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We consider the interacting systembDf=4,N=1 supergravity and the Brink-Schwarz massless superpar-
ticle as described by the sum of their superfield actions, and derive the complete set of superfield equations of
motion for the coupled dynamical system. These include source terms given by derivatives of a vector super-
field current density with support on the worldline. This current density is constructed from the spin 3/2 and
spin 2 current density “prepotentials.” We analyze the gauge symmetry of the coupled action and show that it
is possible to fix the gauge in such a way that the equations of motion reduce to those of the supergravity-
bosonic particle coupled system.
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I. INTRODUCTION izedD =10,N=1 supergravity anfl5] for recent progress in
the superfield description @ =11 supergravity. For these

There has recently been a search for self-consistent equaases we proposed [i8] to use the sum of the group mani-
tions for supergravity coupled to a superbrane. They aréold action for supergravity19] and the superbrane action as
needed, in particular, for the analysis of anomalies in Mthe basis for a Lagrangian description dyfnamicalsuper-
theory[1] and in relation to the seardl2] for a supersym- gravity and the superbrane source system. Then it was shown
metric brane world scenaria]. in [20] that the bosonic “limit” of such a dynamical system,

In lower dimensionsD=3,4 (and forD=6 using har- provided by the component formulation for supergravity
monic superspackt]), where a superfield action for super- coupled to the bosonic brane, is self-consistent and preserves
gravity exists, one may develop a conventional approach td/2 of the local supersymmetry of “free” supergravitgf.
the supergravity-superbrane systems by using the sum of th&], where supergravity interacting with bosonic brafirsd
superfield action of supergravity and the superbrane actiorat the orbifold fixed “points” is considered
Such a superfield Lagrangian description of the low- The approach of18] is general and could be applied, in
dimensional supergravity-superbrane coupled system prgrinciple, to any coupled supergravity-superbrane dynamical
vides a possibility to study the structure of the superfieldsystem provided that the group manifold approach to the
current densities of the supersymmetric extended objectspecific supergravity considered exisfhis requires its
which might produce some insight in the search for a newsearch if it is not known, e.g., fdd =10 type IIA and type
superfield approach to higher dimensional supergravity in théB supergravity. On the other hand, the results[d] (see
line of Ref.[5]. also[20,21]) were not quite what one would commonly ex-

In this paper we give a fully dynamical superfield descrip-pect. In particular, while the supersymmetric generalization
tion of the simplestD=4N=1 supergravity-superparticle Of the Einstein equation acquired the expected source term
interacting system, given by the sum of the superfield actiofirom the supep-brane, the superform generalization of the
for supergravity[6] and the Brink-Schwarz action for the Rarita-Schwinger equation remained sourcelgs3. One
massless superpartic[@]. We derive the complete set of might wonder whether these properties would be reproduced
superfield equations of motion and find that theperfield by the conventional superfield approach to the dynamically
generalizations of the Einstein and Rarita-Schwinger equahteracting system. Showing that this is indeed the case is an
tions acquire source terms. Both sources are determined tggditional motivation for the present study.
the action of the Grassmann spinor covariant derivatives on In this paper we also analyze the gauge symmetry of the
the vector superfield current density distribution, which, incoupled action and find that it is possible to fix a gauge in
turn, is constructed from the spin 3/2 and spin 2 currenivhich the superparticle coordinate function is zef§7)
“prepotentials.” =0,! and that incorporates the Wess-ZumifWwz) gauge

The D=3,4 superfield supergravity actid] (see also for supergravity. We show that in this gauge the equations of
[8—10]) possesses off-shell supersymmetry and can be writmotion for the supergravity-superparticle coupled system re-
ten, after integration of Grassmann variables, as a spacetimftice to those for the supergravity-bosonic particle coupled
supergravity action(see, e.g.[11-15) involving the so-
called auxiliary fields(real vector and pseudoscalar for
“minimal” supergravity, see, e.g{8-10). In higher dimen- This fact reflects the Goldstone nature of the superparticle coor-
sions,D=10,11, neither the superfield action nor the set ofdinate functiong22—24 and is related to the super-Higgs effect
auxiliary fields are knowrisee, however,16,17 for linear-  [25] (see alsd26]).
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system derived if20] (for any dimensionD). The super- active and passiveform of the superspace general coordi-
field action in this gauge should also coincide with the actiomate transformations which we call general coordinate
considered in[20] after integration over the superspace transformationsandsuperdiffeomorphismsespectively(see
Grassmann coordinatés not to be confused with the fermi- [20,21]). Appendix C contains more details on the Wess-
onic function #=8(7)] and elimination of the auxiliary Zumino gauge. We determine there the complete set of re-
fields by using theifpurely algebraig equations of motion. ~Sidual gauge symmetries which preserve this gauge. Surpris-
This explains the self-consistency of the supergravityingly, by discussing all the gauge symmetries we find that the
bosonic particle coupled system, which was studief2tj. ~ Wess-Zumino gauge is invariant under the active fqrm of the
This paper is organized as follows. The first three section§uperspace general coordinate transformatiomaddition to
are devoted to the minimal off-shell formulation of simple the well knownspacetime locasupersymmetry and Lorentz
supergravity inD=4N=1 superspace. In spite of the fact Symmetry as well aspacetimediffeomorphismg We dis-
that much of the material in these sections can be found i§uSs briefly the role of this additional superfield gauge in-
books [12—15 and original articled9,11,27,28 we have Variance. Finally, Appendix D collects more details about the
found it necessary to present it here in a unified notation. Symmetries of the Brink-Schwarz superparticle action.
Specifically, we describe in Sec. Il the superspace torsion
constraints and their consequences derived with the use of Il. D=4,N=1 SUPERGRAVITY IN SUPERSPACE
Bianchi identities, collect them in compact differential form,

and present the expressions for the left-hand sfttesss) of (ljnown facts about the off-shell description D=4, N=1

the superfield generalizations of the Rarita-Schwinger an T Lo .
. ; . . : .~ Supergravity in superspace. All the formulas in this section
Einstein equations in terms of the so-called main superfields ="~ . . : .
. . o : coincide with those if13] up to some signs and numerical
and their covariant derivatives. In Sec. Ill we describe thecoefficients in definitions. However, they are written here in
complete form of the Wess-Zumino gaugixed through . . » Ney
» X . o a more compact differential form notation.
conditions on the superfield supergravigtentials i.e., on
the supervielbein and spin connecticand describe the re-
sidual gauge symmetry which preserves this Wess-Zumino ’
gauge. Let {zM}={x* 6"} be the coordinates of curve®
In Sec. IV we present the Wess-Zumino action @r =4N=1 superspac& “4). Here 6* (¥=1,2,3,4) are real
=4N=1 supergravity and comment on the derivation of Grassmann coordinatém flat superspace, as well as in the
“free” superfield equations of motion. Section V describes Wess-Zumino gauge, a Majorana spié; «=1,2,3,4). An
the D=4,N=1 Brink-Schwarz superparticle action in a su- unholonomic basis of the cotangent superspace is provided
pergravitybackground(i.e., without assuming any action for by the supervielbein one-forms
superfield supergravijy

In this section we summarize our conventions and some

A. Superspace constraints for minimal supergravity

In Sec. VI we present the coupled action for the=4,N EA=(E3 E%)=(E?E%E,),
=1 supergravity-superparticle interacting system and study
its gauge symmetrySec. VIA) which turns out to be the E2=dZME}(2),
“direct sum” of supergravity and superparticle gauge sym-
metries. We derive the superfield equations of motion for the E*=dZMEY(2),
coupled systeniSec. VIB) and study the properties of the Ee=dZMEf;(2)~

Fa_A7M Ea
superfield current potential and prepotenti@sc. VI Q. We E“=dZ" En(2).
also find the superfield generalizations of the Rarita- (2.)

Schwinger and Einstein equations, both of which contain, ihis paper we mainly use Weyl spinors notation (

source terms. ) =1,2, «=1,2), except for Secs. Ill and VII, where Majo-
In Sec. VIl we show that the gauge symmetries of therana spinors are usdagl.

ol fomlonic boordinats functioms arb sot taual to aare. A1 off-shellsupergravity multiplet can be extracted from
b q he general superfield§2,(Z), E(Z)=(E%(Z).Ema(Z))

We explain why the coupled action in this gauge reduces t 4 . h )
the action of component supergravity interacting with a2 ,IMPOSIng the constraints on some components
Rcp??, of torsion 2-forms,

bosonic particle. We show that the dynamical equations follce
lowing from the superfield action are reduced to the equa- 1
tions for the supergravity-bosonic particle coupled system T2:=DE®=dE®— EPAw,2=-EBAECT s, (2.2
[20] in this gauge. We comment briefly on the bosonic coun- 2
terpart of this gauge in general relativity with sources and on
the relation of these results with ttigsupej Hig.gs effect in T*:=DE*=dE*— Eﬁ/\WBaE
the presence of superbranes, and conclude in Sec. VIII.
Some technical results and additional discussion are given
in the Appendices. Appendix A describes the chiral projector
in D=4,N=1 superspace. In Appendix B we present the
complete list of manifest localgauge symmetries of the
superspace formulation of supergravity. We discuss both thand the curvature

EBAECTEs, (2.3

N -

EBAECTSs, (2.9

N| -

T*=DE*=dE*— E'E/\W'Bth
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1 o . — i — o~ A
RP:=dwAP— waAw L= EEC/\EDRDCab (2.5 Ta=§EC/\EBEQ%CBBR—gEC/\EB(adaC)“,;Gd
of the spin connection one-form®°=dz" w,,3P= —wb3, +%E°/\EbTbcd. (2.19
1 . =~ . 1 o~ : . . .
Wﬁazzwa (0400) 5% W5o= —ZWEl (0a0p) %5, The superspace Riemann curvature 2-form is determined

26

R3P:=dwAP— waAw,P
The constraints of minimal supergravit$0,8,13,9 include €
T.50= —2ia§B as well asT,*=0=T,;", T,37=0, T,°

=0, andR,;**=0 (or To,’=0 as, e.g., in13)).% In the
presence of the complete set of constraints, the Bianchi iden-
tities with

1 ~ 1 .-
=S R0 1= SRU(GT00) 5, (219

DT3=—EPARR?,
DTA=—-EBARgAe{ DT*=—EPARs" (2.7
DT*=—EFAR,*,

1 ~ 1 _
R =dw*f —w*"/\w. f= ZRab( Ta0p) P=— 5 E*\EFR

i — ~
- gECAE(“aCVﬁ)D'yR+ gE/\E( o.0q),PDIGH
DR,f=0,

DR*=0= -
DR.F=0

i . 1
(2.8 _§EC/\Eﬁo-Cy'BWaB7+ EEd/\ECRCda‘B, (2.19

(integrability conditions for Eq92.2)—(2.5)) express the su-
perspace torsion and curvature through the set of “main su?
perfields”

ndR8= (ReF)*
Note that in our conventions the spinor covariant deriva-

tives D, = —(D,)* are defined by the following decomposi-
tion of the covariant differentiaD:

Gai=2i(Tapf—~ Tap?), (2.9
) D:=E*Dp=E*D,+E*D,=E*D,+E*D,+E“D,
Ri=— 3Rus"=(R)*, (2.10 (2.17)

. o [henceDgz(Da,—ﬁd); note the minus sigih Then, since,
WBY:=4i gV TR, = WIBY) = (WB7)* e.g., D,=E,Moy+w,, it is also natural that the spinor
(2.1)  components of the spin connection form®’=dZzMw3P
_ o _ _ =EAWA:=EW+ E“w 2P+ E*w, 2" be related byw,2°=
The constraints of minimal supergravity and their conse-_ (y, ab)* [hencew 2= (w22, —w?2P)].
quences can be collected in the following expressions for the The Bjanchi identitieg2.7),(2.8) imply as well that the

superspace torsion 2-forngsf. [13]) main superfield$2.9),(2.10,(2.11) obey the equations
_ 1 = a7
T= —2i0%,E\E"+ T5EP\E%%, G, (212 D,R=0, D,R=0, (218
D,Wr=0, D, WB7=0, (2.19

i ~ R
T=gE\EX(0c0q) 4G~ g ESNE e PR

I
9|
|

5dGad:DaR, DaGad alsy

1 (2.20
+§EC/\EbTbC“, (2.13
Dywaﬁﬂ/: D;YD(“GB) Y,
2A minimal complete set of superspace constraints for the minimal —— —. :
\WeBY = (al7IB)
supergravity multiple{31] can be found, e.g., if12,13,27; see D?’W 7 DYD G, (2.20)

[9,12,32,2T and references therein for nonminimal supergravity . . _
multiplets, and33] for a discussion of the algebraic origin of the =~ For the sake of brevity, we will call “constraints” the
supergravity constraints. complete set of relation®.12—(2.14),(2.16,(2.18—(2.21).
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B. Off-shell nature of the constraints

Using the Bianchi identitie&2.7),(2.8), one also finds that
the fermionic torsion componenis,,* T,," entering Egs.
(2.13,(2.14 [which may be regarded as superfield generali
zations of the gravitino field strengths, see E3j6)] are also
expressed through the main superfigl@d®), (2.10), (2.11)

. —_a b 5
Taappy=Taal gp€yslab

_ 1
€apD(a|Cyip) ~ g €apl Wapy~ 264 PpRI,

8
(2.22
aappy= YaaTpp€yslab ~g€ap(ap)y
_§Ea5[wdﬁy+267(&D5)R]. (223
Equations(2.22), (2.23 imply, in particular,
a~ by vy 3
((T g )ﬁ Tab)/:ZD,BRV
5207 T = DR, 2.2
(Ua)ﬁaby—Zﬁ- (2.29

PHYSICAL REVIEW D 67, 065003 (2003

In particular, Eq(2.28 indicates that the superfield generali-
zation of the(spin-tensor components of thé/eyl tensor,
Capys=C(apys)» is defined through the nonvanishing spinor
derivative ofW

- aBy

Capys=T(apy)= ~ 76 Wpy) - (2.29

In this sense one says that,;, and its complex conjugate
W,z provide a superfield generalization of the Weyl tensor.

The superfield generalization of the Ricci tensor is given
by

1 —. — :
RbCaC:3_2(DBD(a|GaIﬁ) - DBD(BGa)a)O.ZdUbBB

3 _
— 52(PPR+DDR—4RR) 53, (2.30

and, henceforth, the scalar curvature superfield is

3 . J—
Rap2°=— —(DDR+ DDR—4RR). (2.3D
6

1

Hence, once again, one can identify thebitrary leading
components of the corresponding second derivatives of main
superfieldsG, and R [entering the right-hand sideghs) of
Eq. (2.30] with the irreducible components of the Ricci
tensor Ry2%4—9 [or Einstein tensor RyA°

Moreover, the Ihs of the Rarita-Schwinger equation can—  5,R4.%)|,-o] which, thus, remains arbitrary after im-

be identified with the leading componefite., the §=0
valug of the superfield expressioef®°T, *oy,. (see Eq.
(4.16 and e.g.,[13]). Using the Pauli matrix algebra
(%= 5?1 +i/2¢®**%5 oy, 1% 0,=30%) one finds,
from Eq.(2.22,

o 3i
g7 DGyt g oD R
(2.25

a,_ _abc _
W i=€ dTbcaUda'a—

The fields D#R| ,—q and5(5|65|d)|0:0 are not restricted
by the constraint$2.12—(2.16), (2.18—(2.21). They are ar-

bitrary fermionic functions, which rather can be identified
with the corresponding irreducible parts of the leading com-

ponent ¥%|,_o, of the Rarita-Schwinger superfiel@? .
HenceW?2|,_, remains arbitrary.

Similarly, the bosonic Riemann curvature tensor super-

field is determined by

0-7}/0-55

(2.26

Red™=—2€,51 5P —2€,5 , 5*F,

r;y'ga,B:

15 (a8

1

af 1 ap @ B IPD. =
rysP= = 7gD Wy P = 35 5(,85(DDR- 2RR).

(2.28

posing the constraint®.12—(2.16).
This exhibits the well known fact that the constraints
(2.12—(2.16 describe theoff-shell supergravity multiplet.

Ill. WESS-ZUMINO (WZ) GAUGE

To move from the superfield formulation of supergravity
to the component formulatiofi.e., in terms of spacetime
fields) [11,13, one fixes the so-called Wess-Zumie/Z)
gauge, wheren particular,®

Ez%4-0=0, Ezfly—0=08:L, wi4-0=0, (3.1
while

Enlo—o=en(x), Effy—0=v1%, (3.2

W2b| 9=0— wzb(x) (3.3

remain unrestricted and are identified with the vielbein, grav-
itino, and (composey spin-connection fields of the compo-
nent formulation of supergravityl1,13].

One can collect the expressions for the supervielbein su-
perfield in Eqs(3.1),(3.2) in the matrix relation

SWe mainly use in Sec. Il Majorana spinor notatidh®
=(E%E,) [29]; this also makes all the formulas of this section,
except Eq(3.6), applicable to any dimensiadb.
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ex(x)  ¥(x)
En"g=0= . 3.4
P L I
Their evident consequences are
L (e =gk ;
Efloo=| o 55 ) (35

where y2(x) = eLy2(x) 5,.

Note that already these simple formulas allow one to de-

rive, e.g., the following useful formula:

i 4
Tap®lo=0=2€5€ Dy, 7 (X) — 2 Yraoh)) 3G

6=0

[—
_Z(U[a¢b])aR : (3.6)

6=0
where Dy, #/5(X) = b (X) = ¥f,(0W,1 5% 4-0 is  the
gravitino fields strengthithough with the nonstandard spin
connection which, in general, due to Eg8.12), involves the
term proportional toG,|,—, into the spacetime torsign
Thus one can call ,,“ the superfield generalization of the
gravitino field strength.

One more simple but useful equation which is valid due to

Egs.(3.1),(3.2 is

Els—5-0=sdefE}(x,0,0)]=deted)=e(x). (3.7

A. Complete description of the Wess-Zumino gauge

As it was early recognizef8,34,34, the WZ gauge is

the fermionic counterpart of the normal coordinate system in

general relativity(see Refs[10,36,28 for the so-called nor-
mal gauge in supergravity, which is the complete superspa
generalization of the normal coordinate frgm&his obser-
vation suggested to collef28] the complete set of the con-
ditions of the WZ gauge th

6°E2=0,

0%(EE— 68)=0, (3.8

0*w2 =0.

Using the inner product notatidisee Eqs(B10),(B11)], the
WZ gauge may be equivalently defined by

i E2=0, 3.9
i Ee= 955% 9, (3.10
I W =0, .

i W3P=0 (3.11)

“Note that there exists anoth@prepotential”) form of the Wess-
Zumino gauge which is fixed through a condition for the
Ogievetsky-Sokatchev auxiliary vect@repotential giving H*
= 0o 0el(X) + 006y (X) +c.c+ HOOOA*(x) [8], and for the
chiral compensatop =e3(1— 2002y, + - - -) (see, e.q.[9,28)).

PHYSICAL REVIEW D67, 065003 (2003

where 62 is a Grassmann coordinate with a tangent space
spinor index,
6E=6%5.L. (3.12

One of the characteristic properties of the WZ ga(®)8)
is that the Grassmann coording®12 coincides with the
contraction of the fermionic supervielbein forf3.10. The
next observation is that in the gau@®9g)
0°Ds= 0PDg= 0%9,= 0. (3.13
With this in mind one can find that the decomposition of the
supervielbein and spin connection superfields can be ex-
pressed in terms of the physical graviton and gravitino fields
[Eq. (3.2)], the leading components of the torsion and curva-
ture superfields and their covariant derivatives. A convenient
way of reproducing these decompositions is by using the
following recurrent relationgcf. [28]):

(1+09)E®=i,T2+dx*E2, (3.149
(1+ 09)EL=DOL+i ;TE+dx* E%,
(3.19
(1+ 89)waP=i ,R3P+ dxH Wzb ,
(3.16

together with Eq.(3.13. Equations(3.14),(3.15,(3.16 are
obtained by taking the external derivative of the defining
relations of the WZ gauge, Eg&3.8). There

DOE=d o~ 02w 2, (3.17

i ,TA=ECHET ECA, i jR3P= EDaszDab.

(3.18

CI‘:equations(3.14),(3.15),(3.16) do not restrict the physical

fields(3.2), as the terms containingx” in Ihs’s are canceled
by the last terms in the rhs’s. Thus the leadig=0) com-
ponents of Eqs(3.14),(3.15,(3.16) reproduce Eq(3.1).

A discussion of the decomposition of the superfields, i.e.,
of the solutions to Eqgs(3.14), (3.19, and (3.16), can be
found in Appendix C 1.

B. Symmetries preserving the Wess-Zumino gauge

In the consideration of the coupled system it is important
to know the subset of superspace local symmetries preserv-
ing the gauge(3.8). The subset of superspace diffeomor-
phisms[parameteb™(Z)] and local Lorent L2%(Z)] trans-
formations preserving this gauge is singled out by the
equations(see Appendix C 2 for details and further discus-
sion)

0a(0") = (b%) 62T g+ 62(L £~ bMwyy £) 55

(3.19
09(L*(Z) —bMwy2P)= —bPo2R,52°,  (3.20

where
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field H*(x, ) [8] and chiral compensatdp [9] (in this way
LBA(Z):( 0 L g)- Lab=—L b2, the local symmetries of the complete superfield formulation
B are partially gauge fixed
1 Alternatively, following [6], one can keefEy,(Z) as the
a—_|ab a (3.21 basic variable, but take the constraints into account when
= searching for the independent variations. Namely, one de-

. notes the general variation of the supervielbein and spin con-
and the parameteb™ can be conventionally decomposed nections b%{e] P P

into a fermionic spinor and a bosonic vector part

bA=bM(Z)EA(2)=(b7(2),6%(2)). (3.2 SEM(Z)=ERKB(d), oWi(2)=Euud’(d), (4.2

It is instructive to write Egqs(3.19,(3.20 in the weak and obtains the equations to be satisfiedkb§(5),u2’(s)
field approximation. At zero-order one finds the set of equafrom the requirement that the constrairis12,(2.13 are

tions preserved unde(4.2). Then one solves these equations in
A terms of some set of independent variations. Straightforward
99(b%) = —2|857&01, (3.23  but quite involved calculationgthe results of which were
partially given in[6]) show that the constraints of minimal
0(e%) = 6EL 5 (3.29 supergravity(2.12—(2.16 are preserved by a set stiper-
- field variations (superspace coordinates are not affected
69L2°(Z)=0, (3.25  which include:
(i) the local Lorentz transformation$; (L2%), Eq. (B1);
which can be easily solved, (i) the variational version of the superspace general co-
. ordinate transformation$6] [Egc(tA), Egs. (B15),(B16),
i ; Al
ba(Z) = b2(x) + 2i §v2 I 2) g15¢(x) . (Bl_7“) in Appendix BJ; and . .
(2)=Dbo(x)+216y"eo(x) 4 (7oey") 017X (iii) the set of transformations with parametefsi®
326 - 302, 6H*, 8U,8U, under which the supervielbein trans-
N forms as
e%(Z)=eg§(X)— 081 32(x), (3.27
_ 1 . _
L22(Z)=12"(x), (3.28 SE*=ENA(8)+A(8)]~ 7E*0([D, Dyl oH®

wherebj(x), e§(x) are arbitrary vector and spinor functions
and|2°(x) are local Lorentz parameters.

In the general case the WZ gauge is also preserved, in
particular(see Appendix CRby spacetimeadiffeomorphisms o_pama N l—a o aia
[with parameter$3(Z)|,_o], as well as by Lorentfl2°(x)] ORI=BEA(9)+EA()+ 8E Roa ;" 0H"
and local supersymmetrlys%(x)=e%(Z)|y-o] transforma- (4.4
tions.

+iE*D ,8H2—IE*D, 5H?, 4.3

In Egs.(4.3,(4.4), A(5),A(d) are given by

IV. SUPERFIELD ACTION FOR “FREE”

D=4,N=1 SUPERGRAVITY 1 i 1

_ T oaa . ay ay a
A. Superfield action and variational problem with constraints A()= 2474 [DaDalH Jr4Dé\5H + 24G36H

The D=4N=1 supergravity action can be writt¢6] as

an integral over superspa&é“"‘) of the Berezeniarisuper-

determinant E:=sdetE},;) of the supervielbeirEy, (Z),

+2(DPD—R)sU—(DD-R) U (4.5

~ A SThis procedure can be regarded as a linearized counterpart of
Ssc= f d*x d405de(EM)EJ d®Z E, (4.1 solving the superspace constraints in terms of the prepoteffihls
(the price to achieve linearity, however, is that we have to deal with

where EQ(Z) are assumed to be subject to the Constraintsthe covariant derivative®, rather than with the holonomic ones,

. . . . . . Jduv). So, the counterpaidH? of the variation of the Ogievetsky-
(2'12)’(2'13)'(2'14;’.(2'16)' Th|§ action is evidently invariant Shg?(atchev auxiliary vzctor superfidld] H*, as well as £Ehe couz-
'tjrinedser(ftlr:'?hes?%?;?:Ts?soigqnorgfhIignsg:SgelosC;%rzoert?inez iéwng)eeferparts of the variation of the complex chiral compensad®i9],
found in Appendix B 1 ( ) T —
One of the ways to obtain the superfield equations of mogantDchlraI superfield® satisfiesD,P =£ and can be expressed
tion from this action is to solve the constraints in terms ofthrough the independent superfiélcby @ =(DD—R)U. Then the
unconstrained superfieldprepotentials axial vector super- variation of ® is & =(DD—R) /. ]

DD—R) U, are involved in the solution of these equatiofhe
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_ 1., _ 1
A(8)+A(8)= 7505 [ Do, Do) SH 415 G 0H®

+(DD-R)8U+(DD—R)SU;  (4.6)

the explicit expression foE§(5) in Eq. (4.4) will not be
needed below. It reads

i : -
E2(8)=— Zaaf,-yuwﬂ(a) )
! R B SH B
— S—ZUBBG”DﬁéH By (4.7
where
uf(s)= L oppasun. + 2rpsns:
y 4 Y 8 Y

A o1
- §G<QBD‘75HW+ 16D (*RSHA),

- %D(&G(a‘ﬁ, SHPE 4 %W“M&H . (48
Equation(4.8), together with
UB(5) =2 Gl D SHAE— 1 G 50D o150
Y 8 By g ~ 9%
+280DPA(9), (4.9

i _
o5, Uz (8) = = 5[ D, (8) + Dyus(6)]

- (a B) — (apy. B)B
16RR5 oH 6D R5 D, 6H

i — i
a . . af 6 .
+1gD“GAPD,oH p+ T WD, H 5,

(4.10

define the variation of the spin connection through the sec-

ond equation in Eq4.2).

B. Superfield action and “free” equations of motion

PHYSICAL REVIEW D67, 065003 (2003

In the light of the identity(B35), all the terms with deriva-
tives can be omitted in Eq4.11) when one considers the
variation of the actior{4.1). Hence

1 _
5sse=f déz 5E=f déz E[gGaéHa—Z RéU— ZRM}
(4.12

and one arrives at the followinguperfield equations of mo-
tion for “free,” simple D=4,N=1 supergravity

8Ssc _

o = G,=0, (4.13
=¢_0 = R=0, (4.14
su
5S _
5;6:0 - R=0. (4.15

Then the “free” superfield Rarita-Schwinger equatigns

(4.1

follow from the constraint$2.22),(2.23 with G,=0=R,

abc R abc ' R
€ dTcha'dw—O, € dTbCy(Td.yy—O,

Ua}b)aﬁwaﬁ‘y.
4.17

The superfield generalization of the free Einstein equation
Ra>°=160R.9=0 follows from setting G,=0 [Eq.
(4.13] andR=0 [Eq. (4.16] in Eqg. (2.30.

'aBW = Tabyz

1
Taappy="— g€ apy ﬁ(

V. BRINK-SCHWARZ SUPERPARTICLE IN A
SUPERGRAVITY BACKGROUND

The superparticle dynamical variables are the supercoor-
dinate functionsZ™(7) defined by the map

344, (5.1)

P W 7> ZM(7)=[x*(7),8*(7)],
defining a worldline@/'* in 3 (414 parametrized by the proper
time 7,

wics@, zZM=7M(p), (5.2
The actual superparticle worldline is determined by the equa-
tions of motion. For the massless superparticle these equa-

The nontrivial dynamical equations of motion should fol- tions follow from the Brink-Schwarz action

low from the variationg4.3),(4.4) with (4.5),(4.6) only. The
variation of the superdeterminaEtzsdetE’,\*,l) under Egs.

(4.3), (4.4), has the form(see[6])

1
5E:E[—EU“Q[DH,D ]5Ha+66 SH2+2(DD—-R) U
+ 2(1)1)—?)52/1}. (4.11)

.~ 1 P
Ssp= J’Wl['l:EJ'WlI(T) EaEEﬂaba (5.3

which involves the pull-baclE®=E3(7)=d7E3(7) to W*
of the bosonic supervielbein fori&? [Eq. (2.1)] on 3414,

E2=dZM(7)ES(Z2)=drE?, (5.4)
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E2=0, ZMEY(2),

and the Lagrange multipligiworldline einbein I(7). Note
that the pull-backs of the fermionic supervielbein forms

Ee=dZM(n)Ef(Z)=drE?,
E*=dZM(n)E%(2)=drE?,
Ee=0, Z2VEQ(2), El=0,ZVER(Z) (55

are not involved in the superparticle acti®m3) explicitly.
This is a general property of th®-dimensional super-

p-brane actions that reflects an especial role for the bosonic

“directions” in superspace.

A. Equations of motion

PHYSICAL REVIEW D 67, 065003 (2003

E2E,,=0. (5.12
Indeed, Eq(2.12 implies
i 5 T3= — 2102, B pE @~ 2i0? E & 5B
1. A
—§Ebsabch°(Z)i52Ed. (5.13

The last term does not contribute to the contraction

ETai 5572 Hence, after integration by parts, the expression
(5.9 with Eq. (5.6) becomes

1 . . ..
5Sgp= fwl[zalETaEa—D(lEmn,;zEa

—2I1E (0%, B pE ¥+ 0?, E 4 5EY) |,

The equations of motion for a superparticle moving in a

supergravitybackgroundfollow from the variation of the
action (5.3 with respect to the Lagrange multiplieii (7)

and the supercoordinate functio@®. The corresponding

variation of the pull-back5.4) of the bosonic supervielbein

form (2.1) is

55E3= 5E%(2):=E¥(Z+ 62)—EX(Z)

=i 5T+ D(i 55E) + EPi 5w 2, (5.6)
i 5EX(2):=6ZMES(2), (5.7)
i 5W3P:= 5ZMWER(Z) (5.9

(5.19

which implies the equations of motio(6.12) (8S;p/ 6l
=0), (51D [8Sp/0ZMEN(Z)=0], and (5.10
[8Ssp/ 5ZMEY(Z)=0 and its complex conjugate

Let us stress that we derived the superparticle equations
of motion (5.11),(5.10 from an arbitrary variation of the

supercoordinate functionsZ, which is tantamount to saying
that they were obtainetfom the general coordinate trans-
formationséy., (B7),(B8), pulled-backo W2, This reflects a
spontaneousgpartia) breaking of the superspace general co-
ordinate symmetryp,. of the background by the superpar-
ticle worldline. The part of the general coordinate symmetry
dyc of the supergravity background which is preserved by the

(note in passing that these transformations coincide with thworldline can be identified with the gauge fermionic
pull-back of superspace general coordinate transformations-Symmetry{37] and reparametrization symmefiyiore rig-

8gc, EQs.(B7),(B8), to W, 8;E3=¢*[5,EX(2)]).

The last term in Eq(5.6) does not contribute to the action

variatior?

6Ssp= fwl[%gl(T)Efaéa""(T)Era‘sZEa ' (5.9

becauseE ,E i 55WP2=0 due toi 55WP2= —i 55w,

When the background obeys the constraigt& 2 the su-
perparticle equations of motion become

Fa @ & _ - a
E UadEaT_O! Eafo-a'

(5.10

D(IE,,) =0, (5.1

5This reflects the invariance of the action under a Lorentz rotation

orously, the variational version of the worldline general co-
ordinate symmetry[21].

B. Local fermionic x-symmetry and reparametrization
invariance of superparticle action

It is not hard to see that the superparticle actibr®) is
invariant under the gauge fermionie-symmetry[37] that
acts on the coordinate functions and the Lagrange multiplier
| by

8.ZM=Eos Tko(NEN(2) + ko (DEN(2)], (515
5. (7= 4l[E%k (1) +E “Hey(7)], (5.16

To this end, it is convenient to write E¢.15 in the form

i E2=6,2ZME(2)=0, (5.17

of the supervielbein, which can be considered as a pull-back of the

local Lorentz transformation of the supergravity background. Such

transformations cannot be treated geigesymmetries of the su-
perparticle in a supergravityackground However, theyare gauge

symmetries of the interacting systemadynamicalsupergravity and
the superparticle.

i E=6,ZVEL(2) =Tk, (1) o2 E?,

a

i E =5, 2MEX(2) = X5 i (1),
(5.18
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substitute these, E* and 5,1(7) [Eq. (5.16] for i 5sE and E2E,,=0. (6.5)
8l(7) in Eq. (5.14), and observe that, due to the identity
Moreover, k-symmetry [Egs. (5.17),(5.18),(5.16] and re

Eo,Ep(0%0°) P=E?E,, 6,7, (5.19  parametrization symmetfiEqs. (5.21),(5.22] are preserved

A A o by the interaction.
the contributionlE,,.5,E?= —2iIEaTEiEﬂKE+ c.c. can be The coupled action is evidently invariant under superdif-
compensated by the variation of the Lagrange multipfigr ~ feomorphismssy;ss ,
(5.16. ,

In the same manner, one finds that the following transfor- Z2/MZZM 4 M (2): X H=xt+DbH(X,0), 6.6

mations of the supercoordinate functions T 0= 0%+ e%(x, 0), '

52 =r(nEEL(2), (5.20 E'AZ)=EAZ), w'(Z)=w(2), 6.7
or, equivalently, now supplemented by the corresponding transformations for

. . . . the superparticle variablesM=2'M
i Ea= 5, 2MER (2) =1 (r)E2, PEp ()
R A A X' (1) =X"+bH(X,8),
i.E“=0, i,E“=0, (5.21) 'V =7"+b"(2): - . A (6.8
0'*“(1)=0+%(x,0),
can be compensated by

so that
Sl(r)=lar—ra,l. 5.2
1 522 Sz =2'M=Z"=p"(2), (6.9
This proves the so-called reparametrization symmetry of the . R
superparticle actiosee also Appendix D SgitsZM=bM(2), (6.10
V. COMPLETE LAGRANGIAN DESCRIPTION and d4i¢:S=0 (see Appendix B2, where further discussion
OF THE SUPERGRAVITY-SUPERPARTICLE on the gauge symmetries of the coupled system can be
INTERACTING SYSTEM found.
A fully dynamical description 0D =4,N=1 supergravity B. Equations of motion of the coupled system

and the massless superparticle source interacting system can

be achieved by means of the action As mentioned above, the superparticle equations

8S/6ZM=0, 85/ 51 =0 for the coupled dynamical system re-
B B 8 1 ~aib main the same as those for the system in a supergroaiy-
S_SSG+SSP_f d'z E+ Efwl'(T)E Exman: 6D ground 5S,,/62M=0,55,,/51=0 [Egs. (6.2, (6.3, (6.4,
and(6.95)]. Let us now see how the supergravity equations of
where E=sdetE};) and the supervielbein in superspace ismotion are modified by the inclusion of the superparticle
assumed to be restricted by the constrai®sl2,(2.13), source.

(2.14). Denoting the variation of the action induced by the con-
straints preserving variation@.3—(4.6) by &’ , one con-
A. Gauge symmetries of the coupled system cludes that
As the superparticle coordinate function¥=ZzM(7) do , o |1 . — ,
not enter in the supergravity part of the action, E@s10), 6 S:f d°Z B & GadH"~2RU—2R3U|+ &' Ssp,
(5.11,(5.12 remain the same as in the interacting system (6.11)
(6.1,
R R where
E“?.Ea,=0, (6.2
. 5'Sq :f I(7)E 75'Ea=f I(7)E,, dZM 8'E3(2)
E..0%,E®=0, 6.3 Polw R weo? M
(6.12
D(IE,,) =0, (6.4) and &' E? is the pull-back of Eq(4.3) to WL. To have a well

posed variational problem, we extend the integration in Eq.

(6.12 to superspace by introducing the superspace delta
’on the worldvolume, acting on the pull-back of the superforms,fynction

D=dZM Dy=drD,, whereD,=4,+connection terrgs). In-

tegrating by parts one arrives at the terms involving in the B(Z—2)=5*x—X)(6— 0)* (6.13
worldvolume action variations. Note tha& |1=4.1, because the

einbeinl(7) does not have Lorentz group indices. where
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(-t o €ayeoa,(0—0)*1---(0—0)%. (6.14

Namely, we insert ¥ [d®Z 5%(Z—Z) into Eq. (6.12 and
use the identitys’E3,(2)5%(2—2)=8"E%(2) 8%(Z-2) to
arrive at
5’ssp:f dsz“ l|(T)|"5a,o|2M 58(2—2)}5{;(2).
W
(6.15

Now Egq. (4.3 can be straightforwardly inserted into Eq.

(6.195 and, using

dZMs%(z—2)En(2)= EA(SS(Z—Z)EE(Z)éEAﬁs(z—Z),

E(Z)=sdefEN(Z)], E=E(2), (6.16

one finds

6’Ssp=f 47 E[ fwll(?T)EaTE%g(Z—Z)}iDaéHa
o[z E[ [ 1'(?7)Ea£d58<z—2>}<—i>5d5Ha
W

—deZE

1.
—ab D, ,D,]SH?

Jod e s

x[A(5)+K(5)]. (6.17

f QEaTEbés(Z—Z)}

ar

The extraction of the superdeterminant in E§17) permits
integrating by parts using the identit335) in Appendix B.
Thus Egs.(6.11),(6.17) allows us a direct derivation of the
coupled equations of maotion.

Note that the scalar variatior®/, 5U/ are involved only in
the last term of Eq(6.11), through[ A(8)+ A(5)] defined
by Eq. (4.6).

Let us now compute thél{ variation of the coupled ac-
tion, 6, S= 6y Ssct 9, Ssp. The variation of the supergrav-
ity part reads &, Sse=—13/d"Z ERSU [see Eg.(4.12],
while, due to [A(6,)+A(5,)]=(DD— R)&Z/{ [see Eq.
(4.6)],

Sy Ssp= J déz E[ fwlééaféaﬁ(zi)}(pp—ﬁ)au

= J déz E[ fwlél‘za,éa(pp—ﬁ)afﬁ(Z—Z)}au
(6.18

PHYSICAL REVIEW D 67, 065003 (2003

Thus, at a first look, Eq4.15 acquires a source term

(6.19
21, . .
Jo= fleEaTE (DD-R)8%(2-2).

However, one immediately observes that this source vanishes
due the superparticle equation of moti@5)

5S
Sl (7)

=0 = E%,=0 = J=0. (6.20

Hencethe scalar superfield equations for the coupled dy-
namical system are the same as in the “free” supergravity
case

55—0 R=0 6.2
@_ = - ] ( . :D
oS 0 R=0 (6.22
—_= - =U. .
U

Moreover, the above observation implies that the last term
in the superparticle action variation does not contribute to the
equations of motion,

[ oz E“ 1%Ea£a58<z—2)}m<5>+x<5>]=o,
W
(6.23

due to Eq.(6.5), EE,,=0. Hence after an integration by
parts using the identityB35), and taking into account Eq.
(6.5, the variation(6.17) of the superparticle action reads

5'ssp:f déz E{ipa/cg—i@@
1.
_Ub [Daypa]lc ]5Ha1 (624)

where the “spin 3/2” and “spin 2" “current prepotentials,”
K2, Ki=(K2)*, andK °, are defined by

K&(Z):= fwll(é)éaféaag(z—b, (6.25

Ka(2):= fwl%éafédaga—z), (6.26
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(7) C. Properties of current potential 7, and K ,B prepotentials

(7). . -
b(7Y. b _
Ka'(2):= jwl E EoE°0%(Z~2). (6.27 Thus the vector superfield supergravity equation acquires

the source(6.29 (“current potential”) from the Brink-

Equations(6.24 and (6.11) imply the appearance of a Schwarz superparticle actid®,,, Eq.(6.28, while the sca-
current potential superfield7, (which is a vector density lar superfield equation&.21),(6.22 remain sourceless as in
distribution with support on the worldlingin the vector su-  free supergravity. Then the identiti€2.20 immediately re-

perfield equation of the coupled systé¢ai. (4.13)], sultin
5S D*“Jos=0, D*J00=0, (6.3
W:O = Gazja. (628) ] ] ]
which imply the supercurrent conservation
This vector current potential is constructed from the vector- D37,=0. (6.39
spinor and tensor densities Ed$.25),(6.26),(6.27) (hence
the “current prepotential” name fok' %) as follows: In accordance with Eq6.29), the superparticle current is

constructed from the current prepotentials.25),(6.26),

1 ) —— 1. — b (6.27). Moreover, Eq.(6.29 can be presented in the form
gja: - |Da’C§+ |DC'JC§+ ZUga[Da ,Dd]lCa .

1 . —
(629) gja: — iDa Kg‘l' ZO'gaDd,Cab

The preservation of the scalar superfield equaler0 in .
the interacting dynamical syste(6.1), Eq. (6.21), immedi- = [y ' ~aa b
ately implies the vanishing of the spin 1/2 part of the super- 14| Kat 47b Daka
field generalization of the gravitino field strength,

. (6.3

It is interesting that the spinor-vector and tensor current
(Ua}b)ﬁyTaby:Oa (aaab)&lgTab;,:O (6.30  Prepotential carry only the irreducible spin 3/2 and spin 2
representation of the Lorentz group, respectively. Indeed, ex-
[see Eq(2.24)]. However, the above equation is only a parttracting the worldline measurdr in Eq. (6.27), K2(2)
of the content of the superfield generalization of the free=[y1 dr(l(r)/E)Ei‘EEég(Z—Z), one easily sees that the
Rarita-Schwinger equatichThe completesuperfield gener- tensork 2°(Z) is symmetric, and traceless due to 6.5).
alization of the Rarita-Schwinger equatidor the coupling In this sense one can say that the current potential contains
system can be obtained from E®.22 with R=0G,=7, only a spin 2 irreducible part,
and possesses the source term
K3(z)=K%Z), K,°(Z2)=0. (6.37)
[P—
fadeTbCao-dad:go-aﬁﬁ’l)(/j‘jﬁ“y)- (6.3)  The spinor-vector current prepotentials carry spin 3/2, be-
cause, due to Eq5.10), their spin 1/2 irreducible parts van-

Using Eq.(2.31) and Eq.(6.21), R=0, one finds that the ish,
superfield generalization of the scalar curvature vanishes in
the supergravity-superparticle interacting system,

R,,2P=0. (6.32 0%,K5(2)=K.:%(2)=0. (6.39

K§(Z2)od.,=K ,,%=0, (6.38

However, in accordance with ER.30, the Ricci tensor is Finally, using Eq.(5.11), together with the identities

expressed not only througﬁ,ﬁ, but also through thé&s,

M _ 9\ — M/ 5 _ 5
superfield. Hence in the interacting system theerfield EA"(2)0m8(Z—=2)=Ep"(2)9md(Z=2)

Einstein equatioracquires a source term which is expressed . A\M+AM M 5
through a second derivative of the current potential super- =1 MEA(2)8(2=2),
- aff a _afB. ~ ~ ~

field 74F=J%0a": Ind(Z—2)=—alaZM8(Z—2),

and (— 1)MTAMD (EE\M)=E(—1)BT,g8=0 (the last part
of the last identity is valid due to the supergravity con-
(6.33  straintg, one finds the relation

T .
Roc**= 35 (D DT D = DPDET ) 0 .

(—)BDgK B=Dyk P~ DyK #~DsKE=0, (6.40
8Indeed, the linear approximation equatiet®®, %o y,,=0 is
equivalent to the equationsr{o®) 4, dp%2=0 [which is a coun-  which completes the list of the properties of the superparticle
terpart of Eq.(6.30] and 9°y¢=0. current prepotential&.25),(6.26),(6.27).
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Contracting the vector indices of the current prepotentialsvll. GAUGE FIXING AND EQUATIONS OF MOTION FOR

with the o matrices, one can write the irreducibility condi-

tions (6.37),(6.38),(6.39 in the form

¢ BB = fC AWk BBk (aB) (@B, (6.4
K aﬂBE]Cg'(}gB: ClaB)a, (6.42
Ezy,eﬁ;,@zggﬁ:ﬁd'ﬁ)ﬁ_ (6.43

Then, relation(6.40 reads

1

5Dk BB DI B D=0, (6.44

or, equivalently,

R . — [ — i .
Dg /caﬁa+zz>-ﬁlc “ﬁaﬂ) = —DB( KrPat 706K aﬁ“ﬁ) :
(6.45

Equations(6.44), (6.45 allow us to write the expression

(6.36 for supercurrent in two other equivalent forms

1 .1 . , N .
57 = a0 "= = 20 Dy| KP4 2D (P ER)
(6.49
— = [ -
=2iD, KlaB)B 4 Zpﬁ;c(aﬁ)(aﬁ))_ (6.47

Now one can easily derive E¢6.34) using Eqs.(6.46 and

THE INTERACTING SYSTEM
A. Gauge fixing

As all the gauge symmetries of the “free” superfield su-
pergravity are still present in the interacting system, one can
fix first the WZ gauge(3.8). This would be the first step
towards the component description of the interacting system
in terms of the usual graviton and gravitino spacetime fields.

As was shown in Sec. llI B and in Appendix C 2, the WZ
gauge is preserved by some specific superdiffeomorphisms
and superspace local Lorentz transformations with free pa-
rameters by(x) = (b3(x),e2(x))=b"(Z)|4—o and 12°(x)
=L2(Z)|,—o. In accordance with Eq$6.10 and(5.15), the
transformation of the fermionic coordinate functi@t(7)
under superdiffeomorphisms and worldline transforma-
tions acquires the form

50%(7)=b%(Z2)+ 8,.6%(7), (7.0

wheres,.0%(7) is defined by the Eq5.15 with M= &. This
transformation rule reflects the Goldstone nature of the su-
perparticle(or superbranecoordinate functioh22] (see also
[23,24] and references thergin

In the WZ gauge(3.9), Eq. (7.1) can be written in the
form [see Eqs(3.12,(3.22]

50%(7)=50%(1)8:2=6%(2)+ 8,.6%(7). (7.2

Decomposing the rhs of E¢7.2) in power series irf(7)
one writes

(6.47). To this aim one uses the algebra of spinor derivatives 5047 =82 (2) |30+ 8,0 7|50+ O(B)

of the same chirality, EqQ.A4),
R=R=0 = {D,,Dg}=0. (6.48

Then the current potential conservation, E§.35), follows
from Eqgs.(6.34 and Eq.(A5).

The properties(6.34 imply D,Jgz=D5Tpa and,
hence, allow us to write the rhs of theuperfield Rarita-

Schwinger equatiomas the fermionic covariant derivative of

the current potential

'—@jﬁ. (6.49

a_ _abc —
V=€ dTbcaUdad_4

The superfield Einstein equatio®.33 can be written as

R aczi”ﬁﬁ[p D,172 (6.50
bc 160-b B =B . .

Equations(6.49,(6.50 exhibit an interdependence of the

Einstein and Rarita-Schwinger superfield equations,

i~ . -
Roc*=— 206(D g 3+ D). (6.5

=e2(X)+ 8,0%(7)|j=o+ O(H), (7.3

where the arbitrary fermionic field paramete%(i) is de-
fined as in Eqs(3.22), (3.27) andcorresponds to one of the
symmetries that preserve the WZ gauge

Thus we can fix the gaugsimultaneously with the WZ

gauge
#2(7)=0 (7.4)

(cf. the description of super-Higgs effect[iP5]) by using the
freedom in the fermionic parametezrg(%) [but notthe pull-
backsZ(x,6) of the complete superfielel (Z)]. The gauge
(7.4) is preserved by transformations such that

85(X) == 8,6%(7)j=0=—rLyas*Els=o, (7.5

where we have written the form of thesymmetry transfor-
mations (5.15 explicitly, in Majorana spinor notation, by
using the WZ gauge relations.
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B. On the Goldstone nature of the(supenbrane Clearly, for the case of the brane source the same argu-
coordinate functions ments result in the derivation of the equations of motion for
Since the possibility of fixing the gaud@.4) might look the brane variables from the conservation of an energy-
unexpected, we now discuss its physical meaning. momentum tensor with support on worldvolurisee{20] for

First, let us note that similar considerations show that thétn explicit proof. Then the choice ofocal coordinate sys-
bosonic counterpart of the gaugg.4) can also be fixed on tem allows one to fix the gaug&.7) locally. Certainly, for

the bosonic coordinate functions. It redds topologically nontrivial and/or closed worldvolume this
R gauge cannot be fixed globally. In contrast, one immediately
x*(7)=(7,0,0,0 (7.6) notices that there are no restrictions on a global fixing of the

fermionic gaug€g7.4) as no way of introducing topology on
a Grassmann algebra is known.

Thus one can state that both the fermionic and bosonic
coordinate functions of superbrane are pure gag®e be
gauged awaywhen the interacting system dffnamical(not
backgroungl supergravityand a dynamical superbrane is

x“(r,0)=(7,0%, ...,0°0,...,0, 7. considered. ] )
(n@)=( 0 7.9 Actually, the above statement is tantamount to saying that

where the first p+1) of the D coordinate functions are the coordinate functions of superbranes aB®ldstone
identified with the local worldvolume coordinateg™ fields'® In flat superspace these Goldstone fields correspond
=(r,0%, ...,0"), and the remaining coordinate functions to the translational symmetry and global supersymmetry that
are set to zergsee[20]). are broken by the superbrane worldvoluf@®,23 i.e., by
Clearly, the gaugd7.6) or (7.7) can be fixed also in a the position of the superbrane in superspace. Then, when a
dynamical system of pure bosonic gravity interacting with abrane or particle interacting wittsupejgravity is considered
bosonic particle or brane. As such, this phenomenon shouldnd, moreovey (supeigravity is described by an action on
be known in general relativity, and this is indeed the casethe same footing as th@upeibrane, the global translations
The pure gauge nature of the coordinate functions describingnd global supersymmetry are replaced swperdiffeomor-
the motion of a dynamical sourcgparticle was already phism symmetry, which is thegauge symmetry of the
known in general relativity, see, e.§38,39. The presence coypled actior{e.g., of the actior(6.1); see also Appendix
of the gauge symmetry allowing one to focally the gauge g ) Thuys the coordinate functions in such a dynamical sys-
(7.7) for branes or(7.6) for a particle is reflected in the tem should be considered Gldstone fields for gauge sym-
language of the second Noether theoréee[20,21]) by  etries
stating that the brane or particle equations of motion can be The Goldstone fields for thgaugesymmetries aralways
derived as a consequence of the field equations for gravity,re gauge field{compensators in the supergravity lan-
This type of statement can be found in bodkee, €.9., p.  guage. The “unitary” gauge where the Goldstone degrees of
240 in[39], pp. 19, 44-48, and E1.6.13 in [38]) and  freedom are set to zero is always assumed in the consider-
comes back to the original paper by Einstein and Grommegsion of Higgs phenomenon. For the case of spontaneously
[40]. Namely, one can derive the equations of motion of theyokeninternal gauge symmetry, the only trace of the inter-
particle source from the covariant conservation of the paryction with the Goldstone fields in this gauge turns out to be
ticle energy-momentum tensor in the rhs of the Einstein fieldne mass termi the gauge field equations. This is just the
equation. So, the statement[88] is that we do not need to  ¢gntent of the standard Higgs phenomenon.
vary the action with respect to the mattearticle variables Now, when the Goldstone fields fepacetimeor super-
because we can obtain the equations of motion for the mattefyace gauge symmetry live on a subspace of spacetsne
part as a consequence of the Einstein equations. These, B¥rspacg i.e., on the (supejbrane worldvolume or
their geometric structure, imply the covariant energy-(sypejparticle worldline, we may also expect a modification
momentum conservation which in turn is equivalent to thept the equations for the spacetinfer superspadegauge
matter equations of motion. fields. However, such a modification will only be produced
by terms with support on the worldvolume or worldline.
. Hence these new terms modifying the gauge field equations
Note that the gauge with all componentsx#f{ ) equal to zero  should be just thesource termslike the rhs of Eq.(7.16
cannot be fixed due to the restrictions on the pure bosonic sector ‘Helow[in particular, forx given by Eq.(7.6)]. Summarizing,
the transformations since the diffeomorphism transformations havsvhen the Goldstone fields are worldvolume fields, the coun-

to be invertible and _|t |§ clear that (@vorld)line could _not be rep- }erpart of the mass terms appearing in the gauge field equa-
resented by one point in any nondegenerate coordinate system. In

contrast, the nondegeneracy of superdiffeomorphisms implies

B B i i i i -
det(d +gb (x,0)/96)#0, Vxh'Ch does not restn(.:t the field pa 10\iore precisely, the bosonic and fermionic Goldstone fields are
rameterb”(x,0) and, hencesg(x) [see Eq.(3.22] in Eq. (7.3.  gentified, respectively, with the bosonic coordinate functions cor-

This allows us to use the pU"'baéi%==8A%§;<) of e5(x) to fix the  responding to the directions orthogonal to the worldvolume and
gauge(7.4), where all the components @f'(7) are set to zero. with a half of fermionic coordinate functions.

[or x*(7)=(7,0,0+ 7) if one identifiesx® with the time-like
dimension in the flafsupej space limil. In general, for a
D-dimensionalp-brane interacting with dynamical gravity
one can fixlocally the following counterpart of the gauge
(7.6) (static gauge
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tions as a result of the usual Higgs mechanism are preciselguperfield action for the interacting system, E}1), would
the source terms in the Einstein equation and in some othdbe sourceless in this gauge.
gauge (supen)field equations The analysis indicates that this is indeed the case. First, in

In complete correspondence with the usual Higgs phethe coupled system the scalar main superfid@l40 are
nomenon, the bosonic “unitary” gaug@.7) clearly cannot equal to zero on the mass sheR=0=R, Egs. (6.21),
remove the source from the Einstein equation. However, th% 22. Thus R —ORl,_ .=

. _ 22. 9=0=0R|4=0=0. In contrast, the vector

super—H|ggs effe_cﬁzs] may be subtler wher_1 we ha\ier_m|- main superfield2.9) becomes equal to the current potential
onic Goldstone fields defined on a surface in supersfaee = A

h b ldvolumerh fiold i (6.29, Eq. (6.28. HenceG,|y—o= Jalg—o- However, it is
on the superbrane worldvolumérhe gauge field equations seen that7,,_o=0 in the gauge7.4). Indeed, 7, is con-

that acquire a source term as a result of the super-Hig .
effect would be thesuperfield generalizationsf the Einstein gétrl_Jcted _from the curren} prepotgntla(§25),(6.?6),(6.27),
hich involve 6%(Z—2)=[6-6(7)]*s*(x—x), Egs.

equations and other gauge field equations, including that fo

the gravitino, W =1J, [see Eq.(6.49]. Let us discuss the (6:13.(6.14.In the gaugd7.4)

fermionic superfieldsource termly, . In the “unitary” gauge

#%(£)=0 one can expect thaky, 6 (we show below that Kg(z)=(0)4f ()

this is indeed the case for ®=4N=1 supergravity- W

superparticle interacting systenNow let us recall that the

spacetime fermionic gauge field equatigthe gravitino I?"(Z)=(9)4J I(7)

equation is given by thdeading componenif the superfield a wi

equationV=Jy, i.e., by ¥|,_o=Jy|s=0. Thus, if Jyx6,

this givesJy|y—o=0. This means that thepacetimesqua-

tion for fermionic gauge field becomes sourcele$s,_, ICab(Z)=(6)4J lI(q-)

=0, in the “unitary” gauge#*(&) =0 [Eq. (7.4) for the su- W

perparticld. (7.10
We hope to return to the discussion of_the fate of thei.e., all current prepotentials become proportional to the

super_brane degrees of f_reedom and other issues o(fsthe_ highest possible power in the superspace Grassmann coordi-

penHiggs phenomenon in the presence of superbranes in Fates

future publication. Here our goal is more immediate: to find '

the explicit form of the equations of motion of the K P(Z)=(6)%

supergravity-superparticle interacting system in the fermi- .

onic “unitary” gauge (7.4). =0 = KJl(Z2)=(0)*, (7.1

K 2(Z)= ()%,

1 = - o
€. E

1. Fa
E aTE

S (x—X), (7.9

=0

S (x—X%), (7.9

#=0

1. .
EEaTEb

84 (x—X),
=0

C. Gauge fixed form of the equations of motion Thus only the action diour Grassmann covariant derivatives

of the coupled system onKA(Z)=(K 2, K2 ,K2) can produce an expression which

In the WZ gauge supplemented by the conditi@), the  has a nonvanishing value fé=0. In particular,
coupled system action is reduced to the action for supergrav- R
ity interacting with a bosonic particleAfter integration on 0=0 = J,%(60)? (7.12
Grassmann variable in the supergravity part of the coupled - } o
action (6.1) this coupled action should become basically the@nd, hence, the auxiliary vector field of the miniml
same as th®=4 case of the action for thsupergravity- =4N=1 supergravity vanishes on the mass shell in the
bosonic particleinteracting system considered in RE20].  9auge(7.4),
The only expected difference is the presence of the auxiliary
fields, G| y—0,R|9=0,R|9=0, Which are not essential as they
appear in the component action only through quadratic com- The Rarita-Schwinger equation can be derived setting

binations, without derivativef9] and can be removed using =0 in the superfield equatiot6.49. However, in accor-
their algebraic equations of motion. Furthermore, passing e with EQ(7.10, Dadil, O:'O .Hencethe’spacetime
(7.12), ol o= .

the component approach to supergravity, which deals Wmharita-Schwinger equation derived from the superfield ac-

fields on spacetime, one excludes the superspace diﬁeom%n for the interacting superaravitv-superbrane svstem be-
phisms S1(b™) with 67— 6%+b?(x,6) from consider- ' ng supergravity-sup y

comes sourceless in the gauge (7.4),
ation. Then Eq(7.5) is treated as the partial breaking of the . ! gauge (7.4)
local spacetimesupersymmetry20] [originating in?‘SgC and o b N i—
given by Eqs(B20),(B21),(B22) with 6=0 andG,|,.o=0  0=0 = Wils—0=€"""Ty Tdaa|9=0= 7 Da *4=0=0.
=Rlg=0]- (7.14

Having in mind the results d20], one would expect that, . .

in the light of above correspondence, the auxiliary fieldsOne can verify using Eq(3.6) that, due to Eqs(7.13,
should have vanishing values in the gauged and that the (6.21), Tab“|9:o=2e§egD[M¢‘j](x). Hence the above state-
spacetime Rarita-Schwinger equations following from thement is related to the true component gravitino equation.

0=0, = Ggly_0=Talp-0=0. (7.13
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The component Einstein equation for the coupled systenrassmann coordinate function equal to ze#r)=0 (cf.
can be obtained by setting=0 in Eq. (6.50. Clearly, it  [25]). The analysis of the localgauge symmetries of the
possesses a source term, but only from the spin 2 currembupled system shows that it is possible to fix simultaneously

prepotential, Eq(6.27, #(7)=0 and the Wess-Zumino gauge for the supergravity
1 variables. Clearly, with these gauge fixing conditions, after
R.2S  =—oBB[[D, Dy T2, integration over the superspace Grassmann coordidzad
be 167> L Ps DslT -0 the elimination of the auxiliary field§,|s—o,R|s-0.Rls-0
1 by means of their(algebrai¢ equations of motion, the
_ T~ R Taa I~ .11 ac supergravity-superparticle interacting acti@?2) should re-
6270 ¢ [[Dp Dpll P Delk ™ p-0 duce to the action for the supergravity-bosonic particle sys-
1 tem investigated ih20]. To verify this conclusion we have
_ T~ BB Taa . e~ 2,2 studied the component equations of motion derived from the
640 e [[Dg . DpllPa- Dal(0)(6) To-0 superfield equations for the supergravity-superparticle sys-
tem and shown that they do coincide with the supergravity
oz bosonic particle equations froif20] when both the WZ
X fwll(T) S (x=X). (7.19 gauge and the gaudg&.4) are used. In particular, in the re-
=0 sulting gauge the component Rarita-Schwinger equations re-
In the WZ gauge(3.9) [recall that it can be fixed simulta-
neously with the gaugér.4)], where Egs(3.1),(3.2) as well
as(3.7) andE,”|;-o=6,” are valid, Eq.(7.19 reads

=0

lecga
E T

main sourceless while the Einstein equations acquire a
source term from thésupejparticle.

The net outcome of our analysis is that the complete su-
perfield action for the supergravity-superparticle interacting
system has the supergravity-bosonic particle system as its

ac|  _ 2 fa _3 gauge fixed version, as it is also the case for the group-
SORoc™19-0 wall(T)[ebTe 15°x=%), (718 manifold based action for the coupled systgt8].

The applications of the present approach to the case of
where c is a constant anéazdreizdg(“(r)ei(i) isthe D=4 supergravity-superstring and supergravity-
pull-back to the worldline of the bosonic forme®  supermembrane systems requires previous knowledd2 of
=dx# ei(x)=Ea| 9—o- Equation(7.16 coincides with the =4 superspace supergravity with additional two-form and
one obtained from the supergravity-bosonic particle coupledhree-form in superspadef. [41]). This, as well as an analy-
action provided by the sum of the component action for susis of the(superjHiggs effect in the presence of superbranes
pergravity and the bosonic particle actif20], for the case and the study of the interaction of supergravity with more
D=4. than one superbrane, will be the subject of future work.
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field 7,, the current “potential,” which is a current density

distribution with support on the worldline that appears at the APPENDIX A: CHIRAL PROJECTORS
right-hand side of the vector superfield equati@rd) for the ) o )
supergravity-superparticle coupled system. The algebra of covariant derivative3,, Eq. (2.17), is

The current potential7, is covariantly conserved, Eqs. €ncoded in the Ricci identities
(6.34),(6.395, and turns out to be constructed from the spin DDV. =RV
3/2 and spin 2 distribution$6.27),(6.25, which we call a—Tathbs
“current prepotentials.” These current prepotentials obey DDVA=R/§VB<—> DDVa:Rﬁvﬁ, (A1)
Egs. (6.37,(6.38,(6.40, as a result of the superparticle DBy
equations of motion. DDVa=RaV,

In the interacting system with dynamical supergravity, théywherev,= (V,,V,,, V%) is an arbitrary supervector with tan-
ZM(7) [22—24 allows one to fix the gaug.4) that sets the  the basic two-form&*/\EB, one finds(see[12,13)
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[Da,Dg}Vc= —Tas"PpVe+RagPVp . (A2) First, let us note that the set of superspace local Lorentz
transformations
When the constraints (2.12,(2.13,(2.14,(2.16,(2.198),
(2.19,(2.20 are taken into account, Eqa1) [or (A2)] im- S EA=EPLgA(Z)

plles 5LEa: EbLba(Z), Lab: —Lba==Lab(Z),
{Da 1DB}V7: —EG Vﬁ) ! (A3)

" 1 -

¥ 5LEa: E,BLBa' Lﬁa:ZLab(Uan)IBai
(D, ,DgV'=—=RV,3p", (A4) , 1
_ s _ S E“=EPL}", LBD‘:—ZLab(UaGb)a'ﬁ,
{D, ,D,;g}=2|oaBDaEZ|Da,‘B, etc.

AS) S waP=DL2P, (B1)

In their turn, Eqs.(A3), (A4) and their complex conjugates

determine the form of the chiral projectors, i.e., they can b
used to prove the identities

é's a manifest symmetry of the constraints. Clearly, they do
not act on the superspace coordinaseg™=0.
Second, the constraints(2.12,(2.13,(2.14,(2.16),
(DD- R)Dag"::(D'BDB— R)D =0, (A6) (2.18),(2.19),(2.20), as relatlc_Jns among differential forms, )
are independent on the choice of a superspace local coordi

PD—RVD. £%:— (D DB—_R\D. £e— nate system. This evident statement can be formulated as an
(PD=R)Dag":=(DpD"~R)Dac"=0, invariance undesuperdiffeomorphisnfi.e., superspace dif-
feomorphism transformationsdy;ss (see[20]),

D, (DPD—-R)U=0, (A7)

o M oM e X' *=x"*+b*(x,0),

D,(DD-R)U=0, Z'N=Z"+b"(Z): 0/ = g+ £¥(x. ) (B2
whereg"‘,gd are arbitrary spinor superfields akdis an ar- E'AZ)=EAZ), w'3(Z")=wab(Z). (B3)

bitrary scalar superfield. Note that the chiral projectors are
different when acting on superfields with Lorentz group in-The statement of the invariance of differential forms, Egs.

dices, e.g., (6.7),
1— S4iiZM=2"M-zZM=pM(2), B4
(DD+ SR|DU=0. (A8) dirt (2) B4
SaintEA=E'NZ")—E~Z)=0, (B5)
APPENDIX B: ON SUPERDIFFEOMORPHISM 5diffwab=w'ab(2')—Wab(Z)=O, etc.,
INVARIANCE AND SUPERSPACE GENERAL (BG)

COORDINATE INVARIANCE

. : just implies that Eq(B2) [or Eq.(6.9)] describes a change of

n this appenghx we presentacomplete account of all th ocal coordinates, but does not act on the superspace
manifest superfield gauge symmetries of superfield SuPer’points 11 Thus 5;'” invariance can be treated as N
gravity. We discuss separately thetive and passiveforms : ' ! ; : pas
of general coordinate invariancerhich we callgeneral co- siveform of the general coordinate symmetry in superspace.

? . . Third, the set of constraints is invariant undgeneral
ordinate symmetrys,., andsuperdiffeomorphism symmetry . .
) 9 . coordinate transformations of superspaég. [6,13,20 (ac-
Sqitf» respectively. Although both symmetries are known, . !
tive form of general coordinate symmelng. is the sym-

usually only one of these two symmetries are considered in : o
: . . . metry under an arbitrary change of superspace “poifiits

the literature. The reason is that the invariance of the La- : .

) . . S contrast to a change of local coordinates as in the case of

grangian form in a field theorgor of the Lagrangian integral s

form in a superfield theopyunder 54i¢¢ implies immediately aif)

the invariance undefy. (see Appendix A1 for further dis- 8qZM=tM(ZM). (B7)

cussion. However, when dealing with a new type of system g€

where some of thésupejfields live on a submanifold of

(supe)spacg(e.g., on the superparticle vyorld!mwhile oth- UThe prime under differential form means, e.E'A(Z’)

ers are defined on whole superspace, it is important t(_) take EA[Z(2')]. Thus Eq. (B5) is the trivial identity EA(Z)

into account thaty;r; and 8y, act differently. In fact, this  —gArz(z')] reflecting the freedom of choosing an arbitrary local

difference is already seen even for “free” supergravity wherecoordinate system. Nevertheless, foem invarianceof an action

we show(Appendix B 2 that the Wess-Zumino gauge is in- or of an equation undey;; requires the model to be formulated

variant underd,., whereas théy;s transformations are bro- ysing the supervielbein superfielia the bosonic case, when spinor

ken by the Wess-Zumino gauge fixing conditions down tofields are absent, it is enough to introduce a metric fi@ltus 8g;¢;

spacetimelocal supersymmetry andpacetimediffeomor-  can be used as a gauge principle for gravity and supergravity mod-

phisms. els.
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The transformation of differential forms under the change of

arguments(B7) is given by the Lie derivativel,=i.d
+diy, i.e.,

8gcENZ)=ENZ+1)—EANZ)
=LEAN2Z)=i,TA+D(i,EM) + EBi,wg?,

(B8)

SgeW(Z) :=wP(Z+1) —w3(Z)

=LW*(Z)=i,R*®+D[iw?(Z)], etc.,
(B9)
where

i EA=tMEY =:tA, (B10)
i W(Z2) =tM(Z)wif(2) =tA(Z)WR(2), (B11)
i TA=EPtCTog",  iR®P=EBt°REY,. (B12)

The last terms in Eqs(B8),(B9) can be regarded as a
Lorentz transformation(B1) induced by dyc, 5. (L3P

PHYSICAL REVIEW D67, 065003 (2003

Since diffeomorphism invariancéy;¢;(b™) [Egs. (B2),
(B3)] is guaranteed, one can consider, instead of (Bd),
thevariational version of the general coordinate transforma-
tions [6] 4. with parametert®(Z)=tMEp, =i,E", defined
by (see[21])

Byo(th) = Sge(t™) + Sgigr(bM= —t") + 5, (L3P= —i waP).

(B14)

?Sgc(t) does not act on the superspace coordinates and acts on

superforms through the covariant Lie derivative

84cZM=0, (B15)
34 ENZ) =i TA+DtA, (B16)
By W3(Z)=i,R?, etc. (B17)

The superfieldlocal supersymmetrys(e2) can be iden-

tified with the variational versiofﬁgc(eﬂ) of the fermionic
general coordinate transformatio(15),(B16):

8is(€9) =8, [12=01"=€%(2),t1*=€%(2)]. (B18)

=i,w?") and, thus, they can be conventionally ignored in a
manifestly Lorentz invariant theory. In other words, one mayThen the relation with the local supersymmetry of the com-
consider, equivalently, the superposition of transformationponent formulation of supergravity becomes especially trans-

Sge(t) + 6. (L= —i,w?) instead of the originaldy(t).
These transformations were callsdpergauge transforma-
tionsin [13].

parent.
Indeed, Egs(B16),(B17) with the torsion and curvature
two-forms from Egs.(2.12, (2.13, (2.14, (2.16), and t?

The simplest way to see that the constraints are invariant [ e#(z),e%(z)] provide us with the following local su-

under the superspace general coordinate transformagipns
is to recall thatdy. implies moving from one superspace

“point” to another one and that, since the constraints are

satisfied at any superspace “point,” they are invarignt.

Note also that the transformations of superfortizg),
(B9), 84cT"=Di TA+i,DT*, etc., imply the usual transfor-
mation rules for the(supeitensors(zero forms. For in-
stance, forTeg" defined by Egs.(2.2-(2.4), TA:=3EC
NEPTg?, one obtainsdy Tce"=tPDpTcg™.

The fermionic general coordinate transformatidigy),
(B8), with parametertM(z)=e%(2)E ,"(2), i.e., [see Eq.
(B10)], -

i E2=0, i E2=€%(2), (B13)
can be treated as a local supersymmédttg@], while the
bosonic transformations(B7) with parameter t“(Z)
=t3(Z2)E,(Z) provide the superfield generalization of the

spacetime general coordinate transformations. However, with

such treatment, the origin of the local supersymmetry of th
componenformulation of supergravity, i.e., of supergravity

formulated as a theory of fields on spacetime, become
slightly obscure. The following observation helps to make

the above-mentioned relation clearer.

?Denote the set of constraints b§;(Z)=3EBAECCcs*(2)
=0. They are satisfied at any superspace p@iit Thus C“z“[Z
+1(2)]1=0 too ands,.C3'(Z) =C3{Z+1(Z)]—C3(2)=0.

perspace supersymmetry transformations

5.2M=0 %" =0, B19
Is - g 5I30a:01 ( )
8 E2=—2i EHUZB?*(Z) —2iE¥0%, ¢, (B20)
[ ~ —
5|5E”=De”‘+§Ea[(ecrao'b)“Gb-f—(eaa)“R], (B21)
= y _a i ar (- Narb - ap
3sE“=De"— g EY[(002€) ‘G + (7a€) 'R, (B22)
— - _
S W= —E(@ePIR— gEl(0a) e ef)D.R
+ (€0 ,0,) “DPGP]. (B23)

eI'he superspace local supersymmetry transformatipnsf

g1e main superfield&2.9)—(2.11) are determined by

SR=€"D,R, &.R=€e"D,R, (B24)

5,G?=€*D ,G?+ €*D,G?, (B25)

5, WaBY= €D A\NBY,
(B26)

8 WPY= 5D WA,
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Setting #=0 in the 5 transformationgB20)—(B26) we  although these symmetries imply each other in field theories,
arrive at the transformation rules of tlodf-shell supersym- their role is different as we show in Appendix[Egs.(C2),
metry characteristic of the minimal formulation of tie  (C3)].
=4,N=1 supergravity. To this end one needs the expression In the case of superspace the action is written in terms of
of the spinor derivatives of the main superfields in terms ofan integral(Berezin form. Nevertheless, the general coordi-
the Riemann curvaturgR.?°, Egs.(2.15,(2.26] and the nate invariance of the superdiffeomorphism invariant action
gravitino field strength$Tgc,Tgc, Egs.(2.22,(2.23] with can be also established easily. For instance, to prove the in-
the use of the consequences of the constrdhts?),(2.13, variance of the actior(4.1) under the variational version
(E.gl),(z.16),(2.18),(2.19),(2.20). For instance,D,R and ~5gc(tA) (B15),(B16),(B17) of the superspace general coordi-

D,R are expressed through the gravitino field strerfyfl, ~ nate transformations, including local supersymmétegs.

with the use of Eq(2.24). (B19),(B20)—(B26)], one has to use the identity
The variational version of the superspace general coordi-

nate transformation7§gc with bczsonic parameter$ can be J’ d*% d*O E(D A+ BTN (- 1)A=0, (B31)
called “local translations,”s;; = d4(t%t*=0)

5 x*=0 which is wvalid for any complex superfield&*
MZM=0 & | o (B27)  =[C¥Z),»(2).n*(2)].

It = A variation of superdeterminant has the form

5ltEa:rDta+% EbSadetc(Z)Gd , (828) SE= EEAM 5EMA( - l)A (832)

To computed,E one substitutesy (5,.E”) from Eq.(B16)

[ ~ i— A :
5ItEa: _ gEBta(Uan)BaGb+ gEBGaBtaUaBBR for 5EM , and finds

3 _E(_1\A A _1\A:BT_ A
L EbAT,, O (B29) OgcE=E(—1) "Dt +E(—1)"t"Tga"" (B33
otc Then the identityB31) implies
In the pure bosonic case it is precisely this symméthys EQCSSGZJ d8Z E(D atA+1BT5 M) (—1)A=0.
form of the spacetime general coordinate invarianitet

provides the possibility of treating general relativity as a (B34)

gauge theory of the Poincageoup[42] (see[21] for further

) . Thi mpletes the proof of general rdinat mmetry.
discussion s completes the proof of general coordinate symmetry.

Note that, as the constraints of minimal supergravity

_ _ (2.12,(2.13 imply (—1)ATgs*=0, the identity(B31) sim-
1. Gauge symmetries of the “free” supergravity plifies to

superfield action

The action(4.1) is evidently invariant under the superdif- f 3 Al 1\A_
feomorphismgB2),(B3), d*ZED A& (—1)"=0. (B35)

S4ittSsc=0. (B30) Since §is= 3y t*=(0,6%)], Eq. (B18), this proves, in

. . . . e articular, the invariance under the local supersymmetry
This invariance is a simple consequence of the possibility OF

. - i a_
changing variables irany integral (see footnote 1} but raﬁsf(jmlath;ns(Blg?_(aBzg) [BWh'Ch |r_n_ply, e.g.,5|§EM
moreover, in our case the action fierm invariantas the — 21Em0,€"(2) +2iEy0,€”]. Specifically, one finds
theory is formulated in terms of the supervielbein.

In the pure bosonic case, where t_he counterpart of the 5ISSSG:_J d8z EDae_=f d8Z Dy (EEM) 2
above statement means that the action is an integral of a = =
differential form(Lagrangian formy S= [,oLp, the general
coordinate invariance follows then from the simple observa- = _f d®Z T A(—1)"e2=0. (B36)
tion that the variation of the Lagrangian form undgg, as -

well as under?SgC, is given (see[21]) by a Lie derivative: _ _ _
5chDE5chD: i.dLp+d(iLp). Then the first term van- 2. On the gauge symmetries of the supergravity-superparticle
ishes as it contains the exterior derivative @fform on a coupled system

D-dimensional manifold, while the second term is a total The invariance of the coupled action under superspace
derivative which does not contribute for a spacetiM®  diffeomorphismsdg;; follows from the fact that Eqg6.10),
without boundary. This statement is usually treated as &6.9),(B5) imply

manifestation of the equivalence between the active and pas- o o

sive forms of general coordinate transformations. However, SqitiE?=E'3(Z+ 64;11Z2) —E(2)=0. (B37)
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Thus

S4itrSsp=0 (B38)
and, sincedyisiSse=0 [Eg. (B30)] we find

64i11S=0. (B39

On the other hand, as the superspace coordirEfesot
to be confused witli""(r)] do not enter in the superpatrticle
action, the general coordinate transformatiofig [Egs.
(B7),(B8)] supplemented by the definition

5gc2M(7') =0, (B40)
trivially give 94.Ss,=0, and the invariance of the supergrav-
ity action 8,.Sgc=0 gives

54cS=0. (B41)

PHYSICAL REVIEW D67, 065003 (2003

11
(1+60) (1+62D,)"

(CY

The action of such an operator is well defined on superfields
(as they are polynomials ifl) and produces expressions in-
volving covariantGrassmann derivativeB,, when Eq.(C1)

acts on the torsion and curvature superfields. For instance,
from Eq.(3.14 one finds

C

1
E2(Z2)= 0PTe. = F ————(EST2)),
a( ) (1+ 0(9) Ea (2+02Da)( a CE)
- (C2
where we use E(q3.13 and the identity
B=pB____—
k+09) = kv 17 09) €3

Then the invariance under the variational copy of the super-

space general coordinate transformatioh,s,, Egs. (B15),
(B16) supplemented by the definition

ByeZM(1)= —tM(2)=—t}(2)EN(2)— e%(2)EM(2)

—e“(2)EY(2), (B42)
follows from the 3, and 8¢ invariances;?
84cS=84Ssp=0. (B43)

Note that in the “superparticle sector” of the configuration
space of the interacting system the actior%@cf, Eq.(B42),

coincides with the action of diffeomorphism transformations.

In particular, the transformation of the fermionic coordi-
nate functionbz'(r) under the full set of local symmetries of
the interacting systenfincluding &4;¢;(b) Eqg. (6.10 and
Egc(t), Eq. (B42) and the worldlinex symmetry} acquires
the form

80 1)=b¥(Z2)—t*(2)+ 5,.60% 1), (B44)

where 5,.6%(7) is defined by the Eq(5.15 with M = &.

APPENDIX C: MORE ON THE WESS-ZUMINO GAUGE

1. Decomposition of superfields in the
Wess-Zumino gauge

The decomposition of the superfields,? E;¢,w;2° in

power series orf is completely determined by Eq&3.14),

[which follows from k+ 63) €= 6E(k+ 1+ 63)].
As one more example, let us present the explicit form of
thed# component of the expressi@8.17), which enters Eq.

(3.15:
D ;08= 6%+ 02w, 2
aéRﬁ_aab)

P O N R
a| “al 47T 3T (14 99)

1
S+ 702 o, 268

= 5%

(2+6<D,) E¢
B (CH

The complete decomposition of tle* components of
the formsE®, E2, w?2”is governed by thex* components
of Egs.(3.14), (3.15, (3.16, e.g.,

(CH

0IES, = EEaE’TEBa— - 0éEﬁTBéa.
Clearly, Eq.(C5) involves the nilpotent operatatd= 6%3;,

= 60%D, . This nilpotent operator has an evident kernel: the
leading component of the superfield, e.B2|,—o=€3(X).
However, as it was observed [28], this operator can be
considered afvertible in the space of superfields with the
vanishing leading componentShus one can write as well
the formal expansion forEZ by subtracting the kernel,
ES(2)—[ES(Z2)—EZly=o] (thus arriving at a superfield
with a vanishing leading compongrand using the formal

(3.15,(3.16. To make such an expansion explicit one canrelation(C3) with k=0 (which is meaningful in the space of

use the formal operatd£8]

BThe breaking oﬁgc invariance, discussed {20,21], is a spon-
taneous symmetry breaking.

superfields with vanishing leading componeritsarrive at

EL(Z)=E}lp-o— [ER(2)Tes]. (CO)

o ——
(1+62D,)
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2. Gauge symmetries preserving the Wess-Zumino gauge 09[L3%(Z) —bMwy,2P]= — (bP—1tP) ngCyDab_
To find the full set of local symmetries that preserve the - (c1y

Wz ga’\LAJgE(?;.BA one mbay write the |nf|n|tg§|mal variations Settingt”=0 in Egs.(C16),(C17), one arrives at Eq3.19),
Bqirr(b™), Ogc(t™), 6. (L?") of the WZ conditions(3.8) and (3.20.

require their preservation, At zero order of the weak field approximation one finds

Lo+ bz'(Z)][E”g(Z’)+ 5LE§(Z)+39CE’2(Z)] the set of equationft. (3.23—(3.25)]

o 09(b?—1%) = —2i(P~ €P) 3, 67, (C189
=[0%+b%2)]5%, (C7) o
00(e2— €)= 6L 5%, (C19
[6%+b%(Z)|[W'ENZ") + 8yoW3(Z) + 5, wE>(Z)]=0. -
(Ccy 09L3P(Z)=0, (C20

Here 8, is defined by Egs.(B15),(B16),(B17) and the Which are solved by
primes reflect the superdiffeomorphism transformations, Egs.

(B15),(6.7), or (B5),(6.9). Hence 12(Z) = b3(Z) =12 (x)— 21 %€ _(X) ‘1‘1 0 yeer®) 01°%().
E;AZ")=E&(Z)—a:bMER(2Z), (C9) (c2))
WLA(Z) = w2P(Z) — a;bMwad(Z). €10 €2 —eXZ)=€2(x)— 68 42(x), (C22
LaP(Z)=12P(x), (C23

The termsd,E4(Z) and 8,w2%(Z) in Egs. (C7),(C8) are

[e3

defined by the contraction of Eqe316),(B17), wheret? (x),e2(x) are arbitrary vector and spinor functions

and|2°(x) are local Lorentz parameters.

In the general case the WZ gauge is preserved by the part
~ brab of the original superspace local symmetry corresponding to
OgcWi (Z2)=t"Rpy - (C12  the parameters that are not restricted by Egsl9),(3.20.

. ) These are thsuperfieldparameter
Finally, the Lorentz transformations have the standard form

By EL(Z)=tBTH,+ D yth, (C11)

(BD.(3-23, th(2)=bA2)+tA(2), (C24
8 ES(2)=E2(2)Lg"(2), (C13  the vector and spindield parameters
SWE(Z)=D;L*(2), (C14 tA () =[t2(x),e2(x)]=[tA(Z) = b (Z)]| p=0, 29
Ar7y Ly O ab_ _ | ba and the antisymmetric tenséield parameter
LB(Z)—O L“’L_L’
122(x)=L2%(Z)| y—¢. (C20
a__ 1 b «a
Lpt= s L™ anp™ (C19 In particular, both the spacetime diffeomorphisms and

Bv algebrai ioulati ith th f1h tgeneral coordinate transformationgwith parameters
Yy algebralc manipulation wi e use o e recurren ba(Z)|(;=o,ta(Z)|(;=o], as well as Lorentilab(X)] and local

rel?r:io?s(S.14),(3.15),(3.16), one can present Eq&EC7), (C8) supersymmetry[ e%(x) = €%(Z)|,_o] transformations pre-
In the form serve the WZ gauge.

03(0"—t4) = (b°—1%) 02T 5"+ 01(L§— bMwiy,2),

< (C16 3. On the general coordinate invariance of the

Wess-Zumino gauge

The fact that the condition€.19, (3.20 on the param-

4Note that we do not use here the “prepotential” form of the Wz eters of the symmetry that preserve the WZ gauge do not
gauge described in footnote 4, and shall not address the issues gstrict also the superfield paramet€@?24) requires some
residual symmetries in such gauge. This requires a separate study @@mments. EquatiofB14) can be rewritten as
a number of gauge symmetries have to be fixed before one arrives _
at the expression in terms of auxiliary vector superfield and chiral 5gc(t'v')= 5gc(tA) + 8gisr(BM=tM) + 8, (L2P=i, waP).
compensator, and, on the other hand, the solutions of the constraints (C27)
are defined modulo additional gauge symmetry transformations.
Thus all our statements below are for the Wess-Zumino gétige ~ Then, Egs.(3.19,(3.20 become the identity €0 when
fixed through the conditions on thEotentialsof the superfield su- b™=t™, L3=i w3, This observation shows that the super-
pergravity. field symmetry which preserves the WZ gauge is just the
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general coordinate symmetry in its original forfig., Eqs.  approach to supergravifyL.9 18 and of a related treatment of
(B7),(B8),(B9). This can be also verified straightforwardly. the D =10 superfield superstring acti¢a5].

Actually, the general coordinate invariance of the WZ
gauge(3.9) is natural and should be expected if one has in APPENDIX D: ON WORLDLINE SYMMETRIES OF THE
mind that the general coordinate transformations imply pass- BRINK-SCHWARZ SUPERPARTICLE ACTION

ing from one “poi_nt” of superspace to anotheré whilethe WZ 1,4 reparametrization symmetsy, Eqs.(5.21,(5.22), is
gauge(3.8) is valid at any superspace “pomtl. _ the gauge symmetry of the superparticle action which can be
_ Itis instructive to understand how this symmetry is real-jgentified with thevariational version of the worldline gen-
'.Zed in the §pacet|r_ne sgpergrawty action. Let us ConSIdeéral coordinate transformatiom%wgc, because the transfor-
first a superfield action with a full superspa@erezin mea- mations(5.20), (5.21, (5.22) do not act on the proper time
sure[e.g., the functional4.1)] which possesses superspace ' ’ L~
general coordinate invariance. Then one can integrate ovﬁOte that, actuajly, as_the natural definition @fqc(S(7))

. ) . [cf. (B15),(B16)] is provided by
the Grassmann variables and arrive at a component acti
written as the integral over spacetime of a Lagrangian form _
expressed in terms of spacetime fields. However, as this is OwgcT=0, (D1)
still the sameaction, it should still possess tlsiperspace
general coordinate invariance. But, on the other hand, it is
independent of the Grassmann variables after the Berezin
integration. The resolution of this apparent paradox is that on
the component fields theuperspacegeneral coordinate Ewgcl(r)zlﬁrs—sﬁrl, (D3)
transformation$B7),(B8) are realized nonlinearly, with only _
the subgroup ofspacetimegeneral coordinate transforma- the transformatiors,,y differs from &, by one more local
tions acting linearly. For instance, on the spacetime vielbeisymmetry,sn(h(7)),
form €%(x) =E*(Z)| - o40-0 the superspace general coordi- )
nate symmetry with parametet¥ (Z)=(t*(x, 6),e%(x,6)) ShZM(7)=h(D[EEM(2)+E,“EM(2)] (D4)
acts ase®(x) —e*[x+1t(x,0)]] g+ ¢x.9-0 (cf., the nonlinear
realization of the superspace supergravity supergroups in

BugZM(7)=5(7)3,2M(7), (D2)

[26]; it is instructive to note that the above expression sim- inE?=0,

p[ifies if the supe_rfielqs“ is assumed_ to be independenttf - i Eo= h(r)Ei‘, (D5)
€“(x,0)=€5(x); in this case one finds*(x)—e*{x+1t[x, o4 s

— (M) 1). ihE“=h(7)EZ,

The role of superdiffeomorphism symmetry is different. It
allows us to choose a coordinate system in supersfihee
WZ gauge where all the higher terms in the decomposition ~
of supervielbein superfields on powers of Grassmann coordi- (1) = bugd8=r)+ dp(h=—r). (D6)

nates are expressed in terms of leading components of SWote thats, (h(7)) is present in the Brink-Schwarz superpar-

pertensors(torsion, curvature, and their covariant deriva- tjcle in any spacetime dimensioB where the gamma-

tives). matrices can be chosen to be symmetric.

The additional hidden superspace general coordinate in-

variance of the component supergravity action may shed———

some light on the transition from the superfield action to its 16The rheonomic approach to supergrayitg] is based on a gen-

component form that uses “Ectoplasm” ide§$3,15, as eralized action principle constructed in accordance with the follow-

well as on the existence of the rheonomic or group manifoldng prescriptiongsee[44,18): (i) one takes the usual component
action, (i) writes it in the first order form, without using the Hodge
duality operator, andiii ) replaces all the fields by superfields, but

15 bosonic counterpart of the above statement is that the definingfken on the surfacg\/lD in D-dimensional superspace defined

conditions of the normal coordinate system in general relativity,parametrically byé=6(x), where 6(x) is an arbitrary fermionic

x”[ei(x)— 5‘;]:0’ quib:O, are invariant under the active form function of spacetime coordinates. Such an action is clearly invari-

of spacetime general coordinate transformatiatis-x*+t*(x), ant under superspace general coordinate transformations pulled

e?(x):=dx* ei(x)ﬂea(x+t)=ea(x)+itdea+ditea. This again  back onto the surfacét®. On the other hand, settimg(x) =0 one

can be easily explained by observing that the above conditions ararives at the first order form of the component action, where the

valid at any spacetime point and that the active form of the generaduperspace general coordinate invariance is not manifest, but it is a

coordinate transformation implies just replacement of one spaceiidden symmetry allowing one to go back to an arbitrary surface

time point by another. M P in superspacécf. the rheonomic principleof [19]).

namely,
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