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Optimization of the derivative expansion in the nonperturbative renormalization group
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We study the optimization of nonperturbative renormalization group equations truncated both in fields and
derivatives. On the example of the Ising model in three dimensions, we show that the principle of minimal
sensitivity can be unambiguously implemented at order]2 of the derivative expansion. This approach allows us
to select optimized cutoff functions and to improve the accuracy of the critical exponentsn and h. The
convergence of the field expansion is also analyzed. We show in particular that its optimization doesnot
coincide with optimization of the accuracy of the critical exponents.
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I. INTRODUCTION

During the last ten years the Wilson-Kadanoff approa
@1,2# to the renormalization group~RG!, based on the block
spin concept, has been the subject of a revival in both sta
tical physics and field theory. This originates in recent dev
opments@3–5# which have now turned it into an efficien
tool, the effective average action method@3# allowing one to
investigate nonperturbative phenomena. This method im
ments on the effective actionG—the Gibbs free energy—th
idea of integration of high-energy modes that underlies
RG approach. The whole method consists in building an
fective free energyGk at a scalek for the high-energy mode
that have been integrated out and in following its evolut
with the scalek through an exact equation@3#. The main
drawback of this equation is that it cannot be handled
actual calculations without truncations ofGk . It is thus of the
utmost importance to know whether the truncations u
provide converged and accurate results. As is well kno
the problem of convergence is also crucial in perturbat
theory where it requires the resummation of series. Let
emphasize that this problem is far from being solved in g
eral since Borel summability, which is the key point to resu
perturbative series, is not generically proven and may e
turn out not to hold~see@6,7# for a review!. It is then impor-
tant to dispose of an alternative method, not relying on
expansion in a coupling constant and thus not requirina
priori resummation. Good indications on the convergen
properties of the effective average action method have b
already provided by its ability to tackle with highly non
trivial problems, such as low-energy QCD@8#, the Abelian
Higgs model relevant for superconductivity@9#, the phase
diagram of He3 @10#, frustrated magnets@11–14#, the Gross-
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Neveu model in three dimensions@15,16#, the randomly di-
lute Ising model @17#, the Kosterlitz-Thouless transition
@18,19#, etc.~see@20# for a review and@21# for an exhaustive
bibliography!. A systematic investigation of the convergen
and accuracy issues is, however, still lacking.

We propose here, on the example of the three-dimensio
Ising model, to study the convergence and optimization
the accuracy of the effective average action method trunc
both in derivatives, at order]2, and in fields. We study, in
particular, the role of the cutoff function, used to separate
low- and high-energy modes, on the determination of
critical exponentsn andh.

In Sec. II, we briefly introduce the basic ideas underlyi
the effective average action method. We then discuss in
III the truncations necessary to deal with concrete calcu
tions. We motivate, in Sec. IV, the use of the principle
minimal sensitivity~PMS! to optimize the results. Then, w
apply this technique successively within the local poten
approximation~LPA!, Sec. V and at order]2 of the deriva-
tive expansion, Sec. VI.

II. THE EFFECTIVE AVERAGE ACTION METHOD

Historically, the block spin concept was first imple
mented, in the continuum, on the Hamiltonian. This proc
dure consists in separating, within the partition function,
microscopic fields into a high- and a low-energy part and
integrating out the high-energy part to get an effect
Hamiltonian for the remaining low-energy modes. The ite
tion of this procedure generates a sequence, a flow, of sc
dependent Hamiltonians, parametrized by a running scak,
and describing the same long distance physics. The crit
properties are then determined by the behavior of the sys
around the fixed point of the flow of Hamiltonians@2#. How-
ever, due to technical difficulties@5,22,23,21# this nonpertur-
bative renormalization procedure has been mainly used
conceptual basis for perturbative calculations rather than
practical tool to investigate nonperturbative aspects of fi
theories and critical phenomena. The situation has chan
©2003 The American Physical Society04-1
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when it has been realized, mainly by Ellwanger@24–27#,
Morris @5,22,28–31,23#, and Wetterich@32,33,3,34–36# that,
rather than the HamiltonianH, one should consider the e
fective action G—the Gibbs free energy—as the centr
quantity to be renormalized. In the spirit of the original W
sonian formulation one builds arunning effective actionGk
that only includes high-energy fluctuations with momen
q2.k2. This implies that, on the one hand, at the underly
microscopic scalek5L, Gk coincides with the classica
HamiltonianH since no fluctuation has yet been taken in
account. On the other hand, when the running scale is l
ered tok50, i.e., whenall fluctuations have been integrate
out, the standard effective actionG is recovered. To summa
rize, Gk continuously interpolates between the microsco
HamiltonianH and the free energy:

Gk5L5H,

Gk505G. ~1!

Since, by definition,Gk is built up from the high-energy
fluctuations of the microscopic system, the low-ene
modes—withq2,k2—must be removed from the runnin
partition function. This is most easily achieved by adding
the original Hamiltonian a scale-dependent mass termDHk .
Then, the running partition function with a source ter
writes @20#:

Zk@J#5E Dxe2H[x] 2DHk[x] 1J•x ~2!

with J•x5*ddqJ(q)x(2q) and

DHk@x#5
1

2E ddq

~2p!d Rk~q!x~q!x~2q!, ~3!

where x(q) is the microscopic field. In Eq.~3!, Rk(q) is
chosen in such a way that it acts as a cut-off function t
decouples the low- and high-energy modes. This impo
several constraints:

Rk~q!;k2 for q2!k2, ~4!

Rk~q!→0 for q2@k2. ~5!

Equation~4! means that, at low momentum with respect
k, Rk(q) essentially acts as a mass, i.e., an infrared cut
which prevents the propagation of the low-energy mod
This ensures that these modes do not contribute toGk @59#.
Equation~5! implies thatRk(q) does not affect the propaga
tion of high-energy modes. They are thus almost fully tak
into account inZk and, consequently, inGk .

In order to recover the limits~1!, Rk(q) must also satisfy

Rk~q!→` when k→L at fixed q, ~6!

which ensures thatGk coincides with the microscopic Hamil
tonianH whenk→L, and

Rk~q!→0 identically when k→0, ~7!
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which ensures that, in the limit of vanishingk, one recovers
the standard effective actionG. Note that since we are only
interested here in the universal long distance behavior
not in quantities depending on microscopic details, we s
L to `.

The effective average actionGk is then defined as

Gk@f#52 ln Zk@J#1J•f2DHk@f#, ~8!

wheref stands for the running order parameterfk(q):

fk~q!5^x~q!&k5
d ln Zk@J#

dJ~q!
U

J50

. ~9!

It follows from the definition~8! that Gk@f# essentially cor-
responds to the Legendre transform of lnZk@J#, up to the
mass termDHk which allows us to recover the limits~1!
@37#.

The effective average actionGk follows an exact equation
which controls its evolution with the running scalek @3#:

] tGk@f#5
1

2E ddq

~2p!d ] tRk~q!$Gk
(2)@f~q!#1Rk~q!%21,

~10!

where t5 ln(k/L) and Gk
(2)@f# is the second functional de

rivative of Gk with respect to the fieldf. We emphasize tha
Eq. ~10! is exact and thus contains all perturbative and n
perturbative features of the underlying theory~see@37# for
technical details and@20# for a review of the applications o
this equation to concrete physical issues!.

III. TRUNCATIONS OF THE EFFECTIVE AVERAGE
ACTION

Equation ~10! is a functional partial integro-differentia
equation that has obviously no known solution in the gene
case. Therefore, to render it tractable, one has to truncate
effective actionGk . The most natural truncation, well suite
to the study of the long distance physics, is the derivat
expansion. It consists in writing anansatzfor Gk as a power
series in]f. Let us first consider the case of anO(N) in-
variant theory for which theansatzat the order]2 writes@37#

Gk@f#5E ddxH Uk~r!1
1

2
Zk~r!~]mfW !21

1

4
Yk~r!~]mr!2

1O~]4!J , ~11!

wherefW is anN-component vector andr5fW 2/2 is theO(N)
invariant. In Eq.~11!, Uk(r) corresponds to the potential pa
of Gk while Zk(r) andYk(r) correspond to the field renor
malization functions. Thus, withZk(r)51 and Yk(r)50,
Eq. ~11! provides theansatzfor the so-called local potentia
approximation~LPA! where the anomalous dimension va
ishes. This kind ofansatzhas been successfully used in se
eral cases among which are theO(N) @20# and Gross-Neveu
models @15,16#. However, to deal with more complicate
models, e.g., with matrixlike order parameters, a further
4-2
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proximation is almost unavoidable@11,13,38#. Indeed, when
the symmetry is lower thanO(N), there are several invari
ants and the number of independent functions analogou
Zk(r, . . . ) andYk(r, . . . ) grows. In this case, the integra
tion of the flow can be very demanding. It is then very co
venient to further truncate the function
Uk(r, . . . ), Zk(r, . . . ) in power series ofr and of all
other invariants.

Here, we focus on the Ising model, described by a sca
Z2-invariant field theory, considered as a toy model to stu
the derivative and field expansions. In this case, since
only independent field renormalization function isZk(r), the
function Yk(r) can be set to zero. The field truncation th
writes

Uk~r!5(
i 51

n

Ui ,k~r2r0! i ,

Zk~r!5(
i 50

p

Zi ,k~r2r0! i , ~12!

wherer05f0
2/2, f0 being a particular configuration of th

field f. We shall come back to this point later.
The truncation in fields conveys two nice properties. Fi

with the ansatz~11! and ~12!, the RG flow equation~10!
leads to a finite set of ordinary coupled differential equatio
for the coupling constantsUi ,k’s andZi ,k’s that is simpler to
solve than the partial differential equations obeyed by
full functions Uk(r) and Zk(r). Second, even the lowes
order approximations, in which only the first nontrivial term
of Uk(r) andZk(r) are kept, give a fairly good qualitativ
picture of the physics@37,20#.

However, the study of the truncated version of Eq.~10!
raises several important questions.

~i! Does the derivative expansion converge and doe
provide a satisfying accuracy at low orders? The question
the convergence of the derivative expansion, in its full g
erality, has not yet been considered and appears to be a m
and open challenge. In practice, one is less interested in
delicate question than in the quality of the results and th
improvement as the order of the derivative expansion is
creased. In the case ofO(N) models, very accurate resul
have been obtained at second order in the derivative ex
sion. For instance, Wetterichet al. have shown that handling
the full field dependence of the potentialUk(r) and of the
field renormalization functionsZk(r) andYk(r) leads to re-
sults that can compete with the world best estimates, at l
for the critical exponentn @20#. The value obtained for the
anomalous dimensionh is less accurate. Its definition bein
linked to the momentum dependence of the two-point co
lation function, an accurate determination ofh probably re-
quires higher-order terms in the derivative expansion. T
question will be investigated in a forthcoming article@39#.

~ii ! Does the field expansion ofUk(r) and Zk(r) con-
verge and how rapidly? Once again, the general questio
this convergence has not yet been investigated. Neverthe
several works have dealt with field truncations at high or
within the LPA @40–44# or with a field-independent field
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renormalization@37#, i.e., with Zk(r)5Z0,k . They suggest
that a few orders suffice to obtain reasonably converged
ues of critical exponents. To our knowledge, their compu
tion using also an expansion ofZk(r) has been only studied
in the Ising model and using a power-law cutoff functio
@44#. In this study we extend this analysis to two other fam
lies of cutoff functions, leading to more accurate results.

Questions~i! and ~ii ! are linked with a corollary issue
which resides in the choice of cutoff function.

~iii ! Can the accuracy be improved through the choice
cutoff functionRk? Of course, when no truncation is mad
an exact solution forG@f#5 limk→0Gk@f# does not depend
on the functionRk used, whereas any kind of truncation in
duces a spurious dependence on it. One can thus wonder
to optimize the choice of this cutoff function. This questio
is not as trivial as it seems since one has to decide on
optimization criterion: rapidity of convergence of the expa
sions in powers of derivatives, fields, or amplitud
@41,42,45,43,46#? Accuracy of the results? Sensitivity of th
results with respect to the cutoff? We specifically concentr
on these two latter issues in the following.

IV. OPTIMIZATION AND PRINCIPLE OF MINIMAL
SENSITIVITY

Up to now, attempts to optimize nonperturbative R
equations have been mainly worked out in the Polchin
equation@47#, in particular at second order in the derivativ
expansion. For instance, Ballet al. @48# and Comellas@49#
have tried to suppress the cutoff and normalization dep
dence of the exponentsn and h by using the principle of
minimal sensitivity ~PMS! @50#. We shall not pursue this
within this framework since it has now been widely reco
nized that the effective average action method is the m
efficient way to deal with the nonperturbative RG. We w
thus consider this latter formalism.

In the context of the effective average action metho
within the framework of LPA, Litim has proposed to con
sider the quantityC, defined by@42,45,43,51,46,52#:

min
q2>0

$Gk
(2)@f~q!#uf5f0

1Rk~q!%5Ck2, ~13!

whereGk
(2)@f(q)#1Rk(q) is the inverse of the full regular

ized propagator andC parametrizes the gap amplitude. A
cording to Litim, the gap is bounded from above and the b
cutoff functions are those which maximize this ga
@42,45,43,51,46,52#:

Copt5max~C! when varyingRk . ~14!

The idea behind this criterion is that the largerC, the more
stable the truncated RG flow. Indeed, it has been shown
the maximum of the gap corresponds to the largest radiu
convergence of an amplitude expansion. This suggests
the optimal selected regulators should have nice proper
such as improving the convergence of the field expans
@42,43,51,46,52#. Moreover, in@43# it has been shown that
within the LPA, the criterion~14! is also linked to a PMS.
4-3
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At this stage, let us shed light on some important featu
of the ‘‘gap criterion.’’ First Eq.~14! doesnot select a unique
cutoff function: manyRk maximizing the gap have been e
hibited, for instance, in@42#. Also, the various optimized
cutoff functions, solutions of Eq.~14!, can lead to quantita
tively different critical exponents, depending on the spec
properties of a given cutoff function, like its asymptotic b
havior~see below and compare@46# and@44#!. The quality of
the results therefore relies on the choice of the type of o
mized regulator. Second, beyond the LPA, the implemen
tion of the gap criterion~14! appears to be nontrivial. Indeed
the field renormalization functionZk(r0) induces an implicit
Rk dependence inGk

(2)@f(q)# that complicates the maximi
zation of the gap. Moreover, it is not completely cle
whether, beyond the LPA, this criterion would still conve
the nice properties it shows at the lowest order of the der
tive expansion and, in particular, its link to a PMS. As we a
specifically concerned here with the question of the sens
ity of the results with respect to the cutoff function, we fav
a method that directly probes the dependence of the cri
exponents on the cutoff function. We have decided to b
our analysis on the PMS, which can always be simply imp
mented and has already proven its efficiency.

Let us recall how it works. Suppose, for instance, that
compute a quantityQ in an approximate way. The approx
mation used may induce a dependence ofQ on a
parameter—denoted here bya—which is spurious. The
PMS consists in choosing fora the valueaPMS for which Q
is stationary:

dQ~a!

da U
aPMS

50. ~15!

One thus expects that imposing such a constraint, satisfie
Q computed without approximation, improves the appro
mate determination of this quantity. The obvious drawba
of this method is that Eq.~15! can have many solutions. Thi
worsens if several quantities are simultaneously studied,
lead to distinct solutions. An additional criterion is then ne
essary to select a unique one.

We first study the LPA of the scalar,Z2-invariant field
theory relevant for the Ising model. We show that the PM
allows one to optimize the quality of the results. We th
study theO(]2) approximation of the derivative expansio
and show that the PMS leads to accurate results provided
add some new inputs to discriminate the solutions.

V. THE LOCAL POTENTIAL APPROXIMATION OF THE
ISING MODEL

Let us recall that the LPA consists in approximatingGk by

Gk@f#5E ddxH Uk~r!1
1

2
~]f!2J , ~16!

i.e., in neglecting the field renormalization. Thisansatz, once
plugged into Eq.~10!, enables us to get the evolution equ
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tion for Uk . Actually, working with dimensionless quantitie
is necessary to get a fixed point, so that we define

r ~y!5
Rk~q2!

q2
with y5

q2

k2
,

uk5k2dUk ,

r̃5k22dr. ~17!

The RG equation obeyed byuk writes

]uk

]t
52duk1~d22!r̃uk82vdL0

d~w!, ~18!

whereuk5uk( r̃), vd
2152d11pd/2G(d/2), the prime means

derivation with respect tor̃, w5uk812r̃uk9 , and

L0
d~w!5E

0

`

dyyd/221
2y2r 8~y!

y@11r ~y!#1w
. ~19!

The nonperturbative features of the evolution of the poten
are entirely encoded in the integralL0

d , called threshold
function @37#.

We now study Eq.~18! within a field truncation

uk~ r̃ !5(
i 51

n

ui~ r̃2 r̃0! i , ~20!

where we have suppressed the indexk for the coupling con-
stants. Onceuk( r̃) is truncated at a finite ordern of the field
expansion, the field configurationr̃0 around which it is ex-
panded matters. Two configurations have been widely s
ied: the vanishing field configuration,r̃050, and the con-
figuration whereuk( r̃) has a nontrivial minimum@60#:

]uk

]r̃
U

r̃0

50. ~21!

All the studies performed using field truncations show th
the convergence properties are improved by expand
around the minimum rather than around the zero field c
figuration @28,44#. Therefore, we choose the former.

We also need to choose families of cutoff functionsRk to
perform calculations. For simplicity, we restrict for now o
study to families of cutoff functionsRk depending on a
single parameter. We extend this to a two-parameter fam
in Sec. VI D. We consider two usual cutoff functions. Th
first one is the exponential cutoff, which has been often u
and constitutes an efficient and robust regulator@37#. The
other one, the theta cutoff, has been introduced by Li
@45#. It presents the advantage of leading to threshold fu
tions that can be analytically computed. We extend th
functions, by multiplying them by a factora, to two one-
parameter families@20,46#:
4-4
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r exp,a~y!5a
1

ey21
,

r u,a~y!5aS 1

y
21D u~12y!. ~22!

Note that both of these cutoff functions can be optimiz
according to the gap criterion.

For both families, we investigate thea dependence of the
critical exponentn over a large range ofa, for each ordern
of the field expansion, up to the tenth power ofr̃. We indeed
expect the most relevant operators to be contained in the
terms, and thus the evolution ofn as a function of the orde
of the truncation to be stabilized at, or before, the tenth or

We find that, at each order,n(a) exhibits a single point of
minimal sensitivity for both cutoff functions. Forr u,a
~Fig. 1! the minimum occurs ataPMS51, as already
found in @46#, with an optimized n equal to
n(aPMS)5nPMS50.650. For r exp,a ~Fig. 2! one has
aPMS56.03 andnPMS50.651 ~see Table I!. Both cutoff
functions lead to very similar optimal results forn, differing
by less than 0.5% to all ordersn, as shown in Fig. 3. The
converged values ofn are reached below the percent level
both cases after only a few orders (n54), as expected.

FIG. 1. Curvesn(a) for the cutoff r u,a , for different trunca-

tions of the potentialuk( r̃). Note that forn>6 ~lower figure! then
axis is magnified.
06500
d
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FIG. 2. Curvesn(a) for the cutoffr exp,a for different truncations

of the potentialuk( r̃). Note that forn>6 ~lower figure! the n axis
is magnified.

TABLE I. Critical exponents of the three-dimensional Isin
model. ~a!, ~b!, ~b’!, ~c!, and ~d! are computed from the effective
average action method:~a! with r exp,aPMS

~present work!; ~b! with
r u,aPMS

~present work!; ~b’! with r u,a51 @46#; ~c! with a power-law
cutoff @44,53#; ~d! with r exp,a51 without field expansion@54#; ~e!
from perturbation theory including 7-loop contributions@55#; ~f!
from Monte Carlo simulations@56#; ~g! from experiment in mixing
transition@57#; ~h! from experiment in liquid-vapor transition~com-
puted from 3n522a @58#!.

Ref. n h

~a! 0.651 0
LPA ~b!,~b’! 0.650 0

~c! 0.660 0

~d! 0.6307 0.0467
]2 ~a! 0.6281 0.0443

~b! 0.6260 0.0470
~c! 0.6175 0.0542

7-loop ~e! 0.6304~13! 0.0335~25!

MC ~f! 0.6297~5! 0.0362~8!

Exp. ~g! 0.636~31! 0.045~11!

~h! 0.6298~90!
4-5
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The inset of Fig. 3, where the evolution ofn with the
order n of the field expansion is compared fo
a50.1—chosen for illustrative purpose—an
a5aPMS51, shows that the same convergence level
reached independently ofa right from the n54 order,
though the asymptotic values ofn(0.1) andn(aPMS) differ
significantly. This shows that the rapidity of convergence c
terion is helpless here to select a cutoff.

We now compare our results with those obtained throu
the gap criterion. As displayed in Fig. 1,aPMS51 exactly
with r u,a to all orders. For this cutoff function theaPMS
value coincides with that given by the gap criterion@46#. For
r exp,a , aPMS converges to 6.03~see lower curves in Fig. 2!
whereas the gap criterion selects an optimal parametea0
53.92 @42#. In this case, the two methods seem to diff
However, since the variations ofn, once converged, do no
exceed 1% in the whole rangeaP@a1.1.2,a2.74#, we do
not expect the two methods of optimization to lead to dr
tically different critical exponents. Indeed,n(a0)
5n(aPMS) up to 1024. Thus for the two families of regula
tors considered here, the PMS and gap criteria coincide
has been argued that this property holds, within the LPA,
more general families of regulators@43,46#.

Note that for the exponential cutoff, the standard cho
a51 leads ton50.658. This value, which does not corr
spond to an optimized one, differs by a little bit more th
1% from nPMS. For completeness, we also mention that
power-law regulator optimized via the gap criterion—r (y)
5y22—leads to a less accurate resu
n50.660@44,53#.

Finally, let us emphasize that the world best val
n50.6304(13)~see Table I! lies below all curvesn(a) for
both cutoff functions and that the PMS solutions forn are
minima. Thus,n(aPMS) is the most accurate value achie
able within each family of cutoff functions studied here. T
PMS therefore constitutes a powerful method to optimize
cutoff function in order to reach the best accuracy on
critical exponents.

FIG. 3. nPMS for r u,a and r exp,a as a function of the ordern of

the field truncation ofuk( r̃). The two curves almost superimpos
for all n. In the inset,n is displayed forr u,a for both aPMS anda
50.1.
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VI. ORDER 2 OF THE DERIVATIVE EXPANSION

We now show how the PMS can be consistently imp
mented at the order]2 of the derivative expansion for which
as far as we know, no optimization procedure has ever b
implemented within the effective average action method.
dispose of two physical quantities candidates for a P
analysis:n andh. We perform both analyses independent
with each cutoff function. We show in Sec. VI A that th
PMS allows one to improve the accuracy on both expone
We especially highlight that accuracy is not synonymo
with rapidity of convergence of the field expansion. In Se
VI B we bring out a necessary condition for the independ
implementation of the two PMS onn andh to be consistent.
We then check that our results meet this condition. In S
VI C we exhibit cases where, contrary to what occurs in
LPA, multiple PMS solutions exist. We show that a uniq
one can be selected thanks to general arguments. We en
by extending the analysis to a two-parameter family of cut
functions.

A. Accuracy of the PMS solution and convergence of the field
expansion

This section is devoted to showing that the PMS is still,
order]2, the appropriate tool to find, within a class of cuto
functions, the one giving the best accuracy. Though it see
counterintuitive, we emphasize that this cutoff function do
not coincide with the one providing the fastest converge
of the field expansion ofZk(r). To this purpose, we imple
ment both PMS independently onn and h, postponing the
coherence of this to the next section.

Working with a nontrivial field renormalization function
Zk(r), dimensionlessand renormalized quantities are nece
sary in order to get a fixed point, so that we define

r ~y!5
Rk~q2!

Z0,kq
2

with y5
q2

k2
,

uk~ r̃ !5k2dUk~ r̃ !,

r̃5Z0,kk
22dr,

zk~ r̃ !5
Zk~ r̃ !

Z0,k
, ~23!

whereZ0,k is defined in Eq.~12!. The RG equation obeyed
by zk( r̃) writes @37,54#

]zk

]t
5hzk1 r̃zk8~d221h!1vd~zk812rzk9!L1

d~w,zk ,h!

24vdr̃zk8~3uk912r̃uk-!L2
d~w,zk ,h!

22vd~211/d!r̃~zk8!2L2
d12~w,zk ,h!1~4/d!

3vdr̃~3uk912r̃uk-!2M4
d~w,zk ,h!1~8/d!

3vd r̃zk8~3uk912r̃uk-!M4
d12~w,zk ,h!

1~4/d!vdr̃~zk8!2M4
d14~w,zk ,h!, ~24!
4-6
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wherew5u812r̃u9, the prime means a derivative with re
spect to r̃, and the threshold functions are define
for n>1, by

Ln
d~w,zk ,h!5nE

0

`

dyyd/221
2y2r 8~y!1hyr~y!

~P~y!1w!n11
, ~25!

Mn
d~w,zk ,h!5E

0

`

dyyd/2
11r ~y!1yr8~y!

@P~y!1w#n H y@11r ~y!

1yr8~y!#@hr ~y!12yr8~y!#S n

P~y!1wD
22h@r ~y!1yr8~y!#24y@2r 8~y!

1yr9~y!#J , ~26!

where

P~y!5y@zk1r ~y!#. ~27!

The anomalous dimensionh is given by

FIG. 4. Curvesn(a) for r exp,a for different truncations of the

field renormalizationzk( r̃). For p>5 ~lower figure! the n axis is
magnified. Note that the curveu10z5 shows two extrema@62#.
06500
, h52
d

dt
ln Z0,k . ~28!

As previously, we truncate the field renormalization fun
tion zk( r̃) up to thepth power ofr̃:

zk~ r̃ !5(
i 50

p

zi~ r̃2 r̃0! i . ~29!

We use, for the potentialuk( r̃), the expansion given in Eq
~20!, up to ther̃10 term, which represents a very accura
approximation ofuk( r̃) in the vicinity of its minimum as
shown in the preceding section. We expandzk( r̃) up to the
ninth power ofr̃ which turns out to be sufficient to obtai
converged results.

At each orderp of the field expansion ofzk( r̃), we have
computed the exponentsn andh as functions ofa for both
cutoff functionsr u,a and r exp,a . Figures 4 and 5 gather th
curves representing these functions, labelledu10zp ,
p50, . . . ,9, on theexample ofr exp,a . They are displayed on
a range ofa around the extremum and separated in t
distinct figures since thep>5 curves would be superim
posed without magnification. This seems to indicate that

FIG. 5. Curvesh(a) for r exp,a for different truncations of the

field renormalizationzk( r̃). For p>5 ~lower figure! the h axis is
magnified.
4-7
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field expansion converges, at least on the whole range oa
studied. The same conclusion holds forr u,a , with very simi-
lar curves~that we therefore do not show!, up to the impor-
tant subtlety, discussed in Sec. VI C, that two PMS solutio
exist in this case and that only one has to be considered
call n`(a) and h`(a) the two limit functions obtained for
p→`. In practice, we approximate these functions by tho
at p59.

Let us emphasize that for both cutoff functions,~i! the
rapidity of convergence ton`(a) and h`(a) and ~ii ! the
asymptotic valuesn` and h` both depend ona. One can
thus naturally wonder whether the values ofa for which the
convergence is the fastest coincide with those for which
exponents are the most accurate compared with the w
best results. We shall show that this isnot the case contrary
to what is widely believed.

1. Accuracy

We first point out that the PMS exponents are, as in
LPA case, the most accurate ones. We have determined
eachp, the valuesaPMS

n (p) andaPMS
h (p) for which, respec-

tively, n and h reach their extremum. The correspondi
exponents are referred to, in the following,

FIG. 6. nPMS andhPMS for both r exp,a and r u,a as functions of

the orderp of the field expansion ofzk( r̃). In the insets are dis-
played, forr u,a , and for two distinct values ofa, a5aPMS(p),
and a51.8, the critical exponentsn ~upper inset! and h ~lower
inset! as functions ofp.
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nPMS
p 5n„aPMS

n (p)… and hPMS
p 5h„aPMS

h (p)…. The obtained
PMS asymptotic values are nPMS

` 50.6281 and
hPMS

` 50.0443 for the exponential cutoff, an
nPMS

` 50.6260 andhPMS
` 50.0470 for the theta cutoff. Thes

values of the exponents are indeed the best achievable w
each class of cutoff functions studied, since the world b
value ofn lies above the sets of curves in Fig. 4 and since
extremum is a maximum~and vice versa forh) ~see Table I
and @61#!. The PMS is thus, as in the LPA case, the app
priate tool to find, among a family of cutoff functions, th
one providing the best accuracy.

2. Rapidity of convergence

The evolution ofnPMS
p andhPMS

p with the orderp of the

field expansion ofzk( r̃) is displayed in Fig. 6 for both cutoff
functions. The convergence ofnPMS and hPMS, at the per-
cent level, requires at leastp54 for both cutoff functions.
However, there exist values of the parametera, for instance
a51.80 for r u,a , for which the convergence is faster tha
for aPMS. This is illustrated in the insets of Fig. 6. Indee
h(a51.8) has already converged at the percent level fop
53, but to a different value thanhPMS

` . Thus, the PMS
exponents, which are the most accurate, are not those
verging the fastest.

We conclude that~i! the PMS leads to the most accura
exponents within each class of cutoffs studied,~ii ! a criterion
based on rapidity of convergence of the field expans
would be misleading here since it would select cutoff fun
tions leading to exponents significantly differing from th
PMS ones.

B. Consistency condition for independent PMS
implementations

We have implemented and discussed the PMS anal
independently onn andh along the preceding section. Th
has naturally led us to two distinct PMS values ofa at each
order p, aPMS

n (p), and aPMS
h (p). One can thus wonde

whether it makes sense to compute two different quanti
with two different cutoff functions. We now provide a natur
condition for the whole procedure to be consistent.

Let us notice that since the field expansion seems to c
verge~as shown in the preceding section!, the two sequences
aPMS

n (p) andaPMS
h (p) also converge. The asymptotic valu

aPMS
h (p5`) (resp.aPMS

n (p5`)) is the one that achieve
the minimum dependence of the exponenth ~resp.n! on the
cutoff function at order]2 of the derivative expansion. Ther
is no reason for them to coincide. However, the discrepa
between theaPMS’s does not matter as long as choosing o
or the other does not change significantly the value of e
exponent. A consistency condition is thus

n„aPMS
h ~`!….n„aPMS

n ~`!… ~30!

and

h„aPMS
n ~`!….h„aPMS

h ~`!…. ~31!
4-8
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Reciprocally, large discrepancies between the values, a
two aPMS’s, of an exponent would be an indication of
failure of convergence. It could be imputed to either a t
low order of expansion, or to an unappropriate choice
cutoff functions family.

In principle, we should check the consistency over
whole set of exponents describing the model. Let us, h
ever, show that once this condition is satisfied by two in
pendent exponents, it is automatically satisfied by all
others, provided the scaling relations hold within the cho
truncation scheme~in fields and derivatives!. Let us first em-
phasize that it has been observed in all instances where i
been studied that the scaling relations remain precisely v
fied order by order in the field expansion, although the
ponents vary much with the order. We thus assume that c
puting the critical exponents either directly or from th
scaling relations is~almost! equivalent. In this case, an ex
ponent,g for instance, related ton andh through the scaling
relation

g~a!5n~a!@22h~a!# ~32!

obviously verifies for alla

FIG. 7. Plot ofaPMS
h andaPMS

n as functions of the orderp of the

field expansion ofzk( r̃) for both cutoff functionsr exp,a and r u,a .
aPMS

h ~resp.aPMS
n ) is the value where lies the PMS extremum ofh

~resp.n!.
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dg

da
5

dn

da
~22h!2n

dh

da
. ~33!

In the simple case whereaPMS
n coincides withaPMS

h , we
deduce from Eq.~33! that g(a) also reaches its extremum
for this aPMS. Thus,aPMS

g 5aPMS
n 5aPMS

h and the consis-
tency is trivially verified for g also. In the general cas
where theaPMS’s are distinct, if they correspond to consi
tent exponentsn andh according to Eqs.~30! and~31!, one
is ensured that both exponents are almost stationary betw
these twoaPMS’s, provided the functionsn(a) andh(a) are
smooth enough in this range. Hence, it follows from Eq.~33!
that dg/da almost vanishes both ata5aPMS

h and at
a5aPMS

n . This means thatg(a) is also stationary around
these points, and thus,g computed from a PMS analysi
should verify

g„aPMS
g ~`!….g„aPMS

h ~`!….g„aPMS
n ~`!…, ~34!

i.e., g meets the consistency condition. Using the same
gument for all the other exponents, we deduce that the in
pendent implementations of the PMS on all exponents
consistent once they are for two independent ones.

Let us now examine our results. Figure 7 sketch

FIG. 8. Curvesn(a) and h(a) for both cutoff functionsr u,a

and r exp,a within LPA ~labeledu10) and atO(]2) of the derivative

expansion~labeledu10z9) for the maximal truncations ofuk( r̃) and

zk( r̃) computed here. The two PMS extrema forr u,a are shown for
both n andh.
4-9
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aPMS
n (p) and aPMS

h (p) as functions of the orderp of the
field truncation for both cutoff functionsr exp,a andr u,a . Let
us set out a few comments. First, the functionsaPMS

n (p) and
aPMS

h (p) converge as expected. On the one hand,aPMS
h (p)

turns out to be very stable, and roughly converging as fas
hPMS

p . This originates in the very peaked shape of the fu
tion h(a) ~lower curves of Fig. 5!. On the other hand,aPMS

n

shows larger oscillations, due to the flatness of the func
n(a) ~lower curves of Fig. 4!. It is worth mentioning that
since the exponents have almost converged atp54 ~Fig. 6!,
the fluctuations on the correspondingaPMS values induce
negligible variations on them forp>4.

Let us now show that the independent analyses ofh andn
give consistent results with respect to Eqs.~30! and~31!. The
asymptotic values are approximated by those atp59. The
consistency condition is trivially verified forr exp,a since in
this caseaPMS

h (`).aPMS
n (`) ~see Fig. 7!. For r u,a , we find

un„aPMS
h ~`!…2n„aPMS

n ~`!…u.1024,

uh„aPMS
h ~`!…2h„aPMS

n ~`!…u.631024, ~35!

which are both negligible. Thus, in this case also, the c
sistency condition is fulfilled. We draw the conclusion th
the PMS analyses have selected a unique optimal value
each exponentn and h although the correspondingaPMS’s
do not coincide. They enable us to deduce the remain
critical exponents as well.

C. Discrimination of multiple PMS extrema

The results discussed in Sec. VI A are associated wit
particular PMS solution while several ones can exist, lead
to significantly different exponents@62#. This happens for
r u,a ~see Fig. 8!. We now expose the general arguments
used to discriminate between the different PMS solutions

Suppose that the derivative expansion is studied orde
order without field truncation~or equivalently that the field
expansion is perfectly converged!. If the derivative expan-
sion converges, the corrections on exponents must be sm
and smaller as the order of the expansion is increased
least at sufficiently large order. On the other hand, as
asymptotic value of any observable is exact, it must be in
pendent of the cutoff function. Thus, for any quantity,
cutoff functions lead to the same asymptotic—exact—val
although not at the same speed. In practice, the aim i
reach it as fast as possible. This means that, at least beyo
certain order, the best cutofffor the derivative expansionis
the one which leads to the fastest convergence. Note tha
is not the case for the field expansion where the rapidity
convergence does not provide a criterion to discriminate
tween various PMS solutions.

Of course, this asymptotic value could be reached o
after large fluctuations occuring at first orders, as in the fi
expansion~see Fig. 6!. However, contrary to this case an
providedh is not too large, we expect the first orders of t
derivative expansion to already lead to reliable results. Un
this hypothesis, we get two natural criteria to select a uni
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PMS solution when several exist. The first one consists
keeping, for each family of cutoff functions, only the PM
solutions that have a counterpart in the other~s! family~ies!,
i.e., that lead to~almost! the same critical exponents. Th
means in our case that we keep only the PMS solutions
verify ~in obvious notations!

nPMS
exp .nPMS

u ,

hPMS
exp .hPMS

u , ~36!

since these exponents are stationary not only inside a fa
of cutoff functions but also from one family to the other. Th
second criterion consists in applying our previous hypothe
of rapid convergence already at order]2: we assume that no
large fluctuation occurs between the LPA and]2 approxima-
tion. We thus select the PMS solution that minimizes, on
exponents, the correction of order]2 to the LPA.

Both criteria allow one to discriminate between the tw
distinct PMS solutions obtained forn and h with r u,a ~see
the curve u10z9 in Fig. 8!. They happen to pair for
both exponents, at roughlyaPMS

h .aPMS
n .0.7 and

aPMS
h .aPMS

n .6.5. According to the second criterion, w

FIG. 9. Curvesn(b) and h(b) for r exp,aPMS,b within LPA ~la-
beledu10) and atO(]2) of the derivative expansion~labeledu10z9)

for the maximal truncations ofuk( r̃) and zk( r̃) considered here.
aPMS is the value obtained in Sec. VI A.
4-10
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exclude the second PMS solutions located ataPMS.6.5,
which lead for bothn andh to much larger deviations tha
the first ones compared with the LPA result:h50 and
n50.650 @see Fig. 8, curve (r u,a)u10]. The first criterion
leads to the same choice since~i! we have checked that with
r exp,a only one PMS solution exists forn ~resp. forh), and
~ii ! the corresponding exponent is very similar to the one
the first PMS solution forn ~resp. forh) with r u,a , see Table
I and Fig. 8. Thus, our two criteria to select a unique PM
solution are consistent@63#.

D. Influence of a second parameter

In the preceding sections, we have restricted our analy
to the influence of the parametera, the amplitude of the
cutoff functions, on the critical exponents. The optimiz
results obtained with the two families of cutoff functions a
very close together. It is thus natural to test the robustnes
this result. In this section we investigate the influence
other deformations of the usual cutoff functions focusing
the exponential cutoff. Two generalizations ofr exp,a come
naturally. They consist in changing~i! expy→expby and~ii !
expy→expyb @41,32,3,42#. The deformation~i! is actually
useless since it is equivalent to a rescaling of the runn
scalek in Rk which is immaterial. We hence study the tw
parameter generalization ofr exp:

r exp,a,b~y!5a
1

eyb
21

. ~37!

We perform the full PMS analyses ofn and h over the
two-parameter space spanned bya and b, within the LPA
and at order]2 of the derivative expansion, for the maxim
field truncations ofuk( r̃) andzk( r̃) considered here. We find
a unique two-dimensional PMS for both exponen
and at both orders. It lies ataPMS

h .aPMS
n 52.25,

bPMS
n .bPMS

h 50.98 and gives hPMS50.04426 and
nPMS50.6281 at order]2. It turns out that our prior choice
b51 was very close tobPMS, and thus thea optimization
performed in the previous section already enabled us to
most reach this minimum. The two-parameter PMS ex
nents thus differ by less than a tenth of a percent from th
obtained previously~see Table I!.

For illustration purposes, we isolate in Fig. 9 the behav
of the b parameter, fixinga to its PMS value determined in
Sec. VI A. It displays theh(b) and n(b) functions for the
converged field truncations. Both exponents exhibit a sin
PMS solution forb very close to one (bPMS51.001 in LPA
andbPMS

n 5bPMS
h 50.993 at order]2).

As shown in Fig. 9, theb dependence ofn andh is quite
sharp. It raises a natural question: had we fixedb far from
bPMS to perform thea PMS analysis, what would we hav
obtained? In other words, would thea optimization have
sufficed to retrieve exponents close to the two-param
PMS ones? To investigate this question, we have fi
b52, which seems from Fig. 9 to alter muchh, and deter-
mined aPMS

n and aPMS
h . The corresponding exponents a

hPMS
b5250.05573, nPMS

b5250.6246 at order]2. The discrep-
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ancy with the two-parameter PMS exponents is quite sign
cant forh, whereas the larger exponents—n and the others
computed from the scaling relations—only undergo a f
percent variation. This originates in the difference of natu
of both exponents. On the one hand, the exponentn is related
to the behavior of the mass, embodied in the minimum of
effective potential. The weakness of the sensitivity ofn on
the cutoff function, at order]2 of the derivative expansion
suggests that the effective potential is already well appro
mated at this order, and thus provides an accurate dete
nation of n, close to the exact value. On the other hand,h
describes the momentum-dependent part of the two-spin
relation function, for which the order]2 truncation consti-
tutes a very roughansatz. Hence, the determination ofh is
rather poor at this order and improving it probably requir
higher derivative orders. This is directly reflected in the no
negligible dependence ofh on the cutoff function underlined
above.

The conclusion to be drawn from this is that, as pre
ously, the PMS is the appropriate method to select, amon
class of cutoff functions, the one that achieves the best a
racy, in so far as it minimizes the distance to the world b
values for both exponents and at both orders. Moreover,
PMS reveals itself all the more crucial that the variatio
with respect to a given parameter are large.

VII. CONCLUSION

We have implemented the principle of minimal sensitiv
to improve critical exponents within the framework of th
nonperturbative RG. We have shown that it always allows
to reach the most accurate results achievable in the clas
cutoff functions under scrutiny. Within the LPA, the PM
exponents turn out to almost coincide with those obtain
through the principle of maximization of the gap, and t
method is easily generalizable at order]2.

Two main drawbacks are usually attributed to the imp
mentation of the PMS:~i! several solutions of the PMS ca
exist and render its implementation ambiguous,~ii ! it is not
clear whether it indeed improves the results. We have sho
on the example of the Ising model, that within the context
the effective average action method, these drawbacks e
can be circumvented or do not exist at all. We have inde
brought out that a unique solution of the PMS can always
selected, thanks to very reasonable criteria, and furtherm
this solution represents the most accurate determinatio
the critical exponents. The PMS thus appears as a safe
powerful method to optimize the results obtained in the n
perturbative RG context. An important and rather unexpec
aspect of our analysis is that the rapidity of convergence
the field expansion is not optimal where the accuracy is.

Let us also emphasize that, even within a rather mod
truncation involving the potential expansion up to orderr̃5

and the field renormalization expansion up to orderr̃4, the
accuracy reached onn is below the percent level compare
with the world best results. This suggests that, with the sa
4-11
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kind of computational complexity, a comparable accura
can be achieved for more complicated models.

Finally, the determination ofh is poorer, which is to be
imputed to the roughness of theansatzto describe the full
momentum dependence of the two-spin correlation funct
Improving it is likely to require the inclusion of terms o
order]4. This will be investigated in@39#.
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@60# Let us notice that although the magnetization vanishes at
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@63# Actually, for a→`, both n and h approach an asymptoti
value forr exp,a that, by extending the notion of PMS to infinit
a could be considered as a second PMS solution. However
values of bothn and h thus obtained,n(a5`).0.60 and
06500
he

h(a5`).0.124, are far from those at the second PMS
r u,a –n.0.61 andh.0.088, and therefore cannot be consi
ered as consistent.
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