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Possible wormholes in a brane world
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The conditionR50, whereR is the four-dimensional scalar curvature, is used for obtaining a large class
~with an arbitrary function ofr ) of static, spherically symmetric Lorentzian wormhole solutions. The worm-
holes are globally regular and traversable, can have throats of arbitrary size and can be both symmetric and
asymmetric. These solutions may be treated as possible wormhole solutions in a brane world since they satisfy
the vacuum Einstein equations on the brane where effective stress-energy is induced by interaction with the
bulk gravitational field. Some particular examples are discussed.

DOI: 10.1103/PhysRevD.67.064027 PACS number~s!: 04.50.1h, 04.20.Gz
fe
ts
rri
e

a
ns

o-
O
el
g
o

ni
l
r-

an

n
ch

n
ity

th

ifi

in

ly

to
em
but
ue.
an
of

i-

del
s in
ne
the

zu,

hen
mo-

ch
e

d-

ten-
m-

in,
pli-

vita-
he

as-

ce
I. INTRODUCTION

Lorentzian wormholes as smooth bridges between dif
ent universes, or topological handles between remote par
a single universe, have gained much attention since Mo
Thorne and Yurtsever discussed the connection betw
wormholes and time machines@1#; see@2,3# for reviews. It
is well known that a wormhole geometry can only appear
a solution to the Einstein equations if the stress-energy te
~SET! of matter violates the null energy condition~NEC! at
least in a neighborhood of the wormhole throat@4#.

Many versions of exotic matter, able to provide NEC vi
lation and to support wormholes, have been suggested.
class of such sources is represented by so-called ghost fi
i.e., fields with explicitly negative energy density, includin
scalar-tensor theories of gravity with an anomalous sign
the scalar field kinetic term in the Lagrangian@5–13#. An-
other class of static wormholes is obtained with nonmi
mally coupled scalar fields@6,14,15# as a result of conforma
continuation@16#. The latter means that a singularity occu
ring on a certain surfaceS in the Einstein frame metric is
removed by a conformal mapping to the Jordan frame,
the solution is then continued beyondS. It has been shown
@16# that a wormhole is a generic result of a conformal co
tinuation if its sufficient conditions are satisfied. In all su
cases, however, the two wormhole mouths are located
regions with different signs of the effective gravitational co
stant. In other words, if one mouth is in a normal grav
region, the other is in an antigravity region@16#. A related
problem is the instability of such wormholes caused by
field behavior near the transition surfaceS @17#.

Wormhole solutions have also been obtained in spec
versions of dilaton gravity@18# and gravity with torsion@19#.
Another approach is to invoke quantum effects, consider
wormholes as semiclassical objects@20–23# ~see also refer-
ences therein!. In all such cases, NEC violation is probab
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only possible in extremely strong gravity regions, leading
throat radii close to the Planck length. Wormholes thus se
to be an integral part of the hypothetic space-time foam
their practicability at macroscopic scales still remains vag

In our view, a natural source of wormhole geometry c
be found in the framework of the rapidly developing ideas
brane worlds~ @24,25#, for reviews see@26#!, inspired by the
progress in superstring and M theory@27#. By this concept,
the observable world is a kind of domain wall in a multid
mensional space~5-dimensional in the simplest case!, with
large or even infinite extra dimensions. The standard-mo
fields are confined on the brane while gravity propagate
the surrounding bulk. The gravitational field on the bra
itself can be described, at least in models of the type of
second Randall-Sundrum model@25#, by the modified
4-dimensional Einstein equations derived by Shiromi
Maeda and Sasaki@28# from 5-dimensional gravity with the
aid of the Gauss and Codazzi equations. In vacuum, w
matter on the brane is absent and the 4-dimensional cos
logical constant is zero~a natural assumption for scales mu
smaller than the size of the Universe!, these equations reduc
to

Gmn52Emn , ~1!

whereGmn is the 4-dimensional Einstein tensor correspon
ing to the brane metricgmn while Emn is the projection of the
5-dimensional Weyl tensor onto the brane. The traceless
sor Emn connects gravity on the brane with the bulk geo
etry ~and is sometimes called the tidal SET!, so that the set of
equations~1! is not closed. Because of its geometric orig
Emn does not necessarily satisfy the energy conditions ap
cable to ordinary matter. Thus, examples are known@29#
when negative energies on the brane are induced by gra
tional waves or black strings in the bulk. Therefore, if t
brane world concept is taken seriously,Emn can be the most
natural ‘‘matter’’ supporting wormholes.

In this paper we study static, spherically symmetric,
ymptotically flat wormhole solutions to the equationR
50, whereR is the 4-dimensional scalar curvature. Sin
©2003 The American Physical Society27-1
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Emn has zero trace,R50 is an immediate consequence
Eq. ~1!. R50 is a single equation connecting two metr
functions,g(r ) and f (r ), and can be solved with respect tof
for arbitrary g. We show that almost anyg(r ) satisfying
some minimal requirements~smoothness and compatibilit
with asymptotic flatness! gives rise to a family of wormhole
solutions with the throat radius as a free parameter. B
symmetric and asymmetric wormholes are obtained.
consider some particular examples, and, in addition to n
wormhole metrics, reproduce the results of the recent s
ies where some solutions withR50 ~though under other
motivations! were found @31–34#. As a by-product, some
black hole solutions and solutions with naked singularit
are also obtained. In the brane world framework, there
mains a nontrivial problem to be solved: to inscribe the
trinsic brane geometry of the above solutions into the
5-dimensional picture. Our 4-dimensional wormhole so
tion can have an arbitrary size of the wormhole throat, bu
restriction can quite probably appear from 5-dimensional
ometry. Meanwhile, the present class of 4-metrics with z
scalar curvature can be of interest by itself.

The paper is organized as follows. In Sec. II we solve
equationR50 and formulate the conditions under which t
solution describes a symmetric or asymmetric wormhole
Sec. III we discuss a few particular examples; Sec. IV c
tains some observations and concluding remarks.

II. RÄ0: THE GENERAL SOLUTION

The general static, spherically symmetric metric in 4
mensions in the curvature coordinates has the form

ds25 e2g(r )dt22 e2a(r )dr22r 2dV2 ~2!

wheredV25du21sin2u df2 is the linear element on a un
sphere@37#.

The metric~2! gives, according to~1!, the following ex-
pressions for the components of the effective SETEm

n ,
namely, the energy densityr5Et

t , the radial pressureprad

52Er
r and the lateral pressurep'52Eu

u52Ef
f :

2r5
1

r 2
~ e22a21!2

2a r

r
e22a, ~3!

prad5
1

r 2
~ e22a21!1

2g r

r
e22a, ~4!

p'5 e22aS g rr 1g r
22a rg r1

g r2a r

r D ,

~5!

where the subscriptr denotesd/dr. In caseR50 one evi-
dently has 2p'5r2prad.

Let us also write down the Kretschmann scalar for
metric ~2!:

K5Rmn
rsRrs

mn54K1
218K2

218K3
214K4

2 ,
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K15 e22a~g rr 1g r
22a rg r !, K25 e22a

g r

r
,

~6!

K352
1

r
e22aa r , K45

1

r 2
~12 e22a!.

The finiteness ofK is a natural regularity criterion for the
geometries to be discussed. Indeed,K is a sum of squares o
all componentsRmn

rs of the Riemann tensor for the metri
~2!, thereforeK,` is necessary and sufficient for finitene
of all algebraic curvature invariants.

The conditionR50 which follows from~1! can be writ-
ten as a linear first-order equation with respect tof (r )

5
def

r e22a:

f r~21rg r !1 f ~2rg rr 12rg r
213g r !52. ~7!

Its general solution is

f ~r !5
2 e22g13G

~21rg r !
2 E ~21rg r ! e2g23G dr ~8!

where

G~r !5E g rdr

21rg r
. ~9!

Thus, choosing the form ofg(r ) arbitrarily, we obtainf (r )
from Eq. ~8!, and, after fixing the integration constant, th
metric is known completely at least in the region whereeg

and ea are smooth and nonzero.
Let us now make clear how to choose the functiong(r )

~the so-called redshift function! and the integration constan
in Eq. ~8! in order to obtain a wormhole solution. We no
for reference purposes that in many papers devoted to wo
holes, beginning with@1#, the function e2a is expressed as
@12b(r )/r #21 whereb(r ) is the so-called shape function
Our f (r ) is then equal tor 2b(r ).

The coordinater, which proves to be convenient for solv
ing Eq. ~7!, is not an admissible coordinate in the who
space for wormhole solutions since in this caser has at least
one minimum, and the solution in terms ofr therefore splits
into at least two branches. As an admissible coordinate
can take, e.g., the Gaussian coordinatel ~proper length along
the radial direction! connected withr by the relation l
5* eadr, and the metric is rewritten as

ds25 e2g( l )dt22dl22r 2~ l !dV2. ~10!

We seek static, traversable, twice asymptotically flat wor
hole solutions. So we require the following:~i! there should
be two flat asymptotics:l PR; r'u l u→` and g5const
1O(r 21) as l→6`; ~ii ! both functionsr ( l ).0 andg( l )
should be smooth~at leastC2) in the whole rangel PR. This
guarantees the absence of curvature singularities and
zons ~the latter correspond tog→2` which is ruled out!.
This also means thatr ( l ) should have at least one regul
7-2
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minimum, r min.0 ~throat!, at some value ofl. Moreover,
returning to functions ofr, we see that at a flat asymptot
ea→1 and f (r )'r .

Suppose, without loss of generality, that a minimum
r ( l ), that is, a wormhole throat, is located atl 50. Then
r (0)5r 0.0, r l(0)50 and ~generically! r ll (0).0, where
the subscriptl denotesd/dl. Near l 50 one hasr 2r 0; l 2,
hence the metric functione2a(r ) behaves as (r 2r 0)21, and
f (r )5r e22a;r 2r 0. In other words, a simple zero off (r )
is an indicator of a wormhole throat providedg(r ) is
smooth and finite at the samer.

On the other hand, the derivativeg l(0) may be zero
~which is always the case if the wormhole is symmetric w
respect to the throat! or nonzero. Ifg l(0)50, we shall have
g r(r 0),`. If, on the contrary,g l(0)Þ0, then nearr 0 we
haveg r;1/u l u;1/Ar 2r 0, so that

g~r !'g~r 0!1kAr 2r 0, k.0. ~11!

We cannot putk,0 since then we would obtain the expre
sion 21rg r ranging from 2~at spatial infinity! to 2` at r
5r 0, so that 21rg r would vanish at somer .r 0 causing a
singularity in Eq.~8!.

We are now ready to single out a class of symme
wormhole metrics~W1! and a class of potentially asymme
ric wormhole metrics~W2! on the basis of the solution~8!.

~W1! We specify the functiong(r ), smooth in the range
r 0<r ,`, r 0.0, in such a way thatg(`)50, g r(r 0),`,
and 21rg r.0 in the whole range. We fix the integratio
constant in Eq.~8! by performing integration fromr 0 to r.
Then theseg(r ) and f (r ) determine a wormhole which ha
a throat atr 5r 0 and is symmetric with respect to it.

Indeed, by construction,f (r );r 2r 0 nearr 0. Introducing
the new coordinatex by the relationr 5r 01x2, we have
e2adr2;(r 2r 0)21dr254dx2, which leads to a perfectly

regular metric whose all coefficients are even functions
xPR. Both x→1` andx→2` are flat asymptotics.

Eachg(r ) chosen as prescribed creates a family of sy
metric wormholes with zero scalar curvature. The family
parametrized by the throat radiusr 0, taking arbitrary values
in the range whereg(r ) is regular and 21rg r.0.

Another procedure is applicable to functionsg(r ) behav-
ing according to Eq.~11!.

~W2a! We specify the functiong(r ), smooth in the range
r 0<r ,`, r 0.0, such thatg(`)50, 21rg r.0 in the
whole range, and Eq.~11! holds nearr 0. Then, for proper
values of the integration constant in Eq.~8!, the spherer
5r 0 is a wormhole throat, and the solution is smoothly co
tinued beyond it.

Indeed, the solution~8! may be rewritten as follows:

f ~r !5
e22g13G

~11 1
2 rg r !

2 F E
r 0

r

~11 1
2 rg r ! e2g23G dr1CG .

~12!

SupposeC.0. Then f (r ) behaves nearr 0 as r 2r 05:x2,
while g5g(r 0)1kx1O(x2). The metric smoothly behave
at r 5r 0 (x50) in terms of the new coordinatex and can be
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continued through this sphere. One cannot, however, gua
tee that this continuation will lead to another flat spatial
finity to yield an asymmetric wormhole, since the furth
behavior ofg(x) and f (x) may lead to a horizon or to a
singularity.

If we chooseC<0 in Eq. ~12!, we obtain two other situ-
ations.

~W2-b! If C,0, then f (r 0),0; recalling thatf ;r at
larger, we see thatf (r )50 at some valuer 5r 1.r 0, where
g r is finite, and we return to the circumstances described
~W1!, obtaining a symmetric wormhole withr>r 1, and the
spherer 5r 1 is its throat.

~W2c! If C50, then near r 0 we obtain f (r );(r
2r 0)3/2, and the metric is regularized atr 5r 0 by another
substitution:r 2r 05j4. As a result, Eq.~11! yields

g5g~r 0!1kj21further even powers ofj,

and we again obtain a symmetric wormhole, but now with
quartic behavior ofr near its minimum as a function of th
admissible coordinatejPR.

III. EXAMPLES

We will present expressions for the metric functionsg
and f, the effective ‘‘tidal’’ energy densityr and the sumr
1prad, which characterizes violation of the null energy co
dition ~for static, spherically symmetric systems this con
tion reduces tor1prad>0).

We use the time scale of a remote observer at rest an
we always assume thateg→1 asr→`.

~1! The simplest example is obtained forg[0. Choosing
any r 0.0 and applying the~W1! algorithm of Sec. II, we
simply obtain f (r )5r 2r 0. This is a symmetric wormhole
solution known as the spatial Schwarzschild geometry@31#:

ds25dt22S 12
r

r 0
D 21

dr22r 2dV2

5dt224~r 01x2!dx22~r 01x2!2dV2.
~13!

The effective SET Em
n has the form Em

n 5diag(0,
2pr , pr /2, pr /2) with the radial pressure

pr52r 0 /r 3. ~14!

~2! Our next example uses the Schwarzschild form ofg:

e2g512
2m

r
, m.0. ~15!

Choosing anyr 0.2m, we obtain according to the~W1! pre-
scription:

f ~r !5
~r 22m!~r 2r 0!

r 23m/2
, ~16!
7-3
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ds25S 12
2m

r Ddt22

S 12
3m

2r Ddr2

S 12
2m

r D S 12
r 0

r D 2r 2dV2

5
x21r 022m

r 01x2
dt2

2
4~r 01x2!~r 01x22 3

2 m!

x21r 022m
dx22~x21r 0!2dV2.

~17!

This is evidently a symmetric wormhole geometry for a
r 0.2m>0, or for anyr 0.0 in casem,0. The Schwarzs-
child metric is restored from Eq.~17! in the special caser 0
53m/2.

The SET components of interest are

r5
m~r 02 3

2 m!

2r 2~r 2 3
2 m!2

,

r1prad52
~r 22m!~r 02 3

2 m!

r 2~r 2 3
2 m!2

. ~18!

The metric ~17! was obtained by Casadio, Fabbri an
Mazzacurati@33# in search for new brane-world black hole
s and by Germani and Maartens@34# as a possible externa
metric of a homogeneous star on the brane, but the exist
of traversable wormhole solutions forr 0.2m ~in the
present notations! was not mentioned. It was supposed
@33# that the post-Newtonian parameters of the metric m
be close to their Einstein values for experimental reasons
therefore the study was restricted to configurations clos
Schwarzschild. Thenr 0 must be close to 3m/2. In this case,
as in the Schwarzschild metric,r 52m is an event horizon,
but, according to@33#, the space-time structure depends
the sign ofh5r 023m/2. If h,0, the structure is that of a
Schwarzschild black hole, but the curvature singularity is
cated atr 53m/2 instead ofr 50. If h.0, the solution de-
scribes a nonsingular black hole with a wormhole throat
r 5r 0 inside the horizon, in other words, a non-traversa
wormhole @33#.

We would here remark that, in our view, such hypothe
objects as brane-world black holes or wormholes, not n
essarily of astrophysical size, need not necessarily conf
to the restrictions on the post-Newtonian parameters
tained from the Solar system and binary pulsar observati
and it therefore makes sense to discuss the full range
parameters which are present in the solutions.

~3! Consider the extreme Reissner-Nordstro¨m form of
g(r ):

e2g5S 12
2m

r D 2

, m.0. ~19!

The ~W1! procedure now leads to
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f ~r !5
~r 2r 0!~r 2r 1!

r
, r 15

def mr0

r 02m
, ~20!

ds25S 12
2m

r D 2

dt22
r 2 dr2

~r 2r 0!~r 2r 1!
2r 2dV2

5S 12
2m

r 01x2D 2

dt224
~r 01x2!2dx2

r 02r 11x2
2~r 01x2!dV2,

~21!

where we assumer 0.2m, so thatr 1,r 0. This is a symmet-
ric wormhole metric. The SET components of interest are

r5
mr0

2

r 4~r 02m!
,

r1prad52
~r 022m!2

r 2~r 22m!~r 02m!
. ~22!

In the solution~20!, r 0 may be regarded as an integratio
constant, so it is of interest what happens ifr 0<2m. Evi-
dently, r 052m leads to the extreme Reissner-Nordstro¨m
black hole metric~which is well known to possess a zer
Ricci scalar, as does the general Reissner-Nordstro¨m metric!.
In case 2m.r 0.m, we haver 1.2m, and we again obtain a
symmetric wormhole, but nowr ranges fromr 1 to infinity
and r 5r 1 is the throat. Actually,r 0 and r 1 exchange their
roles as compared with the caser 0.2m. This property was
expected due to symmetry betweenr 0 and r 1 in the metric
~21!.

The valuer 05m is meaningless. Lastly,r 0,m leads ei-
ther tor 1,0 ~for r 0>0) or to 0,r 1,2m ~for r 0,0). The
solution exists in both cases forr .2m only, and r 52m
turns out to be a naked singularity, as is confirmed by cal
lating the Kretschmann scalar.

~4! Consider an example belonging to class~W2! de-
scribed in the previous section. Namely, let us choose

e2g5~12b1bA122m/r !2, ~23!

with b5constÞ0. The special casesb50 and b51 have
been already discussed in examples~1! and~2!, respectively.
The form ~23! of eg(r ) has been found@31–33# by solving
the equationR50 under the condition that the energy de
sity T0

0 is zero, whence it followed thate22a5122m/r ,
and, in our notation,f (r )5r 22m. Note that the Schwarzs
child mass, found from the larger behavior ofg(r ), is equal
to bm rather thanm.

Knowing that f (r )5r 22m is a special solution to the
inhomogeneous equation~7! with g(r ) given by Eq.~23!, we
can make easier the integration in Eq.~8! by writing the
solution asf (r )5r 22m1 f 1(r ) where f 1 is a general solu-
tion to the corresponding homogeneous equation. We ob

f ~r !5r 22m1C1

e22g13G

~21rg r !
2

, ~24!
7-4
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where C15const andG has been defined in Eq.~9!. The

form of G(r ) depends on the constantc5
def

2(12b)/b ~the
caseb50 is excluded!:

e3G

55
~112cv13v2!expF2

2c

c8
arctan

c13v

c8
G , c,A3,

~11A3v !2 exp@2/~11A3v !# c5A3,

~112cv13v2!Fc13v1c8

c13v2c8
G2c/c8

, c.A3,

~25!

where we have denoted

c85Auc223u, v5A12
2m

r
. ~26!

For all three cases in Eq.~25!, depending on the integratio
constantC1, one can single out the behaviors of class
~W2a!, ~W2b! and~W2c! ~in their description in Sec. II one
should substituter 052m). The critical value ofC1, corre-
sponding toC50 in Eq. ~12!, is

C1cr522m e23GU
v50

. ~27!

It corresponds to integration in Eq.~8! from r 0 to r, and the
solution then belongs to class~W2c!, a symmetric worm-
hole with a quartic dependence ofr on the admissible coor
dinatej.

The caseC1,C1cr corresponds to integration in Eq.~8!
from someC1-dependent radiusr 1.2m to r, and the solu-
tion belongs to type~W2b! equivalent to~W1!: a symmetric
wormhole with an arbitrary throat radiusr 1.2m. We will
not write down the full cumbersome expressions for the m
ric for C1<C1cr since the qualitative properties of the sol
tions are already clear.

Of greater interest are solutions withC1.C1cr, for which
r 52m is an asymmetric throat@class ~W2a!#. This is the
only class in which the metric continued beyond the thr
behaves ‘‘individually,’’ i.e., depends on the specific choi
of g(r ) and C1 rather than follows the above general d
scription.

A good coordinate for passing the throatr 52m, more
convenient than the previously used coordinatex, is v de-
fined in Eq.~26!. We haver (v)52m/(12v2); the original
spatial asymptotic corresponds tov51, the throat is located
at v50, and another spatial asymptotic can be located av
521 if the metric avoids singularities on the way to it. L
us find out whether it is the case.

The requirementeg.0 atv>21 leads tob,1/2, hence
c.2, and we are left with the third line in the expressi
~25! for G(v). Then the metric coefficientgvv is given by
06402
s

t-

t

2gvv5
16m2

~12v2!2

3F11C1

12v2

6m
~v2v2!3v2 /c8~v2v1!23v1 /c8G21

,

~28!

wherev6 are roots of the trinomialP(v)53v212cv11:

v65
1

3
~2c6Ac223!5

1

3
~2c6c8!.

For c.2, we havev2,21 whereas the other rootv1 lies
between 0 and21. On the other hand,23v1 /c8, i.e., the
exponent of the binomial (v2v1) in Eq. ~28!, is a number
between 0 and 1. Thereforegvv is finite atv5v1 but has an
infinite derivative with respect tov. Transforming back tor
~for v,0, the transformation isv52A122m/r ), we ob-
serve that the metric coefficientgrr 52e2a @see~2!# is sin-
gular atr 5r 152m/(12v1)2. More precisely,e2a is finite
but contains a term proportional to (r 2r 1)k where 0,k
,1, hencea r;(r 2r 1)k21→`, and the Kretschman scala
~6! tends to infinity due to the divergence of its constitue
K1 andK3.

We conclude that, under the choice~23! of g(r ), the class
of solutions ~W2a! does not contain wormhole solution
Having passed the throat atr 52m (v50), we ultimately
arrive at a singularity or maybe a horizon, which is not e
cluded in caseb.1/2.

An exception is the caseC150, when we return to the
solution known from Refs.@31–33#, which has been de
scribed at length in these papers. We will only mention
main points in our notations. The metric in terms ofv is

ds25~12b1bv !2dt22
16m2

~12v2!4
dv22

4m2

~12v2!2
dV2.

~29!

In caseb51 it is another form of the Schwarzschild metri
For b.1/2 but bÞ1, the spherev5(b21)/b is a naked
singularity, as may be concluded from the fact thatg r→`
while a and r are finite, hence the quantityK2 in Eq. ~6!
tends to infinity. This singularity is located at positivev, i.e.,
before reaching the throatv50, if b.1 and at negativev,
beyond the throat, ifb,1. Note that forv,0 we have in the
curvature coordinatesgtt5 e2g512b2bA122m/r .

In caseb,1/2 the metric~29! describes an asymmetri
wormhole even having different signs of mass at its two
asymptotics: the mass is equal tobm at v51 and to
2bm/(122b) at v521.

Lastly, if b51/2, thenv521 is a horizon having an
infinite area and zero Hawking temperature, like the pre
ously described cold black holes in scalar-tensor theorie
gravity @9#. The spatial part of the metric is flat atv→21.
Moreover, as is directly verified, the canonical parameter
timelike, spacelike or null geodesics takes an infinite value
7-5
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v51, which means that this space-time is geodesically co
plete~as are wormhole space-times!, and no further continu-
ation is required.

IV. CONCLUDING REMARKS

We have seen that the equationR50 leads to a grea
number of wormhole solutions. Symmetric wormhole so
tions of class~W1! can be obtained from anyg(r ) providing
asymptotic flatness; asymmetric wormhole solutions belo
ing to class~W2a! require somewhat more special cond
tions. As follows from examples~1!–~3!, wormholes are not
always connected with negative~effective! energy densities
r; they can appear withr.0, but only with comparatively
large negative pressures maintaining violation of the null
ergy condition. Example~3! shows that, for giveng(r ),
sometimes even more wormhole solutions can be obta
than was expected in search for class~W1! solutions. Ex-
ample~4! shows that asymmetric wormholes are more di
cult to obtain from the general solution~8! than symmetric
ones.

Black-hole solutions can also be obtained from Eq.~8! but
under more restrictive conditions. Indeed, given a spec
function eg(r ) increasing from zero at somer 5r h to 1 at r
5`, a wormhole solution toR50 can be obtained with a
throat at anyr .r h whereas in a black hole solution th
event horizon is fixed atr 5r h . Positive functionseg(r ) lead
to numerous wormhole solutions but not black hole on
Thus, roughly speaking, wormholes as solutions toR50 are
more numerous than black holes.

All this referred to metrics satisfying the conditionR50
tt

g

,’’

.

06402
-

-

-

-

ed

-

c

s.

in 4 dimensions, which admits an interpretation as the br
metric. It has been claimed that ‘‘any 4-dimensional spa
time with R50 gives rise to a 3-brane world without surfac
stresses embedded in a 5-dimensional space-time’’@35# since
the embedding contains a very significant arbitrariness. N
ertheless, a complete model requires knowledge of the
5-dimensional space-time. In other words, one sho
‘‘evolve’’ the 4-metric into the bulk, using this 4-metric a
initial data for the 5-dimensional equations. It is rather
difficult task, as was demonstrated in a study of particu
black hole solutions in Refs.@30,36#. There are, however
two favorable circumstances. One is the wealth of wor
hole solutions: there is actually an arbitrary functiong(r )
leading to wormholes on the brane, which must in turn le
to a wide choice of suitable bulk functions. The other is t
global regularity of wormhole space-times, and one can
pect that the bulk incorporating them will also be regular.~It
may be recalled that it was the singular nature of black h
solutions that caused some technical difficulties in Ref.@30#.!
We hope that it will be possible to obtain meaningful com
plete wormhole models within the brane world concept;
work is in progress.
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