm’e ) (A7)
a  g%+m? q?
—t —t
et Va(—t;p1€ ", ... pa€ )
A(ge™ )| 1 A(q) _ _ _
" q* _EeZtTOL 9 =(=MNvaot (=N ?vas(—tpre”" - pse”sm’e )
(A8)
mzij A(q)
2Ja o Va(—tipe™)
f 1-K@eH 1o m? =(=Nvaa(—)+(—\)?
"2 9%+ m?2 _EJF( —K(qe ))F Xv, A —t;pe”t,—pe hmPe ). (A9)
+tm21f Ag) (A4) We must start from the six-point function:
2)q q4
—2t —t —t
where we used e “vedPie ... Pee )
1-K((py+p2tpse ) .
d _ e
- —ty — —t permutations.  (A10)
gr(pe )=A(pe ) (AS) (P1+ Pa-t Pa)2+m?
andT,=1/2 is defined by This implies the asymptotic form
d
a2t a2t
dt(e To)=e"". (AB) 6(1—K(q))
A(~0.70.0000=(~0)" ;== (AL}
q
2. Order A?
Up to ordern? we find Hence, we obtain
var(—tipieh ... pseimPe )
4 _ ’
A(p.e (t+t") . s 1 A (t+t") .
f E (r')'z—z)eZ(t+t )021(_(t+t1))+f dt/_f (q—) 72(t+t)
=1 pf+m ’ o 2Jq g?+m?
, ) ) ) A ef(t+t’) 6(1—K ef(t+t’)
xugdge ), ~ge (), pe 41, . pe-ttsin) - 210 ; L& (qz ))]
q q
B }J’ A(q) 6(1-K(q))
2 q q2 q2
4 _
1-K t 1-K(ge Y [{1-K +p,+
.S 2<p.2 ) ey, (— t>+f 2(q ) ((p, p22Q) )+2permutaﬂon}
=1 p?+m 2 +m? (p1+ Pyt q)2+m?
1-K(ge )? A(g)(1—-K
X (@ ) ]_34 (a)( : (@) L2
q q q
where we used
—t —t d )2
)(1-K(qge ))————(1 K(ge )" (A13)

The expression fov, , is omitted.

dt 2
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APPENDIX B: CONSTRUCTION OF T,(t)
The k-th order polynomialT(t) is defined by

d
g€ Tt =€tk (B1)
By substituting
k
Te(t)=2 ot (B2
=0

into the definition, we obtain a recursion relation for
whose solution is

(k(k=1)- - (k=1+1) 1 k
c=(-) i1 ©Co=5, C1= 7,
k(k—1) k!
Co=—g - G= —)kzk+l (B3)

PHYSICAL REVIEW &Y, 065011 (2003

Using T (t), we can construct a map from anth order
polynomial P,(t) to anothem-th order polynomial:

n n
Po(t)= 2 Pt = Qu(t)= 2 PriTult). (B4
By definition of T, (t), this has the obvious consequence

%(eZ‘Qna)):eZtPn(t). (B5)

An important property of the above map is its invariance
under translation. Namely, if the polynomiBl,(t) maps to
Qn(1), then the shifted polynomid,(t— At), whereAt is a
constant, maps to the shifted polynom@},(t—At). This
implies that the map fror®,(t) to Q,(t) is defined indepen-
dent of the choice of the origin of the varialile
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