PHYSICAL REVIEW D 67, 065006 (2003

Approach to solve Slavnov-Taylor identities in nonsupersymmetric non-Abelian gauge theories
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We present a way to solve Slavnov-Taylor identities in a general nonsupersymmetric theory. The solution
can be parametrized by a limited number of functions of spacetime coordinates, so that all the effective fields
are dressed by these functions via integral convolution. The solution restricts the ghost part of the effective
action and gives predictions for the physical part of the effective action.
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[. INTRODUCTION mation of the ghost field. According to our assumption, the
vertexLc? is invariant with respect to ST identities and this
The effective action is an important quantity of quantumthen gives the following quantum structure for it:
theory. Defined as the Legendre transformation of the path
integral, it provides us with an instrument to find the true dx’dxdydzG(x' —x)G; 1(x' —y)
vacuum state of the theory under consideration and to study ¢
its behavior, taking into account quantum corrections. i
Slavnov-Taylor(ST) identities are also an important tool to X G H(x' —2) 5 P 3(x)cP(y)cS(2). (D)
prove the renormalizability of gauge theories in four space- 2

time dimensions[1,2]. They generalize Ward-Takahashi As one can see, the main feature of this result is that the

identities of quantum eIectrodynamlcs to the nOn'AbeI'ar?effective ghost fieldc is dressed by the unknown function
case and can be derived starting from the property of mvarlé_l(x_ ). This dressing contains all the quantum informa-
ance of the tree-level action with respect to Becchi-Rouet:: ¢ y). 9 d

Stora-Tyutin (BRST) symmetry[3.,4]. ST identities for the tion about this correlator. We can use the structure of this
effective action have been derive’:d.in RES] correlator as a starting point to find the solution for the total
Slavnov-Taylor identities are equations involving varia- effective action.

tional derivatives of the effective action. The effective action The solution to the Slavnov-Taylor identities found in the

contains all the information about the quantum behavior ofresent paper imposes restrictions on the ghost part of the
effective action. For example, it means that the gluon-ghost-

the theory, and in quantum field theory it is the one-particle” "~
irreducible diagram generator. Searching for the solution t ntl_ghost vertex can be read off from our result for the ef-
ective action(67):

Slavnov-Taylor identities can be considered as a compleme

tary method to the existing nonperturbative methods of quan- Gag?)
tum field theory such as the Dyson-Swinger and Bethe- Gm(q,p):iqm#, 2
Salpeter equations. A solution to the Slavnov-Taylor Ga(k®)G(p?)

identities in four-dimensional supersymmetric theory has _

been proposed recent|$]. In the procedure to derive that whereG, is the Fourier image of a function that dresses the
solution, the no-renormalization theorem for the superpotengauge field, whileG,,(q,p) is the gluon-ghost-antighost ver-
tial [7,8] was used extensively. In this paper we will suggesttex, q is the momentum of the antighost fididandp is the
that this point is not crucial and that arguments similar tomomentum of the ghost field, and p+k+qg=0. Another
those given beforfg] can be used in the nonsupersymmetricfeature of the result obtained here is that the physical part of
case. In the approach developed below there are no restrithe effective action67) is gauge invariant in terms of the
tions on the number of dimensions and renormalizability ofeffective fields dressed by the dressing functi@sin the
the theory. We require only that the theory under considerresult (67) for the effective action information about the
ation can be regularized in such a way that the Slavnoveguantum behavior of the theory is encoded finée number
Taylor identities are valid and that BRST symmetry isof dressing functions and in the running function of the cou-
anomaly-free, as is the case, e.g., in QCD. pling.

We argue that the functional structure of the auxiliary The paper is organized in the following way. In Sec. Il we
ghost-ghostLc? correlator in nonsupersymmetric gauge review some basic aspects of BRST symmetry and Slavnov-
theories is fixed by Slavnov-Taylor identities in a unique Taylor identities for irreducible vertices. In Sec. Ill we show
way. In this correlatorL is a nonpropagating background how to obtain the functional structur@) of the Lc? cor-
field and it is coupled at the tree level to the BRST transforrelator. In Sec. IV we obtain the correlator linear in another

nonpropagating background fiekl,,, thus fixing the terms
in the effective action that contain ghost and antighost effec-

*Email address: ikondrashuk@fis.utfsm.cl tive fields. In Sec. V we describe higher correlatorsKip
"Email address: cvetic@fis.utfsm.cl andL. In Sec. VI we make a conjecture about the form of the
*Email address: ischmidt@fis.utfsm.cl physical(pure gluonig part of the effective action and then
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in Sec. VII we consider renormalizing of it to remove infini-  To be specific, we choose the Lorentz gauge-fixing con-
ties. A brief summary is given at the end. The questions oflition

consistency of this effective action within perturbative QCD

are investigated in a second pap@}. For simplicity, in the ImAm(X) = f(X). (4)
present paper we focus on pure gauge theories in four space-

time dimensions with th&sU(N) gauge group. No matter
field is included in the consideration, although their addition
does not change our results.

Heref is an arbitrary function in the adjoint representation of
the gauge group that is independent of the gauge field. The
normalization of the gauge group generators is

Il. PRELIMINARIES 1

aTby _ ~ cab ayt_—Ta b Tcy_;fbcara

We consider the traditional Yang-Mills Lagrangian of the Tr(T5T%) = 25a ' (T5T=T7 (T2 Te)=ifPeeTe,
pure gauge theory:

and we use the notatio=X?T? for all the fields in the

S:_J dx L THE (X E (X)) 1. (3y  adjoint representation of the gauge group, like the gauge
292 fields themselves, the ghost fields, and their respective
sources.

The gauge field is in the adjoint representation of the The conventional averaging procedure with respedtiso
gauge group. A nonlinear locéjauge transformation of the  gpplied to the path integral with the weight
gauge fields exists which keeps the the@yinvariant. This
symmetry must be fixed, Faddeev-Popov ghost fi¢ld3 1
must be introduced, and finally the BRST symmetry can be e*iJ dXTr—f2(x)
established for a theory that in addition to the classical action a
(3) contains a Faddeev-Popov ghost action and a gauge-
fixing term. and as the result we obtain the path integral

Z[J,n,p,K,L]=f dAdcdbexpi[S[A,b,c]JrZ Tr(fdem(x)Am(x)HJ dxn(x)c(x)+if dxp(x)b(x)

+2 Tr(if dem(x)Vmc(x)+f de(x)cz(x))], 5

in which where ¢ is some representation of the gauge group. To ob-
tain the BRST symmetry we have to substitit€x)e for \.

1 Here ¢ is the Hermitian Grassmannian parameter= ¢,
S[A-b-C]=J dx — Z—QZTF[an(X)an(X)] £?=0. Thus, the BRST transformation of the gauge field is
An—An—i Vi C e. W)

1
—Tr—ﬁsz)—ZTibxach :
(a[ ()] D) ImVinC(x)] In order to obtain the BRST transformation of the ghost field

¢ we have to consider two subsequent BRST transforma-
tions:

(6)

Here the ghost field and the antighost field are Hermitian,

—CKkn—Ce Ce ACK
andb™=b, c'=c in the adjoint representation of the gauge Vm—e e TineTe

group. They possess Fermi statistics. =g Cemcer(ce)(cr)y gletont (ce)(ck) (8)
The infinitesimal transformation of the gauge fidlg, is
defined by the fact that it is a gauge connection, wherex is a Grassmannian parameter t@d=0. This trans-
formation again is equivalent to an infinitesimal transforma-
Amn—Amn— Vi, tion of the gauge field in covariant derivatives,
where\(x) is an infinitesimal parameter of the gauge trans- An—AnL— iV [cetck+(ce)(ck)].
formation. This transformation comes from the transforma-
tion of covariant derivatives, This means that we can consider the inner BRST transforma-
_ _ _ tion (with ) as the substitutiof7) in the outer BRST trans-
V,—er.e ™ V.=d,+tiA,, o¢—ero, formation (with «). The second term after the covariant de-
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rivative is a transformation oA\, under the outer BRST X=X[¢,Km,L],
transformation while the third term after the covariant de-

rivative is the transformation aV,,cx and can be cancelled and the effective action is defined in terms of the new vari-

by the transformation of the second teom, ablesI'=I"[¢,K,,L]. Hence, the following equalities oc-
5 cur:

c—c+ce. (9
Thus, the transformationd) and (9) together leave the co- i —3J iz _ ﬂ Ezi 7 ﬂzip
variant derivative of the ghost field unchanged. Such a sym- A moKy Ky dc oob T
metry is very general and always exists if the gauge fixing
procedure has been performed in the path integral for any &I’ oW
theory with nonlinear local symmetry. The noninvariance of 5 ~— ~ 5 - (13
the gauge-fixing term is cancelled by the corresponding
transformation of the antighost field If the change of fieldS10) in the path integral5) is

To collect everything together, the actié) is invariant — made, one obtains the Slavnov-Taylor identity as the result of
with respect to the BRST symmetry transformation with theihe invariance of the integréb) under a change of variables,
Grassmannian parametef

. ) 1)
Ap—An—1Vce, - i
iV,.ce Tr“' dxJp(X) 3K (X) fdxm(x) 5L(x))

c—c+cC%, (10 1 s
+f dXip(X)(;é’m&]—(x)) W=

or, taking into account the relatiori$3), we have[2]

The external sourceK and L of the BRST transforma-
tions of the fields are BRST invariant by definition, so the Tr[f dx or +f dx or
last two lines in Eq(5) are BRST invariant with respect to SAR(X) SKp(X) Sc(x) SL(x)
the transformation$10).

1 0, (14
b—b— ;r?mAms.

- ARy - I (1
The effective actiod” is related toW=i In Z by the Leg- _J' dx (_(9 A (X ) =0 15
endre transformation ob(x) m(X) 13
A—_ oW W b= — oW 11 The problem is to find the most general functiobabf
™8Iy c= oy’ D= Sp’ the variablesp,K,,L that satisfies the ST identijl5). Be-

fore doing it, we need in addition to the ST identities also the
) ghost equation that can be derived by shifting the antighost

[=-w-2 Tr( f dXJn(X) Am(X) + f dxin(x)c(x) field b by an arbitrary fields(x) in the path integral5). The
consequence of invariance of the path integral with respect to

+j dxip(x)b(x) [szu]ch a change of variable fi;n terms of the variable&l1)]
=-W-2 Tr(Xe), (12) ST ST

(X@) =180 (XK, Sb(x) *+m SK m(X) =0. (16)

X=(3m,mp)s  ©=(Ay,C\b) The ghost equatiofil6) restricts the dependence I6fon the

antighost fieldb and on the external sourd€,, to an arbi-

whereG(k)=0 if ¢¥ is a Bose field an@(k)=1 if ¢¥isa trary dependence on their combination:
Fermi field. We use throughout the paper the notation
Imb(X) + Kpn(X). 17
) . 0

5X =T sxa This equation together with the third term in the ST identities

(15) is responsible for the absence of quantum corrections to
the gauge-fixing term. Stated otherwise, when expressing
o'/ 6b(x) in the third term in the ST identit(15) as
—dm[ ST1 8K n(X)] by Eg.(16), the sum of the first and the
third terms in Eq(15) can be rewritten as

for any field X in the adjoint representation of the gauge
group. lteratively, all equationdll) can be reversed,

We have traditionally used in this paper the same notation for the , ,
variable of the effective action and the variable of integration in the Trf dx—— or or
path integral coupled to the corresponding soli&je SAm(X) 5Km(x)
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where T''=T-359) and S90= — (1/a) Trf dX[ 3, An(X)]?
is the gauge-fixing part of the classical acti@). In fact, all
the other terms in the ST identit{t5) can be rewritten with
I'" instead ofl’, yielding

+[

[ o

This shows explicitly that the gauge-fixing partlofremains
unaffected by quantum correctionsl'€I"/ +I'(99; (99
= (9,

or’ oI’

OAm(X) 6Km(X)

or' or’

T X5e(x) SL(X)

(18

IIl. FUNCTIONAL STRUCTURE OF Lcc VERTEX

One can consider the part of the effective action that de-

pends only on the fields andc. We write generally

iby,b .
(Laé ! 2)(X1yY1,y2)|-al(X1)

F||_,c:f dx;dy;dy,I’

X cP1(y;)cP2(y,) + - - -

+f dx;- - -dx,dy;- - -dy,,I°

L,c
(X1, o Xna Y1, - !y2n)La1(Xl)' t

X LAn(X,)CP1(yq) - - - €P2n(ygn) + - - . (19

PHYSICAL REVIEW D 67, 065006 (2003

Am(X)—An(Xx)+ m,

or, in other words, such a substitution can be considered as
the difference

r KmaAm(X)+ _F[Km:Am(X)]

oK n(X)

to linear order insI'/ 6K ,(X). Application of such a substi-
tution to the monomial ccA of the effective actiod™ gives

a contribution of ordet.ccc in the effective fields and this
contribution comes from the full ghost propagator of order in
the fieldsK,dmC,

or
oK, ¢

O(Km dmC)
C

5K, ~Lccc.

LccA—Lcc

Thus, there are only these two possible contributions to the
variationLccc. Schematically, the totdlccc variation can
be presented as
(Lceyx(Lccy+{LccA)yX(K,dnc)=0 (22
where the angular brackets mean the vacuum expectation
values of the vertices. This is a schematic form of the ST
identity relating theLcc and LccA field monomials. The
precise form of this relation can be obtain by differentiating
the identity (15) with respect toL and three times with re-

We assume that the first term is invariant with respect tQpect toc and then by setting all the variables of the effective

the second operator in the identiti€lb), which is

Trde

ST o
SL(x)

or
()

5 (20

action to zero. The angular brackets in E2R2) mean that we
have taken the functional derivatives with respect to the
fields in the corresponding brackets and then have put all the
effective fields to zero. Of course, this su2R) should be
zero since on the right hand side of the ST identit$) we

This assumption is based on the following. In perturbatiorhave zero. One can consider the |den(ﬁ¥) order by order

theory the first term of Eq(19) can be understood as the
classical term plus a quantum correction to the vettex
(nothing forbids us to consider the auxiliary field as a
nonpropagating background fig¢ld'he operatoK20) can be

in g2. At the tree level, the second contribution is absent
since theL ccAterm is absent in the classical action. For the
first one we obtain the Jacobi identity. At one-loop level, we
have one-loof.cc times tree leveL cc plus one-lood.ccA

considered as an infinitesimal substitution in the effectivejmes tree leveKdc. However, one-loof.ccA is superfi-

action

c(X)—c(x)+ (21

SL(x)"

cially convergent and does not depend on the normalization
point w. In the asymptotic region one-lodpcc depends on
the first degree of Inf/u?) where we have taken the sym-
metric point in momentum space, that is, all the external
momenta of the vertexcc are ~p?. This means that the

In other words, one can consider the result of such a substfirst degree of Ing%u?) in one-loopLcc is invariant with

tution as the difference

I''L,c(x)+

SL(X)

r
}—F[L,C(X)],

to linear order in6T'/ 5L(x). As one can see, the application
of the substitution(21) to the vertexLcc of the effective
actionI" gives a variation of ordetccc. Another contribu-
tion of the same ordelcccc comes into the variation from
the monomialL ccA of the effective actiod” due to the first
term in the ST identity(15). Indeed, one can consider the
first term in Eq.(15) as the substitution

respect to the operat@20). In other words, the dependence
on In(E?%u?) is cancelled within the first term of the identity
(22). We can consider the two-loop approximation for the
identity (22) in the same manner. Indeed, at the two-loop
level of the identity(22) one has two-loogd.cc times tree
level Lcc plus one-loopLcc times one-loof.cc plus two-
loop LccA times tree leveKdc plus one-loopLccA times
one-loopK dc and all this should be zero. However, one can
see that the second degree ofpft(?) is determined again
by only the first term in the schematic identi(22) since
two-loop LccA does not have superficial divergences and is
divergent only in subgraphs. Thus, the second degree of
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In(p% ) is also determined by the invariance with respect toT°® is some group structure. Equatié) is just a general

the first term in the identity22). We can go further in this parametrization of the proper correlatbc® and nothing
logical chain and we will always conclude that the highestmore.  Equation (24) says that T'®P(x,y,z)
degree of Ing%4?) in Lcc is invariant itself with respect to  =1'(x,y,z) T?*¢, where T3¢ is a three-tensor in the adjoint
the ST identity. This is the main source of the intuitive mo-representation of the gauge group. This reflects the fact that
tivation for considering thé.cc correlator separately from the global symmetry of the gauge group must be conserved

the other field monomialccA. in the effective action. With respect to that symmetry the
In such a case, it will be shown below that the only so|u-auxilia_ry fieldsK? and L# are vectors in the adjoint repre-
tion for this Lcc term of the effective action is sentation of the gauge group. Also,

abc_ __ ach
| axandyiay.Gux-x6; -y Ly, T ~T(x2y) T @5
This is a direct consequence of the Grassmannian nature of
the ghost fields. It follows from the parametrizati¢®4).
Further, from Eq(24) it follows that

XGg H(x—y2)2 TIL(xy)c(y)c(y2)]. (29

To prove EQq.(23), we consider the proper correlator

or
SLA(x)

I‘=J dxdydZ'(x,y,z) T*L3(x)c(y)cC(z). (24) :f dydZ (x,y,2) T2 (y)cS(2).

As we have already noted, in perturbation theory it can be

understood as a correction to the verte? and we consider By substituting this expression in the Slavnov-Taylor identity
the auxiliary fieldL as a nonpropagating background field. (15) we have

f ol ol

dx zf dxdy dz'T'(y’,x z’)Tdade(y’)icb(z’)
5c3(x) SLA(X) v

SLA(x)

or
SLA(x)

—f dxdy dz'T'(y’,z',x) T34y )cP(z")
=f dxdydzdydz'T'(y’,x,z’)T9LYy" ) ['(x,y,2) T2™e™(y)c"(z)c(z")

—f dxdydzdydz'T'(y’,z",x) T3y )cP(z")I'(x,y,2) TAMCcM(y)c"(z)
=f dxdydzdydz'T'(y’,x,z")T'(x,y,z) T4eTam d(y")cM(y)c"(2)cP(2')

—f dxdydzdydz'T'(y’,y,x)I'(x,z,z" ) Tamarant d(y")cM(y)c(z)cP(z’)

= J dXddedde,[F(y,,X,Z,)F(X,y,Z)TdabTamn
—T(y"y. 0T (x,2,2') TITaPILY(y ) e(y)e(2)e"(2') =0.

Taking into account Eq25) the last two lines can be rewritten as
fdxdydzdydz’[F(y’,x,z’)F(x,y,z)TdabTam“—F(y’,y,x)F(x,z,z’)Tdma'l'a”b]Ld(y’)cm(y)c”(z)cb(z’)
:f dxdydzdydz' [T(y’,x,z" )T (x,y,z) T93PTaM—T(y' x,y)T'(x,2’,z) T92™TaPmMLd(y")cM(y)c"(z)cP(Z")

= ZJ dxdydzdydz'T'(y’,x,z")['(x,y,z) T9eTamM d(y ") cM(y)c"(z)cP(z')=0.
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Now one can make a total symmetrization with respect to the

pairs (m,y), (n,z), and b,z'). It results in —f dxT'(y’,x,y)T(x,2,2") |fadPma=,

/ ’ ’ ’ dabramn
j dxdydzdydz/[T(y’ x.2')T(xy. ) T*T Since these two group structures are independent, we come

+T(y',x,2)['(x,2',y)Tdanmrabm

X Ld(y")c™(y)c"(2)cP(z')=0. f dxF(y’,x,z’)I‘(x,y,z)zjdxF(y’,y,x)I‘(x,z,z’)

Thus, one comes to the equation :J dXC(y' %, 2)T(x,2',y).

f dxI'(y’,x,z")T(x,y,z)Tdabramn (28
+J dxI'(y’,x,y)I'(x,z,z")T9amranb We can start by solving the first one:

’ ’ danfabm__
+del‘(y X)L (x,2',y) THITRT=0. - (26) f dxF(y’,x,z’)F(x,y,z)zfdxF(y’,y,x)F(x,z,z’),

As one can see, at the tree leWélRP~ fabd and (29)

1“tree(X,y,Z)=f dx' 8(x' —x)8(x' —y)8(x'—z) (27) and then check that the second equality is also satisfied. In
writing this equation we have used the symmetry properties

and, hence, the identii26) is a Jacobi identity. We consider (25). We introduce the Fourier transformatidns

in this paper gauge theories with tf8J(N) gauge group

and we noted this in the Introduction. The structure constants

fab¢ are completely antisymmetric in such a case. With the F(x,y,z)zf dp.dq;dk;8(pi+0ai+Ky)

help of the identities

1 XT(p1,qy, k) explipax+iayy +ik,2),
fABCfCDEfEBF: _ ENfADF

which are consequences of the Jacobi identity, one can re- F(y’,x,z’)=f dp,dg,dk, S(p,o+gs+Kky)
duce the group structure of the one-loop diagrhaot to
fABC and that is true for all loops. Thus, it is natural to

XT'(p2,02, k) exp(ipoy’ +igox+ikyz'),
assume thal2P°~ fP°@ and the identity(26) is (2,02 Kz explip2Y "+ 102 22')

fo|xr(y',x,z')r(x,y,z)fabdfmna
F(y’,y,x)=f dpsdasdkss(ps+gs+Kks)

! 7\ famdgnba _ - | |
+f dxI'(y’,x,y)T'(x,z,2") famo XT'(Ps,Ga,Ks)exp(ipay’ +igay+iksx),
+f dXF(y’,X,Z)F(x,z’,y)fandfbmazo_

Because of the Jacobi identity only two group structures are T(x.2z )zf dpsdQdks8(pataatka)
independent here: -
X1 (ps,Qa,Ke)explipax+iqaz+ik,z').

U’ dxr'(y’,x,z")I'(x,y,2)
The condition(29) in momentum space is

- f dXI'(y’,x,y)T(x,2,2) | fabdfmna

2We do not write factors 2 in these Fourier transformations since
t the end of the calculations we will go back to coordinate space, in
dxI"(y',x,2)I"(x,z’, att i ’
f (y )T( y) which all the factors zr will disappear.

J’_
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f dxdp,dgydkydp,daadka8(p; + A1+ Ke) S(po+ Qo+ ko) T (1,01, k)T (P2, 02, K2)

XexpipiX+iqy+tikqz+ipoy' +igx+ik,z")

~ [ dx a0 0, ko Pk (s ko) 3P+ G ke TP ko) (Pl
Xexpipgy' +igsy+ikgx+ipx+iquz+ik,z').

It can be transformed to

f dp;dgydk,dp,dky8(py+as+kp) 8(pa—pr+ k) T(p1,01. k)T (P, — pa ko) exp(iqry +ikyz+ip,y’ +ikyz')

= f dpsddsdksdqudk,S(ps+da+Ks) 8(—Ks+as+Ka)T (p3,03,K3) T (—Ks,04,Ke)EXipay’ +igay+igsz+iksz’),

and then by momentum redefinitions in the second integral one obtains

f dp1dq;dkydp,dky8(py+ s+ Ky) 8(pa— p1+Ka)T(P1,a1,ky) T (P2, — P, ko) expliqry+ik,z+ipoy’ +ikyz')
:J dp,d gy dksdkydky8(pa+ 0+ Ks) S(—ka+ Ky + ko) T (pa, 01, ka) T (—ka kg ko) explia y +iksz+ipoy’ +ik,z').
By removing one of the delta functions in each part one obtains
f dgydk;dp,dke3(py+ kot 0y + k)T (P2t Ky 01 k)T (P2, — p2—ka ko) expliqry +ikyz+ipoy’ +ikyz')
=f dp,da;dkydky8(pa+ s+ Ky + k)T (P2, 01, Ky + ko) T (—ky— ko kg ko) expliqry +iksz+ip,y’ +iksz').
By making the last simplification one obtains
f dkydpodkol (Pt Kz, — Pa—Ka—Kq, k)T (P2, — Pa—Ko ko) exdi(— pa—Ka—Ky)y+iksz+ip,y’ +ik,z']

= f dp,dkydkoT (P2, — Pa—ko—Ky, Ky + ko) T (— Ky — Kz, Ky, Ko)eXdi (— pa—ko— Ky )y +ikiz+ipoy’ +iksz'].

|
Thus, finally, the conditiori29) takes the form whereG is the Fourier image of some functi@y, *, we can
substitute this expression in EO):
T(patka,—p2—ko—ky k)T (2, = P2k ko)

~ ~ G((p,+ko)DG(K3)  G((py+kyotky)d)G(K?
=T (Pas— Pa—Ka— Ky Ky + ko) T(— Ky — Ky Ky Ky). ((p2tk2)9)G(k3) ((p2tka+k1)9)G(KY)

= X =
G(pd) G((p2tkz)?)

(30)
G((po+katky)DBG((kytky)?) G(kD) G(k3)
This is an equation for a function of three variables, which = (P2 kz ,,1) 2) (ke + ko) )>< .,( ! ; .
will be solved below. First we show that there is a simple G(p2) G((k1tk2)?)
ansatz that satisfies E(B0). Indeed, by choosing the ansatz (32)

B(q2) B (kD) This is an identity. That is, for the ansatzl), Eq. (30) is
T k)= G@)HGK) (31  Vvalid. Now we will demonstrate that this anzatz is a unique
(p’qi ) = 2 1 .
G(p?) solution.
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In general, the functiod'(p,q,k) is a function of three Let us give a rigorous proof that the factorizati@®) of the
independent Lorentz invariants, since the moments and X dependence is the unique solution to E§5). Set h
k are not independent but related by conservation of the mo=In f. Applying the logarithm to Eq(35), we have
ments,p+q+k=0. We can choosp?, g2, andk? as those
independent invariants,

h(x,y,z)=—h(u,x,v)+ terms independent of. (38)
T'(p,q,k)=f(p?0?,k?).

Applying d™/dx™, m=1,2, ..., to Eq(39), btai
Therefore, we can rewrite the basic equatidf) as pplyINg X5, m 0 Eq(38), we obtain
F((P2+ka)? (P2 kot ka) 2 kD) X (3, (P2 + ko) ? K3) T (U X.0)
=f(p3.(p2+kotkn)? (Ki+ka)?) X F((Kyt ko) 2 K K). P N
1™ 27

(33

Let us introduce into Eg:33) new independent variables, This means that the Taylor expansionsxiaround the point
x=0 for the functionsh(x,y,z) andh(u,x,v) are

(P2+ka)?=X, (pa+kytky)?=y,

, , h(x,y,2)=h(0y,2) = ¢(x,y,2), (39
ki=z, p3=u, (34
Ki=v, (kitkp)?=w. h(u,x,v)=h(u,00)+e(x,y,2), (40
The number of independent variables is six, since in(B8§). h
we have only three independent Lorentz vectpssk, k,.  VNere
Using these vectors we can construct the six Lorentz-
invariant values above. In terms of these new independent
variables the basic equatid83) looks like - * 1 d"h(x1,Y,2)
¢(X7yvz): - 2 _Xn—

n=1 n! ax S
f(x,y,2) X f(u,x,v)="f(u,y,w)xf(w,z,v). (35 =

We consider Eq(35 as an equation for an analytical Applying exponents to both sides of Eq89) and (40), we
function of three variables iR® space. We observe that the gptain

RHS of Eq.(35 does not depend or for any values of
y,z,u,v. There is a unique solution to this—the dependence
on x must be factorized in the following way:

_ 1(0y.2)
1 f(xayvz)_ (,D(X,y,Z)’ (41)
f(X!yiz):mFl(yiz)i f(U,X,U):(P(X)Fz(U,U),
(36) f(ux,0)=(U,00) X o(x.y,2), (42)

where¢(x) is some function, ané,(y,z) andF,(u,v) are
other functions. The rigorous proof of this statement is give

below. The two equations if86) imply r‘{/\/herego(x,y,z)=expc,p(x,y,z). In EqQ.(42) the LHS isy andz

independent. Hencep(x,y,2) is alsoy and z independent:
o(X,Y,2)=¢(X). Thus, we can rewrite Eq$41) and(42) as

o(y) Eq. (36), where
f(x,y,z2)=——XF(2),
(x,y,2) o(X) (2)
whereF (z) is some function. By substituting this in E5) Fi(y,2)=f(0y,z), Fy(u,v)=f(u,0p).

we immediately infer thatF(z)=const< ¢(z). Rescaling

z) by an appropriate constant, we obtain )
v(2) by pprop This proves Eq(36) and thus Eq(37). Thus, we can con-

clude from Eq.(37) that Eq.(31) is the unique solution for

f(x,y,2)= e(Y)e(2) 37) T(p,q,k). To go back to the coordinate representation, we
e @(X) have to perform a Fourier transformation of Eg§1),
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F(X,y,z)=J dpdqdks(p+qg+ k)f(p,q,k)exrxiprriqy+ikz)

2\ (12

‘f GGk
= dpdqdlé(p+q+k)#exmpxﬂqyﬂkz)
G(p?)
J . GGk
= dx’dpdqdlexp[—|(p+q+k)x’]Tp2)exp(|px+|qy+|kz)

=f dx'Ge(x' —x)G; H(x'—y)G. Y(x' —2). (43

By substituting this result in the second of the equalitizs, ) b
we can see that it is also satisfied by this solution. One can f dxdydd’(x,y,z) T**LA(x)c>(y)c(2)
take the correct tree level normalization B,

=j dx'dxdydzG(x'—x)G_ }(x'—y)

Tabc:i_fbca1 (44)

2 X Gy H(x' —2) TP (x)cb(y)c(z)  (45)

and present the final result for the functional structure of thednd then redefine the fieldsandc,
Lc? proper correlator in the following form:

ca(x)zf dx' Ge(x—x")c(x")
J dxdydd'(x,y,z) T3PL3(x)cP(y)cS(2)
La(x)=J dx'G; (x—x")LA(x"),
=f dx'dxdydzG(x' —x)G_ *(x" —y)

i o revanvy I — o
X G (' =2) 5P (y) (). f dx' Gy H(x— X' )Gy(X' ~X") = (X~ X").

The second term in the Slavnov-Taylor identifyb) is cova-
As we have mentioned above, the natural assumgidn  riant with respect to this change of variables,
about the group structure of the proper correldtef has
been made. However, we could avoid this assumption. In- SI[L,c] oT[L,c]
deed, if all the group structures in E@6) are independent, f 5ci(x) OLA(X)
we obtain from there, instead of E(28), three equations,
f dxar[L(E),c(E)] ST[L(L),c(c)]

5c3(x) SLA(x)

: (46)
j dxF(y’,x,z’)F(x,y,z)zfdxF(y’,y,x)F(x,z,z’)

as can be explicitly checked, but the expressidb) takes
=f dxl'(y',x,2)I'(x,2",y) the local form,

=0 r= f dx TP (%) Eo(x)C5(x).

which are not true even at the tree level as can be seen from o .

Eq. (27). This means that at most two of the group structuredY Substituting this in the ST operat¢46) one concludes
must be independent to have a consistent solution. In suchtgat

case we come again to the necessity of solving 29), )
which has the unique solutidd3) as we have demonstrated Tabc:'_fbca
above. Substituting this solution in E@6) we obtain Jacobi 2
identities forT22¢ which means that they are structure con-

stants. In detail, this procedure can be done as follows. Weolves it. The reason for this is that tHig"¢ structure ap-
can substitute the resui3) in Eq. (24): pears also at the level of the classical action

(47)
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i d
2Trf dxL(x)c?(x) = EfbcaLa(x)cb(x)cc(x), af(z,z,az)x f(az,z,2)=0.

and we already know that this structure satisfies the ST opAs we have shown above, the factorizati@Y) is the only
erator(46). Furthermore, there can be no other solution forsolution for this type of equation.

Tab¢ because Eq47) is the only three-tensor in the adjoint  Another indication in favor of the factorizatidqB7) is that
representation of the gauge group that is antisymmetric in théor the region of the four-dimensional subspace under con-
last two indices and satisfies the Jacobi identities. Thus, theideration where is much larger than each af y, andw we
final result for the functional structure of tHec? proper have in the leading order af/z andy/z the equation

correlator is
f(z,y,z) X f(u,z,z)—f(u,y,w) X f(w,z,2)=0,

f dxdydd'(x,y,2) T2*LA(x)c(y)c%(2) which also requires the factorizatid87) as the only solu-
tion, since the information abowt disappears on the LHS.
, , 1, As the third indication, we can decompose the logarithm
:J dx’dxdydzG(x' —x)G, (x'=y) of Eqg. (50) in the Taylor expansion in the vicinity of any
) point in the four-dimensional subspace with coordinates
101" cbea a b c u,y,z,w. We then obtain, for the functiom=In f at the qua-
XGe (X' =2) 2f LA (e (y)e(2). (49 dratic order of the Taylor expansion, separability of the vari-
ables as the only solution. But separability fomeans fac-

In concluding of this section we present arguments thatorization for f. Further, we have indications that the
the form(48) of the Lcc correlator remains unchanged even separability must occur at any order of the Taylor expansion.
if corrections from the_ccA correlator are allowed to con- Thus, we have shown that there are at least three argu-
tribute to the~Lc® term in the ST equation, i.e., the first ments in favor of the factorizatiof87) being the only solu-
term in the ST identity(15) contributes as well. This results tjon also for Eq.(50), where this latter equation takes into

in corrections to Eq(26). In this case we can demonstrate account possible corrections from thecA correlator to the
that the basic equatio85) will be modified to the following  basic equatiori35).

form:

£(x,y,2) X F(U,x,0) — f(U,y,W) X f(W,Z,0) IV. SOLUTION TO THE CORRELATOR OF K ,Ac TYPE

Starting from this point we can repeat the method that was
used in Ref[6] for deriving the solution to the ST identities
(490  for supersymmetric theories. As was noted at the end of the
Introduction, the antighost equati@h6) restricts the depen-

The new functionf, of the variables34) parametrizes the gence of” on the antighost fielth and on the external source
contribution from the_ccA correlator. As one can see, there K,, to an arbitrary dependence on their combination,

is a four-dimensional subspace of the six-dimensional space

(34) with coordinates,y,z,u,v,w which is the intersection Imb(X) + K y(X).

of two hyperplanex=u+z+y+v—x—w andv =z where

the contribution ol.ccAin Eq. (49) disappears. In this four- We can present this dependence of the effective action on the
dimensional subspace E@9) takes the same form that the external sourc&,, in terms of a series,

basic equatior{35) takes in the six-dimensional space,

=f,(u,z,v,y,X,w)—fo(U,v,2,y,u+z+y+v—X—W,w).

Ut 2z+y—w Ut2zty—w =%+ 21 fdxldx2~--dxn}'nmlmz"'m”(xl,xz, o Xn)
f,y,z X f u,f,z —f(u,y,w) n=
X[amlb(xl)"'Kml(xl)][amzb(xz)"_sz(xz)]' t
x f(w,z,z)=0. (50

X[ B(Xn) + K (Xn)], (51
Unfortunately, at present we do not have a clear proof that
the factorization(37) is the only solution to this equation. \here we assume contractions in the spacetime indiges

However, there are several strong indications in favor of therhe coefficient functions of this expansion are in their turn
uniqueness of the factorization. Indeed, one of them is that ifunctionals of the other effective field4d),

we reduce the subspace under consideration furtharty

=z andw=4az, wherea is an arbitrary real parameter, we j:nmlmZ'"mn:j:nmlmZ"'mn[Am,C'L],

obtain

whose coefficient functions, for example, in the case0,

f2(1-2)2.2.2)x1(2.2A1-2)2.2)~ 1(2.24a2) are  ghost-antighost-vector ~ correlators.7, is a

x f(4az,z2,z)=0. _Km_—independent part of the_effective action. The spac_:etime
indicesm; of F, will be omitted everywhere below since
This suggests they are not important in the present analysis.
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Our purpose is to restrict the expansi@i) by using the
ST identities(15). Let us consider for the moment the terms Tr
of Eq. (51) without the fieldL. The noninvariance of these
terms with respect to the ST identiti€s5) must be compen-
sated by the first terni23) of the series(19) or possible _f dxdx dx”
interactions of this term with physical effective fields be-
causedsl'/SL(x) for such terms only has nb. The total
degree of the ghost fieldsin F, must be equal tm since
each proper graph contains an equal number of ghost and
antighost fields among its external legs.
' Let us consider terms in the effective actlon_ whose variag, hich is the identity(15) reexpressed in terms of the new
tions are cancelled by variations of the ghost field caused by i-bjas according to Eq53). As one can see the ST op-
the first term(23) of the serieg19). To start we consider the

- S . erator is covariant with respect to this change of variables
F1(x,) coefficient function in the expansidbl). The corre- oy cent for the gauge-fixing term, which remains unaffected
sponding term of lowest order in the fields in E§1) is

by quantum corrections anyway as mentioned earlier.
One can make the change of variab(g3) in the integral

f dxdxX 2i Tr{[ dmb(X) + Kn(X)19mG(X—x")c(x")}, (52
(52

ST ST st of
jdx — — +f dx— =
SAL(X) K n(X) oc(Xx) 6L(x)

S0 AT

X =0, (59

1 -
ZamAm(X”)GA(X_ XH))

f dxdx dx"dx”2i Tr{[ d,b(X") +Km(X")]
where —i 9°G(x—x') is a two-point ghost-antighost proper
correlator. It is a Hermitian kernel of the above integral, X G (X = X)G(X—X")Ge(X" —X") ImC(X")}.

GT:G. (56)

We can make any change of variables in the effective//hile the dressing functiorG.(x—x") has been defined

actionI". Let us make the following change of variables: throu.gh the solutior(23) to the opera’F0|(20), the dressing .
function Go(x—x") has not been defined yet. We define it

~ from the requirement
Am(x)=f dx' Ga(x—x")An(X"),
Jdxdx’G;l(x”—x)G(x—x’)Gc(x’—x’”)=5(x"—x”’).
Km(x)zf dx' G, (x—x")Kn(x),

In this case the terntb6) after the change of variabl€53)
simplifies to

c(x)=J dx’ Ge(x—x')e(x"),
f dx2i TH{[ dmb(X) + K m(X)]19mC(X) 1. (57)
L(x)=fdx'egl(x—x')t(x'), (53

The first term in the ST identitie€5) can also be ex-

5 panded in terms o#,b(x) + K (X),
b(x)=f dx' G (x—x")b(x").

or oI’
Here Gy(x—x") are some dressing functions, f dx5gm(x) 5Rm(x)
j dx' Gy H(x—x")Gy(X' —x")=86(x—x").  (54) =Mp+ nzl dx;dx, . ..dx,
: . . myms, ... my
In terms of the new variables the effective action XMy (X1, X2, + -+ Xn)
'f‘['&,,Rm ’E] :F[QD(;).Km(Rm),L(E)J X [5mlb(xl) + Kml(xl)][amzb(xz) + sz(xz)] ce
must satisfy the identity X[dm, B(Xn) + K, (Xn)], (58)

where we assume contractions in the spacetime indiges

3The formula(54) does not mean that both the functioBg *(x Again, the spacetime indices; of M, will be omitted ev-
—x') andGy(x’ —x") are s functions. It means only that the prod- €rywhere below since they are not important in the present
uct of their Fourier transforms is equal to 1. analysis M, is theK -independent part of E¢58). We can
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consider that the LHS OI EC(58) is the result OI an infini- Indeed, the 0n|y contribution tM]_ of the order of~(&mB
tesimal transformation it’, in which instead ofA,,(x) we 1K )g,c? in M, comes from this- (d,b+K)ALC term

have substituted in 7y
() B + (59) Mo Ml ok s
m(X) = Am(X = . fdx~ = ~[(dmb+Kp)C]dmC
5Km(X) 5Am(X) 5Km(x) [( m m) ] m
In other words, one can consider the result of such a substi- ~ (b + K ) 9mC2,

tution as the difference
where1“|f1 is the F; part of the effective action. One could

~ ol

Rm,Am(X)+ 6R ( ) _F[Rm,FAm(X)] think at first that the?ro' and \7:2' type terms‘f‘lj:o, f|f2 of
X
m

r

Eq. (19) might also contribute to the term of order(d,.b
, , - . o +Km) dmc? in M via

to linear order indl"/ 6K ,(x). Equation(57) implies that the
“gauge” transformation(59) can be rewritten as

oz, Ty,
f dx

S5An(X)~id,c(X)+ higher terms. SAR(X) K n(X)

The sum of the part quadratic il of F, and theF;-type because

term (57) contributes taM, by yielding a term~Ac. How-- 5T,

ever,M, must be equal to zerbHence, the part quadratic in 72 (0. B+ R A A c].
A of F, must be invariant, at quadratic order, under the OKy(X)

aforementioned “gauge” transformation, implying the form _ _ _
However, 81| foléAm(x) starts with terms linear if\,(x).

1 ~ - Thus, theF, part of the effective action does not contribute
_f dngzz_ngr(‘?mA“(X)_‘?“Am(x)) to the term of the order of- (9,,b+K,)dmC? in My; only
the F; part of the effective action does. Hence, the term of
X O(IpAn(X) = IpAm(X)), (600 order~(d,b+Ky)AnC in F; is the term of the same order

that is contained ifK,,(x)V,,, ¢(x) because only in this case

wherezgz ?s a number that depends on the couplings andyiil the terms~ (9,b+K,)9.¢2 in M, be cancelled by the
regularization parameter of the theory, aids some differ-  gocond term in the ST identiti€55), which will result in
ential operator. Later we will see how the ST identities put

restrictions on such an operator. _ _ - -
Having fixed the form of the quadratic ter(87) in F;, f dX2i Tr(Fmb(X) + K (X)) dmC?(X) ]
we consider the vertex of next order in the fields /s,
which looks like~ (db+K)Anc. We will show now that  due to the substitutiof21). Thus, the term of lowest order in

the structure of the vertex (d,,0+K)AC is fixed com-  the fields inF is

pletely by the quadratic terifb7) and by the tern{23). Ac- ~ 5 . _ _
cording to the Slavnov-Taylor identit{s5), the contribution 20 Tr{(dmb(X) + Kn(X))Vine(X) ], Vin=0dmtiAy.

of ~(db+K)AnC of the F; part of the effective action (61)
into M, caused by the quadratic ter(§7) due to the sub- . ) o~ )
stitution (59) must be cancelled by the variation of the ghostAll the terms inFq of higher orders imAn(x) are fixed by
field caused in Eq(57) by the first term(23) of the series themselves in an iterative way due to the requirementjiat

(19) due to the substitutioi21). According to our conjec- Must be invariant with respect to the substituti®®). Tak-
ture, the term23) has the form ing into account Eq(61), we see that the first invariant term

IS

27Tr | dXL(x)c?(x). = E
rf XL(x)c(x) —f dXZgzé TrFon(X)Fmn(X),
g

“4In principle, another term~Ac can appear in the third term whereF,(x) is the Yang-Mills tensor of,(x). That is, the
there, coming from the-ba,V,.c part of I". However, the third ~ Physical part of the effective action can be restored from the
term in Eq.(55) [and in Eq.(15)] is only responsible for the ab- requirement of its invariance with respect to the gauge in-
sence of corrections to the gauge-fixing termlinas we already variance in terms of the gauge field dressed by the dressing
noted at the end of Sec. Il. function. Here we see that the differential operat6rs Eq.

065006-12



APPROACH TO SOLVE SLAVNOV-TAYLOR IDENTITIES . ..

PHYSICAL REVIEW D 67, 065006 (2003

(60) between two Yang-Mills tensors must be covariant de-state that the higher order terms must respect the already

rivatives. For example, the following term is allowed,

1 . -
fdfoPTran(x)Vszn(x), (62)

wheref, is another number that depends on couplings, and
A is a regularization parameter of the theory. Starting from

the fourth degree ofA,(x), higher order gauge invariant
contributions like

1_ - ~ ~ ~
f deSPTran(X)an(X)FkI(X)FkI(X) (63

to Fy are allowed. Herd 3 is another number that depends
on couplings.

V. FURTHER STEPS FOR HIGHER CORRELATORS
IN K, AND L

We consider now the coefficient functiotf, with n>1
in Eqg. (51) for L=0. There are two possibilities here. The

first possibility is that these terms of higher degreeimio

not respect the gauge invariance of the physical part of Eq.

(51) created by theF; term. In the caseF, contributes to

M but we do not have anything that can compensate thi
contribution by ghost transformations induced by the secon

term in the ST identitie$55). Hence, F,=0. If we consider
Fs, it contributes taM, and, in general, could be compen-
sated by ghost transformations ffy. But F, is zero; hence,

F3 is also zero. We can repeat the former argument for al

higher numbers of F,. All coefficient functionsZ, with

n>1 are equal to zero in the first possibility. The second

possibility is that the terms of higher degreeKirrespect the
gauge invariance of the physical part of Eg1). In this case
F, with n>1 does not contribute ta1,, for anyn. In super-
symmetric theories this possibility does not e because

established invariance with respect to the Slavnov-Taylor op-
erator for the terms of lowest degree in the fields. In our case,
for example, we can write the result for interactions of the
term (23) with physical fields by using the following substi-
tution:

o e 1 . ~
ch—>ch(l+f4 —Tran(x)an(x)),
A4

and then making a substitution in E@1):

c—c¢

(65

1 . .
1+f4FTr an(x)an(x)> .

However, these terms cannot change the structure of the
physical part of the effective action since it is already deter-
mined by the terms of first order in the auxiliary fiefg,,.

One can consider possible terms with higher degreés of
For example, the sum of E¢23) and

f dx > (La(x)L2(x))KcPr(x) . . .
a;bq,by, ..., bk
X Cb4k(X) €b,b, ... by (66)

%atisﬁes the identity20) if 4k is the rank of the gauge group.

these terms exist it is also necessary to consider the de-
pendence ofF,, on the auxiliary field_, since the substitution
due to the second term in the ST identities would produce
ihese terms. However, at the end we put all the auxiliary
ields equal to zero, and therefore all the terms with higher

degrees of. do not have any importance. In comparison, the
situation with theK,, field is different. Indeed, terms with

zero K,, are still important since they are responsible for
higher degrees of ghost-antighost correlators which may
have applications in some models.

of the chiral nature of the ghost superfields. However, in the

nonsupersymmetric case one can invent, for example,
constructions such as the following one:

J dx Tr{[C(x) Vin(dmb(X) + K (%))

X[C(X) Vi 0mb () + K n(x)) 1} (64)

Such a term gives zero contribution fef,, since its varia-
tion with respect tK is proportional toV,,(scalar function)
and its contribution toM, can be cancelled by the transfor-
mation of the ghost field i, if the coefficient before Eg.

VI. CONJECTURE FOR THE PHYSICAL PART
OF THE ACTION

Taking into account the structu(él) of the term linear in

K., one can come to a natural conjecture about the form of
the part of the effective action that depends only on the
gauge effective field\,,; namely, due to the ST identitp5)

in terms of the dressed fields, the structure of the effective
action is

V2|
Fmn(X)

1 _
F[Am,b,cjzf dx[—z—gzzngr Fnn(X) g(

A2

(64) has been fixed in an appropriate way. This can be

proved in the same waEq. (8)] that was used to derive the
BRST transformation in Sec. Il.

We have considered the terms in the effective action
whose variations are cancelled by variations of the ghost

field caused by the first terig23) of the serieq19). In gen-
eral, some sophisticated interactions of the t€&8 with

+irrelevant part,

(67)

where all auxiliary fieldK andL are set equal to zero. It is

physical fields can be introduced. However, again we camecessary to make three comments here. The fungtisra
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series in terms of covariant derivatives with a dressed gauge An
connection. The part of this series without gauge connection ImAmn=ImZa)
G(9%IA?) has a logarithmic asymptotic in the momentum A

space at high momenturdi( - p?/A%)~In(—p/A?), while at  thon the path integral for the theory with counterter®8)
|02W Tomer_ﬂum it may be represented e.g., by powers ofan e transformed to the forts) by substitution of vari-
p“/Aqcp With Aqcp~0.1 GeV[9]. S ables of the integrah,,= A/ z, . This means that all the pre-
The physical part of the action is gauge invariant in termsjos construction can be reproduced without any change but
of the dressed field\(x). taking into account the redefinitiah,— J,zs . In turn, such
We do not write in the physical part terms lik&3) since  a redefinition, according to the definitiofsl), means noth-
finally we are going to take the regularization massto  ing else but that the effective fields are also redefined as in
infinity. Terms like (63), (64), (65) are called irrelevant in  Eq. (69), which is equivalent to the redefinition of the dress-
(67). ing function

VIl. REGULARIZATION AND RENORMALIZATION

1
-1 ’ -1 ’
In a general nonsupersymmetric four-dimensional gauge Ga (X=X )_’ZGA (x=x). (70

theory which is regularized in a way that preserves gauge

(and BRST symmetry, the dressing functions are of the fol- One can consider Eq70) in momentum space,
lowing form:

RV )L Ca(A%u?) 11 Ga=wtAY
Gx X=X =20 X )+ —— 5= (P pf X))
Co(A% 1) =(1+ag®+B(g°) %+ 1(g")%+- )
o 25 (%= p?)?8(x=X")+ - PN - S AP
(1) X(1+G1(p) g™+ G pPI(G)+ -+ +)
(68)

=1+(a+8y(p?) g%+ (B+aGy(p?)+Ga(p?)

This representation means that we have expanded the Fourier X(g?)%+-- -, (71)
transformed dressing functiorG, (p?) =1/Gx(p?), X

=A,c, in the vicinity of the pointp?=— 2. Herezy is a  Where we have presented both factors on the LHS as a series
constant that goes to infinity if the regularization is removed,n terms of the coupling constant. In this expansigris the
andC,, C, are finite constantsFor instancez, is a renor-  physical coupling that stays in the classical action according
malization constant of the gauge field. To renormalize théo the counterterm approagfil]. All these dressing func-
theory we have to introduce counterterms into the classicdions parametrize our resulf?) for the effective action, that
action (6) [11]. This is equivalent to a change of the field in is, they parametrize the irreducible vertices that contain di-
the classical actiol6). For example, in the case of the pure vergences. Divergences from the dressing functions must be
gauge theory, to remove divergences fr@p’(x—x’') we  removed. We can remove the divergences at each order in the
have to make the following redefinition of the gauge field incoupling constant by choosing the divergent coefficients

the classical action: B, v in 1/z, in an appropriate way, because each coefficient
G (p?) of the decompositio, }(p?) in terms of the cou-
pling constant is in its turn a series in termspsfwith only

h . . -
Abare_ m 69) the zero order ip?, terms being divergent. This is due to the
m Zp fact that

The motivation for the terminology “bare” and “physical” = 5

for the fields in the path integral is that introducing counter- im Ga(p%,A9)

terms into the classical actiof®) by the rescaling69) of Ao Ga(— p2,A2)

fields and couplings will result in an effective action without

divergencesa renormalized effective actipnwe can show s finjte. As to divergent coefficients before the relevant op-

that by such a redefinition we can make the dressing functiogrators, they will be compensated by counterterms from the
G, finite. Indeed, if we represent the term with the sourcepare coupling$.

of the gauge field in the path integrd) as

SEven if the renormalizatiofi71) has been done and the dressing

56yl (x—x")=(2m) *fdpexd —ip(x—x)][1/Gx(p?)], i.e.,  functions are finite, the theory still has divergences in the coeffi-
G;l(x—x’)qﬁo for x—x'#0 in general, although the expansion cients of the relevant operators. These divergences are absorbed by
(68) might suggest otherwise. the bare couplings.
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Until this moment we did not specify which regularization 1
is used. Regularization by higher derivatives is the most con{ gcp[ Ay, b,c]= dx[ mberill
venient from the point of view of the theoretical analyisd$ 29
It provides strong suppression of ultraviolet divergences by 1
introducing additional terms with higher degrees of covariant —Tr(—[amAm(x)]z)
derivatives acting on the Yang-Mills tensor in the classical “«
action (6), which are suppressed by appropriate degrees of _ o
the regularization scald. In addition to this it is necessary —2i Tr[b(X)dm Vin C(X)]}, (72
to introduce a modification of the Pauli-Villars regularization
to guarantee the convergence of the one-loop diagf@is where all the auxiliary field& andL are set equal to zero.
To regularize the fermion cycles, the usual Pauli-VillarsHere the functiorg, is defined as
regularization can be uséd.
/e
VIII. SUMMARY

- ¥2\.
an(X)gz( _2) an(X)
o

Thus in the case of four-dimensional QCD without quarks
the classical actioi6) is G,

2

A2)

?2

2

T2
“ 2

=lmg

A—oe

(73

1 In this work we proposed a solution to the Slavnov-Taylor
= =5 T Fma(AX)F ma(A(X))] identities for the effective action of nonsupersymmetric non-
29 Abelian gauge theory without matter. The solution is ex-
1 pressed in terms of gaudsg,, and(antighost effective fields
—Tr(—[amAm(x)]z) (c,b) convoluted with unspecified dressing functions:
a

SQCD[A,b,c]=f dx

A _ =1yt '
— 2T ib(X) I V(A C(X) ] Am(X)—J dx'Gp (X=X )An(X")

c(x)= f dx'G; H(x—x")e(x"),

In the counterterm techniguél] the coupling constant here
is the physical coupling constant. The classical action with _
the counterterms is b(x)zf dXx' Ga(x—x")b(x").

Further, the solution is invariant under the gau@RST)
transformation of the convoluted fields. We gave arguments
which show that, under a specific plausible assumption, the

[A.b C]:J' Y terms of the effective action containingntighost fields
Sqcol Ab, Z.2 202 must have the same form as those in the classical action, but
’ under the substitutioX— X(X=c,b,A.,). Further, we con-
<Trl E é(x)) F ( (x)) jec'gured a rather g_eneral form of th_e terms of _the eﬁ‘ect@ve
mn\ z ml za action which contain only the effective gauge fields and in-
) ) volve an additional functiorg. We briefly described how
T (za) 5 &(x) regularization and renormalization are reflected in the dress-
a Mza ing functions. The effective action obtained is assumed to
contain the quantum contributions of the gauge theory, per-
A\ c turbative and nonperturbative, but not including the soliton-
— 2Ty iZAb(X)&me<Z) Z—C(X) ] like vacuum effects. Stated otherwise, all these effects are

assumed to be contained in a limited number of dressing
functions Ga,G.,9). The application and consistency
checks of this effective action for the case of high-

where the fields are “physical” in the sense that this classica/"omentum QCD are presented elsewtiéte
action together with counterterms results in an effective ac- ACKNOWLEDGMENTS
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’A somewhat different regularization approach is applied in Ref.
[9] where explicit QCD one-loop dressing functions are obtained.
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