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Approach to solve Slavnov-Taylor identities in nonsupersymmetric non-Abelian gauge theories

Igor Kondrashuk,* Gorazd Cveticˇ,† and Ivan Schmidt‡

Department of Physics, Universidad Te´cnica Federico Santa Marı´a, Valparaı́so, Chile
~Received 16 October 2002; published 14 March 2003!

We present a way to solve Slavnov-Taylor identities in a general nonsupersymmetric theory. The solution
can be parametrized by a limited number of functions of spacetime coordinates, so that all the effective fields
are dressed by these functions via integral convolution. The solution restricts the ghost part of the effective
action and gives predictions for the physical part of the effective action.
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I. INTRODUCTION

The effective action is an important quantity of quantu
theory. Defined as the Legendre transformation of the p
integral, it provides us with an instrument to find the tr
vacuum state of the theory under consideration and to s
its behavior, taking into account quantum correctio
Slavnov-Taylor~ST! identities are also an important tool t
prove the renormalizability of gauge theories in four spa
time dimensions@1,2#. They generalize Ward-Takahas
identities of quantum electrodynamics to the non-Abel
case and can be derived starting from the property of inv
ance of the tree-level action with respect to Becchi-Rou
Stora-Tyutin~BRST! symmetry@3,4#. ST identities for the
effective action have been derived in Ref.@5#.

Slavnov-Taylor identities are equations involving var
tional derivatives of the effective action. The effective acti
contains all the information about the quantum behavior
the theory, and in quantum field theory it is the one-parti
irreducible diagram generator. Searching for the solution
Slavnov-Taylor identities can be considered as a complem
tary method to the existing nonperturbative methods of qu
tum field theory such as the Dyson-Swinger and Bet
Salpeter equations. A solution to the Slavnov-Tay
identities in four-dimensional supersymmetric theory h
been proposed recently@6#. In the procedure to derive tha
solution, the no-renormalization theorem for the superpot
tial @7,8# was used extensively. In this paper we will sugg
that this point is not crucial and that arguments similar
those given before@6# can be used in the nonsupersymmet
case. In the approach developed below there are no res
tions on the number of dimensions and renormalizability
the theory. We require only that the theory under consid
ation can be regularized in such a way that the Slavn
Taylor identities are valid and that BRST symmetry
anomaly-free, as is the case, e.g., in QCD.

We argue that the functional structure of the auxilia
ghost-ghostLc2 correlator in nonsupersymmetric gaug
theories is fixed by Slavnov-Taylor identities in a uniq
way. In this correlatorL is a nonpropagating backgroun
field and it is coupled at the tree level to the BRST transf
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mation of the ghost fieldc. According to our assumption, th
vertexLc2 is invariant with respect to ST identities and th
then gives the following quantum structure for it:

E dx8dxdydzGc~x82x!Gc
21~x82y!

3Gc
21~x82z!

i

2
f bcaLa~x!cb~y!cc~z!. ~1!

As one can see, the main feature of this result is that
effective ghost fieldc is dressed by the unknown functio
Gc

21(x2y). This dressing contains all the quantum inform
tion about this correlator. We can use the structure of t
correlator as a starting point to find the solution for the to
effective action.

The solution to the Slavnov-Taylor identities found in th
present paper imposes restrictions on the ghost part of
effective action. For example, it means that the gluon-gho
antighost vertex can be read off from our result for the
fective action~67!:

Gm~q,p!5 iqm

G̃A~q2!

G̃A~k2!G̃c~p2!
, ~2!

whereG̃A is the Fourier image of a function that dresses
gauge field, whileGm(q,p) is the gluon-ghost-antighost ver
tex, q is the momentum of the antighost fieldb andp is the
momentum of the ghost fieldc, and p1k1q50. Another
feature of the result obtained here is that the physical par
the effective action~67! is gauge invariant in terms of th
effective fields dressed by the dressing functionsG. In the
result ~67! for the effective action information about th
quantum behavior of the theory is encoded in afinite number
of dressing functions and in the running function of the co
pling.

The paper is organized in the following way. In Sec. II w
review some basic aspects of BRST symmetry and Slavn
Taylor identities for irreducible vertices. In Sec. III we sho
how to obtain the functional structure~1! of the Lc2 cor-
relator. In Sec. IV we obtain the correlator linear in anoth
nonpropagating background fieldKm , thus fixing the terms
in the effective action that contain ghost and antighost eff
tive fields. In Sec. V we describe higher correlators inKm
andL. In Sec. VI we make a conjecture about the form of t
physical~pure gluonic! part of the effective action and the
©2003 The American Physical Society06-1
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in Sec. VII we consider renormalizing of it to remove infin
ties. A brief summary is given at the end. The questions
consistency of this effective action within perturbative QC
are investigated in a second paper@9#. For simplicity, in the
present paper we focus on pure gauge theories in four sp
time dimensions with theSU(N) gauge group. No matte
field is included in the consideration, although their additi
does not change our results.

II. PRELIMINARIES

We consider the traditional Yang-Mills Lagrangian of th
pure gauge theory:

S52E dx
1

2g2
Tr@Fmn~x!Fmn~x!#. ~3!

The gauge field is in the adjoint representation of
gauge group. A nonlinear local~gauge! transformation of the
gauge fields exists which keeps the theory~3! invariant. This
symmetry must be fixed, Faddeev-Popov ghost fields@10#
must be introduced, and finally the BRST symmetry can
established for a theory that in addition to the classical ac
~3! contains a Faddeev-Popov ghost action and a ga
fixing term.
ge

s
a
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To be specific, we choose the Lorentz gauge-fixing c
dition

]mAm~x!5 f ~x!. ~4!

Heref is an arbitrary function in the adjoint representation
the gauge group that is independent of the gauge field.
normalization of the gauge group generators is

Tr~TaTb!5
1

2
dab, ~Ta!†5Ta, @Tb,Tc#5 i f bcaTa,

and we use the notationX5XaTa for all the fields in the
adjoint representation of the gauge group, like the ga
fields themselves, the ghost fields, and their respec
sources.

The conventional averaging procedure with respect tof is
applied to the path integral with the weight

e2 iE dxTr
1

a
f 2~x!

and as the result we obtain the path integral
Z@J,h,r,K,L#5E dAdcdbexpi HS@A,b,c#12 TrS E dxJm~x!Am~x!1 i E dxh~x!c~x!1 i E dxr~x!b~x! D
12 TrS i E dxKm~x!¹mc~x!1E dxL~x!c2~x! D J , ~5!
ob-

is

ld
a-

a-

ma-

e-
in which

S@A,b,c#5E dxF2
1

2g2
Tr@Fmn~x!Fmn~x!#

2TrS 1

a
@]mAm~x!#2D22 Tr@ ib~x!]m¹mc~x!#G .

~6!

Here the ghost fieldc and the antighost fieldb are Hermitian,
andb†5b, c†5c in the adjoint representation of the gau
group. They possess Fermi statistics.

The infinitesimal transformation of the gauge fieldAm is
defined by the fact that it is a gauge connection,

Am→Am2¹ml,

wherel(x) is an infinitesimal parameter of the gauge tran
formation. This transformation comes from the transform
tion of covariant derivatives,

¹m→eil¹me2 il, ¹m5]m1 iAm , f→eilf,
-
-

wheref is some representation of the gauge group. To
tain the BRST symmetry we have to substituteic(x)« for l.
Here « is the Hermitian Grassmannian parameter,«†5«,
«250. Thus, the BRST transformation of the gauge field

Am→Am2 i ¹mc «. ~7!

In order to obtain the BRST transformation of the ghost fie
c we have to consider two subsequent BRST transform
tions:

¹m→e2cke2c«¹mec«eck

5e2c«2ck2(c«)(ck)¹mec«1ck1(c«)(ck), ~8!

wherek is a Grassmannian parameter too,k250. This trans-
formation again is equivalent to an infinitesimal transform
tion of the gauge field in covariant derivatives,

Am→Am2 i¹m@c«1ck1~c«!~ck!#.

This means that we can consider the inner BRST transfor
tion ~with «) as the substitution~7! in the outer BRST trans-
formation ~with k). The second term after the covariant d
6-2
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rivative is a transformation ofAm under the outer BRST
transformation while the third term after the covariant d
rivative is the transformation ofi¹mck and can be cancelle
by the transformation of the second termck,

c→c1c2«. ~9!

Thus, the transformations~7! and ~9! together leave the co
variant derivative of the ghost field unchanged. Such a s
metry is very general and always exists if the gauge fix
procedure has been performed in the path integral for
theory with nonlinear local symmetry. The noninvariance
the gauge-fixing term is cancelled by the correspond
transformation of the antighost fieldb.

To collect everything together, the action~6! is invariant
with respect to the BRST symmetry transformation with t
Grassmannian parameter«,

Am→Am2 i¹mc«,

c→c1c2«, ~10!

b→b2
1

a
]mAm«.

The external sourcesK and L of the BRST transforma-
tions of the fields are BRST invariant by definition, so t
last two lines in Eq.~5! are BRST invariant with respect t
the transformations~10!.

The effective actionG is related toW5 i ln Z by the Leg-
endre transformation1

Am[2
dW

dJm
, ic[2

dW

dh
, ib[2

dW

dr
, ~11!

G52W22 TrS E dxJm~x!Am~x!1E dxih~x!c~x!

1E dxir~x!b~x! D
[2W22 Tr~Xw!, ~12!

~Xw![ i G(k)~Xkwk!,

X[~Jm ,h,r!, w[~Am ,c,b!,

whereG(k)50 if wk is a Bose field andG(k)51 if wk is a
Fermi field. We use throughout the paper the notation

d

dX
5Ta

d

dXa

for any field X in the adjoint representation of the gau
group. Iteratively, all equations~11! can be reversed,

1We have traditionally used in this paper the same notation for
variable of the effective action and the variable of integration in
path integral coupled to the corresponding source@2#.
06500
-

-
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X5X@w,Km ,L#,

and the effective action is defined in terms of the new va
ablesG5G@w,Km ,L#. Hence, the following equalities oc
cur:

dG

dAm
52Jm ,

dG

dKm
52

dW

dKm
,

dG

dc
5 ih,

dG

db
5 ir,

dG

dL
52

dW

dL
. ~13!

If the change of fields~10! in the path integral~5! is
made, one obtains the Slavnov-Taylor identity as the resu
the invariance of the integral~5! under a change of variables

TrF E dxJm~x!
d

dKm~x!
2E dxih~x!S d

dL~x! D
1E dxir~x!S 1

a
]m

d

dJm~x! D GW50, ~14!

or, taking into account the relations~13!, we have@2#

TrF E dx
dG

dAm~x!

dG

dKm~x!
1E dx

dG

dc~x!

dG

dL~x!

2E dx
dG

db~x! S 1

a
]mAm~x! D G50. ~15!

The problem is to find the most general functionalG of
the variablesw,Km ,L that satisfies the ST identity~15!. Be-
fore doing it, we need in addition to the ST identities also t
ghost equation that can be derived by shifting the antigh
field b by an arbitrary field«(x) in the path integral~5!. The
consequence of invariance of the path integral with respec
such a change of variable is@in terms of the variables~11!#
@2#

dG

db~x!
1]m

dG

dKm~x!
50. ~16!

The ghost equation~16! restricts the dependence ofG on the
antighost fieldb and on the external sourceKm to an arbi-
trary dependence on their combination:

]mb~x!1Km~x!. ~17!

This equation together with the third term in the ST identit
~15! is responsible for the absence of quantum correction
the gauge-fixing term. Stated otherwise, when express
dG/db(x) in the third term in the ST identity~15! as
2]m@dG/dKm(x)# by Eq. ~16!, the sum of the first and the
third terms in Eq.~15! can be rewritten as

TrE dx
dG8

dAm~x!

dG8

dKm~x!
,

e
e

6-3
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where G8[G2S(gf), and S(gf)52(1/a)Tr*dx@]mAm(x)#2

is the gauge-fixing part of the classical action~6!. In fact, all
the other terms in the ST identity~15! can be rewritten with
G8 instead ofG, yielding

TrF E dx
dG8

dAm~x!

dG8

dKm~x!
1E dx

dG8

dc~x!

dG8

dL~x!G50.

~18!

This shows explicitly that the gauge-fixing part ofG remains
unaffected by quantum corrections (G5G81G (gf);G (gf)

5S(gf)).

III. FUNCTIONAL STRUCTURE OF Lcc VERTEX

One can consider the part of the effective action that
pends only on the fieldsL andc. We write generally

GuL,c5E dx1dy1dy2GUL,c
(a1 ;b1 ,b2)

~x1 ;y1 ,y2!La1~x1!

3cb1~y1!cb2~y2!1•••

1E dx1•••dxndy1•••dy2nGU
L,c

(a1 , . . . ,an ;b1 , . . . ,b2n)

~x1 , . . . ,xn ;y1 , . . . ,y2n!La1~x1!•••

3Lan~xn!cb1~y1!•••cb2n~y2n!1•••. ~19!

We assume that the first term is invariant with respec
the second operator in the identities~15!, which is

TrE dx
dG

dc~x!

dG

dL~x!
50. ~20!

This assumption is based on the following. In perturbat
theory the first term of Eq.~19! can be understood as th
classical term plus a quantum correction to the vertexLcc
~nothing forbids us to consider the auxiliary fieldL as a
nonpropagating background field!. The operator~20! can be
considered as an infinitesimal substitution in the effect
action

c~x!→c~x!1
dG

dL~x!
. ~21!

In other words, one can consider the result of such a sub
tution as the difference

GFL,c~x!1
dG

dL~x!G2G@L,c~x!#,

to linear order indG/dL(x). As one can see, the applicatio
of the substitution~21! to the vertexLcc of the effective
actionG gives a variation of orderLccc. Another contribu-
tion of the same orderLccc comes into the variation from
the monomialLccA of the effective actionG due to the first
term in the ST identity~15!. Indeed, one can consider th
first term in Eq.~15! as the substitution
06500
-

o

n

e

ti-

Am~x!→Am~x!1
dG

dKm~x!
,

or, in other words, such a substitution can be considered
the difference

GFKm ,Am~x!1
dG

dKm~x!G2G@Km ,Am~x!#

to linear order indG/dKm(x). Application of such a substi-
tution to the monomialLccA of the effective actionG gives
a contribution of orderLccc in the effective fields and this
contribution comes from the full ghost propagator of order
the fieldsKm]mc,

LccA→Lcc
dG

dKm
;Lcc

d~Km ]mc!

dKm
;Lccc.

Thus, there are only these two possible contributions to
variationLccc. Schematically, the totalLccc variation can
be presented as

^Lcc&3^Lcc&1^LccA&3^Km]mc&50 ~22!

where the angular brackets mean the vacuum expecta
values of the vertices. This is a schematic form of the
identity relating theLcc and LccA field monomials. The
precise form of this relation can be obtain by differentiati
the identity ~15! with respect toL and three times with re-
spect toc and then by setting all the variables of the effecti
action to zero. The angular brackets in Eq.~22! mean that we
have taken the functional derivatives with respect to
fields in the corresponding brackets and then have put all
effective fields to zero. Of course, this sum~22! should be
zero since on the right hand side of the ST identity~15! we
have zero. One can consider the identity~22! order by order
in g2. At the tree level, the second contribution is abse
since theLccA term is absent in the classical action. For t
first one we obtain the Jacobi identity. At one-loop level, w
have one-loopLcc times tree levelLcc plus one-loopLccA
times tree levelK]c. However, one-loopLccA is superfi-
cially convergent and does not depend on the normaliza
point m. In the asymptotic region one-loopLcc depends on
the first degree of ln(p2/m2) where we have taken the sym
metric point in momentum space, that is, all the exter
momenta of the vertexLcc are ;p2. This means that the
first degree of ln(p2/m2) in one-loopLcc is invariant with
respect to the operator~20!. In other words, the dependenc
on ln(p2/m2) is cancelled within the first term of the identit
~22!. We can consider the two-loop approximation for t
identity ~22! in the same manner. Indeed, at the two-lo
level of the identity~22! one has two-loopLcc times tree
level Lcc plus one-loopLcc times one-loopLcc plus two-
loop LccA times tree levelK]c plus one-loopLccA times
one-loopK]c and all this should be zero. However, one c
see that the second degree of ln(p2/m2) is determined again
by only the first term in the schematic identity~22! since
two-loop LccA does not have superficial divergences and
divergent only in subgraphs. Thus, the second degree
6-4
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ln(p2/m2) is also determined by the invariance with respec
the first term in the identity~22!. We can go further in this
logical chain and we will always conclude that the high
degree of ln(p2/m2) in Lcc is invariant itself with respect to
the ST identity. This is the main source of the intuitive m
tivation for considering theLcc correlator separately from
the other field monomialLccA.

In such a case, it will be shown below that the only so
tion for this Lcc term of the effective action is

E dxdx1dy1dy2Gc~x2x1!Gc
21~x2y1!

3Gc
21~x2y2!2 Tr@L~x1!c~y1!c~y2!#. ~23!

To prove Eq.~23!, we consider the proper correlator

G5E dxdydzG~x,y,z!TabcLa~x!cb~y!cc~z!. ~24!

As we have already noted, in perturbation theory it can
understood as a correction to the vertexLc2 and we consider
the auxiliary fieldL as a nonpropagating background fie
06500
o

t

-

-

e

.

Tabc is some group structure. Equation~24! is just a general
parametrization of the proper correlatorLc2 and nothing
more. Equation ~24! says that G (a;b,c)(x,y,z)
5G(x,y,z)Tabc, whereTabc is a three-tensor in the adjoin
representation of the gauge group. This reflects the fact
the global symmetry of the gauge group must be conser
in the effective action. With respect to that symmetry t
auxiliary fieldsKa and La are vectors in the adjoint repre
sentation of the gauge group. Also,

G~x,y,z!Tabc52G~x,z,y!Tacb. ~25!

This is a direct consequence of the Grassmannian natur
the ghost fields. It follows from the parametrization~24!.
Further, from Eq.~24! it follows that

dG

dLa~x!
5E dydzG~x,y,z!Tabccb~y!cc~z!.

By substituting this expression in the Slavnov-Taylor ident
~15! we have
E dx
dG

dca~x!

dG

dLa~x!
5E dxdy8dz8G~y8,x,z8!TdabLd~y8!

dG

dLa~x!
cb~z8!

2E dxdy8dz8G~y8,z8,x!TdbaLd~y8!cb~z8!
dG

dLa~x!

5E dxdydzdy8dz8G~y8,x,z8!TdabLd~y8!G~x,y,z!Tamncm~y!cn~z!cb~z8!

2E dxdydzdy8dz8G~y8,z8,x!TdbaLd~y8!cb~z8!G~x,y,z!Tamncm~y!cn~z!

5E dxdydzdy8dz8G~y8,x,z8!G~x,y,z!TdabTamnLd~y8!cm~y!cn~z!cb~z8!

2E dxdydzdy8dz8G~y8,y,x!G~x,z,z8!TdmaTanbLd~y8!cm~y!cn~z!cb~z8!

5E dxdydzdy8dz8@G~y8,x,z8!G~x,y,z!TdabTamn

2G~y8,y,x!G~x,z,z8!TdmaTanb#Ld~y8!cm~y!cn~z!cb~z8!50.

Taking into account Eq.~25! the last two lines can be rewritten as

E dxdydzdy8dz8@G~y8,x,z8!G~x,y,z!TdabTamn2G~y8,y,x!G~x,z,z8!TdmaTanb#Ld~y8!cm~y!cn~z!cb~z8!

5E dxdydzdy8dz8@G~y8,x,z8!G~x,y,z!TdabTamn2G~y8,x,y!G~x,z8,z!TdamTabn#Ld~y8!cm~y!cn~z!cb~z8!

52E dxdydzdy8dz8G~y8,x,z8!G~x,y,z!TdabTamnLd~y8!cm~y!cn~z!cb~z8!50.
6-5
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Now one can make a total symmetrization with respect to
pairs (m,y), (n,z), and (b,z8). It results in

E dxdydzdy8dz8@G~y8,x,z8!G~x,y,z!TdabTamn

1G~y8,x,y!G~x,z,z8!TdamTanb

1G~y8,x,z!G~x,z8,y!TdanTabm#

3Ld~y8!cm~y!cn~z!cb~z8!50.

Thus, one comes to the equation

E dxG~y8,x,z8!G~x,y,z!TdabTamn

1E dxG~y8,x,y!G~x,z,z8!TdamTanb

1E dxG~y8,x,z!G~x,z8,y!TdanTabm50. ~26!

As one can see, at the tree levelTdab; f abd and

G tree~x,y,z!5E dx8d~x82x!d~x82y!d~x82z! ~27!

and, hence, the identity~26! is a Jacobi identity. We conside
in this paper gauge theories with theSU(N) gauge group
and we noted this in the Introduction. The structure consta
f abc are completely antisymmetric in such a case. With
help of the identities

f ABCf CDEf EBF52
1

2
N fADF

which are consequences of the Jacobi identity, one can
duce the group structure of the one-loop diagramLcc to
f ABC and that is true for all loops. Thus, it is natural
assume thatTabc; f bca and the identity~26! is

E dxG~y8,x,z8!G~x,y,z! f abdf mna

1E dxG~y8,x,y!G~x,z,z8! f amdf nba

1E dxG~y8,x,z!G~x,z8,y! f andf bma50.

Because of the Jacobi identity only two group structures
independent here:

F E dxG~y8,x,z8!G~x,y,z!

2E dxG~y8,x,y!G~x,z,z8!G f abdf mna

1F E dxG~y8,x,z!G~x,z8,y!
06500
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2E dxG~y8,x,y!G~x,z,z8!G f andf bma50.

Since these two group structures are independent, we c
to the equations

E dxG~y8,x,z8!G~x,y,z!5E dxG~y8,y,x!G~x,z,z8!

5E dxG~y8,x,z!G~x,z8,y!.

~28!

We can start by solving the first one:

E dxG~y8,x,z8!G~x,y,z!5E dxG~y8,y,x!G~x,z,z8!,

~29!

and then check that the second equality is also satisfied
writing this equation we have used the symmetry proper
~25!. We introduce the Fourier transformations2

G~x,y,z!5E dp1dq1dk1d~p11q11k1!

3G̃~p1 ,q1 ,k1!exp~ ip1x1 iq1y1 ik1z!,

G~y8,x,z8!5E dp2dq2dk2d~p21q21k2!

3G̃~p2 ,q2 ,k2!exp~ ip2y81 iq2x1 ik2z8!,

G~y8,y,x!5E dp3dq3dk3d~p31q31k3!

3G̃~p3 ,q3 ,k3!exp~ ip3y81 iq3y1 ik3x!,

G~x,z,z8!5E dp4dq4dk4d~p41q41k4!

3G̃~p4 ,q4 ,k4!exp~ ip4x1 iq4z1 ik4z8!.

The condition~29! in momentum space is

2We do not write factors 2p in these Fourier transformations sinc
at the end of the calculations we will go back to coordinate space
which all the factors 2p will disappear.
6-6
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E dxdp1dq1dk1dp2dq2dk2d~p11q11k1!d~p21q21k2!G̃~p1 ,q1 ,k1!G̃~p2 ,q2 ,k2!

3exp~ ip1x1 iq1y1 ik1z1 ip2y81 iq2x1 ik2z8!

5E dxdp3dq3dk3dp4dq4dk4d~p31q31k3!d~p41q41k4!G̃~p3 ,q3 ,k3!G̃~p4 ,q4 ,k4!

3exp~ ip3y81 iq3y1 ik3x1 ip4x1 iq4z1 ik4z8!.

It can be transformed to

E dp1dq1dk1dp2dk2d~p11q11k1!d~p22p11k2!G̃~p1 ,q1 ,k1!G̃~p2 ,2p1 ,k2!exp~ iq1y1 ik1z1 ip2y81 ik2z8!

5E dp3dq3dk3dq4dk4d~p31q31k3!d~2k31q41k4!G̃~p3 ,q3 ,k3!G̃~2k3 ,q4 ,k4!exp~ ip3y81 iq3y1 iq4z1 ik4z8!,

and then by momentum redefinitions in the second integral one obtains

E dp1dq1dk1dp2dk2d~p11q11k1!d~p22p11k2!G̃~p1 ,q1 ,k1!G̃~p2 ,2p1 ,k2!exp~ iq1y1 ik1z1 ip2y81 ik2z8!

5E dp2dq1dk3dk1dk2d~p21q11k3!d~2k31k11k2!G̃~p2 ,q1 ,k3!G̃~2k3 ,k1 ,k2!exp~ iq1y1 ik1z1 ip2y81 ik2z8!.

By removing one of the delta functions in each part one obtains

E dq1dk1dp2dk2d~p21k21q11k1!G̃~p21k2 ,q1 ,k1!G̃~p2 ,2p22k2 ,k2!exp~ iq1y1 ik1z1 ip2y81 ik2z8!

5E dp2dq1dk1dk2d~p21q11k11k2!G̃~p2 ,q1 ,k11k2!G̃~2k12k2 ,k1 ,k2!exp~ iq1y1 ik1z1 ip2y81 ik2z8!.

By making the last simplification one obtains

E dk1dp2dk2G̃~p21k2 ,2p22k22k1 ,k1!G̃~p2 ,2p22k2 ,k2!exp@ i ~2p22k22k1!y1 ik1z1 ip2y81 ik2z8#

5E dp2dk1dk2G̃~p2 ,2p22k22k1 ,k11k2!G̃~2k12k2 ,k1 ,k2!exp@ i ~2p22k22k1!y1 ik1z1 ip2y81 ik2z8#.
ich
le

tz

ue
Thus, finally, the condition~29! takes the form

G̃~p21k2 ,2p22k22k1 ,k1!G̃~p2 ,2p22k2 ,k2!

5G̃~p2 ,2p22k22k1 ,k11k2!G̃~2k12k2 ,k1 ,k2!.

~30!

This is an equation for a function of three variables, wh
will be solved below. First we show that there is a simp
ansatz that satisfies Eq.~30!. Indeed, by choosing the ansa

G̃~p,q,k!5
G̃~q2!G̃~k2!

G̃~p2!
, ~31!
06500
whereG̃ is the Fourier image of some functionGc
21 , we can

substitute this expression in Eq.~30!:

G̃„~p21k2!2
…G̃~k2

2!

G̃~p2
2!

3
G̃„~p21k21k1!2

…G̃~k1
2!

G̃„~p21k2!2
…

5
G̃„~p21k21k1!2

…G̃„~k21k1!2
…

G̃~p2
2!

3
G̃~k1

2! G̃~k2
2!

G̃„~k11k2!2
…

.

~32!

This is an identity. That is, for the ansatz~31!, Eq. ~30! is
valid. Now we will demonstrate that this anzatz is a uniq
solution.
6-7



m

,

tz
e

l
e

c

e

we
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In general, the functionG̃(p,q,k) is a function of three
independent Lorentz invariants, since the momentsp, q, and
k are not independent but related by conservation of the
ments,p1q1k50. We can choosep2, q2, andk2 as those
independent invariants,

G̃~p,q,k![ f ~p2,q2,k2!.

Therefore, we can rewrite the basic equation~30! as

f ~~p21k2!2,~p21k21k1!2,k1
2!3 f ~p2

2 ,~p21k2!2,k2
2!

5 f ~p2
2 ,~p21k21k1!2,~k11k2!2!3 f ~~k11k2!2,k1

2 ,k2
2!.

~33!

Let us introduce into Eq.~33! new independent variables

~p21k2!25x, ~p21k21k1!25y,

k1
25z, p2

25u, ~34!

k2
25v, ~k11k2!25w.

The number of independent variables is six, since in Eq.~33!
we have only three independent Lorentz vectorsp2 ,k2 ,k1.
Using these vectors we can construct the six Loren
invariant values above. In terms of these new independ
variables the basic equation~33! looks like

f ~x,y,z!3 f ~u,x,v !5 f ~u,y,w!3 f ~w,z,v !. ~35!

We consider Eq.~35! as an equation for an analytica
function of three variables inR3 space. We observe that th
RHS of Eq. ~35! does not depend onx for any values of
y,z,u,v. There is a unique solution to this—the dependen
on x must be factorized in the following way:

f ~x,y,z!5
1

w~x!
F1~y,z!, f ~u,x,v !5w~x!F2~u,v !,

~36!

wherew(x) is some function, andF1(y,z) andF2(u,v) are
other functions. The rigorous proof of this statement is giv
below. The two equations in~36! imply

f ~x,y,z!5
w~y!

w~x!
3F~z!,

whereF(z) is some function. By substituting this in Eq.~35!
we immediately infer thatF(z)5const3w(z). Rescaling
w(z) by an appropriate constant, we obtain

f ~x,y,z!5
w~y!w~z!

w~x!
. ~37!
06500
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Let us give a rigorous proof that the factorization~36! of the
x dependence is the unique solution to Eq.~35!. Set h
[ ln f. Applying the logarithm to Eq.~35!, we have

h~x,y,z!52h~u,x,v !1 terms independent ofx. ~38!

Applying dm/dxm, m51,2, . . . , to Eq.~38!, we obtain

]mh~x1 ,y,z!

]x1
m U

x15x

52
]mh~u,x2 ,v !

]x2
m U

x25x

.

This means that the Taylor expansions inx around the point
x50 for the functionsh(x,y,z) andh(u,x,v) are

h~x,y,z!5h~0,y,z!2w̃~x,y,z!, ~39!

h~u,x,v !5h~u,0,v !1w̃~x,y,z!, ~40!

where

w̃~x,y,z!52 (
n51

`
1

n!
xn

]nh~x1 ,y,z!

]x1
n U

x150

.

Applying exponents to both sides of Eqs.~39! and ~40!, we
obtain

f ~x,y,z!5
f ~0,y,z!

w~x,y,z!
, ~41!

f ~u,x,v !5 f ~u,0,v !3w~x,y,z!, ~42!

wherew(x,y,z)5expw̃(x,y,z). In Eq. ~42! the LHS isy andz
independent. Hence,w(x,y,z) is alsoy and z independent:
w(x,y,z)[w(x). Thus, we can rewrite Eqs.~41! and~42! as
Eq. ~36!, where

F1~y,z![ f ~0,y,z!, F2~u,v ![ f ~u,0,v !.

This proves Eq.~36! and thus Eq.~37!. Thus, we can con-
clude from Eq.~37! that Eq.~31! is the unique solution for
G̃(p,q,k). To go back to the coordinate representation,
have to perform a Fourier transformation of Eq.~31!,
6-8
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G~x,y,z!5E dpdqdkd~p1q1k!G̃~p,q,k!exp~ ipx1 iqy1 ikz!

5E dpdqdkd~p1q1k!
G̃~q2!G̃~k2!

G̃~p2!
exp~ ipx1 iqy1 ikz!

5E dx8dpdqdkexp@2 i ~p1q1k!x8#
G̃~q2!G̃~k2!

G̃~p2!
exp~ ipx1 iqy1 ikz!

5E dx8Gc~x82x!Gc
21~x82y!Gc

21~x82z!. ~43!
ca

th

In
,

fro
re
ch

d

n
W

By substituting this result in the second of the equalities~28!,
we can see that it is also satisfied by this solution. One
take the correct tree level normalization ofTabc,

Tabc5
i

2
f bca, ~44!

and present the final result for the functional structure of
Lc2 proper correlator in the following form:

E dxdydzG~x,y,z!TabcLa~x!cb~y!cc~z!

5E dx8dxdydzGc~x82x!Gc
21~x82y!

3Gc
21~x82z!

i

2
f bcaLa~x!cb~y!cc~z!.

As we have mentioned above, the natural assumption~44!
about the group structure of the proper correlatorLc2 has
been made. However, we could avoid this assumption.
deed, if all the group structures in Eq.~26! are independent
we obtain from there, instead of Eq.~28!, three equations,

E dxG~y8,x,z8!G~x,y,z!5E dxG~y8,y,x!G~x,z,z8!

5E dxG~y8,x,z!G~x,z8,y!

50

which are not true even at the tree level as can be seen
Eq. ~27!. This means that at most two of the group structu
must be independent to have a consistent solution. In su
case we come again to the necessity of solving Eq.~29!,
which has the unique solution~43! as we have demonstrate
above. Substituting this solution in Eq.~26! we obtain Jacobi
identities forTabc which means that they are structure co
stants. In detail, this procedure can be done as follows.
can substitute the result~43! in Eq. ~24!:
06500
n

e
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e

E dxdydzG~x,y,z!TabcLa~x!cb~y!cc~z!

5E dx8dxdydzGc~x82x!Gc
21~x82y!

3Gc
21~x82z!TabcLa~x!cb~y!cc~z! ~45!

and then redefine the fieldsL andc,

ca~x!5E dx8Gc~x2x8!c̃a~x8!

La~x!5E dx8Gc
21~x2x8!L̃a~x8!,

E dx8Gc
21~x2x8!Gc~x82x9!5d~x2x9!.

The second term in the Slavnov-Taylor identity~15! is cova-
riant with respect to this change of variables,

E dx
dG@L,c#

dca~x!

dG@L,c#

dLa~x!

5E dx
dG@L~ L̃ !,c~ c̃!#

d c̃a~x!

dG@L~ L̃ !,c~ c̃!#

dL̃a~x!
, ~46!

as can be explicitly checked, but the expression~45! takes
the local form,

G5E dxTabcL̃a~x!c̃b~x!c̃c~x!.

By substituting this in the ST operator~46! one concludes
that

Tabc5
i

2
f bca ~47!

solves it. The reason for this is that thisf abc structure ap-
pears also at the level of the classical action
6-9
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2TrE dxL~x!c2~x!5
i

2
f bcaLa~x!cb~x!cc~x!,

and we already know that this structure satisfies the ST
erator~46!. Furthermore, there can be no other solution
Tabc, because Eq.~47! is the only three-tensor in the adjoin
representation of the gauge group that is antisymmetric in
last two indices and satisfies the Jacobi identities. Thus,
final result for the functional structure of theLc2 proper
correlator is

E dxdydzG~x,y,z!TabcLa~x!cb~y!cc~z!

5E dx8dxdydzGc~x82x!Gc
21~x82y!

3Gc
21~x82z!

i

2
f bcaLa~x!cb~y!cc~z!. ~48!

In concluding of this section we present arguments t
the form~48! of theLcc correlator remains unchanged ev
if corrections from theLccA correlator are allowed to con
tribute to the;Lc3 term in the ST equation, i.e., the firs
term in the ST identity~15! contributes as well. This result
in corrections to Eq.~26!. In this case we can demonstra
that the basic equation~35! will be modified to the following
form:

f ~x,y,z!3 f ~u,x,v !2 f ~u,y,w!3 f ~w,z,v !

5 f 2~u,z,v,y,x,w!2 f 2~u,v,z,y,u1z1y1v2x2w,w!.

~49!

The new functionf 2 of the variables~34! parametrizes the
contribution from theLccA correlator. As one can see, the
is a four-dimensional subspace of the six-dimensional sp
~34! with coordinatesx,y,z,u,v,w which is the intersection
of two hyperplanesx5u1z1y1v2x2w andv5z where
the contribution ofLccA in Eq. ~49! disappears. In this four
dimensional subspace Eq.~49! takes the same form that th
basic equation~35! takes in the six-dimensional space,

f S u12z1y2w

2
,y,zD3 f S u,

u12z1y2w

2
,zD2 f ~u,y,w!

3 f ~w,z,z!50. ~50!

Unfortunately, at present we do not have a clear proof t
the factorization~37! is the only solution to this equation
However, there are several strong indications in favor of
uniqueness of the factorization. Indeed, one of them is th
we reduce the subspace under consideration further tou5y
5z andw54az, wherea is an arbitrary real parameter, w
obtain

f „2~12a!z,z,z…3 f „z,2~12a!z,z…2 f ~z,z,4az!

3 f ~4az,z,z!50.

This suggests
06500
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f ~z,z,az!3 f ~az,z,z!50.

As we have shown above, the factorization~37! is the only
solution for this type of equation.

Another indication in favor of the factorization~37! is that
for the region of the four-dimensional subspace under c
sideration wherez is much larger than each ofu, y, andw we
have in the leading order ofu/z andy/z the equation

f ~z,y,z!3 f ~u,z,z!2 f ~u,y,w!3 f ~w,z,z!50,

which also requires the factorization~37! as the only solu-
tion, since the information aboutw disappears on the LHS.

As the third indication, we can decompose the logarith
of Eq. ~50! in the Taylor expansion in the vicinity of an
point in the four-dimensional subspace with coordina
u,y,z,w. We then obtain, for the functionh5 ln f at the qua-
dratic order of the Taylor expansion, separability of the va
ables as the only solution. But separability forh means fac-
torization for f. Further, we have indications that th
separability must occur at any order of the Taylor expansi

Thus, we have shown that there are at least three a
ments in favor of the factorization~37! being the only solu-
tion also for Eq.~50!, where this latter equation takes int
account possible corrections from theLccA correlator to the
basic equation~35!.

IV. SOLUTION TO THE CORRELATOR OF KmAmc TYPE

Starting from this point we can repeat the method that w
used in Ref.@6# for deriving the solution to the ST identitie
for supersymmetric theories. As was noted at the end of
Introduction, the antighost equation~16! restricts the depen
dence ofG on the antighost fieldb and on the external sourc
Km to an arbitrary dependence on their combination,

]mb~x!1Km~x!.

We can present this dependence of the effective action on
external sourceKm in terms of a series,

G5F01 (
n51

E dx1dx2•••dxnF n
m1m2 . . . mn~x1 ,x2 , . . . ,xn!

3@]m1
b~x1!1Km1

~x1!#@]m2
b~x2!1Km2

~x2!#•••

3@]mn
b~xn!1Kmn

~xn!#, ~51!

where we assume contractions in the spacetime indicesmj .
The coefficient functions of this expansion are in their tu
functionals of the other effective fields~11!,

F n
m1m2•••mn5F n

m1m2•••mn@Am ,c,L#,

whose coefficient functions, for example, in the caseL50,
are ghost-antighost-vector correlators.F0 is a
Km-independent part of the effective action. The spaceti
indices mj of Fn will be omitted everywhere below sinc
they are not important in the present analysis.
6-10
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Our purpose is to restrict the expansion~51! by using the
ST identities~15!. Let us consider for the moment the term
of Eq. ~51! without the fieldL. The noninvariance of thes
terms with respect to the ST identities~15! must be compen-
sated by the first term~23! of the series~19! or possible
interactions of this term with physical effective fields b
causedG/dL(x) for such terms only has noL. The total
degree of the ghost fieldsc in Fn must be equal ton since
each proper graph contains an equal number of ghost
antighost fields among its external legs.

Let us consider terms in the effective action whose va
tions are cancelled by variations of the ghost field caused
the first term~23! of the series~19!. To start we consider the
F1(x1) coefficient function in the expansion~51!. The corre-
sponding term of lowest order in the fields in Eq.~51! is

E dxdx82i Tr$@]mb~x!1Km~x!#]mG~x2x8!c~x8!%,

~52!

where2 i ]2G(x2x8) is a two-point ghost-antighost prope
correlator. It is a Hermitian kernel of the above integral,

G†5G.

We can make any change of variables in the effect
actionG. Let us make the following change of variables:

Am~x!5E dx8GA~x2x8!Ãm~x8!,

Km~x!5E dx8GA
21~x2x8!K̃m~x8!,

c~x!5E dx8Gc~x2x8!c̃~x8!,

L~x!5E dx8Gc
21~x2x8!L̃~x8!, ~53!

b~x!5E dx8GA
21~x2x8!b̃~x8!.

HereGX(x2x8) are some dressing functions,3

E dx8GX
21~x2x8!GX~x82x9!5d~x2x9!. ~54!

In terms of the new variables the effective action

G̃@w̃,K̃m ,L̃#5G@w~w̃!,Km~K̃m!,L~ L̃ !#

must satisfy the identity

3The formula~54! does not mean that both the functionsGX
21(x

2x8) andGX(x82x9) ared functions. It means only that the prod
uct of their Fourier transforms is equal to 1.
06500
nd

-
y

e

TrF E dx
dG̃

dÃm~x!

dG̃

dK̃m~x!
1E dx

dG̃

d c̃~x!

dG̃

dL̃~x!

2E dxdx8dx9
dG̃

db̃~x8!
GA~x2x8!

3S 1

a
]mÃm~x9!GA~x2x9! D G50, ~55!

which is the identity~15! reexpressed in terms of the ne
variables according to Eq.~53!. As one can see the ST op
erator is covariant with respect to this change of variab
except for the gauge-fixing term, which remains unaffec
by quantum corrections anyway as mentioned earlier.

One can make the change of variables~53! in the integral
~52!:

E dxdx8dx9dx-2i Tr$@]mb̃~x9!1K̃m~x9!#

3GA
21~x92x!G~x2x8!Gc~x82x-!]mc̃~x-!%.

~56!

While the dressing functionGc(x2x8) has been defined
through the solution~23! to the operator~20!, the dressing
function GA(x2x8) has not been defined yet. We define
from the requirement

E dxdx8GA
21~x92x!G~x2x8!Gc~x82x-!5d~x92x-!.

In this case the term~56! after the change of variables~53!
simplifies to

E dx2i Tr$@]mb̃~x!1K̃m~x!#]mc̃~x!%. ~57!

The first term in the ST identities~55! can also be ex-
panded in terms of]mb̃(x)1K̃m(x),

E dx
dG̃

dÃm~x!

dG̃

dK̃m~x!

5M01 (
n51

E dx1dx2 . . . dxn

3M n
m1m2 . . . mn~x1 ,x2 , . . . ,xn!

3@]m1
b̃~x1!1K̃m1

~x1!#@]m2
b̃~x2!1K̃m2

~x2!#•••

3@]mn
b̃~xn!1K̃mn

~xn!#, ~58!

where we assume contractions in the spacetime indicesmj .
Again, the spacetime indicesmj of Mn will be omitted ev-
erywhere below since they are not important in the pres
analysis.M0 is theK̃m-independent part of Eq.~58!. We can
6-11
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consider that the LHS of Eq.~58! is the result of an infini-
tesimal transformation inG̃, in which instead ofÃm(x) we
have substituted

Ãm~x!→Ãm~x!1
dG̃

dK̃m~x!
. ~59!

In other words, one can consider the result of such a sub
tution as the difference

GF K̃m ,Ãm~x!1
dG

dK̃m~x!
G2G@K̃m ,Ãm~x!#

to linear order indG/dK̃m(x). Equation~57! implies that the
‘‘gauge’’ transformation~59! can be rewritten as

dÃm~x!; i ]mc̃~x!1higher terms.

The sum of the part quadratic inÃ of F0 and theF1-type
term ~57! contributes toM0 by yielding a term;Ãc̃. How-
ever,M0 must be equal to zero.4 Hence, the part quadratic i
Ã of F0 must be invariant, at quadratic order, under t
aforementioned ‘‘gauge’’ transformation, implying the form

2E dxZg2
1

2g2
Tr~]mÃn~x!2]nÃm~x!!

3O~]mÃn~x!2]nÃm~x!!, ~60!

where Zg2 is a number that depends on the couplings a
regularization parameter of the theory, andO is some differ-
ential operator. Later we will see how the ST identities p
restrictions on such an operator.

Having fixed the form of the quadratic term~57! in F1 ,
we consider the vertex of next order in the fields inF1,
which looks like;(]mb̃1K̃m)Ãmc̃. We will show now that
the structure of the vertex;(]mb̃1K̃m)Ãmc̃ is fixed com-
pletely by the quadratic term~57! and by the term~23!. Ac-
cording to the Slavnov-Taylor identity~55!, the contribution
of ;(]mb̃1K̃m)Ãmc̃ of the F1 part of the effective action
into M1 caused by the quadratic term~57! due to the sub-
stitution ~59! must be cancelled by the variation of the gho
field caused in Eq.~57! by the first term~23! of the series
~19! due to the substitution~21!. According to our conjec-
ture, the term~23! has the form

2TrE dxL̃~x!c̃2~x!.

4In principle, another term;Ãc̃ can appear in the third term

there, coming from the;b̃]m¹̃mc̃ part of G̃. However, the third
term in Eq.~55! @and in Eq.~15!# is only responsible for the ab
sence of corrections to the gauge-fixing term inG, as we already
noted at the end of Sec. II.
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Indeed, the only contribution toM1 of the order of;(]mb̃

1K̃m)]mc̃2 in M1 comes from this;(]mb̃1K̃m)Ãmc̃ term
in F1:

E dx
dG̃uF1

dÃm~x!

dG̃uF1

dK̃m~x!
;@~]mb̃1K̃m!c̃#]mc̃

;~]mb̃1K̃m!]mc̃2,

whereG̃uF1
is theF1 part of the effective action. One coul

think at first that theF0- andF2- type termsG̃uF0
, G̃uF2

of

Eq. ~19! might also contribute to the term of order;(]mb̃

1K̃m)]mc̃2 in M1 via

E dx
dG̃uF0

dÃm~x!

dG̃uF2

dK̃m~x!

because

dG̃uF2

dK̃m~x!
;~]mb̃1K̃m!F2@Am ,c#.

However,dG̃uF0
/dÃm(x) starts with terms linear inÃm(x).

Thus, theF2 part of the effective action does not contribu
to the term of the order of;(]mb̃1K̃m)]mc̃2 in M1; only
the F1 part of the effective action does. Hence, the term
order;(]mb̃1K̃m)Ãmc̃ in F1 is the term of the same orde
that is contained inK̃m(x)¹̃m c̃(x) because only in this cas
will the terms;(]mb̃1K̃m)]mc̃2 in M1 be cancelled by the
second term in the ST identities~55!, which will result in

E dx2iTr@~]mb̃~x!1K̃m~x!!]mc̃2~x!#

due to the substitution~21!. Thus, the term of lowest order in
the fields inF1 is

2i Tr@~]mb̃~x!1K̃m~x!!¹̃mc̃~x!#, ¹̃m5]m1 iÃm .
~61!

All the terms inF0 of higher orders inÃm(x) are fixed by
themselves in an iterative way due to the requirement thaF0
must be invariant with respect to the substitution~59!. Tak-
ing into account Eq.~61!, we see that the first invariant term
is

2E dxZg2
1

2g2
Tr F̃mn~x!F̃mn~x!,

whereF̃mn(x) is the Yang-Mills tensor ofÃm(x). That is, the
physical part of the effective action can be restored from
requirement of its invariance with respect to the gauge
variance in terms of the gauge field dressed by the dres
function. Here we see that the differential operatorsO in Eq.
6-12
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~60! between two Yang-Mills tensors must be covariant d
rivatives. For example, the following term is allowed,

E dx f2
1

L2
Tr F̃mn~x!¹̃2F̃mn~x!, ~62!

where f 2 is another number that depends on couplings,
L is a regularization parameter of the theory. Starting fr
the fourth degree ofÃm(x), higher order gauge invarian
contributions like

E dx f3
1

L4
Tr F̃mn~x!F̃mn~x!F̃kl~x!F̃kl~x! ~63!

to F0 are allowed. Heref 3 is another number that depend
on couplings.

V. FURTHER STEPS FOR HIGHER CORRELATORS
IN Km AND L

We consider now the coefficient functionsFn with n.1
in Eq. ~51! for L50. There are two possibilities here. Th
first possibility is that these terms of higher degree inK̃ do
not respect the gauge invariance of the physical part of
~51! created by theF1 term. In the caseF2 contributes to
M1 but we do not have anything that can compensate
contribution by ghost transformations induced by the sec
term in the ST identities~55!. Hence,F250. If we consider
F3, it contributes toM2 and, in general, could be compe
sated by ghost transformations inF2. But F2 is zero; hence,
F3 is also zero. We can repeat the former argument for
higher numbersn of Fn . All coefficient functionsFn with
n.1 are equal to zero in the first possibility. The seco
possibility is that the terms of higher degree inK̃ respect the
gauge invariance of the physical part of Eq.~51!. In this case
Fn with n.1 does not contribute toMn for anyn. In super-
symmetric theories this possibility does not exist@6# because
of the chiral nature of the ghost superfields. However, in
nonsupersymmetric case one can invent, for example,F2
constructions such as the following one:

E dx Tr$@ c̃~x!¹̃m~]mb̃~x!1K̃m~x!!#

3@ c̃~x!¹̃m~]mb̃~x!1K̃m~x!!#%. ~64!

Such a term gives zero contribution toM1 , since its varia-
tion with respect toK̃ is proportional to¹̃m(scalar function)
and its contribution toM2 can be cancelled by the transfo
mation of the ghost field inF2 if the coefficient before Eq.
~64! has been fixed in an appropriate way. This can
proved in the same way@Eq. ~8!# that was used to derive th
BRST transformation in Sec. II.

We have considered the terms in the effective act
whose variations are cancelled by variations of the gh
field caused by the first term~23! of the series~19!. In gen-
eral, some sophisticated interactions of the term~23! with
physical fields can be introduced. However, again we
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state that the higher order terms must respect the alre
established invariance with respect to the Slavnov-Taylor
erator for the terms of lowest degree in the fields. In our ca
for example, we can write the result for interactions of t
term ~23! with physical fields by using the following subst
tution:

L̃ c̃2→L̃ c̃2S 11 f 4

1

L4
Tr F̃mn~x!F̃mn~x!D ,

and then making a substitution in Eq.~61!:

c̃→ c̃S 11 f 4

1

L4
Tr F̃mn~x!F̃mn~x!D . ~65!

However, these terms cannot change the structure of
physical part of the effective action since it is already det
mined by the terms of first order in the auxiliary fieldK̃m .

One can consider possible terms with higher degrees oL.
For example, the sum of Eq.~23! and

E dx (
a;b1 ,b2 , . . . ,b4k

~ L̃a~x!L̃a~x!!kc̃b1~x! . . .

3 c̃b4k~x!eb1b2 . . . b4k
~66!

satisfies the identity~20! if 4k is the rank of the gauge group
If these terms exist it is also necessary to consider the
pendence ofFn on the auxiliary fieldL, since the substitution
due to the second term in the ST identities would produ
these terms. However, at the end we put all the auxili
fields equal to zero, and therefore all the terms with hig
degrees ofL̃ do not have any importance. In comparison, t
situation with theK̃m field is different. Indeed, terms with
zero K̃m are still important since they are responsible f
higher degrees of ghost-antighost correlators which m
have applications in some models.

VI. CONJECTURE FOR THE PHYSICAL PART
OF THE ACTION

Taking into account the structure~61! of the term linear in
K̃m , one can come to a natural conjecture about the form
the part of the effective action that depends only on
gauge effective fieldAm ; namely, due to the ST identity~55!
in terms of the dressed fields, the structure of the effec
action is

G@Am ,b,c#5E dxH 2
1

2g2
Zg2TrF F̃mn~x! GS ¹̃2

L2D F̃mn~x!G
2TrS 1

a
@]mAm~x!#2D22iTr b̃~x!]m¹̃mc̃~x!J

1 irrelevant part, ~67!

where all auxiliary fieldsK andL are set equal to zero. It is
necessary to make three comments here. The functionG is a
6-13
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series in terms of covariant derivatives with a dressed ga
connection. The part of this series without gauge connec
G(]2/L2) has a logarithmic asymptotic in the momentu
space at high momentum,G(2p2/L2); ln(2p2/L2), while at
low momentum it may be represented e.g., by powers
p2/LQCD

2 with LQCD;0.1 GeV@9#.
The physical part of the action is gauge invariant in ter

of the dressed fieldÃm(x).
We do not write in the physical part terms like~63! since

finally we are going to take the regularization massL to
infinity. Terms like ~63!, ~64!, ~65! are called irrelevant in
~67!.

VII. REGULARIZATION AND RENORMALIZATION

In a general nonsupersymmetric four-dimensional ga
theory which is regularized in a way that preserves ga
~and BRST! symmetry, the dressing functions are of the fo
lowing form:

GX
21~x2x8!5zXd~x2x8!1

C1~L2,m2!

m2
~]22m2!d~x2x8!

1
C2~L2,m2!

~m2!2
~]22m2!2d~x2x8!1••• .

~68!

This representation means that we have expanded the Fo
transformed dressing functionG̃X

21(p2)51/G̃X(p2), X
5A,c, in the vicinity of the pointp252m2. Here zX is a
constant that goes to infinity if the regularization is remov
andC1 , C2 are finite constants.5 For instance,zA is a renor-
malization constant of the gauge field. To renormalize
theory we have to introduce counterterms into the class
action~6! @11#. This is equivalent to a change of the field
the classical action~6!. For example, in the case of the pu
gauge theory, to remove divergences fromGA

21(x2x8) we
have to make the following redefinition of the gauge field
the classical action:

Am
bare→

Am
phys

zA
. ~69!

The motivation for the terminology ‘‘bare’’ and ‘‘physical’
for the fields in the path integral is that introducing count
terms into the classical action~6! by the rescaling~69! of
fields and couplings will result in an effective action witho
divergences~a renormalized effective action!. We can show
that by such a redefinition we can make the dressing func
GA

21 finite. Indeed, if we represent the term with the sou
of the gauge field in the path integral~5! as

5GX
21(x2x8)5(2p)24*dp exp@2ip(x2x8)#@1/G̃X(p2)#, i.e.,

GX
21(x2x8)Þ0 for x2x8Þ0 in general, although the expansio

~68! might suggest otherwise.
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JmAm5~JmzA!
Am

zA
,

then the path integral for the theory with counterterms~69!
can be transformed to the form~5! by substitution of vari-
ables of the integralAm5Am8 zA . This means that all the pre
vious construction can be reproduced without any change
taking into account the redefinitionJm→JmzA . In turn, such
a redefinition, according to the definitions~11!, means noth-
ing else but that the effective fields are also redefined a
Eq. ~69!, which is equivalent to the redefinition of the dres
ing function

GA
21~x2x8!→ 1

zA
GA

21~x2x8!. ~70!

One can consider Eq.~70! in momentum space,

1

zA

1

G̃A~p2!
5

G̃A~2m2,L2!

G̃A~p2,L2!

5~11ag21b~g2!21g~g2!31••• !

3~11G̃1~p2!g21G̃2~p2!~g2!21••• !

511~a1G̃1~p2!!g21~b1aG̃1~p2!1G̃2~p2!!

3~g2!21•••, ~71!

where we have presented both factors on the LHS as a s
in terms of the coupling constant. In this expansiong2 is the
physical coupling that stays in the classical action accord
to the counterterm approach@11#. All these dressing func-
tions parametrize our result~67! for the effective action, that
is, they parametrize the irreducible vertices that contain
vergences. Divergences from the dressing functions mus
removed. We can remove the divergences at each order in
coupling constant by choosing the divergent coefficientsa,
b, g in 1/zA in an appropriate way, because each coeffici
G̃n(p2) of the decompositionG̃A

21(p2) in terms of the cou-
pling constant is in its turn a series in terms ofp2 with only
the zero order inp2, terms being divergent. This is due to th
fact that

lim
L→`

G̃A~p2,L2!

G̃A~2m2,L2!

is finite. As to divergent coefficients before the relevant o
erators, they will be compensated by counterterms from
bare couplings.6

6Even if the renormalization~71! has been done and the dressi
functions are finite, the theory still has divergences in the coe
cients of the relevant operators. These divergences are absorb
the bare couplings.
6-14
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Until this moment we did not specify which regularizatio
is used. Regularization by higher derivatives is the most c
venient from the point of view of the theoretical analysis@2#.
It provides strong suppression of ultraviolet divergences
introducing additional terms with higher degrees of covari
derivatives acting on the Yang-Mills tensor in the classi
action ~6!, which are suppressed by appropriate degree
the regularization scaleL. In addition to this it is necessar
to introduce a modification of the Pauli-Villars regularizatio
to guarantee the convergence of the one-loop diagrams@2#.
To regularize the fermion cycles, the usual Pauli-Villa
regularization can be used.7

Thus in the case of four-dimensional QCD without qua
the classical action~6! is

SQCD@A,b,c#5E dxF2
1

2g2
Tr@Fmn„A~x!…Fmn„A~x!…#

2TrS 1

a
@]mAm~x!#2D

22Tr@ ib~x!]m¹m~A!c~x!#G .

In the counterterm technique@11# the coupling constant her
is the physical coupling constant. The classical action w
the counterterms is

SQCD@A,b,c#5E dxH 2
1

Zg2

1

2g2

3TrFFmnS A

zA
~x! DFmnS A

zA
~x! D G

2TrS ~zA!2

a F]m

Am

zA
~x!G2D

22TrF izAb~x!]m¹mS A

zA
D c

zc
~x!G J ,

where the fields are ‘‘physical’’ in the sense that this class
action together with counterterms results in an effective
tion in which divergences are removed. Thus, we come to
conclusion that therenormalizedeffective action takes the
form

7A somewhat different regularization approach is applied in R
@9# where explicit QCD one-loop dressing functions are obtaine
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GQCD@Am ,b,c#5E dxH 2
1

2g2
TrF F̃mn~x!G2S ¹̃2

m2D F̃mn~x!G
2TrS 1

a
@]mAm~x!#2D

22i Tr@ b̃~x!]m ¹̃m c̃~x!#J , ~72!

where all the auxiliary fieldsK andL are set equal to zero
Here the functionG2 is defined as

G2S ¹̃2

m2D [ lim
L→`

GS ¹̃2

L2D Y GS m2

L2D . ~73!

VIII. SUMMARY

In this work we proposed a solution to the Slavnov-Tay
identities for the effective action of nonsupersymmetric no
Abelian gauge theory without matter. The solution is e
pressed in terms of gaugeAm and~anti!ghost effective fields
(c,b) convoluted with unspecified dressing functions:

Ãm~x!5E dx8GA
21~x2x8!Am~x8!

c̃~x!5E dx8Gc
21~x2x8!c~x8!,

b̃~x!5E dx8GA~x2x8!b~x8!.

Further, the solution is invariant under the gauge~BRST!
transformation of the convoluted fields. We gave argume
which show that, under a specific plausible assumption,
terms of the effective action containing~anti!ghost fields
must have the same form as those in the classical action
under the substitutionX→X̃(X5c,b,Am). Further, we con-
jectured a rather general form of the terms of the effect
action which contain only the effective gauge fields and
volve an additional functionG. We briefly described how
regularization and renormalization are reflected in the dre
ing functions. The effective action obtained is assumed
contain the quantum contributions of the gauge theory, p
turbative and nonperturbative, but not including the solito
like vacuum effects. Stated otherwise, all these effects
assumed to be contained in a limited number of dress
functions (GA ,Gc ,G). The application and consistenc
checks of this effective action for the case of hig
momentum QCD are presented elsewhere@9#.
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