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DÄ4 supergravity dynamically coupled to a massless superparticle
in a superfield Lagrangian approach
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We consider the interacting system ofD54,N51 supergravity and the Brink-Schwarz massless superpar-
ticle as described by the sum of their superfield actions, and derive the complete set of superfield equations of
motion for the coupled dynamical system. These include source terms given by derivatives of a vector super-
field current density with support on the worldline. This current density is constructed from the spin 3/2 and
spin 2 current density ‘‘prepotentials.’’ We analyze the gauge symmetry of the coupled action and show that it
is possible to fix the gauge in such a way that the equations of motion reduce to those of the supergravity-
bosonic particle coupled system.
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I. INTRODUCTION

There has recently been a search for self-consistent e
tions for supergravity coupled to a superbrane. They
needed, in particular, for the analysis of anomalies in
theory @1# and in relation to the search@2# for a supersym-
metric brane world scenario@3#.

In lower dimensions,D53,4 ~and for D56 using har-
monic superspace@4#!, where a superfield action for supe
gravity exists, one may develop a conventional approac
the supergravity-superbrane systems by using the sum o
superfield action of supergravity and the superbrane act
Such a superfield Lagrangian description of the lo
dimensional supergravity-superbrane coupled system
vides a possibility to study the structure of the superfi
current densities of the supersymmetric extended obje
which might produce some insight in the search for a n
superfield approach to higher dimensional supergravity in
line of Ref. @5#.

In this paper we give a fully dynamical superfield descr
tion of the simplestD54,N51 supergravity-superparticl
interacting system, given by the sum of the superfield ac
for supergravity@6# and the Brink-Schwarz action for th
massless superparticle@7#. We derive the complete set o
superfield equations of motion and find that thesuperfield
generalizations of the Einstein and Rarita-Schwinger eq
tions acquire source terms. Both sources are determine
the action of the Grassmann spinor covariant derivatives
the vector superfield current density distribution, which,
turn, is constructed from the spin 3/2 and spin 2 curr
‘‘prepotentials.’’

The D53,4 superfield supergravity action@6# ~see also
@8–10#! possesses off-shell supersymmetry and can be w
ten, after integration of Grassmann variables, as a space
supergravity action~see, e.g.,@11–15#! involving the so-
called auxiliary fields ~real vector and pseudoscalar f
‘‘minimal’’ supergravity, see, e.g.,@8–10#!. In higher dimen-
sions,D510,11, neither the superfield action nor the set
auxiliary fields are known~see, however,@16,17# for linear-
0556-2821/2003/67~6!/065003~23!/$20.00 67 0650
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izedD510,N51 supergravity and@5# for recent progress in
the superfield description ofD511 supergravity!. For these
cases we proposed in@18# to use the sum of the group man
fold action for supergravity@19# and the superbrane action a
the basis for a Lagrangian description ofdynamicalsuper-
gravity and the superbrane source system. Then it was sh
in @20# that the bosonic ‘‘limit’’ of such a dynamical system
provided by the component formulation for supergrav
coupled to the bosonic brane, is self-consistent and prese
1/2 of the local supersymmetry of ‘‘free’’ supergravity~cf.
@2#, where supergravity interacting with bosonic branesfixed
at the orbifold fixed ‘‘points’’ is considered!.

The approach of@18# is general and could be applied, i
principle, to any coupled supergravity-superbrane dynam
system provided that the group manifold approach to
specific supergravity considered exists~this requires its
search if it is not known, e.g., forD510 type IIA and type
IIB supergravity!. On the other hand, the results of@18# ~see
also @20,21#! were not quite what one would commonly e
pect. In particular, while the supersymmetric generalizat
of the Einstein equation acquired the expected source t
from the super-p-brane, the superform generalization of th
Rarita-Schwinger equation remained sourceless@18#. One
might wonder whether these properties would be reprodu
by the conventional superfield approach to the dynamic
interacting system. Showing that this is indeed the case i
additional motivation for the present study.

In this paper we also analyze the gauge symmetry of
coupled action and find that it is possible to fix a gauge
which the superparticle coordinate function is zero,û(t)
50,1 and that incorporates the Wess-Zumino~WZ! gauge
for supergravity. We show that in this gauge the equations
motion for the supergravity-superparticle coupled system
duce to those for the supergravity-bosonic particle coup

1This fact reflects the Goldstone nature of the superparticle c
dinate functions@22–24# and is related to the super-Higgs effe
@25# ~see also@26#!.
©2003 The American Physical Society03-1
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system derived in@20# ~for any dimensionD). The super-
field action in this gauge should also coincide with the act
considered in@20# after integration over the superspa
Grassmann coordinatesu @not to be confused with the fermi
onic function û[û(t)] and elimination of the auxiliary
fields by using their~purely algebraic! equations of motion.
This explains the self-consistency of the supergrav
bosonic particle coupled system, which was studied in@20#.

This paper is organized as follows. The first three secti
are devoted to the minimal off-shell formulation of simp
supergravity inD54,N51 superspace. In spite of the fa
that much of the material in these sections can be foun
books @12–15# and original articles@9,11,27,28#, we have
found it necessary to present it here in a unified notation

Specifically, we describe in Sec. II the superspace tors
constraints and their consequences derived with the us
Bianchi identities, collect them in compact differential form
and present the expressions for the left-hand sides~lhs’s! of
the superfield generalizations of the Rarita-Schwinger
Einstein equations in terms of the so-called main superfie
and their covariant derivatives. In Sec. III we describe
complete form of the Wess-Zumino gauge~fixed through
conditions on the superfield supergravitypotentials, i.e., on
the supervielbein and spin connection! and describe the re
sidual gauge symmetry which preserves this Wess-Zum
gauge.

In Sec. IV we present the Wess-Zumino action forD
54,N51 supergravity and comment on the derivation
‘‘free’’ superfield equations of motion. Section V describ
the D54,N51 Brink-Schwarz superparticle action in a s
pergravitybackground~i.e., without assuming any action fo
superfield supergravity!.

In Sec. VI we present the coupled action for theD54,N
51 supergravity-superparticle interacting system and st
its gauge symmetry~Sec. VI A! which turns out to be the
‘‘direct sum’’ of supergravity and superparticle gauge sy
metries. We derive the superfield equations of motion for
coupled system~Sec. VI B! and study the properties of th
superfield current potential and prepotentials~Sec. VI C!. We
also find the superfield generalizations of the Rar
Schwinger and Einstein equations, both of which cont
source terms.

In Sec. VII we show that the gauge symmetries of t
coupled system allow one to fix a gauge in which the sup
particle fermionic coordinate functions are set equal to ze
We explain why the coupled action in this gauge reduce
the action of component supergravity interacting with
bosonic particle. We show that the dynamical equations
lowing from the superfield action are reduced to the eq
tions for the supergravity-bosonic particle coupled syst
@20# in this gauge. We comment briefly on the bosonic cou
terpart of this gauge in general relativity with sources and
the relation of these results with the~super! Higgs effect in
the presence of superbranes, and conclude in Sec. VIII.

Some technical results and additional discussion are g
in the Appendices. Appendix A describes the chiral projec
in D54,N51 superspace. In Appendix B we present t
complete list of manifest local~gauge! symmetries of the
superspace formulation of supergravity. We discuss both
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active and passiveform of the superspace general coordi
nate transformations, which we call general coordinate
transformationsandsuperdiffeomorphisms, respectively~see
@20,21#!. Appendix C contains more details on the Wes
Zumino gauge. We determine there the complete set of
sidual gauge symmetries which preserve this gauge. Sur
ingly, by discussing all the gauge symmetries we find that
Wess-Zumino gauge is invariant under the active form of
superspace general coordinate transformations~in addition to
the well knownspacetime localsupersymmetry and Lorent
symmetry as well asspacetimediffeomorphisms!. We dis-
cuss briefly the role of this additional superfield gauge
variance. Finally, Appendix D collects more details about
symmetries of the Brink-Schwarz superparticle action.

II. DÄ4,NÄ1 SUPERGRAVITY IN SUPERSPACE

In this section we summarize our conventions and so
known facts about the off-shell description ofD54,N51
supergravity in superspace. All the formulas in this sect
coincide with those in@13# up to some signs and numeric
coefficients in definitions. However, they are written here
a more compact differential form notation.

A. Superspace constraints for minimal supergravity

Let $ZM%[$xm,uă% be the coordinates of curvedD
54,N51 superspaceS (4u4). Here uă (ă51,2,3,4) are real
Grassmann coordinates~in flat superspace, as well as in th
Wess-Zumino gauge, a Majorana spinorua, a51,2,3,4). An
unholonomic basis of the cotangent superspace is prov
by the supervielbein one-forms

EA[~Ea,Ea!5~Ea,Ea,Ēȧ!,

Ea5dZM EM
a ~Z!,

Ea5dZMEM
a ~Z!↔H Ea5dZM EM

a ~Z!,

Ēȧ5dZM ĒM
ȧ ~Z!.

~2.1!

In this paper we mainly use Weyl spinors notation (a
51,2, ȧ51,2), except for Secs. III and VII, where Majo
rana spinors are used@29#.

An off-shellsupergravity multiplet can be extracted fro
the general superfieldsEM

a (Z), EM
a (Z)5„EM

a (Z),ĒM ȧ(Z)…
by imposing the constraints on some compone
TCB

A, RCD
ab, of torsion 2-forms,

Ta
ªDEa5dEa2Eb`wb

a[
1

2
EB`ECTCB

a, ~2.2!

Ta
ªDEa5dEa2Eb`wb

a[
1

2
EB`ECTCB

a , ~2.3!

Tȧ
ªDĒȧ5dĒȧ2Ēḃ`wḃ

ȧ[
1

2
EB`ECTCB

ȧ , ~2.4!

and the curvature
3-2
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D54 SUPERGRAVITY DYNAMICALLY COUPLED TO A . . . PHYSICAL REVIEW D67, 065003 ~2003!
Rab
ªdwab2wac`wc

b[
1

2
EC`EDRDC

ab ~2.5!

of the spin connection one-formwab5dZM wM
ab52wba,

wb
a5

1

4
wab~sas̃b!b

a, wḃ
ȧ52

1

4
wab~ s̃asb!ȧ

ḃ ,

~2.6!

The constraints of minimal supergravity@30,8,13,9# include
Taḃ

a522isaḃ
a as well asTab

A505Tȧḃ
A, Taḃ

ġ50, Tab
c

50, and Raḃ
ab50 ~or Tab

c50 as, e.g., in@13#!.2 In the
presence of the complete set of constraints, the Bianchi id
tities

DTA[2EB`RB
A⇔H DTa[2Eb`Rb

a,

DTa[2Eb`Rb
a,

DTȧ[2Eḃ`Rḃ
ȧ,

~2.7!

DRab[0⇒HDRa
b[0,

DRȧ
ḃ[0

~2.8!

~integrability conditions for Eqs.~2.2!–~2.5!! express the su
perspace torsion and curvature through the set of ‘‘main
perfields’’

Gaª2i ~Tab
b2Taḃ

ḃ!, ~2.9!

R̄ª2
1

3
Rab

ab5~R!* , ~2.10!

Wabg
ª4i s̃cġgRġc

ab5W(abg)5~W̄ȧḃġ!* .
~2.11!

The constraints of minimal supergravity and their con
quences can be collected in the following expressions for
superspace torsion 2-forms~cf. @13#!

Ta522isaȧ
a Ea`Ēȧ1

1

16
Eb`Ec«a

bcdG
d, ~2.12!

Ta5
i

8
Ec`Eb~scs̃d!b

aGd2
i

8
Ec`ĒḃeabscbḃR

1
1

2
Ec`EbTbc

a, ~2.13!

2A minimal complete set of superspace constraints for the mini
supergravity multiplet@31# can be found, e.g., in@12,13,27#; see
@9,12,32,27# and references therein for nonminimal supergrav
multiplets, and@33# for a discussion of the algebraic origin of th
supergravity constraints.
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8
Ec`EbeȧḃscbḃR̄2

i

8
Ec`Ēḃ~ s̃dsc!

ȧ
ḃGd

1
1

2
Ec`EbTbc

ȧ. ~2.14!

The superspace Riemann curvature 2-form is determi
by

Rab
ªdwab2wac`wc

b

5
1

2
Rab~sas̃b!ab2

1

2
Rȧḃ~ s̃asb!ȧḃ , ~2.15!

with

Rab[dwab2wag`wg
b[

1

4
Rab~sas̃b!ab52

1

2
Ea`EbR̄

2
i

8
Ec`E(as̃c

ġb)D̄ġR̄1
i

8
Ec`Eg~scs̃d!g

(bD a)Gd

2
i

8
Ec`ĒḃscgḃWabg1

1

2
Ed`EcRcd

ab, ~2.16!

andRȧḃ5(Rab)* .
Note that in our conventions the spinor covariant deriv

tivesDa52(D̄ȧ)* are defined by the following decompos
tion of the covariant differentialD:

DªEADA5EaDa1EaDa5EaDa1EaDa1ĒȧD̄ȧ
~2.17!

@henceDa5(Da ,2D̄ȧ); note the minus sign#. Then, since,
e.g., Da5Ea

M]M1wa , it is also natural that the spino
components of the spin connection formwab5dZMwM

ab

5EAwA
ab
ªEcwc

ab1Eawa
ab1Ēȧwȧ

ab be related bywa
ab5

2(wȧ
ab)* @hencewa

ab5(wa
ab,2wȧ ab)].

The Bianchi identities~2.7!,~2.8! imply as well that the
main superfields~2.9!,~2.10!,~2.11! obey the equations

DaR̄50, D̄ȧR50, ~2.18!

D̄ȧWabg50, DaW̄ȧḃġ50, ~2.19!

D̄ȧGaȧ5DaR, DaGaȧ5D̄ȧR̄,
~2.20!

DgWabg5D̄ġD(aGb)ġ,

D̄ġW̄ȧḃġ5DgD̄(ȧuGguḃ). ~2.21!

For the sake of brevity, we will call ‘‘constraints’’ the
complete set of relations~2.12!–~2.14!,~2.16!,~2.18!–~2.21!.

al
3-3
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B. Off-shell nature of the constraints

Using the Bianchi identities~2.7!,~2.8!, one also finds tha
the fermionic torsion componentsTab

a Tab
ȧ entering Eqs.

~2.13!,~2.14! @which may be regarded as superfield gener
zations of the gravitino field strengths, see Eq.~3.6!# are also
expressed through the main superfields~2.9!, ~2.10!, ~2.11!

Taȧbḃg[saȧ
a sbḃ

b
egdTab

d

52
1

8
eabD̄(ȧuGguḃ)2

1

8
eȧḃ@Wabg22eg(aDb)R#,

~2.22!

Taȧbḃġ[saȧ
a sbḃ

b
eġḋTab

ḋ5
1

8
eȧḃD(aGb)ġ

2
1

8
eab@W̄ȧḃġ12eġ(ȧD̄ḃ)R̄#. ~2.23!

Equations~2.22!, ~2.23! imply, in particular,

~sas̃b!b
gTabg5

3

4
DbR,

~ s̃asb!ġ
ḃTabġ5

3

4
D̄ḃR̄. ~2.24!

Moreover, the lhs of the Rarita-Schwinger equation c
be identified with the leading component~i.e., the u50
value! of the superfield expressioneabcdTbc

asdaȧ „see Eq.
~4.16! and e.g., @13#…. Using the Pauli matrix algebra
(sas̃b5habI 1 i /2eabcdscs̃d , s [as̃b]sb53sa) one finds,
from Eq. ~2.22!,

Cȧ
a
ªeabcdTbc

asdaȧ5
i

8
s̃aḃbD̄(ḃuGbuȧ)1

3i

8
sbȧ

a D bR.

~2.25!

The fieldsD bRuu50 and D̄(ḃuGbuȧ)uu50 are not restricted
by the constraints~2.12!–~2.16!, ~2.18!–~2.21!. They are ar-
bitrary fermionic functions, which rather can be identifie
with the corresponding irreducible parts of the leading co
ponent Cȧ

a uu50 of the Rarita-Schwinger superfieldCȧ
a .

HenceCȧ
a uu50 remains arbitrary.

Similarly, the bosonic Riemann curvature tensor sup
field is determined by

sgġ
c

sdḋ
d

Rcd
ab522egdr ġ ḋ

ab22eġḋr gd
ab, ~2.26!

r ġ ḋ
ab5

1

16
D̄(ġD(aGb)

ḋ) , ~2.27!

r gd
ab52

1

16
D(gWd)

ab2
1

32
d (g

a dd)
b ~D̄D̄R̄22RR̄!.

~2.28!
06500
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In particular, Eq.~2.28! indicates that the superfield genera
zation of the~spin-tensor components of the! Weyl tensor,
Cabgd5C(abgd) , is defined through the nonvanishing spin
derivative ofWabg

Cabgdªr (abgd)52
1

16
D(aWbgd) . ~2.29!

In this sense one says thatWabg and its complex conjugate
W̄ȧḃġ provide a superfield generalization of the Weyl tens

The superfield generalization of the Ricci tensor is giv
by

Rbc
ac5

1

32
~DbD̄(ȧuGauḃ)2D̄ḃD(bGa)ȧ!saȧ

a sbbḃ

2
3

64
~D̄D̄R̄1DDR24RR̄!db

a , ~2.30!

and, henceforth, the scalar curvature superfield is

Rab
ab52

3

16
~D̄D̄R̄1DDR24RR̄!. ~2.31!

Hence, once again, one can identify the~arbitrary! leading
components of the corresponding second derivatives of m
superfieldsGa and R @entering the right-hand side~rhs! of
Eq. ~2.30!# with the irreducible components of the Ric
tensor Rbc

acuu50 @or Einstein tensor (Rbc
ac

2 1
2 db

aRdc
dc)uu50] which, thus, remains arbitrary after im

posing the constraints~2.12!–~2.16!.
This exhibits the well known fact that the constrain

~2.12!–~2.16! describe theoff-shellsupergravity multiplet.

III. WESS-ZUMINO „WZ … GAUGE

To move from the superfield formulation of supergrav
to the component formulation~i.e., in terms of spacetime
fields! @11,13#, one fixes the so-called Wess-Zumino~WZ!
gauge, where,in particular,3

Eă
auu5050, Eă

buu505dă
b , wă

abuu5050, ~3.1!

while

Em
a uu505em

a ~x!, Em
a uu505c m

a , ~3.2!

wm
abuu505vm

ab~x! ~3.3!

remain unrestricted and are identified with the vielbein, gr
itino, and ~composed! spin-connection fields of the compo
nent formulation of supergravity@11,13#.

One can collect the expressions for the supervielbein
perfield in Eqs.~3.1!,~3.2! in the matrix relation

3We mainly use in Sec. III Majorana spinor notationEa

5(Ea,Eȧ) @29#; this also makes all the formulas of this sectio
except Eq.~3.6!, applicable to any dimensionD.
3-4
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EN
Auu505S en

a~x! cn
a~x!

0 db̆
a D . ~3.4!

Their evident consequences are

EA
Nuu505S ea

n~x! 2ca
b̆~x!

0 da
b̆ D , ~3.5!

whereca
b̆(x)[ea

ncn
a(x)da

b̆.
Note that already these simple formulas allow one to

rive, e.g., the following useful formula:

Tab
auu5052ea

meb
nD[mcn]

a ~x!2
i

4
~c [asb] !ḃGaḃU

u50

2
i

4
~ s̃ [ac̄b] !

aRU
u50

, ~3.6!

where D[mcn]
a (x)5] [mcn]

a (x)2c [n
b (x)wm]b

auu50 is the
gravitino fields strength@though with the nonstandard sp
connection which, in general, due to Eq.~2.12!, involves the
term proportional toGauu50 into the spacetime torsion#.
Thus one can callTab

a the superfield generalization of th
gravitino field strength.

One more simple but useful equation which is valid due
Eqs.~3.1!,~3.2! is

Euu5 ū50[sdet@EM
A ~x,0,0!#5det~em

a ![e~x!. ~3.7!

A. Complete description of the Wess-Zumino gauge

As it was early recognized@28,34,35#, the WZ gauge is
the fermionic counterpart of the normal coordinate system
general relativity~see Refs.@10,36,28# for the so-called nor-
mal gauge in supergravity, which is the complete supersp
generalization of the normal coordinate frame!. This obser-
vation suggested to collect@28# the complete set of the con
ditions of the WZ gauge in4

uăEă
a50, uă~Eă

b2d ă
b!50, ~3.8!

uăwă
ab50.

Using the inner product notation@see Eqs.~B10!,~B11!#, the
WZ gauge may be equivalently defined by

i uEa50, ~3.9!

i uEa5ub̆d
b̆

a
[u a, ~3.10!

i uwab50, ~3.11!

4Note that there exists another~‘‘prepotential’’! form of the Wess-
Zumino gauge which is fixed through a condition for th
Ogievetsky-Sokatchev auxiliary vectorprepotential, giving H m

5usaūea
m(x)1 ū ūuaca

m(x)1c.c.1uuūūAm(x) @8#, and for the

chiral compensator,F5e1/3(12
2
3 usac̄a1•••) ~see, e.g.,@9,28#!.
06500
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where ua is a Grassmann coordinate with a tangent sp
spinor index,

ub[uădă
b. ~3.12!

One of the characteristic properties of the WZ gauge~3.8!
is that the Grassmann coordinate~3.12! coincides with the
contraction of the fermionic supervielbein form,~3.10!. The
next observation is that in the gauge~3.8!

uăDă5ubDb5uă]ă[u]. ~3.13!

With this in mind one can find that the decomposition of t
supervielbein and spin connection superfields can be
pressed in terms of the physical graviton and gravitino fie
@Eq. ~3.2!#, the leading components of the torsion and curv
ture superfields and their covariant derivatives. A conveni
way of reproducing these decompositions is by using
following recurrent relations~cf. @28#!:

~11u]!Ea5 i uTa1dxm Em
a , ~3.14!

~11u]!Ea5Dua1 i uTa1dxm Em
a ,

~3.15!

~11u]!wab5 i uRab1dxm wm
ab ,

~3.16!

together with Eq.~3.13!. Equations~3.14!,~3.15!,~3.16! are
obtained by taking the external derivative of the defini
relations of the WZ gauge, Eqs.~3.8!. There

Dub5dub2ugwg
b, ~3.17!

i uTA[ECubTbC
A, i uRab[EDugRgD

ab. ~3.18!

Equations~3.14!,~3.15!,~3.16! do not restrict the physica
fields ~3.2!, as the terms containingdxm in lhs’s are canceled
by the last terms in the rhs’s. Thus the leading (u50) com-
ponents of Eqs.~3.14!,~3.15!,~3.16! reproduce Eq.~3.1!.

A discussion of the decomposition of the superfields, i
of the solutions to Eqs.~3.14!, ~3.15!, and ~3.16!, can be
found in Appendix C 1.

B. Symmetries preserving the Wess-Zumino gauge

In the consideration of the coupled system it is importa
to know the subset of superspace local symmetries pres
ing the gauge~3.8!. The subset of superspace diffeomo
phisms@parameterbM(Z)] and local Lorentz@Lab(Z)# trans-
formations preserving this gauge is singled out by
equations~see Appendix C 2 for details and further discu
sion!

u]~bA!5~bB!ugTgB
A1ug~Lg

b2bMwMg
b!db

A,
~3.19!

u]„Lab~Z!2bMwM
ab
…52bDugRgD

ab, ~3.20!

where
3-5
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LB
A~Z!5S Lb

a 0

0 Lb
aD , Lab52Lba,

Lb
a5

1

4
Labgab b

a, ~3.21!

and the parameterbM can be conventionally decompose
into a fermionic spinor and a bosonic vector part

bA
ªbM~Z!EM

A ~Z![„ba~Z!,«a~Z!…. ~3.22!

It is instructive to write Eqs.~3.19!,~3.20! in the weak
field approximation. At zero-order one finds the set of eq
tions

u]~ba!522i«bgbg
a ug, ~3.23!

u]~«a!5ubLb
a, ~3.24!

u]Lab~Z!50, ~3.25!

which can be easily solved,

ba~Z!5b0
a~x!12iuga«0~x!1

i

4
u~gbcg

a!u l bc~x!,

~3.26!

«a~Z!5«0
a~x!2ubl b

a~x!, ~3.27!

Lab~Z!5 l ab~x!, ~3.28!

whereb0
a(x), «0

a(x) are arbitrary vector and spinor function
and l ab(x) are local Lorentz parameters.

In the general case the WZ gauge is also preserved
particular~see Appendix C 2! by spacetimediffeomorphisms
@with parametersba(Z)uu50], as well as by Lorentz@ l ab(x)#
and local supersymmetry@«a(x)5«a(Z)uu50# transforma-
tions.

IV. SUPERFIELD ACTION FOR ‘‘FREE’’
DÄ4,NÄ1 SUPERGRAVITY

A. Superfield action and variational problem with constraints

The D54,N51 supergravity action can be written@6# as
an integral over superspaceS (4u4) of the Berezenian~super-
determinant! Eªsdet(EM

A ) of the supervielbeinEM
A (Z),

SSG5E d4x d̃4u sdet~EM
A ![E d8Z E, ~4.1!

where EM
A (Z) are assumed to be subject to the constra

~2.12!,~2.13!,~2.14!,~2.16!. This action is evidently invarian
under the superdiffeomorphisms and local Lorentz symm
tries ~further discussion of its gauge symmetries can
found in Appendix B 1!.

One of the ways to obtain the superfield equations of m
tion from this action is to solve the constraints in terms
unconstrained superfields~prepotentials!: axial vector super-
06500
-

in

ts

-
e

-
f

field H m(x,u) @8# and chiral compensatorF @9# ~in this way
the local symmetries of the complete superfield formulat
are partially gauge fixed!.

Alternatively, following @6#, one can keepEM
A (Z) as the

basic variable, but take the constraints into account w
searching for the independent variations. Namely, one
notes the general variation of the supervielbein and spin c
nections by@6#

dEM
A ~Z!5EM

B K B
A~d!, dwM

ab~Z!5EM
C uC

ab~d!, ~4.2!

and obtains the equations to be satisfied byK B
A(d),uC

ab(d)
from the requirement that the constraints~2.12!,~2.13! are
preserved under~4.2!. Then one solves these equations
terms of some set of independent variations. Straightforw
but quite involved calculations~the results of which were
partially given in @6#! show that the constraints of minima
supergravity~2.12!–~2.16! are preserved by a set ofsuper-
field variations ~superspace coordinates are not affect!
which include:

~i! the local Lorentz transformationsdL(Lab), Eq. ~B1!;
~ii ! the variational version of the superspace general

ordinate transformations@6# @ d̃gc(t
A), Eqs. ~B15!,~B16!,

~B17! in Appendix B#; and
~iii ! the set of transformations with parametersdHa

5 1
2 saȧ

a dHaȧ, dU,dŪ, under which the supervielbein trans
forms as5

dEa5Ea@L~d!1L̄~d!#2
1

4
Ebs̃b

ȧa@Da ,D̄ȧ#dHa

1 iEaD adHa2 iĒ ȧD̄ȧdHa, ~4.3!

dEa5EaJa
a~d!1EaL~d!1

1

8
ĒȧRsa ȧ

adHa.

~4.4!

In Eqs.~4.3!,~4.4!, L(d),L̄(d) are given by

L~d!5
1

24
s̃a

ȧa@Da ,D̄ȧ#dHa1
i

4
D adHa1

1

24
GadHa

12~DD2R̄!dU2~D̄D̄2R!dŪ ~4.5!

5This procedure can be regarded as a linearized counterpa
solving the superspace constraints in terms of the prepotential@9#
~the price to achieve linearity, however, is that we have to deal w
the covariant derivativesDA rather than with the holonomic ones
]M). So, the counterpartdHa of the variation of the Ogievetsky
Sokatchev auxiliary vector superfield@8# H m, as well as the coun-
terparts of the variation of the complex chiral compensatorsF @9#,

(DD2R̄)dU, are involved in the solution of these equations.@The

~anti!chiral superfieldF̄ satisfiesDaF̄50 and can be expresse

through the independent superfieldU by F̄5(DD2R̄)U. Then the

variation ofF̄ is dF̄5(DD2R)dU.#
3-6
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L~d!1L̄~d!5
1

12
s̃a

ȧa@Da ,D̄ȧ#dHa1
1

12
GadHa

1~DD2R̄!dU1~D̄D̄2R!dŪ; ~4.6!

the explicit expression forJa
a(d) in Eq. ~4.4! will not be

needed below. It reads

Ja
a~d!52

i

4
sabġuġab~d!2

i

4
s̃a

ȧaD̄ȧL~d!

2
i

32
sabḃD bRdHaḃ2

i

16
sabḃRD bdHaḃ

2
i

32
s̃a

ḃbGaġD̄ḃdHbġ , ~4.7!

where

uġ
ab

~d!5 2
1

4
D̄D̄D (adHb)

ġ1
3

8
RD (adHb)

ġ

2
1

8
G(a

ḃD̄ġdHb)ḃ1
1

16
D (aRdHb)

ġ

2
1

8
D(ġG(a

ḃ)dHb)ḃ1
1

8
WabgdHgġ . ~4.8!

Equation~4.8!, together with

ug
ab~d!5

1

8
G(a

ḃDgdHb)ḃ2
1

8
Gdḋdg

(aD b)dHdḋ

12dg
(aD b)L~d!, ~4.9!

sgġ
a

ua
ab~d!52

i

2
@Dguġ

ab
~d!1D̄ġug

ab~d!#

2
i

16
RR̄dg

(adHb)
ġ2

i

16
D̄ḃR̄dg

(aD̄ġdHb)ḃ

1
i

16
D (aGb)ḃD̄ġdHgḃ1

i

16
WabdDgdHdġ ,

~4.10!

define the variation of the spin connection through the s
ond equation in Eq.~4.2!.

B. Superfield action and ‘‘free’’ equations of motion

The nontrivial dynamical equations of motion should fo
low from the variations~4.3!,~4.4! with ~4.5!,~4.6! only. The
variation of the superdeterminantE5sdet(EM

A ) under Eqs.
~4.3!, ~4.4!, has the form~see@6#!

dE5EF2
1

12
s̃a

ȧa@Da ,D̄ȧ#dHa1
1

6
GadHa12~D̄D̄2R!dŪ

1 2~DD2R̄!dUG . ~4.11!
06500
c-

In the light of the identity~B35!, all the terms with deriva-
tives can be omitted in Eq.~4.11! when one considers th
variation of the action~4.1!. Hence

dSSG5E d8Z dE5E d8Z EF1

6
GadHa22 RdŪ2 2R̄dUG

~4.12!

and one arrives at the followingsuperfield equations of mo
tion for ‘‘free,’’ simple D54,N51 supergravity:

dSSG

dHa
50 ⇒ Ga50, ~4.13!

dSSG

dŪ 50 ⇒ R50, ~4.14!

dSSG

dU 50 ⇒ R̄50. ~4.15!

Then the ‘‘free’’ superfield Rarita-Schwinger equations,

eabcdTbc
gsdgġ50, eabcdTbc

ġsdgġ50, ~4.16!

follow from the constraints~2.22!,~2.23! with Ga505R,

Taȧbḃg52
1

8
eȧḃWabg ⇔ Tab

g5
1

32
~sas̃b!abWabg.

~4.17!

The superfield generalization of the free Einstein equat
Rac

bc5 1
2 da

bRcd
cd50 follows from setting Ga50 @Eq.

~4.13!# andR50 @Eq. ~4.16!# in Eq. ~2.30!.

V. BRINK-SCHWARZ SUPERPARTICLE IN A
SUPERGRAVITY BACKGROUND

The superparticle dynamical variables are the superc
dinate functionsẐM(t) defined by the map

f̂:W1→S (4u4), t °ẐM~t!5@ x̂m~t!,û ă~t !#, ~5.1!

defining a worldlineW 1 in S (4u4) parametrized by the prope
time t,

W 1,S (4u4), ZM5ẐM~t!. ~5.2!

The actual superparticle worldline is determined by the eq
tions of motion. For the massless superparticle these e
tions follow from the Brink-Schwarz action

Ssp5E
W1

L̂15
1

2EW1
l ~t!ÊaÊt

bhab , ~5.3!

which involves the pull-backÊa[Êa(t)5dt Êt
a(t) to W1

of the bosonic supervielbein formEa @Eq. ~2.1!# on S (4u4),

Êa5dẐM~t!EM
a ~ Ẑ![dt Êt

a , ~5.4!
3-7
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Êt
a5]t ẐMEM

a ~ Ẑ!,

and the Lagrange multiplier~worldline einbein! l (t). Note
that the pull-backs of the fermionic supervielbein forms

Êa5dẐM~t!EM
a ~ Ẑ![dt Êt

a ,

EC ȧ5dẐM~t!ĒM
ȧ ~ Ẑ![dt EC t

ȧ ,

Êt
a5]t ẐMEM

a ~ Ẑ!, EC t
ȧ5]t ẐM ĒM

ȧ ~ Ẑ! ~5.5!

are not involved in the superparticle action~5.3! explicitly.
This is a general property of theD-dimensional super-
p-brane actions that reflects an especial role for the bos
‘‘directions’’ in superspace.

A. Equations of motion

The equations of motion for a superparticle moving in
supergravitybackgroundfollow from the variation of the
action ~5.3! with respect to the Lagrange multiplierd l (t)
and the supercoordinate functionsdẐ. The corresponding
variation of the pull-back~5.4! of the bosonic supervielbein
form ~2.1! is

d ẐÊa[d ẐEa~ Ẑ!ªEa~ Ẑ1dẐ!2Ea~ Ẑ!

5 i dẐT̂a1D~ i dẐÊa!1Êbi dẐwb
a, ~5.6!

i dẐEa~ Ẑ!ªdẐMEM
a ~ Ẑ!, ~5.7!

i dẐwab
ªdẐMwM

ab~ Ẑ! ~5.8!

~note in passing that these transformations coincide with
pull-back of superspace general coordinate transformat
dgc , Eqs.~B7!,~B8!, to W1, d ẐÊa5f̂* @dgcE

a(Z)#).
The last term in Eq.~5.6! does not contribute to the actio

variation6

dSsp5E
W1

F1

2
d l ~t!ÊtaÊa1 l ~t!Êtad ẐÊaG , ~5.9!

becauseÊtaÊtbi dẐwba[0 due toi dẐwba52 i dẐwab.
When the background obeys the constraints~2.12! the su-

perparticle equations of motion become

Êasaȧ
a Êat50, Êatsaȧ

a EC ȧ50, ~5.10!

D~ lÊat!50, ~5.11!

6This reflects the invariance of the action under a Lorentz rota
of the supervielbein, which can be considered as a pull-back of
local Lorentz transformation of the supergravity background. S
transformations cannot be treated asgaugesymmetries of the su-
perparticle in a supergravitybackground. However, theyare gauge
symmetries of the interacting system ofdynamicalsupergravity and
the superparticle.
06500
ic

e
ns

Êt
aÊat50. ~5.12!

Indeed, Eq.~2.12! implies

i dẐT̂a522isaȧ
a Êai dẐEC ȧ22isaȧ

a EC ȧi dẐÊa

2
1

8
Êb«a

bcdG
c~ Ẑ!i dẐÊd. ~5.13!

The last term does not contribute to the contract
Êtai dẐT̂a. Hence, after integration by parts, the express
~5.9! with Eq. ~5.6! becomes

dSsp5E
W1

F1

2
d lÊtaÊa2D~ lÊta!i dẐÊa

22i lÊ ta~saȧ
a Êai dẐEC ȧ1saȧ

a EC ȧi dẐÊa!G ,
~5.14!

which implies the equations of motion~5.12! (dSsp /d l

50), ~5.11! @dSsp /dẐMEa
M(Ẑ)50#, and ~5.10!

@dSsp /dẐMEȧ
M(Ẑ)50 and its complex conjugate#.

Let us stress that we derived the superparticle equat
of motion ~5.11!,~5.10! from an arbitrary variation of the
supercoordinate functionsdẐ, which is tantamount to saying
that they were obtainedfrom the general coordinate trans
formationsdgc , ~B7!,~B8!, pulled-backto W1. This reflects a
spontaneous~partial! breaking of the superspace general c
ordinate symmetrydgc of the background by the superpa
ticle worldline. The part of the general coordinate symme
dgc of the supergravity background which is preserved by
worldline can be identified with the gauge fermion
k-symmetry@37# and reparametrization symmetry~more rig-
orously, the variational version of the worldline general c
ordinate symmetry! @21#.

B. Local fermionic k-symmetry and reparametrization
invariance of superparticle action

It is not hard to see that the superparticle action~5.3! is
invariant under the gauge fermionick-symmetry @37# that
acts on the coordinate functions and the Lagrange multip
l by

dkẐM5Êt
as̃a

ȧa@ k̄ ȧ~t!Ea
M~ Ẑ!1ka~t!Ēȧ

M~ Ẑ!#, ~5.15!

dkl ~t!54i l @Êt
aka~t!1EC t

ȧk̄ ȧ~t!#, ~5.16!

To this end, it is convenient to write Eq.~5.15! in the form

i kÊa[dkẐMEM
a ~ Ẑ!50, ~5.17!

i kÊa[dkẐMEM
a ~ Ẑ!5k̄ ȧ~t!s̃a

ȧaÊt
a ,

i kEC ȧ[dkẐMEM
ȧ ~ Ẑ!5Êt

as̃a
ȧaka~t!,

~5.18!

n
e
h
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substitute thesei kÊA anddkl (t) @Eq. ~5.16!# for i dẐÊA and
d l (t) in Eq. ~5.14!, and observe that, due to the identity

ÊatÊbt~sas̃b!a
b5Êt

aÊatda
b, ~5.19!

the contributionlÊatdkÊa522i lÊ atÊt
aÊa ka1c.c. can be

compensated by the variation of the Lagrange multiplierdkl
~5.16!.

In the same manner, one finds that the following trans
mations of the supercoordinate functions

d r Ẑ
M5r ~t!Êt

aEa
M~ Ẑ!, ~5.20!

or, equivalently,

i r Ê
a[d r Ẑ

MEM
a ~ Ẑ!5r ~t!Êt

a ,

i r Ê
a50, i rEC

ȧ50, ~5.21!

can be compensated by7

d r l ~t!5 l ]tr 2r ]tl . ~5.22!

This proves the so-called reparametrization symmetry of
superparticle action~see also Appendix D!.

VI. COMPLETE LAGRANGIAN DESCRIPTION
OF THE SUPERGRAVITY-SUPERPARTICLE

INTERACTING SYSTEM

A fully dynamical description ofD54,N51 supergravity
and the massless superparticle source interacting system
be achieved by means of the action

S5SSG1Ssp5E d8z E1
1

2EW1
l ~t!ÊaÊt

bhab , ~6.1!

whereE5sdet(EM
A ) and the supervielbein in superspace

assumed to be restricted by the constraints~2.12!,~2.13!,
~2.14!.

A. Gauge symmetries of the coupled system

As the superparticle coordinate functionsẐM[ẐM(t) do
not enter in the supergravity part of the action, Eqs.~5.10!,
~5.11!,~5.12! remain the same as in the interacting syst
~6.1!,

Êasaȧ
a Êat50, ~6.2!

Êatsaȧ
a EC ȧ50, ~6.3!

D~ lÊat!50, ~6.4!

7On the worldvolume, acting on the pull-back of the superform

D5dẐM DM5dt Dt , whereDt5]t1connection term(s). In-
tegrating by parts one arrives at the terms involving]t l in the
worldvolume action variations. Note thatDt l 5]t l , because the
einbeinl (t) does not have Lorentz group indices.
06500
r-

e

can

Êt
aÊat50. ~6.5!

Moreover, k-symmetry @Eqs. ~5.17!,~5.18!,~5.16!# and re
parametrization symmetry@Eqs.~5.21!,~5.22!# are preserved
by the interaction.

The coupled action is evidently invariant under superd
feomorphismsddi f f ,

Z8M5ZM1bM~Z!: H x8m5xm1bm~x,u!,

u8ă5uă1«ă~x,u!,
~6.6!

E8A~Z8!5EA~Z!, w8ab~Z8!5wab~Z!, ~6.7!

now supplemented by the corresponding transformations
the superparticle variablesẐ8M5Ẑ8M(t)

Ẑ8M5ẐM1bM~ Ẑ!: H x̂8m~t!5 x̂m1bm~ x̂,û !,

û8ă~t !5 û ă1«ă~ x̂,û !,
~6.8!

so that

ddi f fZ
M5Z8M2ZM5bM~Z!, ~6.9!

ddi f f Ẑ
M5bM~ Ẑ!, ~6.10!

and ddi f fS50 ~see Appendix B 2, where further discussio
on the gauge symmetries of the coupled system can
found!.

B. Equations of motion of the coupled system

As mentioned above, the superparticle equatio
dS/dẐM50,dS/d l 50 for the coupled dynamical system re
main the same as those for the system in a supergravityback-

ground, dSsp /dẐM50,dSsp /d l 50 @Eqs. ~6.2!, ~6.3!, ~6.4!,
and~6.5!#. Let us now see how the supergravity equations
motion are modified by the inclusion of the superpartic
source.

Denoting the variation of the action induced by the co
straints preserving variations~4.3!–~4.6! by d8 , one con-
cludes that

d8S5E d8Z EF1

6
GadHa22 RdŪ22R̄dUG1d8Ssp ,

~6.11!

where

d8Ssp5E
W1

l ~t!Êatd8Êa5E
W1

l ~t!Êat dẐM d8EM
a ~ Ẑ!

~6.12!

andd8Êa is the pull-back of Eq.~4.3! to W1. To have a well
posed variational problem, we extend the integration in
~6.12! to superspace by introducing the superspace d
function

d8~Z2Ẑ!ªd4~x2 x̂!~u2 û !4 ~6.13!

where

,

3-9
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~u2 û !4
ª

1

4!
eă1•••ă4

~u2 û !ă1
•••~u2 û !ă4. ~6.14!

Namely, we insert 15*d8Z d8(Z2Ẑ) into Eq. ~6.12! and
use the identityd8EM

a (Ẑ)d8(Z2Ẑ)[d8EM
a (Z)d8(Z2Ẑ) to

arrive at

d8Ssp5E d8ZF E
W1

l ~t!Êat dẐM d8~Z2Ẑ!Gd8EM
a ~Z!.

~6.15!

Now Eq. ~4.3! can be straightforwardly inserted into E
~6.15! and, using

dẐMd8~Z2Ẑ!EM
A ~Z![ÊAd8~Z2Ẑ![E~Z!

1

Ê
ÊAd8~Z2Ẑ!,

E~Z![sdet@EM
A ~Z!#, Ê5E~ Ẑ!, ~6.16!

one finds

d8Ssp5E d8Z EF E
W1

l ~t!

Ê
ÊatÊ

ad8~Z2Ẑ!G iD adHa

1E d8Z EF E
W1

l ~t!

Ê
ÊatÊ

ȧd8~Z2Ẑ!G ~2 i !D̄ȧdHa

2E d8Z EF E
W1

l ~t!

Ê
ÊatÊ

bd8~Z2Ẑ!G
3

1

4
s̃b

ȧa@Da ,D̄ȧ#dHa

1E d8Z EF E
W1

l ~t!

Ê
ÊatÊ

ad8~Z2Ẑ!G
3@L~d!1L̄~d!#. ~6.17!

The extraction of the superdeterminant in Eq.~6.17! permits
integrating by parts using the identity~B35! in Appendix B.
Thus Eqs.~6.11!,~6.17! allows us a direct derivation of th
coupled equations of motion.

Note that the scalar variationsdU,dŪ are involved only in
the last term of Eq.~6.11!, through@L(d)1L̄(d)# defined
by Eq. ~4.6!.

Let us now compute thedU variation of the coupled ac
tion, dU S5dU SSG1dU Ssp . The variation of the supergrav
ity part readsdU SSG52 1

2 *d8Z ER̄dU @see Eq. ~4.12!#,
while, due to @L(dU)1L̄(dU)#5(DD2R̄)dU @see Eq.
~4.6!#,

dU Ssp5E d8Z EF E
W1

l

Ê
ÊatÊ

ad8~Z2Ẑ!G ~DD2R̄!dU

5E d8Z EF E
W1

l

Ê
ÊatÊ

a~DD2R̄!d8~Z2Ẑ!GdU.

~6.18!
06500
Thus, at a first look, Eq.~4.15! acquires a source term

dS

dU 50 ⇒ R̄5J0 ,

~6.19!

J05E
W1

2l

Ê
ÊatÊ

a~DD2R!d8~Z2Ẑ!.

However, one immediately observes that this source vanis
due the superparticle equation of motion~6.5!

dS

d l ~t!
50 ⇒ Êt

aÊat50 ⇒ J050. ~6.20!

Hence the scalar superfield equations for the coupled d
namical system are the same as in the ‘‘free’’ supergrav
case,

dS

dU 50 ⇒ R̄50, ~6.21!

dS

dŪ 50 ⇒ R50. ~6.22!

Moreover, the above observation implies that the last te
in the superparticle action variation does not contribute to
equations of motion,

E d8Z EF E
W1

l ~t!

Ê
ÊatÊ

ad8~Z2Ẑ!G @L~d!1L̄~d!#50,

~6.23!

due to Eq.~6.5!, ÊaÊat50. Hence after an integration b
parts using the identity~B35!, and taking into account Eq
~6.5!, the variation~6.17! of the superparticle action reads

d8Ssp5E d8Z EH iDaK a
a2 i D̄ȧK̄a

ȧ

1
1

4
s̃b

ȧa@Da ,D̄ȧ#K a
bJ dHa, ~6.24!

where the ‘‘spin 3/2’’ and ‘‘spin 2’’ ‘‘current prepotentials,’
K a

a , K̄a
ȧ5(K a

a)* , andK a
b, are defined by

K a
a~Z!ªE

W1

l ~t!

Ê
ÊatÊ

ad8~Z2Ẑ!, ~6.25!

K̄a
ȧ~Z!ªE

W1

l ~t!

Ê
ÊatÊ

ȧd8~Z2Ẑ!, ~6.26!
3-10
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K a
b~Z!ªE

W1

l ~t!

Ê
ÊatÊ

bd8~Z2Ẑ!. ~6.27!

Equations~6.24! and ~6.11! imply the appearance of
current potential superfieldJa ~which is a vector density
distribution with support on the worldline!, in the vector su-
perfield equation of the coupled system@cf. ~4.13!#,

dS

dHa 50 ⇒ Ga5Ja . ~6.28!

This vector current potential is constructed from the vect
spinor and tensor densities Eqs.~6.25!,~6.26!,~6.27! ~hence
the ‘‘current prepotential’’ name forK a

B) as follows:

1

6
Ja52 iDaK a

a1 i D̄ȧK̄a
ȧ1

1

4
s̃b

ȧa@Da ,D̄ȧ#K a
b.

~6.29!

The preservation of the scalar superfield equationR50 in
the interacting dynamical system~6.1!, Eq. ~6.21!, immedi-
ately implies the vanishing of the spin 1/2 part of the sup
field generalization of the gravitino field strength,

~sas̃b!b
gTabg50, ~ s̃asb!ġ

ḃTabġ50 ~6.30!

@see Eq.~2.24!#. However, the above equation is only a pa
of the content of the superfield generalization of the f
Rarita-Schwinger equation.8 The completesuperfield gener-
alization of the Rarita-Schwinger equationfor the coupling
system can be obtained from Eq.~2.22! with R50,Ga5Ja
and possesses the source term

eabcdTbc
asdaȧ5

i

8
s̃aḃbD̄(ḃuJbuȧ) . ~6.31!

Using Eq.~2.31! and Eq.~6.21!, R50, one finds that the
superfield generalization of the scalar curvature vanishe
the supergravity-superparticle interacting system,

Rab
ab50. ~6.32!

However, in accordance with Eq.~2.30!, the Ricci tensor is
expressed not only throughR,R̄, but also through theGa
superfield. Hence in the interacting system thesuperfield
Einstein equationacquires a source term which is express
through a second derivative of the current potential sup

field J aḃ5J as̃a
aḃ :

Rbc
ac5

1

32
~DbD̄(ȧuJ auḃ)2D̄ḃD(bJ a)ȧ!saȧ

a sbbḃ .

~6.33!

8Indeed, the linear approximation equationeabcd]bcc
asdaȧ50 is

equivalent to the equations (sas̃b)(bg)]bca
g50 @which is a coun-

terpart of Eq.~6.30!# and ]ccc
a50.
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C. Properties of current potential Ja andK a
B prepotentials

Thus the vector superfield supergravity equation acqu
the source~6.29! ~‘‘current potential’’! from the Brink-
Schwarz superparticle actionSsp , Eq. ~6.28!, while the sca-
lar superfield equations~6.21!,~6.22! remain sourceless as i
free supergravity. Then the identities~2.20! immediately re-
sult in

D aJaȧ50, D̄ȧJaȧ50, ~6.34!

which imply the supercurrent conservation

D aJa50. ~6.35!

In accordance with Eq.~6.29!, the superparticle current i
constructed from the current prepotentials~6.25!,~6.26!,
~6.27!. Moreover, Eq.~6.29! can be presented in the form

1

6
Ja52 iDaS K a

a1
i

4
s̃b

ȧaD̄ȧK a
bD

1 i D̄ȧS K̄a
ȧ1

i

4
s̃b

ȧaDaK a
bD . ~6.36!

It is interesting that the spinor-vector and tensor curr
prepotential carry only the irreducible spin 3/2 and spin
representation of the Lorentz group, respectively. Indeed,
tracting the worldline measuredt in Eq. ~6.27!, K ab(Z)
5*W1 dt( l (t)/Ê)Et

aÊt
bd8(Z2Ẑ), one easily sees that th

tensorK ab(Z) is symmetric, and traceless due to Eq.~6.5!.
In this sense one can say that the current potential cont
only a spin 2 irreducible part,

K ab~Z!5K ba~Z!, K b
b~Z!50. ~6.37!

The spinor-vector current prepotentials carry spin 3/2,
cause, due to Eq.~5.10!, their spin 1/2 irreducible parts van
ish,

K a
a~Z!saȧ

a [K aȧ
a50, ~6.38!

saȧ
a K̄a

ȧ~Z![K̄aȧ
ȧ~Z!50. ~6.39!

Finally, using Eq.~5.11!, together with the identities

EA
M~Z!]Md~Z2Ẑ!5EA

M~ Ẑ!]Md~Z2Ẑ!

2~21!M1AM]MEA
M~Z!d~Z2Ẑ!,

]Md~Z2Ẑ!52]/]ẐMd~Z2Ẑ!,

and (21)M1AMDM(EEA
M)[E(21)BTAB

B50 ~the last part
of the last identity is valid due to the supergravity co
straints!, one finds the relation

~2 !BDBK a
B[DbK a

b2DbK a
b2D̄ḃK̄a

ḃ50, ~6.40!

which completes the list of the properties of the superpart
current prepotentials~6.25!,~6.26!,~6.27!.
3-11
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Contracting the vector indices of the current prepotent
with the s matrices, one can write the irreducibility cond
tions ~6.37!,~6.38!,~6.39! in the form

K abȧḃ[K abs̃a
ȧas̃b

ḃb5K (ab)(ȧḃ), ~6.41!

K abḃ[K a
as̃a

ḃb5K (ab)ȧ, ~6.42!

K̄ȧḃb[K̄a
ȧs̃a

ḃb5K̄(ȧḃ)b. ~6.43!

Then, relation~6.40! reads

1

2
DbḃK abȧḃ2DbK abȧ2D̄ḃK̄ȧḃa50, ~6.44!

or, equivalently,

DbS K abȧ1
i

4
D̄ḃK abȧḃD52D̄ḃS K̄ȧḃa1

i

4
DbK abȧḃD .

~6.45!

Equations~6.44!, ~6.45! allow us to write the expressio
~6.36! for supercurrent in two other equivalent forms

1

6
J aȧ[

1

6
Jas̃aȧa522iDbS K (ba)ȧ1

i

4
D̄ḃK (ab)(ȧḃ)D

~6.46!

52i D̄ȧS K̄(ȧḃ)b1
i

4
DbK (ab)(ȧḃ)D . ~6.47!

Now one can easily derive Eq.~6.34! using Eqs.~6.46! and
~6.47!. To this aim one uses the algebra of spinor derivati
of the same chirality, Eq.~A4!,

R5R̄50 ⇒ $Da ,Db%50. ~6.48!

Then the current potential conservation, Eq.~6.35!, follows
from Eqs.~6.34! and Eq.~A5!.

The properties ~6.34! imply D̄ȧJbḃ5D̄(ḃuJbuȧ) and,
hence, allow us to write the rhs of thesuperfield Rarita-
Schwinger equationas the fermionic covariant derivative o
the current potential

Cȧ
a[eabcdTbc

asdaȧ5
i

4
D̄ȧJ a. ~6.49!

The superfield Einstein equation~6.33! can be written as

Rbc
ac5

1

16
s̃b

ḃb@Db ,D̄ḃ#J a. ~6.50!

Equations~6.49!,~6.50! exhibit an interdependence of th
Einstein and Rarita-Schwinger superfield equations,

Rbc
ac52

i

4
s̃b

ḃb~D bCḃ
a
1D̄ḃC̄b

a !. ~6.51!
06500
ls

s

VII. GAUGE FIXING AND EQUATIONS OF MOTION FOR
THE INTERACTING SYSTEM

A. Gauge fixing

As all the gauge symmetries of the ‘‘free’’ superfield s
pergravity are still present in the interacting system, one
fix first the WZ gauge~3.8!. This would be the first step
towards the component description of the interacting sys
in terms of the usual graviton and gravitino spacetime fiel

As was shown in Sec. III B and in Appendix C 2, the W
gauge is preserved by some specific superdiffeomorphi
and superspace local Lorentz transformations with free
rameters b0

A(x)5„b0
a(x),«0

a(x)…5bA(Z)uu50 and l ab(x)
5Lab(Z)uu50. In accordance with Eqs.~6.10! and~5.15!, the
transformation of the fermionic coordinate functionû ă(t)
under superdiffeomorphisms and worldlinek transforma-
tions acquires the form

dûă~t!5bă~ Ẑ!1dkûă~t!, ~7.1!

wheredkûă(t) is defined by the Eq.~5.15! with M5ă. This
transformation rule reflects the Goldstone nature of the
perparticle~or superbrane! coordinate function@22# ~see also
@23,24# and references therein!.

In the WZ gauge~3.8!, Eq. ~7.1! can be written in the
form @see Eqs.~3.12!,~3.22!#

dûa ~t![dûă~t!dă
a5«a ~ Ẑ!1dkûa ~t!. ~7.2!

Decomposing the rhs of Eq.~7.2! in power series inû(t)
one writes

dûa~t!5«a ~ Ẑ!u û501dkûa~t!u û501O~ û !

5«0
a ~ x̂!1dkûa~t!u û501O~ û !, ~7.3!

where the arbitrary fermionic field parameter«0
a ( x̂) is de-

fined as in Eqs.~3.22!, ~3.27! andcorresponds to one of the
symmetries that preserve the WZ gauge.

Thus we can fix the gauge~simultaneously with the WZ
gauge!

ûa ~t!50 ~7.4!

~cf. the description of super-Higgs effect in@25#! by using the

freedom in the fermionic parameters«0
a ( x̂) @but not the pull-

back«0
a ( x̂,û) of the complete superfield«0

a (Z)]. The gauge
~7.4! is preserved by transformations such that

«0
a~ x̂!52dkûa~t!u û5052kbga b

aÊt
au û50 , ~7.5!

where we have written the form of thek-symmetry transfor-
mations ~5.15! explicitly, in Majorana spinor notation, by
using the WZ gauge relations.
3-12
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B. On the Goldstone nature of the„super…brane
coordinate functions

Since the possibility of fixing the gauge~7.4! might look
unexpected, we now discuss its physical meaning.

First, let us note that similar considerations show that
bosonic counterpart of the gauge~7.4! can also be fixed on
the bosonic coordinate functions. It reads9

x̂m~t!5~t,0,0,0! ~7.6!

@or xm(t)5(t,0,0,6t) if one identifiesx0 with the time-like
dimension in the flat~super! space limit#. In general, for a
D-dimensionalp-brane interacting with dynamical gravit
one can fixlocally the following counterpart of the gaug
~7.6! ~static gauge!

x̂m~t,sW !5~t,s1, . . . ,sp,0, . . . ,0!, ~7.7!

where the first (p11) of the D coordinate functions are
identified with the local worldvolume coordinatesjm

5(t,s1, . . . ,sp), and the remaining coordinate function
are set to zero~see@20#!.

Clearly, the gauge~7.6! or ~7.7! can be fixed also in a
dynamical system of pure bosonic gravity interacting with
bosonic particle or brane. As such, this phenomenon sh
be known in general relativity, and this is indeed the ca
The pure gauge nature of the coordinate functions descri
the motion of a dynamical source~particle! was already
known in general relativity, see, e.g.,@38,39#. The presence
of the gauge symmetry allowing one to fixlocally the gauge
~7.7! for branes or~7.6! for a particle is reflected in the
language of the second Noether theorem~see @20,21#! by
stating that the brane or particle equations of motion can
derived as a consequence of the field equations for gra
This type of statement can be found in books~see, e.g., p.
240 in @39#, pp. 19, 44–48, and Eq.~1.6.13! in @38#! and
comes back to the original paper by Einstein and Gromm
@40#. Namely, one can derive the equations of motion of
particle source from the covariant conservation of the p
ticle energy-momentum tensor in the rhs of the Einstein fi
equation. So, the statement of@38# is that we do not need to
vary the action with respect to the matter~particle! variables
because we can obtain the equations of motion for the ma
part as a consequence of the Einstein equations. Thes
their geometric structure, imply the covariant energ
momentum conservation which in turn is equivalent to
matter equations of motion.

9Note that the gauge with all components ofx̂m(t) equal to zero
cannot be fixed due to the restrictions on the pure bosonic sect
the transformations since the diffeomorphism transformations h
to be invertible and it is clear that a~world!line could not be rep-
resented by one point in any nondegenerate coordinate syste
contrast, the nondegeneracy of superdiffeomorphisms imp

det(dǎ
b̌1]bb̌(x,u)/]uǎ)5” 0, which does not restrict the field pa

rameterbb̌(x,0) and, hence,«0
a(x) @see Eq.~3.22!# in Eq. ~7.3!.

This allows us to use the pull-back«̂0
a
ª«0

a( x̂) of «0
a (x) to fix the

gauge~7.4!, where all the components ofû ǎ(t) are set to zero.
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Clearly, for the case of the brane source the same a
ments result in the derivation of the equations of motion
the brane variables from the conservation of an ener
momentum tensor with support on worldvolume~see@20# for
an explicit proof!. Then the choice oflocal coordinate sys-
tem allows one to fix the gauge~7.7! locally. Certainly, for
topologically nontrivial and/or closed worldvolume th
gauge cannot be fixed globally. In contrast, one immedia
notices that there are no restrictions on a global fixing of
fermionic gauge~7.4! as no way of introducing topology on
a Grassmann algebra is known.

Thus one can state that both the fermionic and boso
coordinate functions of superbrane are pure gauge~can be
gauged away! when the interacting system ofdynamical~not
background! supergravity and a dynamical superbrane
considered.

Actually, the above statement is tantamount to saying t
the coordinate functions of superbranes areGoldstone
fields.10 In flat superspace these Goldstone fields corresp
to the translational symmetry and global supersymmetry
are broken by the superbrane worldvolume@22,23# i.e., by
the position of the superbrane in superspace. Then, wh
brane or particle interacting with~super!gravity is considered
and, moreover, ~super!gravity is described by an action o
the same footing as the~super!brane, the global translation
and global supersymmetry are replaced bysuperdiffeomor-
phism symmetry, which is thegauge symmetry of the
coupled action@e.g., of the action~6.1!; see also Appendix
B 2!. Thus the coordinate functions in such a dynamical s
tem should be considered asGoldstone fields for gauge sym
metries.

The Goldstone fields for thegaugesymmetries arealways
pure gauge fields~compensators in the supergravity la
guage!. The ‘‘unitary’’ gauge where the Goldstone degrees
freedom are set to zero is always assumed in the cons
ation of Higgs phenomenon. For the case of spontaneo
brokeninternal gauge symmetry, the only trace of the inte
action with the Goldstone fields in this gauge turns out to
the mass termsin the gauge field equations. This is just th
content of the standard Higgs phenomenon.

Now, when the Goldstone fields forspacetime~or super-
space! gauge symmetry live on a subspace of spacetime~su-
perspace!, i.e., on the ~super!brane worldvolume or
~super!particle worldline, we may also expect a modificatio
of the equations for the spacetime~or superspace! gauge
fields. However, such a modification will only be produc
by terms with support on the worldvolume or worldlin
Hence these new terms modifying the gauge field equat
should be just thesource terms, like the rhs of Eq.~7.16!
below @in particular, forx̂ given by Eq.~7.6!#. Summarizing,
when the Goldstone fields are worldvolume fields, the co
terpart of the mass terms appearing in the gauge field eq

of
ve

In
s

10More precisely, the bosonic and fermionic Goldstone fields
identified, respectively, with the bosonic coordinate functions c
responding to the directions orthogonal to the worldvolume a
with a half of fermionic coordinate functions.
3-13
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tions as a result of the usual Higgs mechanism are precis
the source terms in the Einstein equation and in some o
gauge (super)field equations.

In complete correspondence with the usual Higgs p
nomenon, the bosonic ‘‘unitary’’ gauge~7.7! clearly cannot
remove the source from the Einstein equation. However,
super-Higgs effect@25# may be subtler when we havefermi-
onic Goldstone fields defined on a surface in superspace~i.e.,
on the superbrane worldvolume!. The gauge field equation
that acquire a source term as a result of the super-H
effect would be thesuperfield generalizationsof the Einstein
equations and other gauge field equations, including tha
the gravitino,C5JC @see Eq.~6.49!#. Let us discuss the
fermionicsuperfieldsource termJC . In the ‘‘unitary’’ gauge
û ǎ(j)50 one can expect thatJC}u ~we show below that
this is indeed the case for aD54,N51 supergravity-
superparticle interacting system!. Now let us recall that the
spacetime fermionic gauge field equation~the gravitino
equation! is given by theleading componentof the superfield
equationC5JC , i.e., by Cuu505JCuu50. Thus, if JC}u,
this givesJCuu5050. This means that thespacetimeequa-
tion for fermionic gauge field becomes sourceless,Cuu50

50, in the ‘‘unitary’’ gaugeû ǎ(j)50 @Eq. ~7.4! for the su-
perparticle#.

We hope to return to the discussion of the fate of
superbrane degrees of freedom and other issues of the~su-
per!Higgs phenomenon in the presence of superbranes
future publication. Here our goal is more immediate: to fi
the explicit form of the equations of motion of th
supergravity-superparticle interacting system in the fer
onic ‘‘unitary’’ gauge ~7.4!.

C. Gauge fixed form of the equations of motion
of the coupled system

In the WZ gauge supplemented by the condition~7.4!, the
coupled system action is reduced to the action for superg
ity interacting with a bosonic particle. After integration on
Grassmann variableu in the supergravity part of the couple
action ~6.1! this coupled action should become basically t
same as theD54 case of the action for thesupergravity-
bosonic particleinteracting system considered in Ref.@20#.
The only expected difference is the presence of the auxil
fields,Gauu50 ,Ruu50 ,R̄uu50, which are not essential as the
appear in the component action only through quadratic c
binations, without derivatives@9# and can be removed usin
their algebraic equations of motion. Furthermore, passin
the component approach to supergravity, which deals w
fields on spacetime, one excludes the superspace diffeo
phisms ddi f f(b

M) with uă→uă1bă(x,u) from consider-
ation. Then Eq.~7.5! is treated as the partial breaking of th
local spacetimesupersymmetry@20# @originating in d̃gc and
given by Eqs.~B20!,~B21!,~B22! with u50 andGauu5050
5Ruu50].

Having in mind the results of@20#, one would expect that
in the light of above correspondence, the auxiliary fie
should have vanishing values in the gauge~7.4! and that the
spacetime Rarita-Schwinger equations following from
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superfield action for the interacting system, Eq.~6.1!, would
be sourceless in this gauge.

The analysis indicates that this is indeed the case. Firs
the coupled system the scalar main superfields~2.10! are
equal to zero on the mass shell,R505R̄, Eqs. ~6.21!,
~6.22!. Thus Ruu5050,R̄uu5050. In contrast, the vecto
main superfield~2.9! becomes equal to the current potent
~6.29!, Eq. ~6.28!. HenceGauu505Jauu50. However, it is
seen thatJauu5050 in the gauge~7.4!. Indeed,Ja is con-
structed from the current prepotentials~6.25!,~6.26!,~6.27!,
which involve d8(Z2Ẑ)[@u2 û(t)#4d4(x2 x̂), Eqs.
~6.13!,~6.14!. In the gauge~7.4!

K a
a~Z!5~u!4E

W1
l ~t!F 1

Ê
ÊatÊ

aGU
û50

d4~x2 x̂!, ~7.8!

K̄a
ȧ~Z!5~u!4E

W1
l ~t!F 1

Ê
ÊatÊ

ȧGU
û50

d4~x2 x̂!, ~7.9!

K a
b~Z!5~u!4E

W1
l ~t!F 1

Ê
ÊatÊ

bGU
û50

d4~x2 x̂!,

~7.10!

i.e., all current prepotentials become proportional to
highest possible power in the superspace Grassmann co
nates,

û50 ⇒ H K a
b~Z!}~u!4,

K̄a
ḃ~Z!}~u!4,

K a
b~Z!}~u!4.

~7.11!

Thus only the action offour Grassmann covariant derivative
onK a

A(Z)5(K a
b,K a

a ,K̄a
ȧ) can produce an expression whic

has a nonvanishing value foru50. In particular,

û50 ⇒ Ja}~u!2, ~7.12!

and, hence, the auxiliary vector field of the minimalD
54,N51 supergravity vanishes on the mass shell in
gauge~7.4!,

û50, ⇒ Gauu505Jauu5050. ~7.13!

The Rarita-Schwinger equation can be derived settinu
50 in the superfield equation~6.49!. However, in accor-
dance with Eq.~7.11!, DAJauu5050. Hencethe spacetime
Rarita-Schwinger equation derived from the superfield
tion for the interacting supergravity-superbrane system
comes sourceless in the gauge (7.4),

û50 ⇒ Cȧ
a uu50[eabcdTbc

asdaȧuu505
i

4
D̄ȧJ a

u5050.

~7.14!

One can verify using Eq.~3.6! that, due to Eqs.~7.13!,
~6.21!, Tab

auu5052ea
meb

nD[mcn]
a (x). Hence the above state

ment is related to the true component gravitino equation
3-14



te

re

-

le
su

ip
er
e

om
dy

er
c

pe
y
th

.
in

e
le

h
on

sly
ity
ter

ys-

the
ys-
ity

-
re-
a

su-
ing

its
up-

of
ty-
f
nd
-
es
re

E.
v,
at

ally
ol-
nd

al

-

D54 SUPERGRAVITY DYNAMICALLY COUPLED TO A . . . PHYSICAL REVIEW D67, 065003 ~2003!
The component Einstein equation for the coupled sys
can be obtained by settingu50 in Eq. ~6.50!. Clearly, it
possesses a source term, but only from the spin 2 cur
prepotential, Eq.~6.27!,

Rbc
acU

u50
5

1

16
s̃b

ḃb@@Db ,D̄ḃ#J a#u50

5
1

64
s̃b

ḃbs̃c
ȧa@@Db ,D̄ḃ#@Da ,D̄ȧ#K ac#u50

5
1

64
s̃b

ḃbs̃c
ȧa@@Db ,D̄ḃ#@Da ,D̄ȧ#~u!2~ ū !2#u50

3E
W1

l ~t!F 1

Ê
Êt

cÊaG
û50

d4~x2 x̂!. ~7.15!

In the WZ gauge~3.8! @recall that it can be fixed simulta
neously with the gauge~7.4!#, where Eqs.~3.1!,~3.2! as well
as ~3.7! andEa

b̆u û505da
b̆ are valid, Eq.~7.15! reads

e~x!Rbc
acuu505cE

W1
l ~t!@ êbtê

a#d4~x2 x̂!, ~7.16!

where c is a constant andêa[dt et
a5dx̂m(t)em

a ( x̂) is the
pull-back to the worldline of the bosonic formea

5dxm em
a (x)5Eauu50. Equation ~7.16! coincides with the

one obtained from the supergravity-bosonic particle coup
action provided by the sum of the component action for
pergravity and the bosonic particle action@20#, for the case
D54.

VIII. CONCLUSIONS

We have provided in this paper a fully dynamical descr
tion of theD54,N51 supergravity and the massless sup
particle coupled system. It is given by the sum of the sup
field supergravity action@6# and the Brink-Schwarz action
@7# for the massless superparticle. We have derived the c
plete set of superfield equations of motion for such a
namical system.

The superfield generalizations of the Rarita-Schwing
~gravitino! equation and of the Einstein equation both a
quire source terms. These sources are determined by
Grassmann spinor covariant derivatives of one vector su
field Ja , the current ‘‘potential,’’ which is a current densit
distribution with support on the worldline that appears at
right-hand side of the vector superfield equation~2.9! for the
supergravity-superparticle coupled system.

The current potentialJa is covariantly conserved, Eqs
~6.34!,~6.35!, and turns out to be constructed from the sp
3/2 and spin 2 distributions~6.27!,~6.25!, which we call
‘‘current prepotentials.’’ These current prepotentials ob
Eqs. ~6.37!,~6.38!,~6.40!, as a result of the superpartic
equations of motion.

In the interacting system with dynamical supergravity, t
Goldstone nature of the superparticle coordinate functi
ẐM(t) @22–24# allows one to fix the gauge~7.4! that sets the
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Grassmann coordinate function equal to zero,û(t)50 ~cf.
@25#!. The analysis of the local~gauge! symmetries of the
coupled system shows that it is possible to fix simultaneou
û(t)50 and the Wess-Zumino gauge for the supergrav
variables. Clearly, with these gauge fixing conditions, af
integration over the superspace Grassmann coordinatesu and
the elimination of the auxiliary fieldsGauu50 ,Ruu50 ,R̄uu50
by means of their~algebraic! equations of motion, the
supergravity-superparticle interacting action~6.1! should re-
duce to the action for the supergravity-bosonic particle s
tem investigated in@20#. To verify this conclusion we have
studied the component equations of motion derived from
superfield equations for the supergravity-superparticle s
tem and shown that they do coincide with the supergrav
bosonic particle equations from@20# when both the WZ
gauge and the gauge~7.4! are used. In particular, in the re
sulting gauge the component Rarita-Schwinger equations
main sourceless while the Einstein equations acquire
source term from the~super!particle.

The net outcome of our analysis is that the complete
perfield action for the supergravity-superparticle interact
system has the supergravity-bosonic particle system as
gauge fixed version, as it is also the case for the gro
manifold based action for the coupled system@18#.

The applications of the present approach to the case
D54 supergravity-superstring and supergravi
supermembrane systems requires previous knowledge oD
54 superspace supergravity with additional two-form a
three-form in superspace~cf. @41#!. This, as well as an analy
sis of the~super-!Higgs effect in the presence of superbran
and the study of the interaction of supergravity with mo
than one superbrane, will be the subject of future work.
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APPENDIX A: CHIRAL PROJECTORS

The algebra of covariant derivativesDA , Eq. ~2.17!, is
encoded in the Ricci identities

DDVA5RA
BVB↔H DDVa5Ra

bVb ,

DDVa5Ra
bVb ,

DDVȧ5Rȧ
ḃVḃ ,

~A1!

whereVA5(Va ,Va ,Vȧ) is an arbitrary supervector with tan
gent superspace Lorentz indices. Decomposing Eq.~A1! on
the basic two-formsEA`EB, one finds~see@12,13#!
3-15
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@DA ,DB%VC52TAB
DDDVC1RABC

DVD . ~A2!

When the constraints ~2.12!,~2.13!,~2.14!,~2.16!,~2.18!,
~2.19!,~2.20! are taken into account, Eqs.~A1! @or ~A2!# im-
plies

$Da ,Db%Vg52R̄eg(aVb) , ~A3!

$Da ,D b%Vg52R̄V(adb)
g, ~A4!

$Da ,D̄ḃ%52isaḃ
a Da[2iDaḃ , etc.

~A5!

In their turn, Eqs.~A3!, ~A4! and their complex conjugate
determine the form of the chiral projectors, i.e., they can
used to prove the identities

~DD2R̄!D aja
ª~D bDb2R̄!D aja50, ~A6!

~D̄D̄2R!D̄ȧj̄ ȧ
ª~D̄ḃD̄ḃ2R!D̄ȧj̄ ȧ50,

Da~DD2R̄!U50, ~A7!

D̄ȧ~D̄D̄2R!U50,

whereja,j̄ ȧ are arbitrary spinor superfields andU is an ar-
bitrary scalar superfield. Note that the chiral projectors
different when acting on superfields with Lorentz group
dices, e.g.,

S DD1
1

2
R̄DDaU[0. ~A8!

APPENDIX B: ON SUPERDIFFEOMORPHISM
INVARIANCE AND SUPERSPACE GENERAL

COORDINATE INVARIANCE

In this appendix we present a complete account of all
manifest superfield gauge symmetries of superfield su
gravity. We discuss separately theactive and passiveforms
of general coordinate invariancewhich we callgeneral co-
ordinate symmetry, dgc , andsuperdiffeomorphism symmetr,
ddi f f , respectively. Although both symmetries are know
usually only one of these two symmetries are considere
the literature. The reason is that the invariance of the
grangian form in a field theory~or of the Lagrangian integra
form in a superfield theory! underddi f f implies immediately
the invariance underdgc ~see Appendix A 1 for further dis
cussion!. However, when dealing with a new type of syste
where some of the~super!fields live on a submanifold o
~super!space~e.g., on the superparticle worldline! while oth-
ers are defined on whole superspace, it is important to
into account thatddi f f and dgc act differently. In fact, this
difference is already seen even for ‘‘free’’ supergravity whe
we show~Appendix B 2! that the Wess-Zumino gauge is in
variant underdgc , whereas theddi f f transformations are bro
ken by the Wess-Zumino gauge fixing conditions down
spacetimelocal supersymmetry andspacetimediffeomor-
phisms.
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First, let us note that the set of superspace local Lore
transformations

dLEA5EBLB
A~Z!

⇔ 5
dLEa5EbLb

a~Z!, Lab52Lba
ªLab~Z!,

dLEa5EbLb
a, Lb

a5
1

4
Lab~sas̃b!b

a,

dLEȧ5EḃL ḃ
ȧ, L ḃ

ȧ52
1

4
Lab~sas̃b!ȧ

ḃ ,

dLwab5DLab, ~B1!

is a manifest symmetry of the constraints. Clearly, they
not act on the superspace coordinatesdLZM50.

Second, the constraints ~2.12!,~2.13!,~2.14!,~2.16!,
~2.18!,~2.19!,~2.20!, as relations among differential forms
are independent on the choice of a superspace local co
nate system. This evident statement can be formulated a
invariance undersuperdiffeomorphism~i.e., superspace dif-
feomorphism! transformationsddi f f ~see@20#!,

Z8M5ZM1bM~Z!: H x8m5xm1bm~x,u!,

u8ă5uă1«ă~x,u!,
~B2!

E8A~Z8!5EA~Z!, w8ab~Z8!5wab~Z!. ~B3!

The statement of the invariance of differential forms, E
~6.7!,

ddi f fZ
M5Z8M2ZM5bM~Z!, ~B4!

ddi f fE
A5E8A~Z8!2EA~Z!50, ~B5!

ddi f fw
ab5w8ab~Z8!2wab~Z!50, etc.,

~B6!

just implies that Eq.~B2! @or Eq.~6.9!# describes a change o
local coordinates, but does not act on the supersp
‘‘points.’’ 11 Thusddi f f invariance can be treated as thepas-
sive form of the general coordinate symmetry in superspa

Third, the set of constraints is invariant undergeneral
coordinate transformations of superspacedgc @6,13,20# ~ac-
tive form of general coordinate symmetry!. dgc is the sym-
metry under an arbitrary change of superspace ‘‘points’’~in
contrast to a change of local coordinates as in the cas
ddi f f)

dgcZ
M5tM~ZM !. ~B7!

11The prime under differential form means, e.g.,E 8A(Z8)
[EA@Z(Z8)#. Thus Eq. ~B5! is the trivial identity EA(Z)
[EA@Z(Z8)# reflecting the freedom of choosing an arbitrary loc
coordinate system. Nevertheless, theform invarianceof an action
or of an equation underddi f f requires the model to be formulate
using the supervielbein superfield~in the bosonic case, when spino
fields are absent, it is enough to introduce a metric field!. Thusddi f f

can be used as a gauge principle for gravity and supergravity m
els.
3-16
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The transformation of differential forms under the change
arguments~B7! is given by the Lie derivativeLt[ i td
1dit , i.e.,

dgcE
A~Z!ªEA~Z1t !2EA~Z!

5L tE
A~Z!5 i tT

A1D~ i tE
A!1EBi twB

A,

~B8!

dgcw
ab~Z!ªwab~Z1t !2wab~Z!

5Ltw
ab~Z!5 i tR

ab1D@ i tw
ab~Z!#, etc.,

~B9!

where

i tE
A5tMEM

A 5:tA, ~B10!

i tw
ab~Z!5tM~Z!wM

ab~Z!5tA~Z!wA
ab~Z!, ~B11!

i tT
A5EBtCTCB

A, i tR
ab5EBtCRCB

ab . ~B12!

The last terms in Eqs.~B8!,~B9! can be regarded as
Lorentz transformation~B1! induced by dgc , dL(Lab

5 i tw
ab) and, thus, they can be conventionally ignored in

manifestly Lorentz invariant theory. In other words, one m
consider, equivalently, the superposition of transformati
dgc(t)1dL(Lab52 i tw

ab) instead of the originaldgc(t).
These transformations were calledsupergauge transforma
tions in @13#.

The simplest way to see that the constraints are invar
under the superspace general coordinate transformationdgc
is to recall thatdgc implies moving from one superspac
‘‘point’’ to another one and that, since the constraints a
satisfied at any superspace ‘‘point,’’ they are invariant.12

Note also that the transformations of superforms,~B8!,
~B9!, dgcT

A5Di tT
A1 i tDTA, etc., imply the usual transfor

mation rules for the~super!tensors~zero forms!. For in-
stance, forTCB

A defined by Eqs.~2.2!–~2.4!, TA
ª

1
2 EC

`EBTBC
A, one obtainsdgcTCB

A5tDDDTCB
A.

The fermionic general coordinate transformations~B7!,
~B8!, with parametertM(Z)5ea(Z)Ea

M(Z), i.e., @see Eq.
~B10!#,

i eE
a50, i eE

a5ea~Z!, ~B13!

can be treated as a local supersymmetry@13#, while the
bosonic transformations~B7! with parameter tM(Z)
5ta(Z)Ea

M(Z) provide the superfield generalization of th
spacetime general coordinate transformations. However,
such treatment, the origin of the local supersymmetry of
componentformulation of supergravity, i.e., of supergravi
formulated as a theory of fields on spacetime, becom
slightly obscure. The following observation helps to ma
the above-mentioned relation clearer.

12Denote the set of constraints byC2
A(Z)[ 1

2 EB`ECCCB
A(Z)

50. They are satisfied at any superspace pointZM. Thus C2
A@Z

1t(Z)#50 too anddgcC2
A(Z)5C2

A@Z1t(Z)#2C2
A(Z)50.
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Since diffeomorphism invarianceddi f f(b
M) @Eqs. ~B2!,

~B3!# is guaranteed, one can consider, instead of Eq.~B7!,
thevariational version of the general coordinate transform

tions @6# d̃gc with parametertA(Z)5tMEM
A
ª i tE

A, defined
by ~see@21#!

d̃gc~ tA!5dgc~ tM !1ddi f f~bM52tM !1dL~Lab52 i tw
ab!.

~B14!

d̃gc(t) does not act on the superspace coordinates and ac
superforms through the covariant Lie derivative

d̃gcZ
M50, ~B15!

d̃gcE
A~Z!5 i tT

A1DtA, ~B16!

d̃gcw
ab~Z!5 i tR

ab, etc. ~B17!

The superfieldlocal supersymmetryd ls(e
a) can be iden-

tified with the variational versiond̃gc(e
a) of the fermionic

general coordinate transformations~B15!,~B16!:

d ls~ea!5 d̃gc@ ta50,ta5ea~Z!,t ȧ5 ē ȧ~Z!#. ~B18!

Then the relation with the local supersymmetry of the co
ponent formulation of supergravity becomes especially tra
parent.

Indeed, Eqs.~B16!,~B17! with the torsion and curvature
two-forms from Eqs.~2.12!, ~2.13!, ~2.14!, ~2.16!, and tA

5@0,ea(Z),ē ȧ(Z)# provide us with the following local su-
perspace supersymmetry transformations

d lsZ
M50 ⇔ H d lsx

m50,

d lsu
ă50,

~B19!

d lsE
a522iEasaḃ

a
ē ḃ~Z!22iĒ ȧsbȧ

a eb, ~B20!

d lsE
a5Dea1

i

8
Ea@~esas̃b!aGb1~ ēs̃a!aR#, ~B21!

d lsĒ
ȧ5Dē ȧ2

i

8
Ea@~ s̃bsaē !ȧGb1~ s̃ae!ȧR̄#, ~B22!

d lsw
ab52E(aeb)R̄2

i

8
Ea@~ s̃a!ġ(aeb)D̄ġR̄

1~esas̃b!(aD b)Gb#. ~B23!

The superspace local supersymmetry transformationsd ls of
the main superfields~2.9!–~2.11! are determined by

d lsR5eaDaR, d lsR̄5 ē ȧD̄ȧR̄, ~B24!

d lsG
a5eaD aGa1 ē ȧD̄ȧGa, ~B25!

d lsW
abg5edDdWabg, d lsW̄

ȧḃġ5 ē ḋD̄ḋW̄ȧḃġ.
~B26!
3-17
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Settingu50 in the d ls transformations~B20!–~B26! we
arrive at the transformation rules of theoff-shell supersym-
metry characteristic of the minimal formulation of theD
54,N51 supergravity. To this end one needs the express
of the spinor derivatives of the main superfields in terms
the Riemann curvature@Rcd

ab, Eqs. ~2.15!,~2.26!# and the
gravitino field strengths@Tbc

a ,Tbc
ȧ , Eqs. ~2.22!,~2.23!# with

the use of the consequences of the constraints~2.12!,~2.13!,
~2.14!,~2.16!,~2.18!,~2.19!,~2.20!. For instance,DaR and
D̄ȧR̄ are expressed through the gravitino field strengthTabb
with the use of Eq.~2.24!.

The variational version of the superspace general coo
nate transformationsd̃gc with bosonic parametersta can be
called ‘‘local translations,’’d l t5 d̃gc(t

a,ta50)

d l tZ
M50 ⇔ H d l tx

m50,

d l tu
ă50,

~B27!

d l tE
a5Dta1

1

8
Eb«abcdtc~Z!Gd , ~B28!

d l tE
a52

i

8
Ebta~sas̃b!b

aGb1
i

8
ĒḃeabtasabḃR

1EbtaTab
a, ~B29!

etc.

In the pure bosonic case it is precisely this symmetry~this
form of the spacetime general coordinate invariance! that
provides the possibility of treating general relativity as
gauge theory of the Poincare´ group@42# ~see@21# for further
discussion!.

1. Gauge symmetries of the ‘‘free’’ supergravity
superfield action

The action~4.1! is evidently invariant under the superdi
feomorphisms~B2!,~B3!,

ddi f fSSG50. ~B30!

This invariance is a simple consequence of the possibility
changing variables inany integral ~see footnote 11!; but
moreover, in our case the action isform invariant as the
theory is formulated in terms of the supervielbein.

In the pure bosonic case, where the counterpart of
above statement means that the action is an integral
differential form~Lagrangian form!, S5*MDLD , the general
coordinate invariance follows then from the simple obser
tion that the variation of the Lagrangian form underdgc , as
well as underd̃gc , is given ~see@21#! by a Lie derivative:
dgcLD[d̃gcLD5 i tdLD1d( i tLD). Then the first term van-
ishes as it contains the exterior derivative ofD-form on a
D-dimensional manifold, while the second term is a to
derivative which does not contribute for a spacetimeMD

without boundary. This statement is usually treated a
manifestation of the equivalence between the active and
sive forms of general coordinate transformations. Howe
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although these symmetries imply each other in field theor
their role is different as we show in Appendix C@Eqs.~C2!,
~C3!#.

In the case of superspace the action is written in terms
an integral~Berezin! form. Nevertheless, the general coord
nate invariance of the superdiffeomorphism invariant act
can be also established easily. For instance, to prove the
variance of the action~4.1! under the variational version
d̃gc(t

A) ~B15!,~B16!,~B17! of the superspace general coord
nate transformations, including local supersymmetry@Eqs.
~B19!,~B20!–~B26!#, one has to use the identity

E d4x d̃4u E~D AjA1jBTBA
A!~21!A[0, ~B31!

which is valid for any complex superfield jA

5@Ca(Z),na(Z),m̄ȧ(Z)#.
A variation of superdeterminant has the form

dE[EEA
MdEM

A~21!A. ~B32!

To computed̃gcE one substitutesi M( d̃gcE
A) from Eq. ~B16!

for dEM
A, and finds

d̃gcE5E~21!AD AtA1E~21!AtBTBA
A. ~B33!

Then the identity~B31! implies

d̃gcSSG5E d8Z E~D AtA1tBTBA
A!~21!A50.

~B34!

This completes the proof of general coordinate symmetry
Note that, as the constraints of minimal supergrav

~2.12!,~2.13! imply (21)ATBA
A50, the identity~B31! sim-

plifies to

E d8ZED AjA~21!A50. ~B35!

Since d ls5 d̃gc@ tA5(0,ea)#, Eq. ~B18!, this proves, in
particular, the invariance under the local supersymme
transformations~B19!–~B26! @which imply, e.g.,d lsEM

a 5

22iEM
a saḃ

a
ē ḃ(Z)12iĒM

ȧ sbȧ
a eb]. Specifically, one finds

d lsSSG52E d8Z ED aea5E d8Z DM~EEa
M !ea

[2E d8Z TaA
A~21!Aea50. ~B36!

2. On the gauge symmetries of the supergravity-superparticle
coupled system

The invariance of the coupled action under supersp
diffeomorphismsddi f f follows from the fact that Eqs.~6.10!,
~6.9!,~B5! imply

ddi f f Ê
a5Ê8a~ Ẑ1ddi f f Ẑ!2Ê~ Ẑ!50. ~B37!
3-18
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Thus

ddi f fSsp50 ~B38!

and, sinceddi f fSSG50 @Eq. ~B30!# we find

ddi f fS50. ~B39!

On the other hand, as the superspace coordinatesZM @not
to be confused withẐM(t)] do not enter in the superparticl
action, the general coordinate transformationsdgc @Eqs.
~B7!,~B8!# supplemented by the definition

dgcẐ
M~t!50, ~B40!

trivially give dgcSsp50, and the invariance of the supergra
ity action dgcSSG50 gives

dgcS50. ~B41!

Then the invariance under the variational copy of the sup
space general coordinate transformations,d̃gc , Eqs. ~B15!,
~B16! supplemented by the definition

d̃gcẐ
M~t!52tM~ Ẑ![2ta~ Ẑ!Ea

M~ Ẑ!2ea~ Ẑ!Ea
M~ Ẑ!

2 ē ȧ~ Ẑ!Eȧ
M~ Ẑ!, ~B42!

follows from thedgc andddi f f invariances,13

d̃gcS[d̃gcSsp50. ~B43!

Note that in the ‘‘superparticle sector’’ of the configuratio
space of the interacting system the action ofd̃gc , Eq. ~B42!,
coincides with the action of diffeomorphism transformation

In particular, the transformation of the fermionic coord
nate functionû ă(t) under the full set of local symmetries o
the interacting system@including ddi f f(b) Eq. ~6.10! and
d̃gc(t), Eq. ~B42! and the worldlinek symmetry# acquires
the form

dûă~t!5bă~ Ẑ!2t ă~ Ẑ!1dkûă~t!, ~B44!

wheredkûă(t) is defined by the Eq.~5.15! with M5ă.

APPENDIX C: MORE ON THE WESS-ZUMINO GAUGE

1. Decomposition of superfields in the
Wess-Zumino gauge

The decomposition of the superfieldsEă
a,Eă

a,wă
ab in

power series onu is completely determined by Eqs.~3.14!,
~3.15!,~3.16!. To make such an expansion explicit one c
use the formal operator@28#

13The breaking ofd̃gc invariance, discussed in@20,21#, is a spon-
taneous symmetry breaking.
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~11u]!
5

1

~11uaDa!
. ~C1!

The action of such an operator is well defined on superfie
~as they are polynomials inu) and produces expressions in
volving covariantGrassmann derivativesDa when Eq.~C1!
acts on the torsion and curvature superfields. For insta
from Eq. ~3.14! one finds

Eă
a~Z!5

1

~11u]!
ubTbă

a 5ub
1

~21uaDa!
~Eă

CTCb
a !,

~C2!

where we use Eq.~3.13! and the identity

1

~k1u]!
ub[ub

1

~k111u]!
~C3!

@which follows from (k1u])ub5ub(k111u])].
As one more example, let us present the explicit form

thedu component of the expression~3.17!, which enters Eq.
~3.15!:

D ăub5d
ă

b
1ugwăg

b

5d
ă

aS da
b
1

1

4
ugGabg

b
1

~11u]!
ubRba

abD
5d

ă

aS da
b1

1

4
ugGabg

bub
1

~21ueDe!
Rba

abD .

~C4!

The complete decomposition of thedxm components of
the formsEa, Ea, wab is governed by thedxm components
of Eqs.~3.14!, ~3.15!, ~3.16!, e.g.,

u]Em
a 5Em

BubTbB
a52ubEm

BTBb
a. ~C5!

Clearly, Eq.~C5! involves the nilpotent operatoru][uă]ă
5uaDa . This nilpotent operator has an evident kernel: t
leading component of the superfield, e.g.,Em

a uu505em
a (x).

However, as it was observed in@28#, this operator can be
considered asinvertible in the space of superfields with th
vanishing leading components. Thus one can write as wel
the formal expansion forEm

a by subtracting the kernel
Em

a (Z)→@Em
a (Z)2Em

a uu50# ~thus arriving at a superfield
with a vanishing leading component! and using the formal
relation~C3! with k50 ~which is meaningful in the space o
superfields with vanishing leading components! to arrive at

Em
a ~Z!5Em

a uu502ub
1

~11uaDa!
@Em

B~Z!TBb
a#. ~C6!
3-19
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2. Gauge symmetries preserving the Wess-Zumino gauge

To find the full set of local symmetries that preserve t
WZ gauge~3.8!14 one may write the infinitesimal variation
ddi f f(b

M),d̃gc(t
A),dL(Lab) of the WZ conditions~3.8! and

require their preservation,

@uă1bă~Z!#@E8ă
A~Z8!1dLEă

A~Z!1 d̃gcEă
A~Z!#

5@uă1bă~Z!#dă
A , ~C7!

@uă1bă~Z!#@w8ă
ab~Z8!1 d̃gcwă

ab~Z!1dLwă
ab~Z!#50.

~C8!

Here d̃gc is defined by Eqs.~B15!,~B16!,~B17! and the
primes reflect the superdiffeomorphism transformations, E
~B15!,~6.7!, or ~B5!,~6.9!. Hence

Eă8
A~Z8!5Eă

A~Z!2]ăbMEM
A ~Z!, ~C9!

wă8
ab~Z8!5wă

ab~Z!2]ăbMwM
ab~Z!. ~C10!

The termsd̃gcEă
A(Z) and d̃gcwă

ab(Z) in Eqs. ~C7!,~C8! are
defined by the contraction of Eqs.~B16!,~B17!,

d̃gcEă
A~Z!5tBTBă

A 1D ătA, ~C11!

d̃gcwă
ab~Z!5tDRDă

ab . ~C12!

Finally, the Lorentz transformations have the standard fo
~B1!,~3.21!,

dLEă
A~Z!5Eă

B~Z!LB
A~Z!, ~C13!

dLwă
ab~Z!5D ăLab~Z!, ~C14!

LB
A~Z!5S Lb

a 0

0 Lb
aD , Lab52Lba,

Lb
a5 1

4 Labgab b
a. ~C15!

By algebraic manipulation with the use of the recurre
relations~3.14!,~3.15!,~3.16!, one can present Eqs.~C7!, ~C8!
in the form

u]~bA2tA!5~bB2tB!ugTgB
A1ug~Lg

b2bMwMg
b!,

~C16!

14Note that we do not use here the ‘‘prepotential’’ form of the W
gauge described in footnote 4, and shall not address the issu
residual symmetries in such gauge. This requires a separate stu
a number of gauge symmetries have to be fixed before one ar
at the expression in terms of auxiliary vector superfield and ch
compensator, and, on the other hand, the solutions of the constr
are defined modulo additional gauge symmetry transformatio
Thus all our statements below are for the Wess-Zumino gauge~3.8!
fixed through the conditions on thepotentialsof the superfield su-
pergravity.
06500
s.

t

u]@Lab~Z!2bMwM
ab#52~bD2tD!ugRCgD

ab.
~C17!

SettingtA50 in Eqs.~C16!,~C17!, one arrives at Eqs.~3.19!,
~3.20!.

At zero order of the weak field approximation one fin
the set of equations@cf. ~3.23!–~3.25!#

u]~ba2ta!522i ~«b2eb!gbg
a ug, ~C18!

u]~«a2ea!5ubLb
a, ~C19!

u]Lab~Z!50, ~C20!

which are solved by

ta~Z!2ba~Z!5t2
a ~x!22iugae2~x!2

i

4
u~gbcg

a!u l bc~x!,

~C21!

ea~Z!2«a~Z!5e2
a ~x!2ubl b

a ~x!, ~C22!

Lab~Z!5 l ab~x!, ~C23!

wheret2
a (x),e2

a (x) are arbitrary vector and spinor function
and l ab(x) are local Lorentz parameters.

In the general case the WZ gauge is preserved by the
of the original superspace local symmetry corresponding
the parameters that are not restricted by Eqs.~3.19!,~3.20!.
These are thesuperfieldparameter

t1
A ~Z!5bA~Z!1tA~Z!, ~C24!

the vector and spinorfield parameters

t2
A ~x!5@ t2

a ~x!,e2
a ~x!#5@ tA~Z!2bA~Z!#uu50 ,

~C25!

and the antisymmetric tensorfield parameter

l ab~x!5Lab~Z!uu50 . ~C26!

In particular, both the spacetime diffeomorphisms a
general coordinate transformations@with parameters
ba(Z)uu50 ,ta(Z)uu50], as well as Lorentz@ l ab(x)# and local
supersymmetry@ea(x)5ea(Z)uu50# transformations pre-
serve the WZ gauge.

3. On the general coordinate invariance of the
Wess-Zumino gauge

The fact that the conditions~3.19!, ~3.20! on the param-
eters of the symmetry that preserve the WZ gauge do
restrict also the superfield parameter~C24! requires some
comments. Equation~B14! can be rewritten as

dgc~ tM !5 d̃gc~ tA!1ddi f f~bM5tM !1dL~Lab5 i tw
ab!.

~C27!

Then, Eqs.~3.19!,~3.20! become the identity 0[0 when
bM5tM, Lab5 i tw

ab. This observation shows that the supe
field symmetry which preserves the WZ gauge is just

of
as

es
l

nts
s.
3-20



.
Z
i
s
Z

al
id

ce
ov
ti
rm

is

it
ez
t o

-
e
i-

s
im

It

on
rd

f s
a-

i
he
it

ol

f

be
-

-

r-

nin
ity

a
er
ac

-
w-

nt
e
ut
d

ari-
ulled

the
is a
ce

D54 SUPERGRAVITY DYNAMICALLY COUPLED TO A . . . PHYSICAL REVIEW D67, 065003 ~2003!
general coordinate symmetry in its original formdgc , Eqs.
~B7!,~B8!,~B9!. This can be also verified straightforwardly

Actually, the general coordinate invariance of the W
gauge~3.8! is natural and should be expected if one has
mind that the general coordinate transformations imply pa
ing from one ‘‘point’’ of superspace to another, while the W
gauge~3.8! is valid at any superspace ‘‘point.’’15

It is instructive to understand how this symmetry is re
ized in the spacetime supergravity action. Let us cons
first a superfield action with a full superspace~Berezin! mea-
sure @e.g., the functional~4.1!# which possesses superspa
general coordinate invariance. Then one can integrate
the Grassmann variables and arrive at a component ac
written as the integral over spacetime of a Lagrangian fo
expressed in terms of spacetime fields. However, as th
still the sameaction, it should still possess thesuperspace
general coordinate invariance. But, on the other hand,
independent of the Grassmann variables after the Ber
integration. The resolution of this apparent paradox is tha
the component fields thesuperspacegeneral coordinate
transformations~B7!,~B8! are realized nonlinearly, with only
the subgroup ofspacetimegeneral coordinate transforma
tions acting linearly. For instance, on the spacetime vielb
form ea(x)5Ea(Z)uu50,du50 the superspace general coord
nate symmetry with parameterstM(Z)5„tm(x,u),eǎ(x,u)…
acts asea(x)→ea@x1t(x,u)#uu1e(x,u)50 „cf., the nonlinear
realization of the superspace supergravity supergroup
@26#; it is instructive to note that the above expression s
plifies if the superfieldeǎ is assumed to be independent ofu,
eǎ(x,u)5e0

ǎ(x); in this case one findsea(x)→ea$x1t@x,
2e0(x)#%….

The role of superdiffeomorphism symmetry is different.
allows us to choose a coordinate system in superspace~the
WZ gauge! where all the higher terms in the decompositi
of supervielbein superfields on powers of Grassmann coo
nates are expressed in terms of leading components o
pertensors~torsion, curvature, and their covariant deriv
tives!.

The additional hidden superspace general coordinate
variance of the component supergravity action may s
some light on the transition from the superfield action to
component form that uses ‘‘Ectoplasm’’ ideas@43,15#, as
well as on the existence of the rheonomic or group manif

15A bosonic counterpart of the above statement is that the defi
conditions of the normal coordinate system in general relativ
xm@em

a (x)2dm
a #50, xmvm

ab50, are invariant under the active form
of spacetime general coordinate transformationsxm→xm1tm(x),
ea(x)ªdxm em

a (x)→ea(x1t)5ea(x)1 i tdea1dite
a. This again

can be easily explained by observing that the above conditions
valid at any spacetime point and that the active form of the gen
coordinate transformation implies just replacement of one sp
time point by another.
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approach to supergravity@19#16 and of a related treatment o
the D510 superfield superstring action@45#.

APPENDIX D: ON WORLDLINE SYMMETRIES OF THE
BRINK-SCHWARZ SUPERPARTICLE ACTION

The reparametrization symmetryd r , Eqs.~5.21!,~5.22!, is
the gauge symmetry of the superparticle action which can
identified with thevariational version of the worldline gen

eral coordinate transformations, d̃wgc , because the transfor
mations~5.20!, ~5.21!, ~5.22! do not act on the proper timet.
Note that, actually, as the natural definition ofd̃wgc„s(t)…
@cf. ~B15!,~B16!# is provided by

d̃wgctª0, ~D1!

d̃wgcẐ
M~t!5s~t!]tẐ

M~t!, ~D2!

d̃wgcl ~t!5 l ]ts2s]tl , ~D3!

the transformationd̃wgc differs from d r by one more local
symmetry,dh„h(t)…,

dhẐM~t!5h~t!@Êt
aEa

M~ Ẑ!1EC t
ȧĒȧ

M~ Ẑ!# ~D4!

⇔ H i hÊa50,

i hÊa5h~t!Êt
a ,

i hEC ȧ5h~t!EC t
ȧ ,

~D5!

namely,

d r~r !5 d̃wgc~s5r !1dh~h52r !. ~D6!

Note thatdh(h(t)) is present in the Brink-Schwarz superpa
ticle in any spacetime dimensionD where the gamma-
matrices can be chosen to be symmetric.

g
,

re
al
e-

16The rheonomic approach to supergravity@19# is based on a gen
eralized action principle constructed in accordance with the follo
ing prescriptions~see@44,18#!: ~i! one takes the usual compone
action,~ii ! writes it in the first order form, without using the Hodg
duality operator, and~iii ! replaces all the fields by superfields, b
taken on the surfaceM D in D-dimensional superspace define

parametrically byu5 ũ(x), where ũ(x) is an arbitrary fermionic
function of spacetime coordinates. Such an action is clearly inv
ant under superspace general coordinate transformations p

back onto the surfaceM D. On the other hand, settingũ(x)50 one
arrives at the first order form of the component action, where
superspace general coordinate invariance is not manifest, but it
hidden symmetry allowing one to go back to an arbitrary surfa
M D in superspace~cf. the rheonomic principleof @19#!.
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ḃ

da
b 0 D . ~R6!

Note that, as a matrix,B5g0, where
3-22



s.
-

,

iss.

D54 SUPERGRAVITY DYNAMICALLY COUPLED TO A . . . PHYSICAL REVIEW D67, 065003 ~2003!
ga
ab5S 0 saḃ
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