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Optimization of the derivative expansion in the nonperturbative renormalization group
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We study the optimization of nonperturbative renormalization group equations truncated both in fields and
derivatives. On the example of the Ising model in three dimensions, we show that the principle of minimal
sensitivity can be unambiguously implemented at ordesf the derivative expansion. This approach allows us
to select optimized cutoff functions and to improve the accuracy of the critical exponeatsl ». The
convergence of the field expansion is also analyzed. We show in particular that its optimizationotloes
coincide with optimization of the accuracy of the critical exponents.
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I. INTRODUCTION Neveu model in three dimension$5,16], the randomly di-
lute Ising model[17], the Kosterlitz-Thouless transition
During the last ten years the Wilson-Kadanoff approach 18,19, etc.(se€[20] for a review and21] for an exhaustive
[1,2] to the renormalization groufRG), based on the block bibliography. A systematic investigation of the convergence
spin concept, has been the subject of a revival in both statignd accuracy issues is, however, still lacking.
tical physics and field theory. This originates in recent devel- \We propose here, on the example of the three-dimensional
opments[3—5] which have now turned it into an efficient Ising model, to study the convergence and optimization of
tool, the effective average action metH@] allowing one to  the accuracy of the effective average action method truncated
investigate nonperturbative phenomena. This method impleeoth in derivatives, at orde#®, and in fields. We study, in
ments on the effective actidi—the Gibbs free energy—the particular, the role of the cutoff function, used to separate the
idea of integration of high-energy modes that underlies anjow- and high-energy modes, on the determination of the
RG approach. The whole method consists in building an efcritical exponents and ».

fective free energy’y at a scale for the high-energy modes ~ In Sec. Il, we briefly introduce the basic ideas underlying
that have been integrated out and in following its evolutionthe effective average action method. We then discuss in Sec.
with the scalek through an exact equatidi8]. The main Il the truncations necessary to deal with concrete calcula-

drawback of this equation is that it cannot be handled irtions. We motivate, in Sec. 1V, the use of the principle of
actual calculations without truncationsof . It is thus of the ~ minimal sensitivity(PMS) to optimize the results. Then, we
utmost importance to know whether the truncations use@pply this technique successively within the local potential
provide converged and accurate results. As is well knownapproximation(LPA), Sec. V and at orde#” of the deriva-
the problem of convergence is also crucial in perturbatioriive expansion, Sec. VI.
theory where it requires the resummation of series. Let us
emphasize that this problem is far from being solved in gen-
eral since Borel summability, which is the key point to resum
perturbative series, is not generically proven and may even Historically, the block spin concept was first imple-
turn out not to holdsee[6,7] for a review. It is then impor-  mented, in the continuum, on the Hamiltonian. This proce-
tant to dispose of an alternative method, not relying on arjure consists in separating, within the partition function, the
expansion in a coupling constant and thus not requieng microscopic fields into a high- and a low-energy part and in
priori resummation. Good indications on the convergenceéntegrating out the high-energy part to get an effective
properties of the effective average action method have beedamiltonian for the remaining low-energy modes. The itera-
already provided by its ability to tackle with highly non- tion of this procedure generates a sequence, a flow, of scale-
trivial problems, such as low-energy QQB], the Abelian  dependent Hamiltonians, parametrized by a running dcale
Higgs model relevant for superconductivif9], the phase and describing the same long distance physics. The critical
diagram of Hg [10], frustrated magnefsl1-14, the Gross-  properties are then determined by the behavior of the system

around the fixed point of the flow of Hamiltoniaf]. How-

ever, due to technical difficultid$,22,23,2] this nonpertur-

Il. THE EFFECTIVE AVERAGE ACTION METHOD

*Electronic address: canet@Ipthe.jussieu.fr bative renormalization procedure has been mainly used as a
"Electronic address: delamotte@Ipthe.jussieu.fr conceptual basis for perturbative calculations rather than as a
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when it has been realized, mainly by Ellwand@4—27,  which ensures that, in the limit of vanishikgone recovers
Morris [5,22,28-31,28 and WettericH32,33,3,34—3pthat,  the standard effective actidn. Note that since we are only
rather than the Hamiltoniakl, one should consider the ef- interested here in the universal long distance behavior and
fective actionI'—the Gibbs free energy—as the central not in quantities depending on microscopic details, we send
guantity to be renormalized. In the spirit of the original Wil- A to .

sonian formulation one builds rinning effective actionl" The effective average actidny is then defined as
that only includes high-energy fluctuations with momenta
g%>k?. This implies that, on the one hand, at the underlying Ll ¢]l=—InZ[J]+JI- ¢~ AH [ ¢], 8

microscopic scale&k=A, I'y coincides with the classical

HamiltonianH since no fluctuation has yet been taken intoWhered’ stands for the running order paramegy(q):

account. On the other hand, when the running scale is low- SIn 23]
ered tok=0, i.e., wherall fluctuations have been integrated ¢k(q):<X(Q)>k:W . 9
out, the standard effective actidhis recovered. To summa- A -0

rize, I'y, continuously interpolates between the microscopi

HamiltonianH and the free energy: %t follows from the definition(8) thatI',[ ¢] essentially cor-

responds to the Legendre transform ofZjiJ], up to the

T =H mass termAH, which allows us to recover the limitgl)
- ’ [37].

T o=T. (1) The effective average actidn, follows an exact equation
B which controls its evolution with the running scdi¢3]:

Since, by definition['y is built up from the high-energy 1 di
fluctuations of the microscopic system, the low-energy 1 - _f R re +R -1
modes—withq2<k?>—must be removed from the running d¢1=3 (2m)3™ (T @I+ Rda)y
partition function. This is most easily achieved by adding to (10

the original Hamiltonian a scale-dependent mass &y . wheret=In(k/A) andf(kz)[qs] is the second functional de-

\Tv?i?:é [tzhoe]z: running partition function with a source term rivative of I', with respect to the fieldb. We emphasize that
Eq. (10) is exact and thus contains all perturbative and non-
perturbative features of the underlying thedsee[37] for

Zk[‘]]:j D ye HDX = AR +3x (2)  technical details anf20] for a review of the applications of
this equation to concrete physical issues

with J- x=[d%qJ(q) x(—a) and

Ill. TRUNCATIONS OF THE EFFECTIVE AVERAGE
d% ACTION

AHK[X]:EJ WRK(Q)X(Q)X(—Q), 3 . . . o . _
7" Equation (10) is a functional partial integro-differential

equation that has obviously no known solution in the general

) ' : ase. Therefore, to render it tractable, one has to truncate the
chosen in such a way that it acts as a cut-off function thag

decounles the low- and high-enerav modes. This impose ffective actionl’, . The most natural truncation, well suited
P o 9 9y ' POSER the study of the long distance physics, is the derivative
several constraints:

expansion. It consists in writing eansatzfor I', as a power
R(q)~k2 for g2<k?, 4 series ind¢. Let us first consider the case of &(N) in-
<) q @ variant theory for which thansatzat the orde? writes[37]

where x(q) is the microscopic field. In Eq(3), R.(q) is

R(q)—0 for qg?>k2. (5) 1 1
. . Il é]= f ddx[ U(p)+ Ezk(P)(a,u¢)2+ ZYk(P)(%P)Z
Equation(4) means that, at low momentum with respect to
k, Ry(q) essentially acts as a mass, i.e., an infrared cutoff,
which prevents the propagation of the low-energy modes. +O(a4)}, (11
This ensures that these modes do not contributg, t659].
Equation(5) implies thatR,(q) does not affect the propaga-
tion of high-energy modes. They are thus almost fully take
into account inZ, and, consequently, ifi, .
In order to recover the limit§l), R, (q) must also satisfy

where is anN-component vector ana= $%/2 is theO(N)
invariant. In Eq.(11), U,(p) corresponds to the potential part
of I'y while Z,(p) andY,(p) correspond to the field renor-
malization functions. Thus, witlZ,(p)=1 andY,(p)=0,
R(g)—> when k—A atfixed q, (6) Eq. (11) provides theansatzfor the so-called local potential
approximation(LPA) where the anomalous dimension van-
which ensures thdt, coincides with the microscopic Hamil- ishes. This kind ofinsatzhas been successfully used in sev-

tonianH whenk— A, and eral cases among which are t©¢N) [20] and Gross-Neveu
models[15,16. However, to deal with more complicated
Rk (g)—0 identically when k—0, (7)  models, e.g., with matrixlike order parameters, a further ap-
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proximation is almost unavoidablé1,13,38. Indeed, when renormalization[37], i.e., with Z,(p)=Zox. They suggest
the symmetry is lower tha®(N), there are several invari- that a few orders suffice to obtain reasonably converged val-
ants and the number of independent functions analogous tzes of critical exponents. To our knowledge, their computa-
Z(p, ...) andY,(p, ...) grows. In this case, the integra- tion using also an expansion &f(p) has been only studied
tion of the flow can be very demanding. It is then very con-in the Ising model and using a power-law cutoff function
venient to further truncate the functions [44]. In this study we extend this analysis to two other fami-
Uk(p, ...), Zk(p, ...) in power series ofp and of all lies of cutoff functions, leading to more accurate results.
other invariants. Questions(i) and (ii) are linked with a corollary issue,
Here, we focus on the Ising model, described by a scalamvhich resides in the choice of cutoff function.
Zy-invariant field theory, considered as a toy model to study (iii) Can the accuracy be improved through the choice of
the derivative and field expansions. In this case, since theutoff functionR,? Of course, when no truncation is made,
only independent field renormalization functiorigp), the  an exact solution fof'[ ¢]=lim,_oI",[ ¢] does not depend
function Y, (p) can be set to zero. The field truncation thenon the functionR, used, whereas any kind of truncation in-
writes duces a spurious dependence on it. One can thus wonder how
to optimize the choice of this cutoff function. This question
" _ is not as trivial as it seems since one has to decide on an
U(p)= 21 Ui k(p—po)", optimization criterion: rapidity of convergence of the expan-
" sions in powers of derivatives, fields, or amplitudes
p [41,42,45,43,4R Accuracy of the results? Sensitivity of the
_ , i results with respect to the cutoff? We specifically concentrate
Zk(p)_;o Zikp= o) (12 on these two latter issues in the following.

wherepo= ¢o/2, ¢ being a particular configuration of the IV. OPTIMIZATION AND PRINCIPLE OF MINIMAL

field ¢. We shall come back to this point later. _ SENSITIVITY
The truncation in fields conveys two nice properties. First, o _
with the ansatz(11) and (12), the RG flow equatior(10) Up to now, attempts to optimize nonperturbative RG

leads to a finite set of ordinary coupled differential equationgequations have been mainly worked out in the Polchinski
for the coupling constants; ,'s andZ; s that is simpler to equation[47], in particular at second order in the derivative
solve than the partial differential equations obeyed by theexpansion. For instance, Bat al. [48] and Comellag49]

full functions U,(p) and Z,(p). Second, even the lowest have tried to suppress the cutoff and normalization depen-
order approximations, in which only the first nontrivial terms dence of the exponents and 7 by using the principle of

of U,(p) andZ,(p) are kept, give a fairly good qualitative minimal sensitivity (PMS) [50]. We shall not pursue this

picture of the physic§37,20. within this framework since it has now been widely recog-
However, the study of the truncated version of EtQ)  Nized that the effective average action method is the most
raises several important questions. efficient way to deal with the nonperturbative RG. We will

(i) Does the derivative expansion converge and does fius consider this latter formalism.
provide a satisfying accuracy at low orders? The question of In the context of the effective average action method,
the convergence of the derivative expansion, in its full genWithin the framework of LPA, Litim has proposed to con-
erality, has not yet been considered and appears to be a majggler the quantityC, defined by{42,45,43,51,46,52
and open challenge. In practice, one is less interested in this
delicate question than in the quality of the results and their min{l“(kz)[¢>(q)]|¢:¢o+ Re()}=CK?, (13
improvement as the order of the derivative expansion is in- q%=0
creased. In the case @(N) models, very accurate results
have been obtained at second order in the derivative expatvhereI'{Z)[ $(a)]1+ Ry(q) is the inverse of the full regular-
sion. For instance, Wetteriat al. have shown that handling ized propagator an@ parametrizes the gap amplitude. Ac-
the full field dependence of the potentid|(p) and of the cording to Litim, the gap is bounded from above and the best
field renormalization functiong,(p) andY,(p) leads to re- cutoff functions are those which maximize this gap
sults that can compete with the world best estimates, at leab#2,45,43,51,46,52
for the critical exponenw [20]. The value obtained for the
anomalous dimension is less accurate. Its definition being Copr=max C) when varyingRy . (14
linked to the momentum dependence of the two-point corre-
lation function, an accurate determinationgfprobably re-  The idea behind this criterion is that the largarthe more
quires higher-order terms in the derivative expansion. Thistable the truncated RG flow. Indeed, it has been shown that
question will be investigated in a forthcoming arti¢&9]. the maximum of the gap corresponds to the largest radius of

(ii) Does the field expansion df,(p) and Z,(p) con-  convergence of an amplitude expansion. This suggests that
verge and how rapidly? Once again, the general question @ahe optimal selected regulators should have nice properties,
this convergence has not yet been investigated. Neverthelessjch as improving the convergence of the field expansion
several works have dealt with field truncations at high ordef42,43,51,46,5R Moreover, in[43] it has been shown that,
within the LPA [40-44 or with a field-independent field within the LPA, the criterion(14) is also linked to a PMS.
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At this stage, let us shed light on some important featuresion for U, . Actually, working with dimensionless quantities
of the “gap criterion.” First Eq.(14) doesnotselect a unique is necessary to get a fixed point, so that we define
cutoff function: manyR, maximizing the gap have been ex-
hibited, for instance, if{42]. Also, the various optimized R (g2 _ q°
cutoff functions, solutions of Eqa4), can lead to quantita- r(y)= with  y=—,
tively different critical exponents, depending on the specific k
properties of a given cutoff function, like its asymptotic be- _d
havior (see below and compalé6] and[44]). The quality of U=k Uy,
the results therefore relies on the choice of the type of opti-
mized regulator. Second, beyond the LPA, the implementa- p= p. a7
tion of the gap criteriori14) appears to be nontrivial. Indeed,
the field renormalization functioB,(p,) induces an implicit The RG equation obeyed hy, writes
Ry dependence i ([ #(q)] that complicates the maximi- ;
zation of the gap. Moreover, it is not completely clear Ug T d
whether, beyond the LPA, this criterion would still convey gt duct (d=2)pug—vglo(w), (18)
the nice properties it shows at the lowest order of the deriva-
tive expansion and, in particular, its link to a PMS. As we arewhereu, = u,(p), 051=2d+1wd/2r(d/2)7 the prime means
specifically concerned here with the question of the sensitiv
ity of the results with respect to the cutoff function, we favor
a method that directly probes the dependence of the critical -
exponents on the cutoff function. We have decided to base Lg(w):j dyy?-1
our analysis on the PMS, which can always be simply imple- 0
mented and has already proven its efficiency. ) ) .
Let us recall how it works. Suppose, for instance, that wel he nonperturbative features of the evolution of the potential
Compute a quantit@ in an approximate way. The approxi- are entirely encoded in the integrag, called threshold
mation used may induce a dependence @f on a function[37].
parameter—denoted here by—which is spurious. The We now study Eq(18) within a field truncation
PMS consists in choosing far the valueapy s for which Q

derivation with respect tp, w=u,+2puj, and

2y%r'(y)

yiirryltw 19

. . n
is stationary: ~ ~ o~
g u()= 3 w70, 20
d(@|
da R (19 \where we have suppressed the inétefor the coupling con-
*pMms

stants. Oncel,(p) is truncated at a finite orderof the field

One thus expects that imposing such a constraint, satisfied xpansion, the field conflg_urath_vb around which Itis ex-

Q computed without approximation, improves the approxi- anded matters. Two Conflguratlons~have been widely stud-
mate determination of this quantity. The obvious drawback€d: the vanishing field configuratiome=0, and the con-

of this method is that Eq15) can have many solutions. This figuration whereu,(p) has a nontrivial minimuni60]:

worsens if several quantities are simultaneously studied, and

lead to distinct solutions. An additional criterion is then nec- AUy
essary to select a unique one. (9—~ =0. (21
We first study the LPA of the scala¥,-invariant field P15,

theory relevant for the Ising model. We show that the PMS

allows one to optimize the quality of the results. We thenAll the studies performed using field truncations show that
study theO(4?) approximation of the derivative expansion the convergence properties are improved by expanding
and show that the PMS leads to accurate results provided waround the minimum rather than around the zero field con-
add some new inputs to discriminate the solutions. figuration[28,44]. Therefore, we choose the former.

We also need to choose families of cutoff functidijsto
perform calculations. For simplicity, we restrict for now our
study to families of cutoff functiond®R, depending on a
single parameter. We extend this to a two-parameter family

Let us recall that the LPA consists in approximatiigby ~ in Sec. VID. We consider two usual cutoff functions. The

first one is the exponential cutoff, which has been often used
1 and constitutes an efficient and robust reguld®#]. The
rk[¢]:J' ddx{Uk(p)+—(a¢)2], (16) other one, the theta cutoff, has been introduced by Litim
2 [45]. It presents the advantage of leading to threshold func-
tions that can be analytically computed. We extend these
i.e., in neglecting the field renormalization. Thissatzonce functions, by multiplying them by a factax, to two one-
plugged into Eq(10), enables us to get the evolution equa- parameter familie$20,46:

V. THE LOCAL POTENTIAL APPROXIMATION OF THE
ISING MODEL
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FIG. 2. Curves/(«) for the cutoffr,, , for different truncations

. FIG. 1. Curve§v(a)~f0r the cutoffry,,, for dn‘fer.ent trunca-  of the potentiali(p). Note that fom=6 (lower figure the v axis
tions of the potentiali,(p). Note that fom=6 (lower figurg thev 5 magnified.

axis is magnified.
TABLE |I. Critical exponents of the three-dimensional Ising
model. (a), (b), (b), (c), and(d) are computed from the effective
rexp,a(y): a o1’ average action methoda) with T expapys (present work (b) with
M 0, apps (present work (b’) with r ,—; [46]; (c) with a power-law
1 cutoff [44,53; (d) with Fexpa=1 without field equnsigr{54]; (e
rooY)=al——1/6(1—y). (22) from perturbation theory including 7-loop contributiofs5]; (f)
' y from Monte Carlo simulationg56]; (g) from experiment in mixing

. .. transition[57]; (h) f iment in liquid- transiti -
Note that both of these cutoff functions can be optimized ransition[57J; (h) from experiment in liquid-vapor transitiofcom

- o uted from 3=2—« [58)).
according to the gap criterion. P o [58)

For both families, we investigate thedependence of the Ref. y 7
critical exponentr over a large range af, for each orden
of the field expansion, up to the tenth powerofWe indeed @ , 0.651 0
expect the most relevant operators to be contained in the firéPA (b),(b) 0.650 0
terms, and thus the evolution eofas a function of the order © 0.660 0
of the truncation to be stabilized at, or t_neforez the ten_th order. (d) 0.6307 0.0467
_We find that.,.a.t each order( ) exhibits a.smgle point of P @ 0.6281 0.0443
minimal sensitivity for both cutoff functions. For,, ) 0.6260 0.0470
(Fig. 1) the minimum occurs atapys=1, as already © 06175 0.0542

found in [46], with an optimized v equal to
v(apmg) =vpws=0.650. For re,,, (Fig. 2 one has 7-loop (e 0.630413) 0.033525)
apys=6.03 andvpys=0.651 (see Table ). Both cutoff

functions lead to very similar optimal results for differing ®) 0.62975) 0.03628)
by less than 0.5% to all orders as shown in Fig. 3. The gyp. (©) 0.63631) 0.04511)
converged values af are reached below the percent level in (h) 0.629890)

both cases after only a few ordens=£4), as expected.
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VI. ORDER @? OF THE DERIVATIVE EXPANSION

0.75 ¢ P
8,0
lexp,o —— We now show how the PMS can be consistently imple-
0.7 ¢ mented at the order® of the derivative expansion for which,
as far as we know, no optimization procedure has ever been
0.65 | - implemented within the effective average action method. We
2 0.75 F ; dispos_e of two physical quantities candidaf[es for a PMS
L 06 F 07} | x*+*’+°‘j analysis:» and . We perform both analyses independently,
0.65 ; Yo e b Mo with each cutoff function. We show in Sec. VIA that the
0.55 | > 06 / PMS allows one to improve the accuracy on both exponents.
0.55 | § 0=0.1 -+ V\/_e espgqially highlight that accuracy is not synonymous
05 | 05 H o=Oppyg ~*- with rap|d|_ty of convergence of the _flgld expansion. In Sec.
’ 2 3 4;. 5 é 7 é é 1'0 VIB we bring out a necessary condition for the independent
. l . . . . n . . implementation of the two PMS omand » to be consistent.

2 3 4 5 6 7 8 9 10 We then check that our results meet this condition. In Sec.
n VI C we exhibit cases where, contrary to what occurs in the
LPA, multiple PMS solutions exist. We show that a unique
FIG. 3. vpusfor ry . andrey,, as a function of the order of  one can be selected thanks to general arguments. We end up
the field truncation ol (p). The two curves almost superimpose by extending the analysis to a two-parameter family of cutoff
for all n. In the inset,v is displayed forr g , for both apys anda functions.

=0.1.
A. Accuracy of the PMS solution and convergence of the field
The inset of Fig. 3, where the evolution of with the expansion
order n of the field expansion is compared for  Tpjs section is devoted to showing that the PMS is still, at
a=0.1—chosen for illustrative purpose—and orger 2, the appropriate tool to find, within a class of cutoff

a=apys=1, shows that the same convergence level isynctions, the one giving the best accuracy. Though it seems
reached independently ok right from the n=4 order,  counterintuitive, we emphasize that this cutoff function does
though the asymptotic values @{0.1) andv(apys) differ  not coincide with the one providing the fastest convergence
significantly. This shows that the rapidity of convergence cri-gf the field expansion oF,(p). To this purpose, we imple-

terion is helpless here to select a cutoff. _ ment both PMS independently anand 7, postponing the
We now compare our results with those obtained through.oherence of this to the next section.
the gap criterion. As displayed in Fig. &pys=1 exactly Working with a nontrivial field renormalization function

with r, , to all orders. For this cutoff function thepvs 7, (p), dimensionlesandrenormalized quantities are neces-
lexper Qpms CONVeErges to 6.08see lower curves in Fig.)2

whereas the gap criterion selects an optimal parameger R(@%) q?
=3.92[42]. In this case, the two methods seem to differ. r(y)= > with y:F,
However, since the variations of once converged, do not okd

exceed 1% in the whole ranges [ ¢1=1.2,0,=74], we do
not expect the two methods of optimization to lead to dras-
tically different critical exponents. Indeed,v(«ag)

u(p) =k Uy(p),

P 2—d
=p(apyg) Up to 10 4. Thus for the two families of regula- p=Zouk™ "p,
tors considered here, the PMS and gap criteria coincide. It 7473)
has been argued that this property holds, within the LPA, for z(p)= kP , (23)
more general families of regulatof43,46. Zok

Note that for the exponential cutoff, the standard choic . : : ;
a=1 leads tor=0.658. This value, which does not corre-gl\lherego’k 'S defined in Eq(12). The RG equation obeyed
by z,(p) writes[37,54]

spond to an optimized one, differs by a little bit more than
1% from vpy 5. For completeness, we also mention that the ;5

power-law regulator optimized via the gap criterion(y) i nz+ pzi(d—2+ 1) +v4(zi+2pZ)) LYW,z , 1)
=y ?—leads to a less accurate result:
v=0.660[44,53. — Ay 57 (3u"+ 2 5u"™ L @

Finally, let us emphasize that the world best value vapz(3uict 2puOL2(W 2 7)
v=0.6304(13)(see Table )l lies below all curvess(a) for —204(2+ 1d)p(z) LS (W, Z, ) + (4/d)
both cutoff functions and that the PMS solutions forare
minima. Thus,»(apys) is the most accurate value achiev- X vap(3up+2pul)2M(w, 2, ) + (8/d)
able within each family of cutoff functions studied here. The _ _

PMS therefore constitutes a powerful method to optimize the Xvy pZL(3U[§+2PUﬂ’)M3+2(W,Zk ')
cutoff function in order to reach the best accuracy on the ~ o adid
critical exponents. +(4ld)vgp(z,) "My (W, Z, 77), (24)
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FIG. 4. Curvesy(a) for re,, for different truncations of the
field renormalizatiorz,(p). For p=5 (lower figure the v axis is

magnified. Note that the curue,;zs shows two extrem§62].

wherew=u’+2pu”, the prime means a derivative with re-
spect to p, and the threshold functions are defined,

for n=1, by

% 2y2r'(y) + nyr(y)
d _ /2—1
La(w,z,7) nfo dyy’ (P(y) L w)"t

1+r(y)+yr'(y)

Md Zk, 1) = md 2
R R

[y[1+f(y)

n
S
—2q[r(y)+yr'(y)]-4y[2r'(y)

+yr’(y)][nr(y)+2yr’(y)](

+yr”(y)]J, (26)
where

P(y)=ylzt+r(y)]. (27)

The anomalous dimension is given by

PHYSICAL REVIEW D67, 065004 (2003

0.12

01 ¢F

- RSy
s
T

0.08 | UygZy =

U024 —

n(o)

0.06 E

0.04

-----
......
------
......
.......
.......
...................

0.02 E
051152

53

54455

0.0455

0.045

n(o)

0.0445

0.044

1 15 2 25 3 35 4
o
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d
n=- aln Zok. (28

As previously, we truncate the field renormalization func-
tion z(p) up to thepth power ofp:

p
z(p)= EO z(p—po)". (29)

We use, for the potential,(p), the expansion given in Eq.
(20), up to thep™® term, which represents a very accurate
approximation ofu,(p) in the vicinity of its minimum as
shown in the preceding section. We expantb) up to the

ninth power ofp which turns out to be sufficient to obtain
converged results.

At each orderp of the field expansion of,(p), we have
computed the exponenisand » as functions ofx for both
cutoff functionsr , andr,,,. Figures 4 and 5 gather the
curves representing these functions, labelledgz,,
p=0,...,9, ontheexample ofr¢,,,. They are displayed on
a range ofa around the extremum and separated in two
distinct figures since thg=5 curves would be superim-
posed without magnification. This seems to indicate that the
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0.66 | vhms= Y(@pus(P)) and 7pys= n(agys(p)). The obtained
PMS asymptotic values are vpys=0.6281 and
064 b 7pms=0.0443  for the exponential cutoff, and
vpms=0.6260 andypjy s=0.0470 for the theta cutoff. These
Loe2} values of the exponents are indeed the best achievable within
E ' each class of cutoff functions studied, since the world best
a value ofv lies above the sets of curves in Fig. 4 and since the
06 extremum is a maximurtand vice versa for) (see Table |
6F N and[61]). The PMS is thus, as in the LPA case, the appro-
0.58 F 058 | % 0=1.80 -x- priate tool to find, among a family of cutoff functions, the
0 2 4p6 8 one providing the best accuracy.
056 1 1 1 1 1
0 2 4 6 8 2. Rapidity of convergence
012 P The evolution ofvB,,s and 7B,,s with the orderp of the
field expansion of,(p) is displayed in Fig. 6 for both cutoff
01 EF functions. The convergence oty s and pys, at the per-
cent level, requires at leapt=4 for both cutoff functions.
o 008 | However, there exist values of the parameteifor instance
= a=1.80 forr, ., for which the convergence is faster than
ot 0.06 £ for apys. This is illustrated in the insets of Fig. 6. Indeed
& n(a=1.8) has already converged at the percent levepfor
0.04 | =3, but to a different value thampyg. Thus, the PMS
exponents, which are the most accurate, are not those con-
0.02 F verging the fastest.
' L : L . L We conclude thati) the PMS leads to the most accurate
0 2 4 6 8 exponents within each class of cutoffs studigid,a criterion
P based on rapidity of convergence of the field expansion

would be misleading here since it would select cutoff func-

FIG. 6. vps and 7pys for both e, andry,, as functions of - ion¢ jeading to exponents significantly differing from the
the orderp of the field expansion o(p). In the insets are dis- pMS gnes.

played, forr,,, and for two distinct values of, a=apus(p),

and a=1.8, the critical exponents (upper inset and % (lower
insed as functions ofp. B. Consistency condition for independent PMS

implementations

field expansion converges, at least on the whole range of ~ We have implemented and discussed the PMS analyses
studied. The same conclusion holds fgr, , with very simi-  independently on’ and » along the preceding section. This
lar curves(that we therefore do not shoyup to the impor-  has naturally led us to two distinct PMS valuescoft each
tant subtlety, discussed in Sec. VIC, that two PMS solution®rder p, apysp), and afysp). One can thus wonder
exist in this case and that only one has to be considered. Wehether it makes sense to compute two different quantities
call v*(a) and »”(«) the two limit functions obtained for with two different cutoff functions. We now provide a natural
p—-ce. In practice, we approximate these functions by thosecondition for the whole procedure to be consistent.
atp=9. Let us notice that since the field expansion seems to con-
Let us emphasize that for both cutoff functiorts, the  verge(as shown in the preceding sectipthe two sequences
rapidity of convergence to”(a) and »”(a) and (i) the  apys(p) andap,p) also converge. The asymptotic value
asymptotic values’™ and »” both depend onv. One can  af, {(p==) (resp.apys(P==)) is the one that achieves
thus naturally wonder whether the valuesaofor which the  the minimum dependence of the exponentresp.») on the
convergence is the fastest coincide with those for which theutoff function at ordes? of the derivative expansion. There
exponents are the most accurate compared with the worlig no reason for them to coincide. However, the discrepancy
best results. We shall show that thisnist the case contrary petween thexps's does not matter as long as choosing one

to what is widely believed. or the other does not change significantly the value of each
exponent. A consistency condition is thus
1. Accuracy v
V(agms(oo)):V(apms(oo)) (30

We first point out that the PMS exponents are, as in the
LPA case, the most accurate ones. We have determined, f%d
eachp, the valueswpy o(p) andegy<(p) for which, respec-
tively, v and n reach their extremum. The corresponding
exponents are referred to, in the following, as n(apys(®))=n(apys(*)). (31
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FIG. 7. Plot ofaysandap,,s as functions of the orderof the FIG. 8. Curvesv(a) and 5(a) for both cutoff functionsry,,
) . ~ . andr g, Within LPA (labeledu,o) and atO(d“) of the derivative
field expansion o, (p) for both cutoff functionsr ¢y, andry, . orflabeled for th imal . a5 d
agus (resp.apy g is the value where lies the PMS extremunmpf expansior(labeleduyez,) for the maximal truncations afi(p) an
(resp.v).

z(p) computed here. The two PMS extrema fgr, are shown for
both v and 7.

Reciprocally, large discrepancies between the values, at the
two apygss, of an exponent would be an indication of a

dy dv dn
failure of convergence. It could be imputed to either a too
low order of expansion, or to an unappropriate choice of
cutoff functions family.

In the simple case wherapy g coincides withafys, we
In principle, we should check the consistency over the?edl:fe from E‘Tilr(f?') thyat 7'_(6“)” als_o rSaCheSd'th extrem_um
whole set of exponents describing the model. Let us, how!©" (IS @pus. ThUS, apys=apys=apys and the consis-
ever, show that once this condition is satisfied by two inde

tency is trivially verified fory also. In the general case
pendent exponents, it is automatically satisfied by all theVhere theapys's are distinct, if they correspond to consis-

others, provided the scaling relations hold within the choser{€nt €xponents: and » according to Eqs(30) and(31), one
truncation schemén fields and derivativesLet us first em-

is ensured that both exponents are almost stationary between
phasize that it has been observed in all instances where it h42€Se tWoxpys's, provided the functions(a) and7(«) are

been studied that the scaling relations remain precisely versMooth enough in this range. Hence, it foIIovxs from E3§)
fied order by order in the field expansion, although the exfhat dy/da almost vanishes both atr=agys and at
ponents vary much with the order. We thus assume that com®= apys. This means thay(a) is also stationary around

puting the critical exponents either directly or from the these points, and thugy computed from a PMS analysis
scaling relations igalmos} equivalent. In this case, an ex- should verify

ponent,y for instance, related te and » through the scaling
relation

Y(apys(®))=y(agus(*))=v(apud*®)), (39

i.e., ¥y meets the consistency condition. Using the same ar-
(32  gument for all the other exponents, we deduce that the inde-
pendent implementations of the PMS on all exponents are
consistent once they are for two independent ones.
Let us now examine our results. Figure 7 sketches
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apus(p) and aBys(p) as functions of the ordep of the 067 pv

field truncation for both cutoff functions,,,, andr, , . Let 0.66 '\\ exp,dpus.p

us set out a few comments. First, the functiars,(p) and '
aBus(p) converge as expected. On the one handl,<(p) 065 E pa————

turns out to be very stable, and roughly converging as fastas

nBus- This originates in the very peaked shape of the func- % 064 [ 311829 """""

tion 7(«) (lower curves of Fig. 5 On the other handyp s
shows larger oscillations, due to the flatness of the function 0.63
v(a) (lower curves of Fig. # It is worth mentioning that 0.62
since the exponents have almost convergeg=a# (Fig. 6), )
the fluctuations on the corresponding,,s values induce 0.61
negligible variations on them fqu=4.

Let us now show that the independent analyses ahd v
give consistent results with respect to E@) and(31). The
asymptotic values are approximated by thos@at9. The 0.07
consistency condition is trivially verified fare,,, since in

this casex gy, (*) = apy*) (see Fig. 7. Forr, ,, we find 0.085 |
) , . 0.06
[v(aBug(*)) = v(epug*))|=10"%, = rexp,oc,;,MS,[S
= 0.055

| 7(aBus(2)) = p(apys(*))|=6x10"%, (39

which are both negligible. Thus, in this case also, the con-

sistency condition is fulfilled. We draw the conclusion that 0.045
the PMS analyses have selected a unique optimal value for L . L

each exponent and » although the correspondingpyss 12 14 16 18 2
do not coincide. They enable us to deduce the remaining [3

critical exponents as well.

0.05

U109

-t

FIG. 9. Curvesy(B) and 5(B) for T expapys. within LPA (la-

C. Discrimination of multiple PMS extrema beledu;q) and atO(4?) of the derivative expansiofiabeledu; ozo)

. . . ... for the maximal truncations of and z considered here.

The results discussed in Sec. VIA are associated with a . :  oi(p) «(p)
. . . - . apps is the value obtained in Sec. VIA.

particular PMS solution while several ones can exist, leading

to significantly different exponent62]. This happens for

rs.. (see Fig. 8 We now expose the general arguments wep,

) . M lution when several exist. The fir n nsi in
used to discriminate between the different PMS solutions. S solutio en several exist e first one consists

keeping, for each family of cutoff functions, only the PMS
¥olutions that have a counterpart in the otRefamily(ies),
i.e., that lead talalmos) the same critical exponents. This

expansion 1S perfectly conyerg)edf the derivative expan- means in our case that we keep only the PMS solutions that
sion converges, the corrections on exponents must be small érify (in obvious notations

and smaller as the order of the expansion is increased, at
least at sufficiently large order. On the other hand, as the
asymptotic value of any observable is exact, it must be inde-
pendent of the cutoff function. Thus, for any quantity, all xp 8
cutoff functions lead to the same asymptotic—exact—value, PMs= TPMms:
although not at the same speed. In practice, the aim is to
reach it as fast as possible. This means that, at least beyond@#ice these exponents are stationary not only inside a family
certain order, the best cutdfibr the derivative expansiois ~ Of cutoff functions but also from one family to the other. The
the one which leads to the fastest convergence. Note that thfgcond criterion consists in applying our previous hypothesis
is not the case for the field expansion where the rapidity off rapid convergence already at ord&r we assume that no
convergence does not provide a criterion to discriminate belarge fluctuation occurs between the LPA affdapproxima-
tween various PMS solutions. tion. We thus select the PMS solution that minimizes, on the
Of course, this asymptotic value could be reached onlyexponents, the correction of ordef to the LPA.
after large fluctuations occuring at first orders, as in the field Both criteria allow one to discriminate between the two
expansion(see Fig. 6. However, contrary to this case and distinct PMS solutions obtained for and » with r, , (see
provided # is not too large, we expect the first orders of thethe curve u;pzg in Fig. 8. They happen to pair for
derivative expansion to already lead to reliable results. Undepoth  exponents, at roughlyafys=apys=0.7 and
this hypothesis, we get two natural criteria to select a uniquexf,,<= apys=6.5. According to the second criterion, we

order without field truncatiorfor equivalently that the field

exp __ .60
Vems™ Ppums:

(36)

065004-10



OPTIMIZATION OF THE DERIVATIVE EXPANSION IN . .. PHYSICAL REVIEW D67, 065004 (2003

exclude the second PMS solutions locatedaat,s=6.5,  ancy with the two-parameter PMS exponents is quite signifi-
which lead for bothw and » to much larger deviations than cant for », whereas the larger exponents—and the others
the first ones compared with the LPA resuly=0 and computed from the scaling relations—only undergo a few
v=0.650 [see Fig. 8, curver(, ,)u;q. The first criterion  percent variation. This originates in the difference of nature
leads to the same choice sinGewe have checked that with of both exponents. On the one hand, the expoméstelated
Il expe ONly ONE PMS solution exists far (resp. for»n), and  to the behavior of the mass, embodied in the minimum of the
(ii) the corresponding exponent is very similar to the one akffective potential. The weakness of the sensitivityzobn
the first PMS solution for (resp. fory) withry ., see Table  he cutoff function, at ordes? of the derivative expansion,
I 'and Fig. 8. Thus, our two criteria to select a unique PMSggqests that the effective potential is already well approxi-
solution are consisteri63]. mated at this order, and thus provides an accurate determi-
nation of v, close to the exact value. On the other hand,
D. Influence of a second parameter describes the momentum-dependent part of the two-spin cor-

In the preceding sections, we have restricted our analysd§lation function, for which the orde#* truncation consti-
to the influence of the parameter, the amplitude of the tutes a very rougtansatz Hence, the determination of is
cutoff functions, on the critical exponents. The optimizedrather poor at this order and improving it probably requires
results obtained with the two families of cutoff functions are higher derivative orders. This is directly reflected in the non-
very close together. It is thus natural to test the robustness dfegligible dependence of on the cutoff function underlined
this result. In this section we investigate the influence ofabove.
other deformations of the usual cutoff functions focusing on The conclusion to be drawn from this is that, as previ-
the exponential cutoff. Two generalizations f,, come  ously, the PMS is the appropriate method to select, among a
naturally. They consist in changirig expy—expBy and(ii)  class of cutoff functions, the one that achieves the best accu-
expy—expy” [41,32,3,42 The deformation(i) is actually  racy, in so far as it minimizes the distance to the world best
useless since it is equivalent to a rescaling of the runningalues for both exponents and at both orders. Moreover, the
scalek in Ry which is immaterial. We hence study the two- pMS reveals itself all the more crucial that the variations
parameter generalization of: with respect to a given parameter are large.

37)

r (Y)=a :
o e’ -1 VIl. CONCLUSION

We have implemented the principle of minimal sensitivity
to improve critical exponents within the framework of the
nonperturbative RG. We have shown that it always allows us
to reach the most accurate results achievable in the class of
cutoff functions under scrutiny. Within the LPA, the PMS
'exponents turn out to almost coincide with those obtained
through the principle of maximization of the gap, and the
method is easily generalizable at ordgr

We perform the full PMS analyses of and » over the
two-parameter space spanned dyand B, within the LPA
and at ordew? of the derivative expansion, for the maximal

field truncations ofi,(p) andz(p) considered here. We find
a unique two-dimensional PMS for both exponents
and at both orders. It lies atafys=apys=2.25,
Brms=Bpms=0.98 and gives npys=0.04426 and

— 2 : :
vpus=0.6281 at ordes®. It tums out that our prior choice Two main drawbacks are usually attributed to the imple-

B=1 was very close t.qBPMS’ af‘d thus thex optimization rnentation of the PMS(i) several solutions of the PMS can
performed in the previous section already enabled us to alsyist and render its implementation ambi uolis, it is not
most reach this minimum. The two-parameter PMS expo- P 9 '

nents thus differ by less than a tenth of a percent from th038Iear whether it indeed Improves the resu_lts_. We have shown
obtained previousiysee Table )L on the example of the Ising model, that within the context of

For illustration purposes, we isolate in Fig. 9 the behaviorthe effective average action method, these drawbacks either

of the 8 parameter, fixingx to its PMS value determined in a0 be circumvented. or do not exist at all. We have indeed
Sec. VIA. It displays thep(B) and »(8) functions for the Prought out that a unique solution of the PMS can always be
converged field truncations. Both exponents exhibit a singlé€lected, thanks to very reasonable criteria, and furthermore
PMS solution forg very close to one 8pys=1.001 in LPA  this sq[ution represents the most accurate determination of
and B%,s= Blws=0.993 at order?). the critical exponents. .Th.e PMS thus appears as a safe and
As shown in Fig. 9, theg dependence of and 7 is quite  Powerful method to optimize the results obtained in the non-
sharp. It raises a natural question: had we figetar from  Perturbative RG context. An important and rather unexpected
Bpus to perform thea PMS analysis, what would we have aspect of our analysis is that the rapidity of convergence of
obtained? In other words, would the optimization have the field expansion is not optimal where the accuracy is.
sufficed to retrieve exponents close to the two-parameter Let us also emphasize that, even within a rather modest
PMS ones? To investigate this question, we have fixedruncation involving the potential expansion up to orgér
B=2, which seems from Fig. 9 to alter muep and deter- and the field renormalization expansion up to orgér the
mined apys and agys. The corresponding exponents are accuracy reached onm is below the percent level compared
nbya=0.05573, v5,5=0.6246 at order?®. The discrep- with the world best results. This suggests that, with the same
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kind of computational complexity, a comparable accuracy

can be achieved for more complicated models.
Finally, the determination of; is poorer, which is to be
imputed to the roughness of tlamsatzto describe the full
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