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In three-dimensional quantum electrodynamics (QEith a massive gauge boson, we investigate the
Dyson-Schwinger equation for the fermion self-energy in the Landau gauge and find that chiral symmetry
breaking(CSB) occurs when the gauge boson méss smaller than a finite critical valug,, but is suppressed
whené> ¢, . We further show that the critical valug, does not qualitatively change after considering higher
order corrections from the wave function renormalization and vertex function. Based on the relation between
CSB and the gauge boson masswe give a field theoretical description of the competing antiferromagnetic
and superconducting orders and, in particular, the coexistence of these two orders in high temperature super-
conductors. When the gauge boson magsgenerated via the instanton effect in a compact Q&Dmassless
fermions, our result shows that CSB coexists with the instanton effect in a wide regionvbich can be used
to study the confinement-deconfinement phase transition.
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. INTRODUCTION QED; remains the same after including higher order correc-
tions to the DS equation.

Chiral symmetry breakingCSB) has been an active re- The above result holds when the gauge boson is massless
search field in particle physics for over 40 years sinceand but is expected to change when the gauge boson has a
Nambu and Jona-Lasinifil] used this idea to generate a finite mass. CSB is a low energy phenomenon bec#Rse
fermion mass in a four-fermion model. One fascinating char-+1)-dimensional W1) gauge field theory is asymptotically
acteristic of CSB is that it can generate fermion mass vidree [20] and only in the infrared region is the gauge inter-
fermion-antifermion condensation mediated by a strongction strong enough to cause fermion condensation. This
gauge field without introducing additional Higgs particles requires the fermions to be apart from each other. However,
which until now have not been found. The most conclusivevhen the gauge boson has a finite mass it cannot mediate a
evidence for the existence of CSB is provided by the phe!ong-range interaction. Intuitively, a finite gauge boson mass

nomenology of strong interaction, and CSB is widely be-IS repulsive to CSB which is achieved by the formation of

lieved to account for the pions. However, despite the vasfermion-antifermion pairs. Thus it is very interesting to study

amount of theoretical work on CSB, it is not yet clear whether CSB can occur in the presence of a finite gauge
whether it can be derived from quantum chromodynamic?oson mass.

o CSB is believed to be a nonperturbative phenomenon and
(QCD),f_p rllorln?_rlly d_ue ttlJ thlSI cqmplﬁ?s:ruggrBeboffthe SU hence calculations based on perturbative expansions are in-
gauge field. 1o gain valuable insight into elore we ca apable of establishing its existence. We will study CSB by
treat it completely, it is very suggestive to study some mode

) e ) _ ) eans of solving the nonlinear DS equation for the fermion
that is. similar to QCD while pemg S|mpler. Three- self-energy. Assuming tha&(p?)=1 based on a naive N/
dimensional quantum electrodynamics (Qff s just such a  gypansion, we get a single integral equation of the gap func-
model, and it has attracted intense investigaf@nr9] in the o 3 (p?). CSB is signalled by the appearance of a squarely
past 20 years. QEPwas shown to exhibit CSB5-9] and  integrable nontrivial solution. To solve the DS equation, we
confinemen{9], while at the same it is simple enough to be wj|l use bifurcation theory and the parameter imbedding
treated with high accuracy. In addition, it has been used tenethod, which not only avoids the convergency problem that
model the physics of many planar condensed matter systemgually appears in iteration methods but also can help us
such as high temperature superconducfb®s-18 and frac-  distinguish the different bifurcation points. After solving the
tional quantum Hall systen{49]. DS equation, we find that the massless fermions can acquire
The breakthrough in research into CSB in QERas a finite dynamically generated mass when the gauge boson
caused by a paper of Appelquist al. [5] who found that massé is smaller than a critical valué,. To testify to the
CSB occurs when the flavor of massless fermions is less thambustness of our result against the effecA¢p?), we will
a critical numberN,. They arrived at this conclusion by work in a nonlocal gauge in whicA(p?)=1 and the vertex
analytically and numerically solving the Dyson-Schwingerfunction can be safely replaced by the gamma matrices. We
(DS) equation for the fermion self-energy to the lowest orderwill show that, when the wave function renormalization
of the 1N expansion. Later, extensive analytical and numeri-A(p?) is included, the result we derive in the Landau gauge
cal investigationg6—8| showed that the nature of CSB in remains qualitatively unchanged.
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Our study of the influence of the gauge boson mass on the 1 N
fate of CSB not only is of theoretical interests but can be L= —Ffw+ > bo(d,—12,) Yy, 1)
used to understand important physical phenomena. Actually, 4 o=1
starting from the concept of spin-charge separation proposed o ) _
by Anderson[21], the effective low energy theory of high where the Fermi fieldy, is a 4xX1 spinor. The &4vy,
temperature superconductors is éllgauge theory10—-13.  matrices obey the algebfey, ,y,}=26,,, .
Superconductivity is achieved when the charge carrying ho- The full fermion propagator is
lons Bose condense into a macroscopic quantum state, which
generates a finite mass for the gauge boson via the Anderson- G Yp)=iy-pA(p?)+2(p?), (2)
Higgs mechanism. The low energy spin fluctuations are cap-
tured by the two-component fermions, which are originallywhere A(p?) is the wave-function renormalization and
massless since they are excited from thevave gap nodes 3 (p?) the fermion self-energy. The DS equation for the full
[11]. On the other hand, CSB is known to correspond tofermion propagator in momentum space is given by
long-range antiferromagneti®F) order, which can be seen
from the behavior of the AF spin correlation function at low d3k
momentum. If we use CSB to describe the AF order and useS‘l(p):Ggl(p)—J ——7.G(K',(p,K)D,,(p—k),
the gauge boson mass to describe the supercondu&itg (2m)
order, our result then leads to a competition between the (©)]
long-range AF order and the long-range SC order, which is _ _ )
one of the most fundamental issues in modern condensedherel’,(p,k) is the full vertex function an®d ,,(p—Kk) is
matter physics. As a compromise in this competition, wherthe full photon propagatoG, (p) is the bare propagator of
the mass of the gauge boson is less than its critical vélue the massless fermions. Substituting the propagépiinto
but is finite, there is a coexistence of these two orders in th&g. (3) and taking the trace on both sides, we obtain the

bulk superconductors. equation fors (p?),
If the U(1) gauge field is compact in the meaning that the
vector potential has a periodicity, then it acquires a finite d3k
mass via the instanton effect. Furthermore, permanent con- 3 (p?)=— Zf —3Tr[ YuG(KT,(p,K)D ., (p—Kk)].
finement of static charges is present when the instanton effect (2m)

is important. The influence of additional matter fields, espe- )

cially massless fermions, on the permanent confinement is %Qultiplying both sides of Eq(3) by - p and then taking the
r

unsolved problem. The relation between CSB and the gau ace on both sides, we obtain the equation/A6p?),

boson mass obtained in this paper is very helpful in studyin

the confinement to deconfinement phase transition driven by

the cooling of massless fermions. A(p?)=1+ if
The physical applications of CSB in the presence of a 4p?

gauge boson mass to high temperature superconductors have

been reported ifi16]. In this paper, we provide the related XD, (p—=K)]. )

field theoretical technique in details. In Sec. Il, we derive the ) o

DS equation in the presence of a finite mass of the gauge !f the DS equation for%(p®) has only vanishing solu-

boson in the Landau gauge. We then choose to solve théons, the fermions remain massless and the Lagrangign

nonlinear DS equation by means of bifurcation theory and€spects the chiral symmetrigs—exp(6ys 5) ¢, with y3 and

the parameter imbedding method. Section Ill is devoted td¥s two 4x4 matrices that anticommute withy, (u

the elementary knowledge of bifurcation theory that will be =0,1,2). If the DS equation fok (p®) develops a squarely

used in this paper and the detailed calculation steps of thi@itegrable nontrivial solutiorf22—24, then the originally

parameter imbedding method. In Sec. IV, we consider thénassless fermions acquire a finite dynamically generated

higher order corrections to the wave function renormalizaimass which breaks the chiral symmetries.

tion and show that these corrections do not change our result We starts from a general gauge boson propagator

noticeably. In Sec. V, we give a thorough discussion of the

competing orders in high temperature superconductors from _ ) )

a field theoretical point of view. In particular, we emphasize D () =Dr(a%)| 6,,~9(q%)

the necessity for nonperturbative effects in getting an AF

spin correlation that is consistent with experiments. In Secyii,

VI, we discuss the instanton effect on CSB in compact

QEDs. The calcu_lati(_)n of_the AF spin C(_)rrelation function in D{l(qz) =g 1+ m(g?)]+ &2 )

the CSB phase is given in the Appendix.

d3k _
W)3Tr[(| 7-K)7.G(KI,(p,k)

(2

ﬂ) ©

q2

whereg(q?) is a gauge-fixing parameter that depends on the
three-momentum and is the mass of the gauge boson. We
useq to denote the gauge boson momentum, and we have
The three-dimensional (@) gauge theory of massless fer- g°= (p—k)?=p?+k?—2pkcosé. m(q?) is the vacuum po-
mions is larization of the gauge boson, which was included initially to

II. DYSON-SCHWINGER EQUATION IN THE LANDAU
GAUGE
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overcome the infrared divergence. If we include only thenotall nontrivial solutions lead to CSB. It is well known that

one-loop diagrams for massless fermions, we can write théhe breaking of chiral symmetry is always accompanied by a

vacuum polarization as Goldstone boson, which is a pseudoscalar bound state com-
posed of a fermion and an antifermion. If CSB happens,

(Q?) = N ) there should be a nontrivial solution for the Bethe-Salpeter
g 8|ql” equation of this bound state. In addition, the bound state
wave function must satisfy a normalization condition, which
Then we have can be converted to a sufficient and necessary condizipn
N 24] for the nontrivial solutions of the DS equation to signal
- . . 2 2
DTl(q2)=q27T(q2)+§2=—(q+ 7, (9) CSB. It g|v§s a constraint on the form &f(p“)/A(p°) as
8 follows [24]:
with - 2522
f dq > 2q > @ )2 > =finite. (15
7=8&%IN, (10) o g*A%Q7)+2%(q%)
since at low momentunar(g?)>1 [5]. It is easy to see that in order to satisfy this condition

As the lowest order approximation, we neglect the wave= (p?)/A(p?) must damp more rapidly thap™*? in the ul-
function renormalizatiorA(p?) and adopt a massive gauge traviolet region p—). The mass function obtained by Ap-
boson propagator in the Landau gayggq?)=1] as fol-  pelquistet al. [4] satisfies this condition and hence the non-

lows: trivial solutions of the DS equation in Qigxorrespond to
true CSB solution$24]. On the other hand, when an ultra-
8 (p—Kk) . (p—k), violet cutoff is introduced, the solutioB (p?) automatically
D.(p—k)= N(p—K[+ 7 | O™ (p——k)2 : satisfies the squarely integrable condition. We should empha-

11 size that, although the nontrivial solutions with an ultraviolet
(1D cutoff all satisfy such a condition, only those solutions that
Further, we use the bare vertex, iB,(p,k)= v, , which is satisfy this condition in the continuum limit are physically

’ At AnArOXIT AL ensible. In the case of four-dimensional QED, although the
usually called the quenched planar approximation. Then thé : '

DS equation becomes nontrivial solutions with explicit ultraviolet cutoff are
squarely integrable they do not satisfy the squarely inte-
a3k y“D,,(p—K)S (k)" grable condition when we take the continuum lif2@,23.
2(p2)=f 3 L Y <22 (120  Therefore, the CSB solutions obtained in quenched planar
(2m) k“+X5(k%) QED, [25] are not physically meaningful solutions because

they are not squarely integrable in the continuum limit, or in

other words the associated bound state wave functions can-

not be normalized. In QER it was found tha® (p?)/A(p?)

kS (K2) N pehave;s likep 2 at p—<, Which surt_aly satisfies the condi-
S(p?)= f 7 (13  tion. Since the nontrivial solutions in QEDare true CSB

N2 k2+32(k3)J -1 T lp—Kl+7n solutions, we can safely introduce an ultraviolet cutaff
without bringing unphysical nontrivial solutions.
wherez= cosé. After performing the integration with respect A theoretical analysis implies that the critical fermion
to z and introducing an ultraviolet cutoff we finally arrive numberN, of Eq. (14) should depend on /7. To determine

Now we can insert the propagat@rl) into the DS equation
(12); then

at the following DS equation: when CSB occurs, the DS equation should be solved implic-
) itly. The DS equation is a nonlinear integral equation and
2(p2)=>\JAd kX (k%) E[erk— 0 hence is very hard to investigate. However, based on general
k2+32(k?) P bifurcation theory and the parameter imbedding method, we
can find the critical fermion number and the mass function
p+k+7n exactly. The detailed program of calculations is the topic of
—K- nln( lp—k|+ 7]’ (14) the next section. In the rest of this section, we discuss some

qualitative properties extracted from the DS equatib).
where\ =4/N7? serves as an effective coupling constant. When the gauge boson has a very large mass, for example

If we do not introduce an ultraviolet cutofiA(—), the > A, then the DS equation becomes
critical behavior of Eq(14) is completely independent of,
as can be easily seen by making the scale transformation z k3 (k?)
—pln, k—kinp, andX—23/%. We can destroy this scale fo K2+32(k2)
invariance by introducing an ultraviolet cutoff.

Before we go into the techniques of dealing with the DSFrom the momentum dependence of the mass function of
equation, we would like to discuss one subtle issue. If the D$ermions, we know that actually it is a constant in this limit.
equation has only trivial solutions, the fermions remainTherefore, the DS integral equation simplifies to the alge-
massless and the chiral symmetries are not broken. Howevdiraic equation

8
2(p)=——

N2y

(16)
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We now would like to use the parameter imbedding
method[28,29 to solve Eq.18) numerically. To do this, we
first analytically continue it in the complex plane »f cor-

- 2 .
This equation has no solutions; hence a large enough mass r&spondmglyz(p ) also becomes a complex function. It can

the gauge boson prevents the occurrence of CSB. We nol?fe shown that
consider another limit, i.e., when the gauge boson mass is

very small. In this limit, the last term in the kernel of Eq. f f IK(x,y)|?dxdy<co.
(14) can be dropped safely, leaving a DS equation that is the

same as the one studied by Appelqéistl.[5]. Thenavery  are we usex to denotep?, andy to denotek?. From the

small gauge boson mass actually does not affect the criticgd e qhoim integral equation theory we know that there exists
behavior of QER. This phenomenon can be understood if it ; asolvent function for the kern&l(x,y)

happens that the critical fermion numbéy decreases when
the gauge boson masgsincreases and finally approaches
zero for very large. The main purpose of our work is to use
QED; to model condensed matter systems where the physiwhere the function®((x,y,\) anddg(\) are analytic with

cal fermion number is 2, coming from the two componentsrespect tov. If de(N\)+#0, we do not have bifurcation points.
of the spin. Based on the tendency of the critical fermionThe values of\ at which dg(A\)=0 are the bifurcation
number in the presence of a finite gauge boson mass, it igoints. According to the parameter imbedding method, the
quite reasonable to hypothesize that there is a critical valutunctions Dg(x,y,\) and dg(\) are related by the
for the gauge boson masgs, above which CSB is inhibited. differential-integral equations

To make sure that this is actually the case, we should solve

the DS equation and find the critical coupling constenat i
which the DS equation starts to have nontrivial solutions. d\

3 arctarE (1—m27p). (17

(20

RF(Xiy!}\):DF(lel)\)/dF()\)v (21)

de(A) = — fOAZ’”DF(x,y,A)dx, 22)

IIl. SOLVING DS EQUATION USING BIFURCATION

J 1 d
THEORY AND PARAMETER IMBEDDING METHOD KDF(X’y')‘): dF(A)[DF(X’y’)‘)ﬁdF()‘)

Equation(14) is a Hammerstein type nonlinear integral
equation. It does not satisfy the conditions of the global
eigenfunction theory of nonlinear functional analysis, so its
global solutions cannot be obtained directly. However, local
bifurcation theory{26—29 can help us to find its complete o N
solutions by first obtaining a local solution near a bifurcationWith the initial conditions
point and then extending its region of validity step by step. de(0)=1
This program is most easily achieved by the parameter im- F(0)=1,
bedding method28,29, which has proved to be a powerful
method in studying integral equations.

In order to obtain the bifurcation points we need only find
the eigenvalues of the associated dhet derivative of the
nonlinear DS equatiof28,29. Those eigenvalues that have
odd multiplicity are the bifurcation points. Taking the Fre
chet derivative of the nonlinear equati¢td), we have the
following linearized equation:

A2y
+ De(X,z,M)Dg(z,y,N)dz|,
0

(23

(24)

DF(X,y,O):K(X,y). (25)

One remarkable advantage of the parameter imbedding
method is to convert the integral equations with variables
andy to a set of equations in the variable Correspond-
ingly, the boundary conditions in the original equations are
replaced by two initial conditions, which are easier to treat in
performing numerical calculations. Now, the functions
De(X,y,\) anddg(\) can be readily obtained by integrating

2(p2)=)\jA/”dk2(k2)K(p,k) (18) numerically with respect ta.
0 We now should choose an appropriate contGuin the
complex\ plane which contains the minimui on the real
with the kernel axis at whichd(\)=0. The number of zero eigenvalues of
the linearized equatiofl8) inside the contourC [i.e., the
1 p+k+1 zeros of the functiord(\)] is
K(p,kK)=—|p+k—|p—Kk|—In| ———— (19
Ne=5— — . 2
where for calculational convenience we made the transfor- = 2mi idF(M dx dr(M e (20

mationp— p/ 7, k—k/ 5, andX —3/7. The smallest eigen-

value A of this equation is just the bifurcation point from
which a nontrivial solution of the DS equatigh4) branches
off. The complex kerneK(p,k) in the linearized equation
(18) makes it very difficult to find an analytical solution.

We can obtain the eigenvalues by solving the equations

dd N)dA
KF() ,

Ng
2\

=1

1 A
“2m ﬁd;(x) @0
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LML B B B B B =1 and the vertex function can be chosen as

26 5
; ; LK) =7,f(p* k%) (29
24 F y with f a function of the fermion momentup?,k?. The non-
C ] local gauge is obtained by solving a differential equation. In
22 F ] this gauge, we need only investigate a single equation for
C ] 3. (p?) in studying the chiral phase transition.
N 20 s ] Let us go back to the general massive gauge boson propa-

gator(6). If we consider the quenched planar approximation
of QED;, i.e., takingII(p?) =0, then the wave function
renormalizationA(p?)=1 in the Landau gauge. This result
is well known to be exact in QED of dimensions higher than
2. In the case of QER the one-loop vacuum polarization is
usually introduced explicitly to overcome the severe infrared
divergence. In the presence Hf(p?), wave-function renor-
malization A(p?) does not equal the identity. It should be
obtained by solving two consistent integral equations of
Lag, (A/m) A(p?) and3(p?). However, taking advantage of the gauge
degrees of freedom of the system, we can simplify the DS
equations by choosing an appropriate gauge. In particular, if
we can obtain a gauge parametgg?) that satisfies the

1.0 1.5 2.0 25 3.0 3.5 4.0

FIG. 1. The dependence of the critical numbb, on
log,o(A/7) in the Landau gauge.

with =1, ... Ng. For the present purpose, we only need toequatlon
know the first bifurcation point, hence we Iet=1. ,

For A>\., the DS equation has nontrivial solutions and 9(?) = fq Dy(2)zdz-1, 29
the massless fermions become massive. The ultraviolet cut- q*D1(g?) Jo

off A is provided by the lattice constant and hence is kept

fixed. We can obtain the relation f, and 7 by calculating  then we find a gauge in whicA(p?) =1 (see the paper of

the critical coupling\ . for different values ofA/ 7. Georgiet al. in Refs.[31] and Ref.[33]). Further, according
Our numerical result is presented in Fig. 1. The criticalto the Ward-TakahaslWT) identity, the vertex function can

fermion numbeiN, is a monotonically increasing function of be chosen ag34]

Aln. For smallA/7n, N.is smaller than the physical num-

ber 2, so CSB does not occur. Whexf 7 increases, the Lu(pk)=7,. (30)

critical numbem, increases accordingly and finally becom_esl\IOW the formidable task of solving a pair of integral equa-

larger than 2 at about/ 7, =100. Thus we see that there is ;¢ o, the wave-function renormalizatioh(p?) and the

a_lqr|t|cal val_ue of the gauge boson mas, pelow Wh'Ch 4 mass functior (p?) is simplified to solving a single equa-
finite mass is generated for massless fermions, while beyon,[ﬁjOn for 3 (p?):

it CSB is suppressed.
d3k > (k?)
(2m)3 K2+ 32(k?

IV. DYSON-SCHWINGER EQUATION WITH HIGHER z(pz):f [3—g(q2)]DT(q2).
ORDER CORRECTIONS ) 31
In the last two sections, we investigated the DS equation
in the Landau gauge after assuming tAgp?)=1 to sim- From D1(g?) and Eq.(29), the integral overz can be
plify calculations. Although this assumption is qualitatively calculated:

correct, higher order corrections from the wave-function

renormalizationA(p?) will alter the critical fermion number q? 8(q2 1

N, quantitatively. However, includind\(p?) makes the DS 0 DT(Z)ZdZZﬁjO 21/2—+Zdz

equations very complicated and we should solve consistently K

two pairs of nonlinear integral equations. Furthermore, ac- 61 ., 1 ., 5 [d+ 7
cording to the Ward-Takahashi identity, we cannot chogse “N|39 37 +7°q—7In

as the vertex function in the presence of wave-function

renormalizationA(p?). At present, there is no theoretical (32

guidance in determining the vertex functidi),(p,k), and
hence one cannot give a guarantee of the legitimacy of
specific choice of vertex function. Here, to simply calcula-

;‘hen we obtain a nonlocal gauge parameter

tions and partly overcome the embarrassment in choosing thgy42) = i(q+ 7) L 2q2+ 79— 7° In( 1+ a)_ 1.
vertex function, we introduce a so-called nonlocal gauge 4 3 2 n
[30—33 in which the wave-function renormalizatioh(p?) (33

065010-5



G.-Z. LIU AND G. CHENG

Substituting thisg(g?) into the DS equatiori31), after an-
gular integration we have

8 A k> (k?) p+k 2 7 7
S (p?)= 2J'dk2 — o5+
Nm?pJo  ke+34(k?)Jlp-K a+7n 29
2 3
~ T T 143, (34)
q q 7

In deriving this result, we have used the following formula:

+k

= 35
PKJ{p-Kk (39

fwdesinef(qz) qdqf(g?).
0

After integrating Eq(34), we have

kS (k?) 2

mBK(p,k,m, (36)

A
E(pz)zxf dk
0
with

2 7 p+k+ 7
K(p,k,n)=§<p+k—|p—k|>—5|n(| )

p—k|[+7
)+
3
)— U In(lnL ik)
2( yi
(37

p+k)?
Here, \=4/N=? is the effective coupling constant. At first
glance, both the third and fourth terms i{p,k,») have
singular behaviors like fip—k| which would cause diver-
gence ifk approachep. However, wherjp—k|—0, we can
make the expansion

7]2

i3

7]3

2|p—k|?

1 1
p+k |p—k

—K
1+||0 |
n

XIn

3 —k
21N
2|p—k|? U
3 2
i lp—kl  (p—k)
= > - > +0(|p—k[3)
2lp—Kk*\ 7 27
2
n n
_2|p—k|_z+o(|p_k|)' (38)

PHYSICAL REVIEW D67, 065010 (2003

2.8

2.6

N

c

22

2.0

1.0 12 14
Log, (A/m)

1.6

FIG. 2. The dependence of the critical numbbk, on
log,o(A/7) in the nonlocal gauge.

K(p.K _2 K K 1I p+k+1
+1 ! ! )+ ! In(1+|p—K|)
— — n —
2\p+k [p—k[/ 2|p—k? P
——In(1+p+k 40
TG (40

where for calculational convenience we made the transfor-
mationp—p/ 75, k—k/n, andX —3/7.

Using the steps we presented in the last section, we can
solve the linearized equatiai89) to obtain the relation be-
tween the critical fermion numbé\; and the masg of the
gauge boson mass. The numerical result is presented in Fig.
2, from which we know that the critical value of the gauge
boson mass is aboWt/ 5., =3.3. Although there is a signifi-
cant change in the critical valug,, , the result we obtained
in the Landau gauge remains qualitatively correct.

V. COMPETING ORDERS IN HIGH TEMPERATURE
SUPERCONDUCTORS

Understanding the competing orders in high temperature
cuprate superconductors is one of the most important issues

Thus the singular terms are exactly cancelled. The same stép condensed matter physics. In the presence of competing

can be used to show that the singular ternp3/g) can also
be cancelled exactly. Therefore, the kerkglp,k,») is a
smooth function in the whole integration region.

Taking the Frehet derivative of the nonlinear equation
(36), we obtain the linearized equation

2

M ks (2 K
)\fo K ( )p_kK(p’ ')

3(p?) (39)

with

orders, one order parameter prevails when other orders are
suppressed by some external variables. At half filling, the
cuprate superconductor is a Mott insulator with long-range
antiferromagnetic order. When holes are doped into the Cu-O
planes, the material becomes a superconductor at low tem-
peratures and the long-range AF order disappears. Hence
there is a competition between the AF order and the SC
order, and as a result of this competition the AF order domi-
nates at zero and low doping while the SC order dominates at
higher doping. However, even at higher doping the AF order
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also has a chance to appear locally where the superconduc- 3k
tivity is suppressed by strong external magnetic fields. Re- (STS7 )=~ Zf 3 T Go(K)Go(k+p)], (43
cently, elaborate neutron scatterir&#] and scanning tunnel- (2m)

ling microscopy(STM) [35] experiments found that the AF
correlation is significantly enhanced in regions surroundin
the vortex cores. In this paper, we will use spin-charge sep
ration and CSB to understand the competing orders.

It has been showhl0-13 that the Lagrangiafl) is the Go(k)=— 7’_k (44)
effective low energy theory of undoped cuprates, which have k2’
only fermionic excitations because of the presence of a large
charge gap. In underdoped cuprates, the electrons fractionand we have
ize into spin carrying spinons and charge carrying holons. It
has been pointed o(i15,16 that the physics of underdoped (S*S )o=— H (45)
cuprates is captured by an effectivé1l) gauge theory of 0 16°
massless fermions and charged scalar fields

here Gy(k) is the fermion propagator. If the fermions are
mnassless, then

At p—0, (S"S7)y—0, and the AF correlation is heavily
lost. This is not a surprising result since our starting point is

_EN: — . the resonating valence bon@RVB) picture proposed by

Le= 2 ¥oVoul0u=18,) Vs Anderson[21], which is just a liquid of spin singlets and
hence has only short-range AF correlation. This is not a sat-

+[(d,~ia,)b|*+V(|b|?). (41)  isfying situation because a long-range eNerder was ob-
served in experiments shortly after the discovery of cuprate

superconductors.
However, even if we start from a RVB ground state, it is

the velocity anisotropy: however, for simplicity we can let still possible to obtain the long-range A'F correlation because
. o ’ of the strong correlation nature of Mott insulators. The strong

V1=V g,2= 1. Since the spin and charge degrees of freedom o |ation s reflected in the fact that double occupancy on a

are assumed to be sep_aratgd, there is no Yukayva—type COlihgle lattice is completely inhibited due to the strong Cou-

pling betweer_1 the fermion field and the scalar field. In theIomb repulsive force. After this local constraint and quantum

superconducting state, the bosdn acquires a nonzero fluctuations are taken into account, a strong)Wauge field

vacuum exp?ctstionk varllue, .eb)#0. This nfor;}zen;(b) emerges in the effective theory. This gauge field has an im-
spontaneously breaks the gauge symmetry of the theory arﬁ[)nrtant effect on physical properties since it can cause fer-

E:.e gauge EOS.On acquires a finite mgsaa the Anderson- o condensation and give the originally massless fermions
lglgs rr]nec anism. f high d ha finite mass. The AF spin correlation is expected to be sig-

n the context of high temperature superconductors t %ificantly enhanced once the fermions become massive. To
U(1) gauge field is introduced as a Lagrangian multiplier ©Oshow that this actually happens, we will calculate the spin

impose a Iocazl no-do_uble-occu_pamy cor_lstraint. _It has no Kizorrelation function in the CSB phassee the Appendix for
netic term~F,, and its dynamics is obtained by integrating getajly. Although the dynamically generated fermion mass
out the matter fields. If we only include the one-loop d'agramdepends on the three-momentum, here, for simplicity, we
. . . 71 _ 1 ) 1 3 . L

in the vacuum polarization, we gétr (qz)—qzw(qz)ff; assume a constant masgor the fermions. This approxima-
As we have shown previously, the effect of an additionaltion is valid because we only care about the low energy
scalar doublet is to shifiN in the gauge boson vacuum po- properties ands (p?) is actually a constant gi—0. The

larization 7(q?) to N+1, i.e., m(q°)=(N+1)/8q|. Then  propagator for the massive fermion is
the propagator for the gauge boson is

Hereb=(b4,b,) is a doublet of scalar fields representing the
holons[15]. v, o=1 and generally, ;# v, , as a result of

—(y-k+im)
. k=" (40
. kc+m
v (N+1)(|p—k[+7) which leads to
(P—K)u(P—K), "
X T (o2 ) (42) (S*S™) I m+ p2+4m2"rcsi P’
0=~ 27 2lpl T p2ram?) |
(47)

From the corresponding DS equation in the nonlocal gauge

obtained above, we found a critical gauge boson mass dthis spin correlation behaves likem/27 asp—0 and we

Alé,,=100. For small¢, CSB occurs, while foré>¢.,, have a long-range AF correlation when CSB takes place.

CSB is suppressed. Therefore, strong fluctuations around the RVB ground state
We now would like to discuss the long-range behavior ofenhance the long-range AF spin correlations.

the AF correlation function. The AF spin correlation is de- We should emphasize that calculations based on perturba-

fined as tive expansions cannot be used to obtain the long-range AF
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order. It might be argued that including higher order dia- When the external magnetic field is stronger thia, the
grams can enhance the AF spin correlation. However, thisuperfluid is completely suppressed, and, correspondingly,
argument is not right. If we include the gauge field while the gauge bosons become massless. Then CSB reappears in
keeping the fermions massless, then the spin correlation isie bulk material and gives a mass to the massless fermions.
[36] This mass provides a finite gap for the low energy fermions
to be excited; thus at low temperature no fermionic excita-
tions can be observdd5]. This causes the breakdown of the
2 (48) Wiedemann-FranfWF) law in the normal ground state of
P cuprate superconductof$5,39. Thus, based on spin-charge
Wh|Ch damps at |0W momentumﬁo_ Rantner and Wen Separation and CSB, we giVe a unified description for both
[36] claimed that the long-range AF correlation can be obthe behavior of the AF spin correlation and the transport
tained by reexponentiating the spin correlation funcfi@f]. ~ Properties from a field theoretical point of view. This is the
This scenario is based on their previous statenfigfthat ~ MOst noticeable advantage of our scenario compared with so
the U(1) gauge field cannot generate a finite mass for fermiimany other scenaridgl0—44 that also address the problem
ons and hence is a marginal perturbation. This result is de2f local AF order in vortex cores.
rived by considering only the one-loop correction of the
gauge field to the fermion self-energy. However, CSB is a VI. INSTANTON EFFECT ON CSB
nonperturbative phenomenon and whether the gauge field ] ] ]
generates a finite mass for the massless fermions can only be Confinement is one unresolved problem in modern par-
settled by investigating the self-consistent DS equation foficle physics. A seminal paper written by Polyakig\7] has
the fermion self-energy. If Ed12) does not have a nonlinear Shed some light on this problem by studying a three-
term in the denominator of the kernel, it is a linear equationdimensional compact pure(l) gauge theorycompact pure
and cannotdevelop any genuine nontrivial solution. From QED;). In general, one can define an Abelian gauge theory
the point of view of bifurcation theory’ a linear Operator hasOn a two-dimensional lattice which has the fOIIOWing action:
no bifurcation points; those are necessary for a phase transi-
tion to take place. Once the nonperturbative effect is taken 1
into account, the strong gauge field generates a finite fermion S=_— 2 (1-COSF; 4p), (49
mass which breaks the chiral symmetry and gives rise to 2" i.ap
long-range AF orde(Ref.[38] discussed the correspondence i
of CSB to AF order in another wayActually, the formation ~ With the field strength
of long-range AF order spontaneously breaks the rational
symmetry of the system and generates a gapless spin wave Fiap=AiaTAitap=AirpaAig- (50
excitation which corresponds to the massless Goldstone bo-
son. These are hard to understand if we only include thélere, the pairsi(«) are used to denote the links between
gauge fluctuations without breaking any symmetry. Furtherfattices, withi the beginning of a link and its direction. If
more, the strong interaction of the gauge field with masslesthe vector potentiah; , is defined to be a real number on its
fermions of flavor 2 will unavoidably generate a finite fer- whole region, i.e.—%<A,; , <+, the continuum limit of
mion mass. this action is just that of the usual 1) gauge as presented in
Now we would like to discuss the application of our result Eq. (1). However, a highly nontrivial physical effect emerges
to the interplay of various ground states in high temperaturéf the vector potential; , has angular properties and hence
cuprate superconductors. It is well known that the gauge bas defined on a circle as w<A; ,<. Due to the periodic-
son masgt is proportional to the superfluid densipy thus ity of its action, such a field theory is called compact QED.
we can usef to describe the superconducting order. Other- Polyakov first considered pure compact QEMithout
wise, we use CSB to describe the long-range AF ordercoupling matter fields to the gauge field. He found that in-
Based on the fact that the superfluid density is proportionastantons appear in this model as topological solutions of the
to the doping concentration, we obtain a clear picture of thécuclidean gauge field equations and lead to permanent con-
evolution of different orders upon increasing the doping confinement of static charges which is reflected by the area law
centration. At zero and low doping the gauge boson mass ifor the Wilson integral. Compact QEhas attracted intense
zero or very small, so CSB and hence AF order are preseninvestigation in the past 20 years, initially as a simpler model
When the doping concentration is larger than a critical valugo study quark confinement. Recently, compact QEith
d¢, the gauge bosons acquire a mass that is large enough meatter fields has been used to model the physics of many
suppress the CSB and the AF order. Note that supercondustrongly correlated electron systerf9,48. However, al-
tivity begins to appear as the ground state of cuprate supethough it is widely accepted that confinement is present in
conductors at & that is less thard,, . Therefore, forés.  pure compact QER there is no consensus on the fate of
<6< 6, there is a coexistence of the AF order and the S(permanent confinement when matter fields are included
order in the bulk materials. Due to this coexistence, thg49,50. Compared with compact QEf scalar field§49],
length scale for AF order to appear should be larger than ththe situation for compact QEDof massless fermions is par-
vortex scale, which is consistent with the STM experimentdicularly complicated because of the possibility of dynamical
of Hoffman et al. [35]. mass generation for the fermions.

2

(S'S )er=— [p|In

1272(N+1)
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Since compact QEPwas originally defined on lattices, temperature cuprate superconductors and compact; QED
Monte Carlo numerical simulations are expected to providehe gauge boson mass is generated via the Anderson-Higgs
important information on CSB, but they suffer from the no- mechanism in the superconducting state, the combination of
torious fermion sign problem. In this paper, we would like to spin-charge separation and CSB provides a field theoretical
analyze the chiral behavior using the DS equation methoddescription of the competition between the AF order and the
To do this, we map the compact QEDnto a continuum  SC order. As a compromise in this competition, there is mi-
theory and introduce the ultraviolet cutaffkeeping track of  croscopic coexistence of these two orders in the bulk mate-
its lattice origin. As shown by Polyakov, the gauge field ac-rials, which plays an essential role in explaining the local AF
quires a finite mass due to Debye screening caused by thgtder in vortex states observed in neutron scattering and
instantons. We can use the massf the gauge field to de- STM experiments. When the periodicity of the gauge field is
scribe the instanton effect and investigate the relation betaken into account, the gauge boson acquires a finite mass
tween CSB and the instanton effect by solving the DS equavia the instanton effect. Since whether the permanent con-
tion which consists of a massive gauge boson propagator. finement still exists in the presence of fermions depends on

We studied the relation of the gauge boson mass and CSfe fermion mass, our result can help us to investigate the
in the context of high temperature superconductors in the lagfonfinement to deconfinement phase transition, which will
section. However, the critical gauge boson mégsis very  be the subject of future study.
small in the presence of additional scalar fields, due to the
shift from N to N+ 1 by the scalar doublet, and hence CSB
can exist only for a small region &. But the critical value
&., In the present casgeompact W1) gauge field coupled We would like to thank Cheng Lee for his help in numeri-
only to massless fermiohg&s much larger and there is a wide cal calculations and V. P. Gusynin for helpful communica-
region of ¢ for CSB to take place. In previous papéBs6] tions. This work is supported by the National Science Foun-
addressing CSB in QExhe ultraviolet cutoff is provided by  dation in China No. 10175058.
a=N/8, which is kept fixed when the fermion flavd\ is
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taken to infinity, because for momentup™>a the self- APPENDIX
energy function damps rapidly. From= £2/ & we know that
the critical gauge boson mass is abdii /2. The instan- In this appendix we give the details of calculating the spin

ton effect can coexist with CSB faf<a/2. If we couple a correlation using the propagator of the massive fermions.
fermion of one flavor to a compact gauge field, then CSB catWhen CSB occurs the fermion propagator is
coexist with the instanton effect in a much wider regiorg of

The above result can be used to investigate the possible —(y-k+im)
confinement to deconfinement transition in compact QED Gk)=——F——— (A1)
because whether the fermions have a finite mass is expected k®+m
to affect the fate of permanent confinemédbfl]. Such a
transition is no doubt of great importance in both particIeThen
physics and condensed matter physics, but beyond the scope
of this paper. oS 1f 3 GGk

o= +
(8'S)0==73] (57 MOMG(K+P)]
VIl. SUMMARY AND DISCUSSION
3 . .

In this paper, we have discussed the effect of a finite mass =— lf dk r y-ktim y-(k+p)+im
of U(1) gauge bosons on CSB and its physical implications. 4) @2m?® | K+m? (k+p)Z+m?
The gauge boson magsis reflected in the modification of 3
the gauge field propagator, which appears in the DS equation — ldt d>k
of the fermion self-energy. The DS equation is nonlinear and 0 (2m)3
hence hard to solve. An iteration procedure is the most fre-
quently used numerical calculation method, but it is not clear k-(k+p)—m?

whether the iteration procedure leads to a convergent result X— o > 2712’

or not. To avoid the problem caused by convergency of the (K m3(1=0) +[(k+p)*+ m7]t}
iteration, we make use of bifurcation theory and the param- (A2)
eter imbedding method to numerically investigate the DS

equation. Adopting the Landau gauge and neglecting thevhere we used the Feynman parametrization formula
wave-function renormalization, we found a critical valfje

for the gauge boson mass that separates the CSB phase, for

1
£<&.,, and the chiral symmetric phase, r &, . We then i: f dt—————. (A3)
showed that including higher order corrections of the wave- ab Jo [at+b(1-1)?]?
function renormalization does not qualitatively change the
critical valueé, . After replacingk by k—pt and making a Wick rotation, we

We then used our result in two physical systems, highhave
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1 d*k  k2—m?—p?t(1-t
<s+5*>0=f dtf Pty

0

(2m)% [K*+m2+p?t(1-1)]?
(A4)

Using the properties of thE function, we can integrate over
the momentunk and get

2l-3) (3
A
(878 0= e r(2)

1

.

dt[m2+ p2t(1—t)]~ Y2 (A5)

Since

PHYSICAL REVIEW D67, 065010 (2003

i
E 1/2
W:_ZW \ (AB)
it
5 1/2
W:W y (A?)
we get
+o— 1 ! 2 2 1/2
<S S >0:_Efo dtfm°+pt(1—-t)]
1 p2+4m? 2 2
=——|m+ arcsi .
4 2|p| r(p2+4m2) 1

(A8)
This is the AF spin correlation in the CSB phase.
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