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Effect of gauge boson mass on chiral symmetry breaking in three-dimensional QED
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In three-dimensional quantum electrodynamics (QED3) with a massive gauge boson, we investigate the
Dyson-Schwinger equation for the fermion self-energy in the Landau gauge and find that chiral symmetry
breaking~CSB! occurs when the gauge boson massj is smaller than a finite critical valuejcv but is suppressed
whenj.jcv . We further show that the critical valuejcv does not qualitatively change after considering higher
order corrections from the wave function renormalization and vertex function. Based on the relation between
CSB and the gauge boson massj, we give a field theoretical description of the competing antiferromagnetic
and superconducting orders and, in particular, the coexistence of these two orders in high temperature super-
conductors. When the gauge boson massj is generated via the instanton effect in a compact QED3 of massless
fermions, our result shows that CSB coexists with the instanton effect in a wide region ofj, which can be used
to study the confinement-deconfinement phase transition.
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I. INTRODUCTION

Chiral symmetry breaking~CSB! has been an active re
search field in particle physics for over 40 years sin
Nambu and Jona-Lasinio@1# used this idea to generate
fermion mass in a four-fermion model. One fascinating ch
acteristic of CSB is that it can generate fermion mass
fermion-antifermion condensation mediated by a stro
gauge field without introducing additional Higgs particl
which until now have not been found. The most conclus
evidence for the existence of CSB is provided by the p
nomenology of strong interaction, and CSB is widely b
lieved to account for the pions. However, despite the v
amount of theoretical work on CSB, it is not yet cle
whether it can be derived from quantum chromodynam
~QCD!, primarily due to the complex structure of the SU~3!
gauge field. To gain valuable insight into CSB before we c
treat it completely, it is very suggestive to study some mo
that is similar to QCD while being simpler. Three
dimensional quantum electrodynamics (QED3) is just such a
model, and it has attracted intense investigation@2–9# in the
past 20 years. QED3 was shown to exhibit CSB@5–9# and
confinement@9#, while at the same it is simple enough to b
treated with high accuracy. In addition, it has been used
model the physics of many planar condensed matter sys
such as high temperature superconductors@10–18# and frac-
tional quantum Hall systems@19#.

The breakthrough in research into CSB in QED3 was
caused by a paper of Appelquistet al. @5# who found that
CSB occurs when the flavor of massless fermions is less
a critical numberNc . They arrived at this conclusion b
analytically and numerically solving the Dyson-Schwing
~DS! equation for the fermion self-energy to the lowest ord
of the 1/N expansion. Later, extensive analytical and nume
cal investigations@6–8# showed that the nature of CSB i
0556-2821/2003/67~6!/065010~11!/$20.00 67 0650
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QED3 remains the same after including higher order corr
tions to the DS equation.

The above result holds when the gauge boson is mass
and but is expected to change when the gauge boson h
finite mass. CSB is a low energy phenomenon becaus~2
11!-dimensional U~1! gauge field theory is asymptoticall
free @20# and only in the infrared region is the gauge inte
action strong enough to cause fermion condensation. T
requires the fermions to be apart from each other. Howe
when the gauge boson has a finite mass it cannot media
long-range interaction. Intuitively, a finite gauge boson m
is repulsive to CSB which is achieved by the formation
fermion-antifermion pairs. Thus it is very interesting to stu
whether CSB can occur in the presence of a finite ga
boson mass.

CSB is believed to be a nonperturbative phenomenon
hence calculations based on perturbative expansions ar
capable of establishing its existence. We will study CSB
means of solving the nonlinear DS equation for the ferm
self-energy. Assuming thatA(p2)51 based on a naive 1/N
expansion, we get a single integral equation of the gap fu
tion S(p2). CSB is signalled by the appearance of a squar
integrable nontrivial solution. To solve the DS equation,
will use bifurcation theory and the parameter imbeddi
method, which not only avoids the convergency problem t
usually appears in iteration methods but also can help
distinguish the different bifurcation points. After solving th
DS equation, we find that the massless fermions can acq
a finite dynamically generated mass when the gauge bo
massj is smaller than a critical valuejc . To testify to the
robustness of our result against the effect ofA(p2), we will
work in a nonlocal gauge in whichA(p2)[1 and the vertex
function can be safely replaced by the gamma matrices.
will show that, when the wave function renormalizatio
A(p2) is included, the result we derive in the Landau gau
remains qualitatively unchanged.
©2003 The American Physical Society10-1
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Our study of the influence of the gauge boson mass on
fate of CSB not only is of theoretical interests but can
used to understand important physical phenomena. Actu
starting from the concept of spin-charge separation propo
by Anderson@21#, the effective low energy theory of hig
temperature superconductors is a U~1! gauge theory@10–13#.
Superconductivity is achieved when the charge carrying
lons Bose condense into a macroscopic quantum state, w
generates a finite mass for the gauge boson via the Ander
Higgs mechanism. The low energy spin fluctuations are c
tured by the two-component fermions, which are origina
massless since they are excited from thed-wave gap nodes
@11#. On the other hand, CSB is known to correspond
long-range antiferromagnetic~AF! order, which can be see
from the behavior of the AF spin correlation function at lo
momentum. If we use CSB to describe the AF order and
the gauge boson mass to describe the superconducting~SC!
order, our result then leads to a competition between
long-range AF order and the long-range SC order, which
one of the most fundamental issues in modern conden
matter physics. As a compromise in this competition, wh
the mass of the gauge boson is less than its critical valujc
but is finite, there is a coexistence of these two orders in
bulk superconductors.

If the U~1! gauge field is compact in the meaning that t
vector potential has a periodicity, then it acquires a fin
mass via the instanton effect. Furthermore, permanent
finement of static charges is present when the instanton e
is important. The influence of additional matter fields, es
cially massless fermions, on the permanent confinement i
unsolved problem. The relation between CSB and the ga
boson mass obtained in this paper is very helpful in study
the confinement to deconfinement phase transition driven
the cooling of massless fermions.

The physical applications of CSB in the presence o
gauge boson mass to high temperature superconductors
been reported in@16#. In this paper, we provide the relate
field theoretical technique in details. In Sec. II, we derive
DS equation in the presence of a finite mass of the ga
boson in the Landau gauge. We then choose to solve
nonlinear DS equation by means of bifurcation theory a
the parameter imbedding method. Section III is devoted
the elementary knowledge of bifurcation theory that will
used in this paper and the detailed calculation steps of
parameter imbedding method. In Sec. IV, we consider
higher order corrections to the wave function renormali
tion and show that these corrections do not change our re
noticeably. In Sec. V, we give a thorough discussion of
competing orders in high temperature superconductors f
a field theoretical point of view. In particular, we emphas
the necessity for nonperturbative effects in getting an
spin correlation that is consistent with experiments. In S
VI, we discuss the instanton effect on CSB in comp
QED3. The calculation of the AF spin correlation function
the CSB phase is given in the Appendix.

II. DYSON-SCHWINGER EQUATION IN THE LANDAU
GAUGE

The three-dimensional U~1! gauge theory of massless fe
mions is
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1

4
Fmn

2 1 (
s51

N

c̄s~]m2 iam!gmcs , ~1!

where the Fermi fieldcs is a 431 spinor. The 434gm
matrices obey the algebra$gm ,gn%52dmn .

The full fermion propagator is

G21~p!5 ig•pA~p2!1S~p2!, ~2!

where A(p2) is the wave-function renormalization an
S(p2) the fermion self-energy. The DS equation for the fu
fermion propagator in momentum space is given by

G21~p!5G0
21~p!2E d3k

~2p!3
gmG~k!Gn~p,k!Dmn~p2k!,

~3!

whereGn(p,k) is the full vertex function andDmn(p2k) is
the full photon propagator.G0

21(p) is the bare propagator o
the massless fermions. Substituting the propagator~2! into
Eq. ~3! and taking the trace on both sides, we obtain
equation forS(p2),

S~p2!52
1

4E d3k

~2p!3
Tr@gmG~k!Gn~p,k!Dmn~p2k!#.

~4!

Multiplying both sides of Eq.~3! by g•p and then taking the
trace on both sides, we obtain the equation forA(p2),

A~p2!511
1

4p2E d3k

~2p!3
Tr@~ ig•k!gmG~k!Gn~p,k!

3Dmn~p2k!#. ~5!

If the DS equation forS(p2) has only vanishing solu-
tions, the fermions remain massless and the Lagrangian~1!
respects the chiral symmetriesc→exp(iug3,5)c, with g3 and
g5 two 434 matrices that anticommute withgm (m
50,1,2). If the DS equation forS(p2) develops a squarely
integrable nontrivial solution@22–24#, then the originally
massless fermions acquire a finite dynamically genera
mass which breaks the chiral symmetries.

We starts from a general gauge boson propagator

Dmn~q!5DT~q2!S dmn2g~q2!
qmqn

q2 D ~6!

with

DT
21~q2!5q2@11p~q2!#1j2 ~7!

whereg(q2) is a gauge-fixing parameter that depends on
three-momentum andj is the mass of the gauge boson. W
useq to denote the gauge boson momentum, and we h
q25(p2k)25p21k222pk cosu. p(q2) is the vacuum po-
larization of the gauge boson, which was included initially
0-2
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overcome the infrared divergence. If we include only t
one-loop diagrams for massless fermions, we can write
vacuum polarization as

p~q2!5
N

8uqu
. ~8!

Then we have

DT
21~q2!5q2p~q2!1j25

N

8
~q1h!, ~9!

with

h58j2/N, ~10!

since at low momentump(q2)@1 @5#.
As the lowest order approximation, we neglect the wa

function renormalizationA(p2) and adopt a massive gaug
boson propagator in the Landau gauge@g(q2)51# as fol-
lows:

Dmn~p2k!5
8

N~ up2ku1h! S dmn2
~p2k!m~p2k!n

~p2k!2 D .

~11!

Further, we use the bare vertex, i.e.,Gm(p,k)5gm , which is
usually called the quenched planar approximation. Then
DS equation becomes

S~p2!5E d3k

~2p!3

gmDmn~p2k!S~k2!gn

k21S2~k2!
. ~12!

Now we can insert the propagator~11! into the DS equation
~12!; then

S~p2!5
4

Np2E dk
kS~k2!

k21S2~k2!
E

21

1

dz
1

up2ku1h
~13!

wherez5cosu. After performing the integration with respec
to z and introducing an ultraviolet cutoffL we finally arrive
at the following DS equation:

S~p2!5lE
0

L

dk
kS~k2!

k21S2~k2!

1

p Fp1k2Up
2kU2h lnS p1k1h

up2ku1h D G , ~14!

wherel54/Np2 serves as an effective coupling constant
If we do not introduce an ultraviolet cutoff (L→`), the

critical behavior of Eq.~14! is completely independent ofh,
as can be easily seen by making the scale transformatiop
→p/h, k→k/h, and S→S/h. We can destroy this scal
invariance by introducing an ultraviolet cutoffL.

Before we go into the techniques of dealing with the D
equation, we would like to discuss one subtle issue. If the
equation has only trivial solutions, the fermions rema
massless and the chiral symmetries are not broken. Howe
06501
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not all nontrivial solutions lead to CSB. It is well known tha
the breaking of chiral symmetry is always accompanied b
Goldstone boson, which is a pseudoscalar bound state c
posed of a fermion and an antifermion. If CSB happe
there should be a nontrivial solution for the Bethe-Salpe
equation of this bound state. In addition, the bound st
wave function must satisfy a normalization condition, whi
can be converted to a sufficient and necessary condition@22–
24# for the nontrivial solutions of the DS equation to sign
CSB. It gives a constraint on the form ofS(p2)/A(p2) as
follows @24#:

E
0

`

dq
q2S2~q2!

q2A2~q2!1S2~q2!
5finite. ~15!

It is easy to see that in order to satisfy this conditi
S(p2)/A(p2) must damp more rapidly thanp21/2 in the ul-
traviolet region (p→`). The mass function obtained by Ap
pelquistet al. @4# satisfies this condition and hence the no
trivial solutions of the DS equation in QED3 correspond to
true CSB solutions@24#. On the other hand, when an ultra
violet cutoff is introduced, the solutionS(p2) automatically
satisfies the squarely integrable condition. We should emp
size that, although the nontrivial solutions with an ultravio
cutoff all satisfy such a condition, only those solutions th
satisfy this condition in the continuum limit are physical
sensible. In the case of four-dimensional QED, although
nontrivial solutions with explicit ultraviolet cutoff are
squarely integrable they do not satisfy the squarely in
grable condition when we take the continuum limit@22,23#.
Therefore, the CSB solutions obtained in quenched pla
QED4 @25# are not physically meaningful solutions becau
they are not squarely integrable in the continuum limit, or
other words the associated bound state wave functions
not be normalized. In QED3, it was found thatS(p2)/A(p2)
behaves likep22 at p→`, which surely satisfies the cond
tion. Since the nontrivial solutions in QED3 are true CSB
solutions, we can safely introduce an ultraviolet cutoffL
without bringing unphysical nontrivial solutions.

A theoretical analysis implies that the critical fermio
numberNc of Eq. ~14! should depend onL/h. To determine
when CSB occurs, the DS equation should be solved imp
itly. The DS equation is a nonlinear integral equation a
hence is very hard to investigate. However, based on gen
bifurcation theory and the parameter imbedding method,
can find the critical fermion number and the mass funct
exactly. The detailed program of calculations is the topic
the next section. In the rest of this section, we discuss so
qualitative properties extracted from the DS equation~14!.

When the gauge boson has a very large mass, for exam
h@L, then the DS equation becomes

S~p2!5
8

Np2h
E

0

S

dk
kS~k2!

k21S2~k2!
. ~16!

From the momentum dependence of the mass function
fermions, we know that actually it is a constant in this lim
Therefore, the DS integral equation simplifies to the alg
braic equation
0-3
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S arctanS L

8S D5
N

8
~12p2h!. ~17!

This equation has no solutions; hence a large enough ma
the gauge boson prevents the occurrence of CSB. We
consider another limit, i.e., when the gauge boson mas
very small. In this limit, the last term in the kernel of E
~14! can be dropped safely, leaving a DS equation that is
same as the one studied by Appelquistet al. @5#. Then a very
small gauge boson mass actually does not affect the cri
behavior of QED3. This phenomenon can be understood i
happens that the critical fermion numberNc decreases when
the gauge boson massj increases and finally approach
zero for very largej. The main purpose of our work is to us
QED3 to model condensed matter systems where the ph
cal fermion number is 2, coming from the two compone
of the spin. Based on the tendency of the critical ferm
number in the presence of a finite gauge boson mass,
quite reasonable to hypothesize that there is a critical va
for the gauge boson massjcv above which CSB is inhibited
To make sure that this is actually the case, we should s
the DS equation and find the critical coupling constantlc at
which the DS equation starts to have nontrivial solutions

III. SOLVING DS EQUATION USING BIFURCATION
THEORY AND PARAMETER IMBEDDING METHOD

Equation ~14! is a Hammerstein type nonlinear integr
equation. It does not satisfy the conditions of the glo
eigenfunction theory of nonlinear functional analysis, so
global solutions cannot be obtained directly. However, lo
bifurcation theory@26–29# can help us to find its complet
solutions by first obtaining a local solution near a bifurcati
point and then extending its region of validity step by ste
This program is most easily achieved by the parameter
bedding method@28,29#, which has proved to be a powerfu
method in studying integral equations.

In order to obtain the bifurcation points we need only fi
the eigenvalues of the associated Freˆchet derivative of the
nonlinear DS equation@28,29#. Those eigenvalues that hav
odd multiplicity are the bifurcation points. Taking the Frˆ-
chet derivative of the nonlinear equation~14!, we have the
following linearized equation:

S~p2!5lE
0

L/h
dkS~k2!K~p,k! ~18!

with the kernel

K~p,k!5
1

pk Fp1k2up2ku2 lnS p1k11

up2ku11D G ~19!

where for calculational convenience we made the trans
mationp→p/h, k→k/h, andS→S/h. The smallest eigen
value lc of this equation is just the bifurcation point from
which a nontrivial solution of the DS equation~14! branches
off. The complex kernelK(p,k) in the linearized equation
~18! makes it very difficult to find an analytical solution.
06501
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We now would like to use the parameter imbeddi
method@28,29# to solve Eq.~18! numerically. To do this, we
first analytically continue it in the complex plane ofl; cor-
respondingly,S(p2) also becomes a complex function. It ca
be shown that

E E uK~x,y!u2dxdy,`. ~20!

Here we usex to denotep2, andy to denotek2. From the
Fredholm integral equation theory we know that there ex
a resolvent function for the kernelK(x,y),

RF~x,y,l!5DF~x,y,l!/dF~l!, ~21!

where the functionsDF(x,y,l) anddF(l) are analytic with
respect tol. If dF(l)5” 0, we do not have bifurcation points
The values ofl at which dF(l)50 are the bifurcation
points. According to the parameter imbedding method,
functions DF(x,y,l) and dF(l) are related by the
differential-integral equations

d

dl
dF~l!52E

0

L2/h
DF~x,y,l!dx, ~22!

]

]l
DF~x,y,l!5

1

dF~l! FDF~x,y,l!
d

dl
dF~l!

1E
0

L2/h
DF~x,z,l!DF~z,y,l!dzG ,

~23!

with the initial conditions

dF~0!51, ~24!

DF~x,y,0!5K~x,y!. ~25!

One remarkable advantage of the parameter imbedd
method is to convert the integral equations with variablex
and y to a set of equations in the variablel. Correspond-
ingly, the boundary conditions in the original equations a
replaced by two initial conditions, which are easier to trea
performing numerical calculations. Now, the functio
DF(x,y,l) anddF(l) can be readily obtained by integratin
numerically with respect tol.

We now should choose an appropriate contourC in the
complexl plane which contains the minimuml on the real
axis at whichd(l)50. The number of zero eigenvalues
the linearized equation~18! inside the contourC @i.e., the
zeros of the functiondF(l)] is

NE5
1

2p i RC

1

dF~l!

d

dl
dF~l!dl. ~26!

We can obtain the eigenvalues by solving the equations

(
i 51

NE

l i
l5

1

2p i RC

l l

dF~l!

d

dl
dF~l!dl, ~27!
0-4
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with l 51, . . . ,NE . For the present purpose, we only need
know the first bifurcation point, hence we letNE51.

For l.lc , the DS equation has nontrivial solutions a
the massless fermions become massive. The ultraviolet
off L is provided by the lattice constant and hence is k
fixed. We can obtain the relation ofNc andh by calculating
the critical couplinglc for different values ofL/h.

Our numerical result is presented in Fig. 1. The critic
fermion numberNc is a monotonically increasing function o
L/h. For smallL/h, Nc is smaller than the physical num
ber 2, so CSB does not occur. WhenL/h increases, the
critical numberNc increases accordingly and finally becom
larger than 2 at aboutL/hcv5100. Thus we see that there
a critical value of the gauge boson massjcv , below which a
finite mass is generated for massless fermions, while bey
it CSB is suppressed.

IV. DYSON-SCHWINGER EQUATION WITH HIGHER
ORDER CORRECTIONS

In the last two sections, we investigated the DS equa
in the Landau gauge after assuming thatA(p2)51 to sim-
plify calculations. Although this assumption is qualitative
correct, higher order corrections from the wave-functi
renormalizationA(p2) will alter the critical fermion number
Nc quantitatively. However, includingA(p2) makes the DS
equations very complicated and we should solve consiste
two pairs of nonlinear integral equations. Furthermore,
cording to the Ward-Takahashi identity, we cannot choosegm
as the vertex function in the presence of wave-funct
renormalizationA(p2). At present, there is no theoretic
guidance in determining the vertex functionGm(p,k), and
hence one cannot give a guarantee of the legitimacy o
specific choice of vertex function. Here, to simply calcu
tions and partly overcome the embarrassment in choosing
vertex function, we introduce a so-called nonlocal gau
@30–33# in which the wave-function renormalizationA(p2)

FIG. 1. The dependence of the critical numberNc on
log10(L/h) in the Landau gauge.
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[1 and the vertex function can be chosen as

Gm~p,k!5gm f ~p2,k2! ~28!

with f a function of the fermion momentump2,k2. The non-
local gauge is obtained by solving a differential equation.
this gauge, we need only investigate a single equation
S(p2) in studying the chiral phase transition.

Let us go back to the general massive gauge boson pr
gator~6!. If we consider the quenched planar approximati
of QED3, i.e., taking P(p2)50, then the wave function
renormalizationA(p2)[1 in the Landau gauge. This resu
is well known to be exact in QED of dimensions higher th
2. In the case of QED3, the one-loop vacuum polarization i
usually introduced explicitly to overcome the severe infrar
divergence. In the presence ofP(p2), wave-function renor-
malization A(p2) does not equal the identity. It should b
obtained by solving two consistent integral equations
A(p2) andS(p2). However, taking advantage of the gau
degrees of freedom of the system, we can simplify the
equations by choosing an appropriate gauge. In particula
we can obtain a gauge parameterg(q2) that satisfies the
equation

g~q2!5
2

q4DT~q2!
E

0

q2

DT~z!zdz21, ~29!

then we find a gauge in whichA(p2)[1 ~see the paper o
Georgiet al. in Refs.@31# and Ref.@33#!. Further, according
to the Ward-Takahashi~WT! identity, the vertex function can
be chosen as@34#

Gm~p,k!5gm . ~30!

Now the formidable task of solving a pair of integral equ
tions for the wave-function renormalizationA(p2) and the
mass functionS(p2) is simplified to solving a single equa
tion for S(p2):

S~p2!5E d3k

~2p!3

S~k2!

k21S2~k2!
@32g~q2!#DT~q2!.

~31!

From DT(q2) and Eq. ~29!, the integral overz can be
calculated:

E
0

q2

DT~z!zdz5
8

NE0

q2 1

z1/21h
zdz

5
16

N F1

3
q32

1

2
hq21h2q2h3 lnS q1h

h D G .
~32!

Then we obtain a nonlocal gauge parameter

g~q2!5
4

q4
~q1h!F1

3
q32

h

2
q21h2q2h3 lnS 11

q

h D G21.

~33!
0-5
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Substituting thisg(q2) into the DS equation~31!, after an-
gular integration we have

S~p2!5
8

Np2p
E

0

L

dk
kS~k2!

k21S2~k2!
E

up2ku

p1k

dqF2

3
2

h

q1h
1

h

2q

2
h2

q2
1

h3

q3
lnS 11

q

h D G . ~34!

In deriving this result, we have used the following formul

E
0

p

du sinu f ~q2!5
1

pkEup2ku

p1k

qdq f~q2!. ~35!

After integrating Eq.~34!, we have

S~p2!5lE
0

L

dk
kS~k2!

k21S2~k2!

2

p
K~p,k,h!, ~36!

with

K~p,k,h!5
2

3
~p1k2up2ku!2

h

2
lnS p1k1h

up2ku1h D
1

h2

2 S 1

p1k
2

1

up2ku D1
h3

2up2ku2

3 lnS 11
up2ku

h D2
h3

2~p1k!2
lnS 11

p1k

h D .

~37!

Here, l54/Np2 is the effective coupling constant. At firs
glance, both the third and fourth terms ofK(p,k,h) have
singular behaviors like 1/up2ku which would cause diver-
gence ifk approachesp. However, whenup2ku→0, we can
make the expansion

h3

2up2ku2
lnS 11

up2ku
h D

5
h3

2up2ku2
S up2ku

h
2

~p2k!2

2h2
1O~ up2ku3!D

5
h2

2up2ku
2

h

4
1O~ up2ku!. ~38!

Thus the singular terms are exactly cancelled. The same
can be used to show that the singular term 1/(p1q) can also
be cancelled exactly. Therefore, the kernelK(p,k,h) is a
smooth function in the whole integration region.

Taking the Freˆchet derivative of the nonlinear equatio
~36!, we obtain the linearized equation

S~p2!5lE
0

L/h
dkS~k2!

2

pk
K~p,k,h! ~39!

with
06501
tep

K~p,k,h!5
2

3
~p1k2up2ku!2

1

2
lnS p1k11

up2ku11D
1

1

2 S 1

p1k
2

1

up2ku D1
1

2up2ku2
ln~11up2ku!

2
1

2~p1k!2
ln~11p1k! ~40!

where for calculational convenience we made the trans
mationp→p/h, k→k/h, andS→S/h.

Using the steps we presented in the last section, we
solve the linearized equation~39! to obtain the relation be-
tween the critical fermion numberNc and the massj of the
gauge boson mass. The numerical result is presented in
2, from which we know that the critical value of the gaug
boson mass is aboutL/hcv53.3. Although there is a signifi-
cant change in the critical valuejcv , the result we obtained
in the Landau gauge remains qualitatively correct.

V. COMPETING ORDERS IN HIGH TEMPERATURE
SUPERCONDUCTORS

Understanding the competing orders in high temperat
cuprate superconductors is one of the most important iss
in condensed matter physics. In the presence of compe
orders, one order parameter prevails when other orders
suppressed by some external variables. At half filling,
cuprate superconductor is a Mott insulator with long-ran
antiferromagnetic order. When holes are doped into the C
planes, the material becomes a superconductor at low t
peratures and the long-range AF order disappears. He
there is a competition between the AF order and the
order, and as a result of this competition the AF order do
nates at zero and low doping while the SC order dominate
higher doping. However, even at higher doping the AF or

FIG. 2. The dependence of the critical numberNc on
log10(L/h) in the nonlocal gauge.
0-6
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also has a chance to appear locally where the supercon
tivity is suppressed by strong external magnetic fields.
cently, elaborate neutron scattering@34# and scanning tunnel
ling microscopy~STM! @35# experiments found that the AF
correlation is significantly enhanced in regions surround
the vortex cores. In this paper, we will use spin-charge se
ration and CSB to understand the competing orders.

It has been shown@10–13# that the Lagrangian~1! is the
effective low energy theory of undoped cuprates, which h
only fermionic excitations because of the presence of a la
charge gap. In underdoped cuprates, the electrons fractio
ize into spin carrying spinons and charge carrying holons
has been pointed out@15,16# that the physics of underdope
cuprates is captured by an effective U~1! gauge theory of
massless fermions and charged scalar fields

LF5 (
s51

N

c̄svs,m~]m2 iam!gmcs

1u~]m2 iam!bu21V~ ubu2!. ~41!

Hereb5(b1 ,b2) is a doublet of scalar fields representing t
holons@15#. vs,051 and generallyvs,15” vs,2 as a result of
the velocity anisotropy; however, for simplicity we can l
vs,15vs,251. Since the spin and charge degrees of freed
are assumed to be separated, there is no Yukawa-type
pling between the fermion field and the scalar field. In t
superconducting state, the bosonb acquires a nonzero
vacuum expectation value, i.e.,^b&5” 0. This nonzerô b&
spontaneously breaks the gauge symmetry of the theory
the gauge boson acquires a finite massj via the Anderson-
Higgs mechanism.

In the context of high temperature superconductors
U~1! gauge field is introduced as a Lagrangian multiplier
impose a local no-double-occupancy constraint. It has no
netic term;Fmn

2 and its dynamics is obtained by integratin
out the matter fields. If we only include the one-loop diagra
in the vacuum polarization, we getDT

21(q2)5q2p(q2)1j.
As we have shown previously, the effect of an addition
scalar doublet is to shiftN in the gauge boson vacuum po
larization p(q2) to N11, i.e., p(q2)5(N11)/8uqu. Then
the propagator for the gauge boson is

Dmn~p2k!5
8

~N11!~ up2ku1h!

3S dmn2
~p2k!m~p2k!n

~p2k!2 D . ~42!

From the corresponding DS equation in the nonlocal ga
obtained above, we found a critical gauge boson mas
L/jcv5100. For smallj, CSB occurs, while forj.jcv ,
CSB is suppressed.

We now would like to discuss the long-range behavior
the AF correlation function. The AF spin correlation is d
fined as
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^S1S2&052
1

4E d3k

~2p!3
Tr@G0~k!G0~k1p!#, ~43!

whereG0(k) is the fermion propagator. If the fermions a
massless, then

G0~k!52
g•k

k2
, ~44!

and we have

^S1S2&052
upu
16

. ~45!

At p→0, ^S1S2&0→0, and the AF correlation is heavily
lost. This is not a surprising result since our starting poin
the resonating valence bond~RVB! picture proposed by
Anderson@21#, which is just a liquid of spin singlets an
hence has only short-range AF correlation. This is not a
isfying situation because a long-range Ne´el order was ob-
served in experiments shortly after the discovery of cupr
superconductors.

However, even if we start from a RVB ground state, it
still possible to obtain the long-range AF correlation beca
of the strong correlation nature of Mott insulators. The stro
correlation is reflected in the fact that double occupancy o
single lattice is completely inhibited due to the strong Co
lomb repulsive force. After this local constraint and quantu
fluctuations are taken into account, a strong U~1! gauge field
emerges in the effective theory. This gauge field has an
portant effect on physical properties since it can cause
mion condensation and give the originally massless fermi
a finite mass. The AF spin correlation is expected to be s
nificantly enhanced once the fermions become massive
show that this actually happens, we will calculate the s
correlation function in the CSB phase~see the Appendix for
details!. Although the dynamically generated fermion ma
depends on the three-momentum, here, for simplicity,
assume a constant massm for the fermions. This approxima
tion is valid because we only care about the low ene
properties andS(p2) is actually a constant atp→0. The
propagator for the massive fermion is

G~k!5
2~g•k1 im!

k21m2
, ~46!

which leads to

^S1S2&052
1

4p Fm1
p214m2

2upu
arcsinS p2

p214m2D 1/2G .

~47!

This spin correlation behaves like2m/2p as p→0 and we
have a long-range AF correlation when CSB takes pla
Therefore, strong fluctuations around the RVB ground st
enhance the long-range AF spin correlations.

We should emphasize that calculations based on pertu
tive expansions cannot be used to obtain the long-range
0-7
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order. It might be argued that including higher order d
grams can enhance the AF spin correlation. However,
argument is not right. If we include the gauge field wh
keeping the fermions massless, then the spin correlatio
@36#

^S1S2&GF52
8

12p2~N11!
upu lnS L2

p2 D ~48!

which damps at low momentump→0. Rantner and Wen
@36# claimed that the long-range AF correlation can be o
tained by reexponentiating the spin correlation function@37#.
This scenario is based on their previous statement@14# that
the U~1! gauge field cannot generate a finite mass for fer
ons and hence is a marginal perturbation. This result is
rived by considering only the one-loop correction of t
gauge field to the fermion self-energy. However, CSB is
nonperturbative phenomenon and whether the gauge
generates a finite mass for the massless fermions can on
settled by investigating the self-consistent DS equation
the fermion self-energy. If Eq.~12! does not have a nonlinea
term in the denominator of the kernel, it is a linear equat
and cannot develop any genuine nontrivial solution. Fro
the point of view of bifurcation theory, a linear operator h
no bifurcation points; those are necessary for a phase tra
tion to take place. Once the nonperturbative effect is ta
into account, the strong gauge field generates a finite ferm
mass which breaks the chiral symmetry and gives rise
long-range AF order~Ref. @38# discussed the corresponden
of CSB to AF order in another way!. Actually, the formation
of long-range AF order spontaneously breaks the ratio
symmetry of the system and generates a gapless spin w
excitation which corresponds to the massless Goldstone
son. These are hard to understand if we only include
gauge fluctuations without breaking any symmetry. Furth
more, the strong interaction of the gauge field with mass
fermions of flavor 2 will unavoidably generate a finite fe
mion mass.

Now we would like to discuss the application of our res
to the interplay of various ground states in high temperat
cuprate superconductors. It is well known that the gauge
son massj is proportional to the superfluid densityr; thus
we can usej to describe the superconducting order. Oth
wise, we use CSB to describe the long-range AF ord
Based on the fact that the superfluid density is proportio
to the doping concentration, we obtain a clear picture of
evolution of different orders upon increasing the doping c
centration. At zero and low doping the gauge boson mas
zero or very small, so CSB and hence AF order are pres
When the doping concentration is larger than a critical va
dcv the gauge bosons acquire a mass that is large enoug
suppress the CSB and the AF order. Note that supercon
tivity begins to appear as the ground state of cuprate su
conductors at adsc that is less thandcv . Therefore, fordsc
,d,dcv there is a coexistence of the AF order and the
order in the bulk materials. Due to this coexistence,
length scale for AF order to appear should be larger than
vortex scale, which is consistent with the STM experime
of Hoffman et al. @35#.
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When the external magnetic field is stronger thanHc2, the
superfluid is completely suppressed, and, correspondin
the gauge bosons become massless. Then CSB reappe
the bulk material and gives a mass to the massless fermi
This mass provides a finite gap for the low energy fermio
to be excited; thus at low temperature no fermionic exc
tions can be observed@15#. This causes the breakdown of th
Wiedemann-Franz~WF! law in the normal ground state o
cuprate superconductors@15,39#. Thus, based on spin-charg
separation and CSB, we give a unified description for b
the behavior of the AF spin correlation and the transp
properties from a field theoretical point of view. This is th
most noticeable advantage of our scenario compared wit
many other scenarios@40–46# that also address the proble
of local AF order in vortex cores.

VI. INSTANTON EFFECT ON CSB

Confinement is one unresolved problem in modern p
ticle physics. A seminal paper written by Polyakov@47# has
shed some light on this problem by studying a thre
dimensional compact pure U~1! gauge theory~compact pure
QED3). In general, one can define an Abelian gauge the
on a two-dimensional lattice which has the following actio

S5
1

2e2 (
i ,ab

~12cosFi ,ab!, ~49!

with the field strength

Fi ,ab5Ai ,a1Ai 1a,b2Ai 1b,a2Ai ,b . ~50!

Here, the pairs (i ,a) are used to denote the links betwe
lattices, withi the beginning of a link anda its direction. If
the vector potentialAi ,a is defined to be a real number on i
whole region, i.e.,2`<Ai ,a<1`, the continuum limit of
this action is just that of the usual U~1! gauge as presented i
Eq. ~1!. However, a highly nontrivial physical effect emerg
if the vector potentialAi ,a has angular properties and hen
is defined on a circle as2p<Ai ,a<p. Due to the periodic-
ity of its action, such a field theory is called compact QE

Polyakov first considered pure compact QED3 without
coupling matter fields to the gauge field. He found that
stantons appear in this model as topological solutions of
Euclidean gauge field equations and lead to permanent
finement of static charges which is reflected by the area
for the Wilson integral. Compact QED3 has attracted intens
investigation in the past 20 years, initially as a simpler mo
to study quark confinement. Recently, compact QED3 with
matter fields has been used to model the physics of m
strongly correlated electron systems@19,48#. However, al-
though it is widely accepted that confinement is presen
pure compact QED3, there is no consensus on the fate
permanent confinement when matter fields are inclu
@49,50#. Compared with compact QED3 of scalar fields@49#,
the situation for compact QED3 of massless fermions is par
ticularly complicated because of the possibility of dynamic
mass generation for the fermions.
0-8
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Since compact QED3 was originally defined on lattices
Monte Carlo numerical simulations are expected to prov
important information on CSB, but they suffer from the n
torious fermion sign problem. In this paper, we would like
analyze the chiral behavior using the DS equation meth
To do this, we map the compact QED3 onto a continuum
theory and introduce the ultraviolet cutoffL keeping track of
its lattice origin. As shown by Polyakov, the gauge field a
quires a finite mass due to Debye screening caused by
instantons. We can use the massj of the gauge field to de
scribe the instanton effect and investigate the relation
tween CSB and the instanton effect by solving the DS eq
tion which consists of a massive gauge boson propagato

We studied the relation of the gauge boson mass and C
in the context of high temperature superconductors in the
section. However, the critical gauge boson massjcv is very
small in the presence of additional scalar fields, due to
shift from N to N11 by the scalar doublet, and hence CS
can exist only for a small region ofj. But the critical value
jcv in the present case@compact U~1! gauge field coupled
only to massless fermions# is much larger and there is a wid
region of j for CSB to take place. In previous papers@5,6#
addressing CSB in QED3 the ultraviolet cutoff is provided by
a5N/8, which is kept fixed when the fermion flavorN is
taken to infinity, because for momentump.a the self-
energy function damps rapidly. Fromh5j2/a we know that
the critical gauge boson mass is aboutjc5a/2. The instan-
ton effect can coexist with CSB forj,a/2. If we couple a
fermion of one flavor to a compact gauge field, then CSB
coexist with the instanton effect in a much wider region ofj.

The above result can be used to investigate the poss
confinement to deconfinement transition in compact QE3
because whether the fermions have a finite mass is expe
to affect the fate of permanent confinement@51#. Such a
transition is no doubt of great importance in both parti
physics and condensed matter physics, but beyond the s
of this paper.

VII. SUMMARY AND DISCUSSION

In this paper, we have discussed the effect of a finite m
of U~1! gauge bosons on CSB and its physical implicatio
The gauge boson massj is reflected in the modification o
the gauge field propagator, which appears in the DS equa
of the fermion self-energy. The DS equation is nonlinear a
hence hard to solve. An iteration procedure is the most
quently used numerical calculation method, but it is not cl
whether the iteration procedure leads to a convergent re
or not. To avoid the problem caused by convergency of
iteration, we make use of bifurcation theory and the para
eter imbedding method to numerically investigate the
equation. Adopting the Landau gauge and neglecting
wave-function renormalization, we found a critical valuejcv
for the gauge boson mass that separates the CSB phas
j,jcv , and the chiral symmetric phase, forj.jcv . We then
showed that including higher order corrections of the wa
function renormalization does not qualitatively change
critical valuejcv .

We then used our result in two physical systems, h
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temperature cuprate superconductors and compact QED3. If
the gauge boson mass is generated via the Anderson-H
mechanism in the superconducting state, the combinatio
spin-charge separation and CSB provides a field theore
description of the competition between the AF order and
SC order. As a compromise in this competition, there is m
croscopic coexistence of these two orders in the bulk m
rials, which plays an essential role in explaining the local A
order in vortex states observed in neutron scattering
STM experiments. When the periodicity of the gauge field
taken into account, the gauge boson acquires a finite m
via the instanton effect. Since whether the permanent c
finement still exists in the presence of fermions depends
the fermion mass, our result can help us to investigate
confinement to deconfinement phase transition, which w
be the subject of future study.
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APPENDIX

In this appendix we give the details of calculating the sp
correlation using the propagator of the massive fermio
When CSB occurs the fermion propagator is

G~k!5
2~g•k1 im!

k21m2
. ~A1!

Then

^S1S2&052
1

4E d3k

~2p!3
Tr@G~k!G~k1p!#

52
1

4E d3k

~2p!3
TrFg•k1 im

k21m2

g•~k1p!1 im

~k1p!21m2 G
52 i E

0

1

dtE d3k

~2p!3

3
k•~k1p!2m2

$~k21m2!~12t !1@~k1p!21m2#t%2
,

~A2!

where we used the Feynman parametrization formula

1

ab
5E

0

1

dt
1

@at1b~12t !2#2
. ~A3!

After replacingk by k2pt and making a Wick rotation, we
have
0-9
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^S1S2&05E
0

1

dtE d3k

~2p!3

k22m22p2t~12t !

@k21m21p2t~12t !#2
.

~A4!

Using the properties of theG function, we can integrate ove
the momentumk and get

^S1S2&05
1

~4p!3/2

3

2
GS 2

1

2D2GS 1

2D
G~2!

3E
0

1

dt
1

@m21p2t~12t !#21/2
. ~A5!

Since
-

ev

ys

s
.

06501
GS 2
1

2D
G~2!

522p1/2, ~A6!

GS 1

2D
G~2!

5p1/2, ~A7!

we get

^S1S2&052
1

2pE0

1

dt@m21p2t~12t !#1/2

52
1

4p Fm1
p214m2

2upu
arcsinS p2

p214m2D 1/2G .

~A8!

This is the AF spin correlation in the CSB phase.
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~2001!.
@18# I. J. R. Aitchison and N. E. Mavromatos, Phys. Rev. B53,

9321 ~1996!.
@19# X.-G. Wen and A. Zee, Phys. Rev. Lett.69, 1811~1992!.
@20# T. Appelquist, J. Terning, and L. C. R. Wijewardhana, Ph

Rev. Lett.75, 2081~1995!.
@21# P. W. Anderson, Science235, 1196~1987!.
@22# G. Cheng, inPrecision Test of Standard Model and New Phy

ics, CCAST-WL Workshop Series Vol. 55, edited by C.-H
Chang~CCAST, 1996!, p. 73.

@23# G. Cheng and T. K. Kuo, J. Math. Phys.38, 6119 ~1997!; G.
.

.

-

Cheng, Int. J. Mod. Phys. B13, 3496~1999!.
@24# G.-Z. Liu and G. Cheng, Phys. Lett. B510, 320 ~2001!.
@25# K.-I. Kondo, J. Mino, and K. Yamawaki, Phys. Rev. D39,

2430 ~1989!.
@26# S.-N. Chow and J. K. Hale,Methods of Bifurcation Theory

~Springer-Verlag, New York, 1982!.
@27# D. Atkinson and P. W. Johnson, J. Math. Phys.28, 2488

~1987!.
@28# H. Kagiwada and R. Kalaba,Integral Equations via Imbedding

Methods~Addison-Wesley, Reading, MA, 1974!.
@29# G. Cheng and T. K. Kuo, J. Math. Phys.35, 6270~1994!; 35,

6693 ~1994!. These two papers provide a mathematically r
orous basis for the applicability of bifurcation theory to CS
which is necessary for using the parameter imbedding met
to investigate the nonlinear DS integral equation.

@30# L. D. Landau and I. M. Khalatnikov, Sov. Phys. JETP2, 69
~1956!; B. Zumino, J. Math. Phys.1, 1 ~1960!.

@31# H. Georgi, E. H. Simmons, and A. G. Cohen, Phys. Lett.
236, 183 ~1990!; T. Kugo and M. G. Mitchard,ibid. 282, 162
~1992!.

@32# T. Ebihara, T. Iizuka, K.-I. Kondo, and E. Tanaka, Nucl. Phy
B434, 8 ~1995!; K.-I. Kondo and P. Maris, Phys. Rev. Lett.74,
18 ~1995!; Phys. Rev. D52, 1212~1995!.

@33# K.-I. Kondo, Phys. Rev. D55, 7826~1997!.
@34# B. Lake et al., Science291, 1759 ~2001!; Nature ~London!

415, 299 ~2002!.
@35# J. E. Hoffmanet al., Science295, 466 ~2002!.
@36# W. Rantner and X.-G. Wen, Phys. Rev. B66, 144501~2002!.
@37# Gusyninet al.also calculated the spin correlation using the D

equation in QED3 with four-fermion coupling; see V. P. Gusy
nin, A. Hams, and M. Reenders, Phys. Rev. D63, 045025
~2001!.
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