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Possible wormholes in a brane world
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The conditionR=0, whereR is the four-dimensional scalar curvature, is used for obtaining a large class
(with an arbitrary function of) of static, spherically symmetric Lorentzian wormhole solutions. The worm-
holes are globally regular and traversable, can have throats of arbitrary size and can be both symmetric and
asymmetric. These solutions may be treated as possible wormhole solutions in a brane world since they satisfy
the vacuum Einstein equations on the brane where effective stress-energy is induced by interaction with the
bulk gravitational field. Some particular examples are discussed.
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[. INTRODUCTION only possible in extremely strong gravity regions, leading to
throat radii close to the Planck length. Wormholes thus seem
Lorentzian wormholes as smooth bridges between differto be an integral part of the hypothetic space-time foam but
ent universes, or topological handles between remote parts #ieir practicability at macroscopic scales still remains vague.
a single universe, have gained much attention since Morris, In our view, a natural source of wormhole geometry can
Thorne and Yurtsever discussed the connection betwedpe found in the framework of the rapidly developing ideas of
wormholes and time machings]; see[2,3] for reviews. It  brane worldg [24,29, for reviews se¢26]), inspired by the
is well known that a wormhole geometry can only appear aProgress in superstring and M thedi7]. By this concept,
a solution to the Einstein equations if the stress-energy tenséh€ observable world is a kind of domain wall in a multidi-
(SET) of matter violates the null energy conditioNEC) at ~ Mensional spacés-dimensional in the simplest casevith
least in a neighborhood of the wormhole thrpdt large or even infinite extra dimensions. The standard-model
Many versions of exotic matter, able to provide NEC vio- fields are confined on the brane while gravity propagates in
lation and to support Wormho|eS, have been Suggested_ oﬁ@e Surrounding bulk. The gravitational field on the brane
class of such sources is represented by so-called ghost fieldtelf can be described, at least in models of the type of the
i.e., fields with explicitly negative energy density, including S€cond Randall-Sundrum mod¢R5], by the modified
scalar-tensor theories of gravity with an anomalous sign oft-dimensional Einstein equations derived by Shiromizu,
the scalar field kinetic term in the Lagrangigd-13. An-  Maeda and Sasake8] from 5-dimensional gravity with the
other class of static wormholes is obtained with nonmini-aid of the Gauss and Codazzi equations. In vacuum, when
mally coupled scalar field$,14,19 as a result of conformal Mmatter on the brane is absent and the 4-dimensional cosmo-
continuation[16]. The latter means that a singularity occur- logical constant is zer(a natural assumption for scales much
ring on a certain surfac8 in the Einstein frame metric is Smaller than the size of the Univejsthese equations reduce
removed by a conformal mapping to the Jordan frame, anéP
the solution is then continued beyo&d It has been shown
[16] that a wormhole is a generic result of a conformal con- Gu=—E., 1)
tinuation if its sufficient conditions are satisfied. In all such
cases, however, the two wormhole mouths are located iwhereG,, is the 4-dimensional Einstein tensor correspond-
regions with different signs of the effective gravitational con-ing to the brane metrig,,, while E ,, is the projection of the
stant. In other words, if one mouth is in a normal gravity 5-dimensional Weyl tensor onto the brane. The traceless ten-
region, the other is in an antigravity regi¢h6]. A related  sor E,, connects gravity on the brane with the bulk geom-
problem is the instability of such wormholes caused by theetry (and is sometimes called the tidal SEz3o that the set of
field behavior near the transition surfa¢17]. equationg1) is not closed. Because of its geometric origin,
Wormhole solutions have also been obtained in specifi€,,, does not necessarily satisfy the energy conditions appli-
versions of dilaton gravity18] and gravity with torsion19].  cable to ordinary matter. Thus, examples are knd2#|
Another approach is to invoke quantum effects, consideringvhen negative energies on the brane are induced by gravita-
wormholes as semiclassical objef29—23 (see also refer- tional waves or black strings in the bulk. Therefore, if the
ences therein In all such cases, NEC violation is probably brane world concept is taken serioudly,, can be the most
natural “matter” supporting wormholes.
In this paper we study static, spherically symmetric, as-
*Electronic address: kb@rgs.mccme.ru ymptotically flat wormhole solutions to the equatidR
TElectronic address: sungwon@mm.ewha.ac.kr =0, whereR is the 4-dimensional scalar curvature. Since
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E,, has zero traceR=0 is an immediate consequence of - 5 v
Eq. (1). R=0 is a single equation connecting two metric Ki= e (yntyi—ay), K= e ZQT,
functions,y(r) andf(r), and can be solved with respectfto (6)

for arbitrary v. We show that almost any(r) satisfying

some minimal requirementsmoothness and compatibility 1 1

with asymptotic flatnegggives rise to a family of wormhole Ka=—— e 2%,, Ki;=—(1- e ?9),

solutions with the throat radius as a free parameter. Both r r2

symmetric and asymmetric wormholes are obtained. We o . ) o

consider some particular examples, and, in addition to newfhe finiteness ofC is a natural regularity criterion for the
wormhole metrics, reproduce the results of the recent studd€ometries to be discussed. Indekds a sum of squares of
ies where some solutions witR=0 (though under other all componentRR,,*? of the Riemann tensor for the metric
motivations were found[31-34. As a by-product, some (2), thereforelC<« is necessary and sufficient for finiteness
black hole solutions and solutions with naked singularitiesof all algebraic curvature invariants.

are also obtained. In the brane world framework, there re- The conditionR=0 which follows from(1) can be writ-
mains a nontrivial problem to be solved: to inscribe the in-ten as a linear first-order equation with respectf(o)
trinsic brane geometry of the above solutions into the fuII:er e 2a:

5-dimensional picture. Our 4-dimensional wormhole solu-

tion can have an arbitrary size of the wormhole throat, but a f(2+ry,)+ f(2f7rr+2f7r2+37r):2- (7)
restriction can quite probably appear from 5-dimensional ge-

ometry. Meanwhile, the present class of 4-metrics with zerdts general solution is
scalar curvature can be of interest by itself.

The paper is organized as follows. In Sec. Il we solve the 2 e 2rtal
equationR=0 and formulate the conditions under which the f(r)=——7"—
solution describes a symmetric or asymmetric wormhole; in (2+Tyr)
Sec. lll we discuss a few particular examples; Sec. IV con
tains some observations and concluding remarks.

J(2+ryr) 273l dr (8)

where

year
Il. R=0: THE GENERAL SOLUTION F(r):f 2417y, ©

The general static, spherically symmetric metric in 4 di-

mensions in the curvature coordinates has the form Thus, choosing the form of(r) arbitrarily, we obtainf(r)

from Eq. (8), and, after fixing the integration constant, the
metric is known completely at least in the region whes&
and e“ are smooth and nonzero.
wheredQ?=d6?+sirfd d¢? is the linear element on a unit Let us now make clear how to choose the functigm)
spherd37]. _(the so-ca_lled redshift fun_ctlc)mnd the integration constant

in EqQ. (8) in order to obtain a wormhole solution. We note
for reference purposes that in many papers devoted to worm-
holes, beginning with1], the function e®® is expressed as
[1—b(r)/r]~* whereb(r) is the so-called shape function.
Our f(r) is then equal to —b(r).

The coordinate, which proves to be convenient for solv-
ing Eg. (7), is not an admissible coordinate in the whole
space for wormhole solutions since in this cages at least
one minimum, and the solution in terms rotherefore splits
into at least two branches. As an admissible coordinate one
Drac= i( e 20— 1)+ ﬂ e 2a 4) can take, e.g., the Gaussian coordifdjgroper length along

rad— 2 r ' the radial direction connected withr by the relationl
= [ e“dr, and the metric is rewritten as

d?= e?dt?— e2*dr?—r2d0? )

The metric(2) gives, according tdl), the following ex-
pressions for the components of the effective SET,
namely, the energy densify=E!, the radial pressure,,q
= —E; and the lateral pressup, = —Ej=—EJ:

1 2a
—p= e -

. ; e 2, 3

-
.= e 2y 4y aryt o — ds*= eOdt?—dI>—r%(1)dQ2 (10)
(5)  We seek static, traversable, twice asymptotically flat worm-

) ~ hole solutions. So we require the followin@) there should
where the subscript denotesd/dr. In caseR=0 one evi- pe two flat asymptoticsi € R; r~|l|— and y=const

dently has D, =p— Prag- +0(r~ 1) asl— *oo; (ii) both functionsr(1)>0 and y(l)
Let us also write down the Kretschmann scalar for theshoyld be smoottat leastC?) in the whole rangée R. This
metric (2): guarantees the absence of curvature singularities and hori-
5 5 5 5 zons (the latter correspond tg— —o which is ruled ouk
K=R,,’"R,;*"=4K1+8K3+8K3+4Kj, This also means that(l) should have at least one regular
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minimum, r,,i,>0 (throa), at some value of. Moreover,
returning to functions of, we see that at a flat asymptotic
e*—1 andf(r)~r.

PHYSICAL REVIEW D57, 064027 (2003

continued through this sphere. One cannot, however, guaran-
tee that this continuation will lead to another flat spatial in-
finity to yield an asymmetric wormhole, since the further

Suppose, without loss of generality, that a minimum ofbehavior of y(x) and f(x) may lead to a horizon or to a

r(l), that is, a wormhole throat, is located lat0. Then
r(0)=ry>0, r;(0)=0 and (generically r;(0)>0, where
the subscript denotesd/dl. Nearl=0 one hag —ry~1?,
hence the metric functiore?*(") behaves asr(-r,) %, and
f(r)=r e 2*~r—r,. In other words, a simple zero &{r)
is an indicator of a wormhole throat provideg(r) is
smooth and finite at the same

On the other hand, the derivative(0) may be zero

(which is always the case if the wormhole is symmetric with

respect to the thropbr nonzero. Ify;(0)=0, we shall have
v (ro)<ee. If, on the contrary,y,(0)#0, then near, we
havey,~ /|| ~1/yr =, so that

y(r)=y(rg) +kyr—rq, k>0. (12)

We cannot puk<<0 since then we would obtain the expres-

sion 2+r vy, ranging from 2(at spatial infinity to — atr
=ry, So that 2+r+y, would vanish at some>r, causing a
singularity in Eq.(8).

singularity.

If we chooseC=0 in Eqg.(12), we obtain two other situ-
ations.

(W2-b) If C<O0, thenf(ry)<0; recalling thatf~r at
larger, we see thaf(r)=0 at some value=r,>r,, where
v, is finite, and we return to the circumstances described as
(W1), obtaining a symmetric wormhole witte=r,, and the
spherer =r is its throat.

(W2c) If C=0, then nearr, we obtain f(r)~(r
—r10)%? and the metric is regularized at=r, by another
substitutionr —ry=&*. As a result, Eq(11) yields

v=7y(ro)+ké&?+ further even powers of,
and we again obtain a symmetric wormhole, but now with a

quartic behavior of near its minimum as a function of the
admissible coordinatée R.

. EXAMPLES

We are now ready to single out a class of symmetric

wormhole metric§W1) and a class of potentially asymmet-
ric wormhole metric§W2) on the basis of the solutiof8).
(W1) We specify the functiony(r), smooth in the range
ro<r<o, ro>0, in such a way thay()=0, y,(rq) <o,
and 2+rvy,>0 in the whole range. We fix the integration
constant in Eq(8) by performing integration fronm, to r.
Then thesey(r) andf(r) determine a wormhole which has
a throat atr =r, and is symmetric with respect to it.
Indeed, by constructiorf(r)~r —rgy nearr. Introducing
the new coordinatex by the relationr =ry+x?, we have
e?*dr?~(r—rg) ~1dr?=4dx? which leads to a perfectly

We will present expressions for the metric functiops
andf, the effective “tidal” energy density and the sunp
+ Prad,» Which characterizes violation of the null energy con-
dition (for static, spherically symmetric systems this condi-
tion reduces tp+p,;=0).

We use the time scale of a remote observer at rest and so
we always assume thag”—1 asr—o.

(1) The simplest example is obtained fp=0. Choosing
any ro>0 and applying théW1) algorithm of Sec. Il, we
simply obtainf(r)=r—ry. This is a symmetric wormhole
solution known as the spatial Schwarzschild geomf3dy:

regular metric whose all coefficients are even functions of

xeR. Bothx— +% andx— —o are flat asymptotics.

Eachvy(r) chosen as prescribed creates a family of sym-
metric wormholes with zero scalar curvature. The family is

parametrized by the throat radiug, taking arbitrary values
in the range where/(r) is regular and 2-r y,>0.

Another procedure is applicable to functiop&) behav-
ing according to Eq(11).

(W2a) We specify the functiory(r), smooth in the range
ro=r<ow, ro>0, such thaty(«)=0, 2+ry,>0 in the
whole range, and Eq11) holds near,. Then, for proper
values of the integration constant in E®), the sphere

r -1
d32=dt2—(1— —) dr?—r2dQ?

o

=dt?—4(ry+x2)dx?— (ro+x?)2dQ2.
(13

The effective SET E; has the form E,=diag(0,
—pr, Pi/2, p;/2) with the radial pressure

pr=—rolrs. (14)

=T, is a wormhole throat, and the solution is smoothly con-

tinued beyond it.
Indeed, the solutioi8) may be rewritten as follows:

o 27+3T
1 2
(1+3ry)

f(r)

r
f (1+3ry,) €23 dr+cC|.
o
(12

SupposeC>0. Thenf(r) behaves near, asr—ry=:x,
while y=y(ro) + kx+O(x?). The metric smoothly behaves
atr=rgy (x=0) in terms of the new coordinateand can be

(2) Our next example uses the Schwarzschild formypf

2m
e?r=1- — m> 0. (15)

Choosing any ,>2m, we obtain according to th@V1) pre-
scription;

(r—=2m)j(r—rg)

r—3m/2 ' (16

f(r)y=
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x2+r1,—2m
rotx2
4(ro+x3)(rg+x2—3m)

- dx?— (x%+r14)%dQ2.
x2+r1y—2m 0

7

This is evidently a symmetric wormhole geometry for any
ro>2m=0, or for anyry,>0 in casem<0. The Schwarzs-

child metric is restored from Eq17) in the special casg,
=3m/2.
The SET components of interest are

m(ro—3m)
P 2r(r—3m)?’
(r=2m)(ro—35m)
P+t Prad™ — ’ . (18

r2(r—3m)?

PHYSICAL REVIEW D 67, 064027 (2003

_(r=rg)(r—ry) 9t mry
f(r)—f, rl_ro—m’ (20
2m)\ 2 r2 dr?
d82=(1——> dt?— ———————r2dQ?
r (r=ro)(r—ry)
2 22442
m ro+x)<dx
=<1— - dt2—4%—(ro+x2)d92,
ro+x ro—ry+x

(21)

where we assumig,>2m, so thatr;<r,. This is a symmet-

ric wormhole metric. The SET components of interest are
mr3
p= 7,
r4(r0— m)

("()_Zm)2

r2(r—2m)(ro—m)’

Pt Pradc™ — (22

In the solution(20), ry may be regarded as an integration
constant, so it is of interest what happens j&2m. Evi-
dently, ro=2m leads to the extreme Reissner-Nordstro
black hole metric(which is well known to possess a zero
Ricci scalar, as does the general Reissner-Nonsinetrio.

In case 2n>r,>m, we haver;>2m, and we again obtain a

The metric(17) was obtained by Casadio, Fabbri and symmetric wormhole, but now ranges fromr; to infinity
Mazzacurati33] in search for new brane-world black hole- andr=r, is the throat. Actuallyr, andr, exchange their
s and by Germani and Maartef4] as a possible external yoles as compared with the casg>2m. This property was
metric of a homogeneous star on the brane, but the existenggpected due to symmetry betweepandr, in the metric
of traversable wormhole solutions for,>2m (in the (27).
present notationswas not mentioned. It was supposed in The valuer,=m is meaningless. Lastly,<m leads ei-
[33] that the post-Newtonian parameters of the metric musiher tor,<0 (for r,=0) or to 0<r,<2m (for r,<0). The
be close to their Einstein values for experimental reasons angh|ytion exists in both cases for>2m only, andr=2m
therefore the study was restricted to configurations close t;ms out to be a naked singularity, as is confirmed by calcu-
Schwarzschild. Then, must be close to®/2. In this case, |ating the Kretschmann scalar.
as in the Schwarzschild metric=2m is an event horizon, (4) Consider an example belonging to clad¥2) de-
but, according td33], the space-time structure depends Onscriped in the previous section. Namely, let us choose

the sign of p=ry—3m/2. If <0, the structure is that of a

Schwarzschild black hole, but the curvature singularity is lo- e?’=(1—b+by1-2m/r)? (23
cated atr =3m/2 instead ofr =0. If >0, the solution de-

scribes a nonsingular black hole with a wormhole throat atvith b=const=0. The special casds=0 andb=1 have
r=rq inside the horizon, in other words, a non-traversablebeen already discussed in examplg&sand(2), respectively.
wormhole [33]. The form (23) of e”") has been foun@i31-33 by solving

We would here remark that, in our view, such hypotheticthe equatiorR=0 under the condition that the energy den-

objects as brane-world black holes or wormholes, not necsity T) is zero, whence it followed thae™2*=1—2m/r,

essarily of astrophysical size, need not necessarily conforrand, in our notationf(r)=r—2m. Note that the Schwarzs-

to the restrictions on the post-Newtonian parameters obchild mass, found from the largebehavior ofy(r), is equal
tained from the Solar system and binary pulsar observation$g hm rather tharm.

and it therefore makes sense to discuss the full range of Knowing thatf(r)=r—2m is a special solution to the

parameters which are present in the solutions.

(3) Consider the extreme Reissner-Nordstrdorm of

y(r):

2m

2
7= 1—7) , m>0. (19

The (W1) procedure now leads to

inhomogeneous equatidr) with y(r) given by Eq.(23), we

can make easier the integration in E&) by writing the
solution asf(r)=r—2m+f,(r) wheref, is a general solu-
tion to the corresponding homogeneous equation. We obtain

e*2y+31"

fr)y=r—-2m+C;—,
(2+1y)?

(24)
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where C;=const andl’ has been defined in E¢9). The 16m2

def _ N
form of I'(r) depends on the constant=2(1—-hb)/b (the gvv_(l_vz)z
caseb=0 is excludedt

_ .2 -1
e3F X 1+Cl &m (U_U,)3U_/C (U_U+)73U+/C ,
( ) 2¢c c+3v (28)
(1+2cv+3v?)expg — —arctan——|, c<+3,
c c wherev .. are roots of the trinomiaP(v)=3v2+2cv +1:
={ (1+30)2 exd2/(1+3v)] c=43,
, 1 1
c+3v+c'] ve==(—cxc?=3)=2(—c=xc).
(1+2c0+3v2)| 2= | c> 13, 3 3
L c+3v—c’

(25) Forc>2, we havev _<—1 whereas the other root, lies
between 0 and-1. On the other hand;-3v . /c’, i.e., the
exponent of the binomialu—v ) in Eq. (28), is a number
between 0 and 1. Therefog,, is finite atv =v , but has an
infinite derivative with respect to. Transforming back to

ol = |02—3| U= /1_ 2_m (26) (for v<0, the transformation is =—1—2m/r), we ob-
’ r serve that the metric coefficient, = —e?* [see(2)] is sin-
gular atr=r, =2m/(1—v_.)2. More precisely,e?“ is finite

For all three cases in E25), depending on the integration but contains a term proportional ta {r ) where 0<k

constantC,, one can single out the behaviors of classes<1, hencea,~(r—r)* !—c, and the Kretschman scalar

(W2a), (W2b) and (W20) (in their description in Sec. Il one (6) tends to infinity due to the divergence of its constituents

should substitute,=2m). The critical value ofC,, corre- Kj andKs.

sponding toC=0 in Eq.(12), is We conclude that, under the choi@8) of y(r), the class

of solutions (W2a) does not contain wormhole solutions.
Having passed the throat at=2m (v=0), we ultimately
Cig=—2m e 3 . (27) arrive at a singularity or maybe a horizon, which is not ex-
v=0 cluded in casd>1/2.
An exception is the cas€,;=0, when we return to the

It corresponds to integration in E(B) fromry tor, and the  solution known from Refs[31—-33, which has been de-

solution then belongs to clag¥V2c), a symmetric worm- scribed at length in these papers. We will only mention the

hole with a quartic dependence 10bn the admissible coor- main points in our notations. The metric in termsvofs
dinateé.
The caseC,;<C; corresponds to integration in E(B) 6m2

where we have denoted

2

from someC,-dependent radius;>2m to r, and the solu- ds’=(1—b+bv)?%dt>— ! 5 dv?— 4m2 2d92,
tion belongs to typéW2b) equivalent to(W1): a symmetric (1-v?)* (1-0v%)
wormhole with an arbitrary throat radiug>2m. We will (29

not write down the full cumbersome expressions for the met-

ric for C;<C,, since the qualitative properties of the solu- In caseb=1 it is another form of the Schwarzschild metric.

tions are already clear. For b>1/2 butb#1, the sphera=(b—1)/b is a naked
Of greater interest are solutions with >C, ., for which  singularity, as may be concluded from the fact that-o

r=2m is an asymmetric throdiclass (W2a)]. This is the while @ andr are finite, hence the quantitg, in Eq. (6)

only class in which the metric continued beyond the throatends to infinity. This singularity is located at positivei.e.,

behaves “individually,” i.e., depends on the specific choicebefore reaching the throat=0, if b>1 and at negative,

of y(r) and C, rather than follows the above general de-beyond the throat, ib<<1. Note that fon <0 we have in the

scription. curvature coordinateg,= €>’=1—b—b\1—2m/r.
A good coordinate for passing the thraat2m, more In caseb<<1/2 the metric(29) describes an asymmetric

convenient than the previously used coordingtés v de-  wormhole even having different signs of mass at its two flat

fined in Eq.(26). We haver (v)=2m/(1—v?); the original  asymptotics: the mass is equal tom at v=1 and to

spatial asymptotic correspondsue- 1, the throat is located —bm/(1—-2b) atv=—1.

atv=0, and another spatial asymptotic can be located at  Lastly, if b=1/2, thenv=—1 is a horizon having an

= —1 if the metric avoids singularities on the way to it. Let infinite area and zero Hawking temperature, like the previ-

us find out whether it is the case. ously described cold black holes in scalar-tensor theories of
The requiremente”>0 atv=—1 leads tdb<<1/2, hence gravity [9]. The spatial part of the metric is flat at—— 1.

c>2, and we are left with the third line in the expression Moreover, as is directly verified, the canonical parameter for

(25) for I'(v). Then the metric coefficierd,,, is given by timelike, spacelike or null geodesics takes an infinite value at
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v =1, which means that this space-time is geodesically comin 4 dimensions, which admits an interpretation as the brane
plete(as are wormhole space-timeand no further continu- metric. It has been claimed that “any 4-dimensional space-

ation is required. time with R=0 gives rise to a 3-brane world without surface
stresses embedded in a 5-dimensional space-ti8t"since
IV. CONCLUDING REMARKS the embedding contains a very significant arbitrariness. Nev-

) ertheless, a complete model requires knowledge of the full
We have seen that the equatiéh-=0 leads to a great 5 gimensional space-time. In other words, one should
number of wormhole solutions. Symmetric wormhole solu-«eyolve” the 4-metric into the bulk, using this 4-metric as
tions of clasgW1) can be obtained from any(r) providing injtial data for the 5-dimensional equations. It is rather a
asymptotic flatness; asymmetric wormhole solutions belonggifficult task, as was demonstrated in a study of particular
ing to class(W2a) require somewhat more special condi- pjack hole solutions in Refd30,36. There are, however,
tions. As follows from examplel)—(3), wormholes are not 4o favorable circumstances. One is the wealth of worm-
always connected with negativeffective) energy densities je solutions: there is actually an arbitrary functigfr)
p; they can appear with>0, but only with comparatively |eading to wormholes on the brane, which must in turn lead
large negative pressures maintaining violation of the null eng a wide choice of suitable bulk functions. The other is the
ergy condition. Exampleg3) shows that, for givemy(r),  giobal regularity of wormhole space-times, and one can ex-
sometimes even more wormhole solutions can be obtamegect that the bulk incorporating them will also be reguitir.
than was expected in search for cla¥8l) solutions. Ex- may be recalled that it was the singular nature of black hole
ample(4) shows that asymmetric wormholes are more diffi- 5o|ytions that caused some technical difficulties in Rad].)
cult to obtain from the general solutid) than symmetric \ve hope that it will be possible to obtain meaningful com-
ones. _ _ plete wormhole models within the brane world concept; the
Black-hole solutions can also be obtained from @ybut  \york is in progress.
under more restrictive conditions. Indeed, given a specific
function e”(") increasing from zero at sonte=r,, to 1 atr

=00, a wormhole solution t(R'=O can be obtained ywth a ACKNOWLEDGMENTS
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