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Gravitational radiation in D-dimensional spacetimes

Vitor Cardoso,* Óscar J. C. Dias,† and Jose´ P. S. Lemos‡
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1049-001 Lisboa, Portugal
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Gravitational wave solutions to Einstein’s equations and their generation are examined inD-dimensional flat
spacetimes. First the plane wave solutions are analyzed; then the wave generation is studied with the solution
for the metric tensor being obtained with the help of retardedD-dimensional Green’s functions. Because of the
difficulties in handling the wave tails in odd dimensions we concentrate our study on even dimensions. We
compute the metric quantities in the wave zone in terms of the energy-momentum tensor at retarded time.
Some special cases of interest are studied. First we study the slow motion approximation, where the
D-dimensional quadrupole formula is deduced. Within the quadrupole approximation, we consider two cases of
interest: a particle in circular orbit and a particle falling radially into a higher dimensional Schwarzschild black
hole. Then we turn our attention to the gravitational radiation emitted during collisions lasting zero seconds,
i.e., hard collisions. We compute the gravitational energy radiated during the collision of two point particles, in
terms of a cutoff frequency. In the case in which at least one of the particles is a black hole, we argue that this
cutoff frequency should be close to the lowest gravitational quasinormal frequency. In this context, we compute
the scalar quasinormal frequencies of higher dimensional Schwarzschild black holes. Finally, as an interesting
new application of this formalism, we compute the gravitational energy release during the quantum process of
black hole pair creation. These results might be important in light of the recent proposal that there may exist
extra dimensions in the Universe, one consequence of which may be black hole creation at the Large Hadron
Collider at CERN.
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I. INTRODUCTION

One expects to finally detect gravitational waves in
forthcoming years. If this happens, and if the observed wa
forms match the predicted templates, general relativity w
have passed a crucial test. Moreover, if one manage
cleanly separate gravitational waveforms, we will open
new and exciting window on the Universe, a window fro
which one can look directly into the heart of matter, as gra
tational waves are weakly scattered by matter. A lot of eff
has been spent in recent years on trying to build gravitatio
wave detectors, and a new era will begin with gravitatio
wave astronomy@1,2#. The property that makes gravitation
wave astronomy attractive, the weakness with which gra
tational waves are scattered by matter, is also the m
source of technical difficulties when trying to develop
apparatus that interacts with them. Nevertheless, som
these highly nontrivial technical difficulties have been s
mounted, and we have detectors already operating@3–5#.
Additional effort is being dedicated by theoreticians in tryi
to obtain accurate templates for the various physical p
cesses that may give rise to the waves impinging on
detector. We now have a well established theory of wa
generation and propagation, which started with Einstein
his quadrupole formula. The quadrupole formula expres
the energy lost to gravitational waves by a system movin
low velocities, in terms of its energy content. The quadrup
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formalism is the most famous example of slow motion tec
niques to compute wave generation. All these techniq
break the nonlinearity of Einstein’s equations by imposing
power series in some small quantity and keeping only
lowest or the lowest few order terms. The quadrupole f
malism starts from a flat background and expands the
evant quantities inR/l, whereR is the size of the source an
l the wavelength of the waves. Perturbation formalisms,
the other hand, start from some nonradiative backgrou
whose metric is known exactly, for example, the Schwar
child metric, and expand in deviations from that backgrou
metric. For a catalog of the various methods and their
scription we refer the reader to the review works by Thor
@6# and Damour@7#. The necessity of developing all suc
methods was driven, of course, by the lack of exact radia
solutions to Einstein’s equations~although there are som
worthy exceptions, such as theC metric @8#!, and by the fact
that even nowadays solving the full set of Einstein’s eq
tions numerically is a monumental task, and has been d
only for the more tractable physical situations. All the exi
ing methods seem to agree with each other when it co
down to the computation of waveforms and energies radia
during physical situations, and also agree with the few av
able results from a fully numerical evolution of Einstein
equations.

In this work we extend some of these results to high
dimensional spacetimes. There are several reasons why
should now try to do it. It seems impossible to formulate
four dimensions a consistent theory that unifies gravity w
the other forces in nature. Thus, most efforts in this direct
have considered a higher dimensional arena for our U
verse, one example being string theories which have rece
©2003 The American Physical Society26-1
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made some remarkable achievements. Moreover, recen
vestigations@9# propose the existence of extra dimensions
our Universe in order to solve the hierarchy problem, i.e.,
huge difference between the electroweak and the Pla
scales,mEW/MPl;10217. The fields of the standard mode
would inhabit a four-dimensional submanifold, the bran
whereas the gravitational degrees of freedom would pro
gate throughout all dimensions. One of the most spectac
consequences of this scenario would be the production
black holes at the Large Hadron Collider~LHC! at CERN
@10# ~for recent relevant work related to this topic we ref
the reader to@11–13#!. Now, one of the experimental signa
tures of black hole production will be a missing energy, p
haps a large fraction of the center of mass energy@12#. This
will happen because, when the partons collide to form
black hole, some of the initial energy will be converted
gravitational waves, and due to the small amplitudes
volved there is no gravitational wave detector capable
detecting them, so they will appear as missing. Thus,
collider could in fact indirectly serve as a gravitational wa
detector. This calls for the calculation of the energy giv
away as gravitational waves when two high energy partic
collide to form a black hole, which lives in all the dimen
sions. The work done so far on this subject@14,15# in higher
dimensions is mostly geometric, and generalizes a const
tion by Penrose to find trapped surfaces on the union of
shock waves, describing boosted Schwarzschild black ho
On the other hand, there are clues@12,13# indicating that a
formalism described by Weinberg@16# to compute the gravi-
tational energy radiated in the collision of two point particl
gives results correct to an order of magnitude when app
to the collision of two black holes. This formalism assume
hard collision, i.e., a collision lasting zero seconds. It is i
portant to apply this formalism in higher dimensions, tryi
to see if there is agreement between the two results. Th
one of the topics discussed in this paper. The other topic
study in this paper is the quadrupole formula in higher
mensions. Due to the difficulties in handling the wave tails
odd dimensions, we concentrate our study on even dim
sions.

This paper is organized as follows. In Sec. II we linear
Einstein’s equations in a flatD-dimensional background an
arrive at an inhomogeneous wave equation for the me
perturbations. The source-free equations are analyze
terms of plane waves, and then the general solution to
homogeneous equation is deduced in terms of
D-dimensional retarded Green’s function. In Sec. III w
compute theD-dimensional quadrupole formula~assuming
slowly moving sources!, expressing the metric and the rad
ated energy in terms of the time-time component of
energy-momentum tensor. We then apply the quadrupole
mula to two cases: a particle in circular motion in a gene
background, and a particle falling into aD-dimensional
Schwarzschild black hole. In Sec. IV we consider a h
collision between two particles, i.e., the collision takes z
seconds, and introduce a cutoff frequency necessary to
meaningful results. We then apply it to the case where on
the colliding particles is a black hole. We propose that t
cutoff should be related to the gravitational quasinormal f
06402
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quency of the black hole, and compute some values of
scalar quasinormal frequencies for higher dimensio
Schwarzschild black holes, expecting that the gravitatio
quasinormal frequencies will behave in the same man
Finally, we apply this formalism to compute the generati
of gravitational radiation during black hole pair creation
four and higher dimensions, a result that has never b
worked out, even forD54. In our presentation we sha
mostly follow Weinberg’s@16# exposition.

II. LINEARIZED D-DIMENSIONAL
EINSTEIN’S EQUATIONS

Because of the nonlinearity of Einstein’s equations,
treatment of the gravitational radiation problem is not
easy one since the energy-momentum tensor of the gra
tional wave contributes to its own gravitational field. T
overcome this difficulty it is a standard procedure to wo
only with the weak radiative solution, in the sense that
energy-momentum content of the gravitational wave is sm
enough in order to allow us to neglect its contribution to
own propagation. This approach is justified in practice sin
we expect the detected gravitational radiation to be of l
intensity.

A. The inhomogeneous wave equation

We begin this subsection by introducing the general ba
ground formalism~whose details can be found, e.g., in@16#!
that will be needed in later sections. Then we obtain
linearized inhomogeneous wave equation.

Greek indices vary as 0,1, . . . ,D21 and latin indices as
1, . . . ,D21 and our units are such thatc[1. We work on a
D-dimensional spacetime described by a metricgmn that ap-
proaches asymptotically theD-dimensional Minkowski met-
ric hmn5diag(21,11, . . . ,11), and thus we can write

gmn5hmn1hmn , m,n50,1, . . . ,D21, ~1!

wherehmn is small, i.e.,uhmnu!1, so that it represents sma
corrections to the flat background. The exact Einstein fi
equationsGmn58pGTmn ~with G being the usual Newton
constant! can then be written as

R(1)
mn2

1

2
hmnR(1)a

a58pGtmn , ~2!

with

tmn[hmahnb~Tab1tab!. ~3!

Here R(1)
mn is the part of the Ricci tensor linear inhmn ,

R(1)a
a5habR(1)

ba , and tmn is the effective energy-
momentum tensor, containing contributions fromTmn , the
energy-momentum tensor of the matter source, andtmn

which represents the gravitational contribution. The pseud
ensor tmn contains the difference between the exact Ri
terms and the Ricci terms linear inhmn ,
6-2
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tmn5
1

8pG FRmn2
1

2
gmnRa

a2R(1)
mn1

1

2
hmnR(1)a

aG .
~4!

The Bianchi identities imply thattmn is locally conserved,

]mtmn50. ~5!

Introducing the Cartesian coordinatesxa5(t,x) with x5xi ,
and considering aD21 volumeV with a boundary spacelike
surfaceSwith dimensionD22 whose unit exterior normal is
n, Eq. ~5! yields

d

dtEV
dD21x t0n52E

S
dD22x nit

in. ~6!

This means that one may interpret

pn[E
V
dD21x t0n ~7!

as the total energy-momentum~pseudo!vector of the system
including matter and gravitation, andt in as the correspond
ing flux. Since the matter contribution is contained intmn,
the flux of gravitational radiation is

Flux5E
S
dD22x nit

in. ~8!

In this context of linearized general relativity, we negle
terms of order higher than the first inhmn and all the indices
are raised and lowered usinghmn. We also neglect the con
tribution of the gravitational energy-momentum tensortmn

~i.e., utmnu!uTmnu) since from Eq.~4! we see thattmn is of
higher order inhmn . Then the conservation equations~5!
yield

]mTmn50. ~9!

In this setting and choosing a convenient coordinate sys
that obeys the harmonic~also called Lorentz! gauge condi-
tions,

2]mhm
n5]nha

a ~10!

~where ]m5]/]xm), the first order Einstein field equation
~2! yield

hhmn5216pGSmn , ~11!

Smn5Tmn2
1

D22
hmnTa

a , ~12!

whereh5hmn]m]n is theD-dimensional Laplacian, andSmn

will be called the modified energy-momentum tensor of
matter source. Equations~11! and ~12! subject to Eq.~10!
allow us to find the gravitational radiation produced by
matter sourceSmn .
06402
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B. The plane wave solutions

In vacuum, the linearized equations for the gravitation
field areR(1)

mn50 or, equivalently, the homogeneous equ
tions hhmn50, subjected to the harmonic gauge conditio
~10!. The solutions of these equations, the plane wave s
tions, are important since the general solutions of the in
mogeneous equations~10! and~11! approach the plane wav
solutions at large distances from the source. Settingka
5(2v,k) with v and k being, respectively, the frequenc
and wave vector, the plane wave solutions can be written
a linear superposition of solutions of the kind

hmn~ t,x!5emneikaxa
1emn* e2 ikaxa

, ~13!

where emn5enm is called the polarization tensor and*
means the complex conjugate. These solutions satisfy
~11! with Smn50 if kaka50, and obey the harmonic gaug
conditions~10! if 2kmem

n5knem
m .

An important issue that must be addressed is the num
of different polarizations that a gravitational wave inD di-
mensions can have. The polarization tensoremn , being sym-
metric, has in generalD(D11)/2 independent component
However, these components are subject to theD harmonic
gauge conditions that reduce byD the number of indepen
dent components. In addition, under the infinitesimal cha
of coordinates x8m5xm1jm(x), the polarization tensor
transforms intoemn8 5emn2]njm2]mjn . Now, emn8 and emn

describe the same physical system for arbitrary values of
D parametersjm(x). Therefore, the number of independe
components ofemn , i.e., the number of polarization states
a gravitational wave inD dimensions, isD(D11)/22D
2D5D(D23)/2. From this computation we can also s
that gravitational waves are present only whenD.3. There-
fore, from now on we assumeD.3 whenever we refer toD.
In what concerns the helicity of the gravitational waves,
arbitraryD the gravitons are always spin 2 particles.

To end this subsection on gravitational plane wave so
tions, we present the average gravitational ener
momentum tensor of a plane wave, a quantity that will
needed later. Notice that in vacuum, since the matter con
bution is zero (Tmn50), we cannot neglect the contributio
of the gravitational energy-momentum tensortmn . From Eq.
~4!, and neglecting terms of order higher thanh2, the gravi-
tational energy-momentum tensor of a plane wave is gi
by

tmn.
1

8pG FR(2)
mn2

1

2
hmnR(2)a

aG , ~14!

and through a straightforward calculation~see, e.g.,@16# for
details! we get the average gravitational energy-moment
tensor of a plane wave,

^tmn&5
kmkn

16pG Feabeab* 2
1

2
uea

au2G . ~15!
6-3
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C. The D-dimensional retarded Green’s function

The general solution to the inhomogeneous differen
equation~11! may be found in the usual way in terms of
Green’s function as

hmn~ t,x!5216pGE dt8E dD21x8Smn~ t8,x8!

3G~ t2t8,x2x8!1homogeneous solutions,

~16!

where the Green’s functionG(t2t8,x2x8) satisfies

hmn]m]nG~ t2t8,x2x8!5d~ t2t8!d~x2x8!, ~17!

where d(z) is the Dirac delta function. In the momentu
representation this reads

G~ t,x!52
1

~2p!DE dD21k eik•xE dv
e2 ivt

v22k2
, ~18!

wherek25k1
21k2

21•••1kD21
2 . To evaluate this, it is con

venient to perform thek integral by using spherical coord
nates in the (D21)-dimensionalk space. The required trans
formation, along with some useful formulas which shall
used later on, is given in the Appendix. The result for t
retarded Green’s function in those spherical coordinates

Gret~ t,x!52
Q~ t !

~2p!(D21)/2
3

1

r (D23)/2

3E k(D23)/2J(D23)/2~kr !sin~kt!dk, ~19!

where r 25x1
21x2

21•••1xD21
2 , and Q(t) is the Heaviside

function defined as

Q~ t !5H 1 if t.0,

0 if t,0.
~20!

The functionJ(D23)/2(kr) is a Bessel function@17,18#. The
structure of the retarded Green’s function will depend on
parity of D, as we shall see. This dependence on the pa
which implies major differences between even and o
spacetime dimensions, is connected to the structure of
Bessel function. For evenD, the index of the Bessel functio
is semi-integral and then the Bessel function is expressibl
terms of elementary functions, while for oddD this does not
happen. A concise explanation of the difference between
tarded Green’s functions in even and oddD, and the physical
consequences that it entails, is presented in@19# ~see also
@20–22#!. A complete derivation of the Green’s function
higher dimensional spaces may be found in Hassani@23#.
The result is

Gret~ t,x!5
1

4p F2
]

2pr ]r G
(D24)/2Fd~ t2r !

r G , D even,

~21!
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Gret~ t,x!5
Q~ t !

2p F2
]

2pr ]r G
(D23)/2F 1

At22r 2G , D odd.

~22!

It is sometimes convenient to work with the Fourier tran
form ~in the time coordinate! of the Green’s function. One
finds @23# an analytical result independent of the parity ofD:

Gret~v,x!5
i Dp

2~2p!(D21)/2S v

r D (D23)/2

H (D23)/2
1 ~vr !, ~23!

where Hn
1(z) is a modified Bessel function@17,18#. Of

course, the different structure of the Green’s function
different D is again embodied in these Bessel function
Equations~21! and~23! are one of the most important resul
we shall use in this paper. ForD54 Eq. ~21! obviously
reproduces well known results@23#. Now, one sees from Eq
~21! that, although there are delta function derivatives on
even D Green’s function, the localization of the Green
function on the light cone is preserved. However, Eq.~22!
tells us that the retarded Green’s function for odd dimensi
is nonzero inside the light cone. The consequence, as
been emphasized by different authors@19,22,24#, is that for
odd D the Huygens principle does not hold: the fact that t
retarded Green’s function support extends to the interior
the light cone implies the appearance of radiative tails in
~16!. In other words, we still have a propagation pheno
enon for the wave equation in odd dimensional spacetim
in so far as a localized initial state requires a certain time
reach a point in space. Huygens principle no longer ho
because the effect of the initial state is not sharply limited
time: once the signal has reached a point in space, it per
there indefinitely as a reverberation.

This fact coupled to the analytic structure of the Gree
function in odd dimensions make it hard to get a grip
radiation generation in odd dimensional spacetimes. Th
fore, from now on we shall focus on even dimensions,
which the retarded Green’s function is given by Eq.~21!.

D. The evenD-dimensional retarded solution in the wave zone

The retarded solution for the metric perturbationhmn , ob-
tained by using the retarded Green’s function~21! and dis-
carding the homogeneous solution in Eq.~16!, is given by

hmn~ t,x!516pGE dt8E dD21x8Smn~ t8,x8!

3Gret~ t2t8,x2x8!, ~24!

with Gret(t2t8,x2x8) as in Eq. ~21!. For D54, for ex-
ample, one has

Gret~ t,x!5
1

4p

d~ t2r !

r
, D54, ~25!

which is the well known result. ForD56, we have
6-4
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Gret~ t,x!5
1

8p2 S d8~ t2r !

r 2
1

d~ t2r !

r 3 D , D56, ~26!

whered8(t2r ) means the derivative of the Dirac delta fun
tion with respect to its argument. ForD58, we have

Gret~ t,x!5
1

16p3 S d9~ t2r !

r 3
13

d8~ t2r !

r 4
13

d~ t2r !

r 5 D ,

D58. ~27!

We see that in general evenD dimensions the Green’s func
tion consists of inverse integer powers inr, spanning all
values between 1/r (D22)/2 and 1/r D23, including these. Now,
the retarded solution is given by Eq.~24! as a product of the
Green’s function times the modified energy-momentum t
sor Smn . The net result of having derivatives on the de
functions is to transfer these derivatives to the ener
momentum tensor as time derivatives@this can be seen by
integrating Eq.~24! by parts in thet integral#.

A close inspection then shows that the retarded field p
sesses a kind of peeling property in that it consists of te
with different falloff at infinity. Explicitly, this means that the
retarded field will consist of a sum of terms possessing
integer inverse powers inr between (D22)/2 andD23.
The term that dies off more quickly at infinity is 1/r D23,
typically a static term, since it comes from the Laplacian.
a matter of fact this term was already observed in a hig
dimensional black hole by Tangherlini@25# ~see also Myers
and Perry@26#!. We will see that the term falling more
slowly, the one that varies as 1/r (D22)/2, gives rise to gravi-
tational radiation. It is well defined, in the sense that
power crossing sufficiently large hyperspheres with differ
radii is the same, because the volume element varies asr D22

and the energy asuhu2;1/r D22.
In radiation problems, one is interested in finding the fie

at large distances from the source,r @l, where l is the
wavelength of the waves, and also much larger than
source’s dimensionsR. This is defined as the wave zone.
the wave zone, one may neglect all terms in the Gree
function that decay faster than 1/r (D22)/2. So, in the wave
zone, we find

hmn~ t,x!528pG 1

~2pr !(D22)/2
] t

(D24)/2

3F E dD21x8Smn~ t2ux2x8u,x8!G , ~28!

where] t
(D24/2) stands for the@(D24)/2#th derivative with

respect to time. ForD54 Eq. ~28! yields the standard resu
@16#:

hmn~ t,x!52
4G
r E dD21x8Smn~ t2ux2x8u,x8!, D54.

~29!
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To find the Fourier transform of the metric, one uses
representation~23! for the Green’s function. Now, in the
wave zone, the Green’s function may be simplified using
asymptotic expansion for the Bessel function@18#:

H (D23)/2
1 ~vr !;A 2

p~vr !
ei [vr 2(p/4)(D22)], vr→`.

~30!

This yields

hmn~v,x!52
8pG

~2pr !(D22)/2
v (D24)/2eivr

3E dD21x8Smn~v,x8!. ~31!

This could also have been arrived at directly from Eq.~28!,
using the rule time derivative→2 iv for Fourier transforms.
Equations~28! and~31! are one of the most important resul
derived in this paper, and will be the basis for the who
subsequent section. Similar equations, but not as gener
the ones presented here, were given by Chen, Li, and
@27# in the context of gravitational radiation by a rollin
tachyon.

To get the energy spectrum, we use Eq.~12!, yielding

d2E

dvdV
52G vD22

~2p!D24

3S Tmn~v,k!Tmn* ~v,k!2
1

D22
uTl

l~v,k!u2D .

~32!

III. THE EVEN D-DIMENSIONAL
QUADRUPOLE FORMULA

A. Derivation of the evenD-dimensional quadrupole formula

When the velocities of the sources that generate the gr
tational waves are small, it is sufficient to know theT00

component of the gravitational energy-momentum tenso
order to have a good estimate of the energy they radiate
this subsection, we will deduce theD-dimensional quadru-
pole formula and in the next subsection we will apply it
~1! a particle in circular orbit and~2! a particle in free fall
into a D-dimensional Schwarzschild black hole.

We start by recalling that the Fourier transform of t
energy-momentum tensor is

Tmn~v,k!5E dD21x8e2 ik•x8E dt eivtTmn~ t,x!1c.c.,

~33!

where c.c. means the complex conjugate of the preced
term. Then, the conservation equations~9! for Tmn(t,x) ap-
plied to Eq.~33! yield kmTmn(v,k)50. Using this last result
we obtain T00(v,k)5 k̂ j k̂iTji (v,k) and T0i(v,k)5
6-5
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2 k̂ jTji (v,k), wherek̂5k/v. We can then write the energ
spectrum, Eq.~32!, as a function only of the spacelike com
ponents ofTmn(v,k),

d2E

dvdV
52G vD22

~2p!D24
L i j ,lm~ k̂!T* i j ~v,k!Ti j ~v,k!,

~34!

where

L i j ,lm~ k̂!5d i l d jm22k̂ j k̂md i l 1
1

D22
~2d i j d lm1 k̂l k̂md i j

1 k̂i k̂ jd lm!1
D23

D22
k̂i k̂ j k̂l k̂m . ~35!

At this point, we make a new approximation~in addition to
the wave zone approximation! and assume thatvR!1,
whereR is the source’s radius. In other words, we assu
that the internal velocities of the sources are small and t
the source’s radius is much smaller than the character
wavelength;1/v of the emitted gravitational waves. Withi
this approximation, one can sete2 ik•x8;1 in Eq.~33! ~since
R5ux8umax). Moreover, after a straightforward calculatio
one can also use in Eq.~34! the approximationT i j (v,k).
2(v2/2)Di j (v), where

Di j ~v!5E dD21x xixjT00~v,x!. ~36!

Finally, using

E dVD22 k̂i k̂ j5
VD22

D21
d i j ,

E dVD22 k̂i k̂ j k̂l k̂m5
3VD22

D221
~d i j d lm1d i l d jm1d imd j l !,

~37!

whereVD22 is the (D22)-dimensional solid angle define
in Eq. ~A5!, we obtain theD-dimensional quadrupole for
mula

dE

dv
5

222Dp2(D25)/2G~D23!D

G@~D21!/2#~D221!~D22!
vD12

3@~D21!Di j* ~v!Di j ~v!2uDii ~v!u2#, ~38!

where the Gamma functionG@z# is defined in the Appendix
As the dimensionD grows it is seen that the rate of gravit
tional energy radiated increases asvD12. Sometimes it will
be more useful to have the time rate of emitted energy:

dE

dt
5

222Dp2(D25)/2G~D23!D

G@~D21!/2#~D221!~D22!

3@~D21!] t
(D12)/2Di j* ~ t !] t

(D12)/2Di j ~ t !

2u] t
(D12)/2Dii ~ t !u2#. ~39!
06402
e
s

tic

For D54, Eq. ~39! yields the well known result@16#

dE

dt
5

G
5 F] t

3Di j* ~ t !] t
3Di j ~ t !2

1

3
u] t

3Dii ~ t !u2G . ~40!

B. Applications of the quadrupole formula: Test particles in a
background geometry

The quadrupole formula has been used successfully
almost all kinds of problems involving gravitational wav
generation. By ‘‘successful,’’ we mean that it agrees w
other more accurate methods. Its simplicity and the fact t
it gives results correct to within a few percent make it
invaluable tool in estimating gravitational radiation emissio
We shall in the following present two important examples
the application of the quadrupole formula.

1. A particle in circular orbit

The radiation generated by particles in circular moti
was perhaps the first situation to be considered in the an
sis of gravitational wave generation. For orbits with low fr
quency, the quadrupole formula yields excellent results.
expected it is difficult to find in nature a system with perfe
circular orbits; they will in general be elliptic. In this case th
agreement is also remarkable, and one finds that the qua
pole formalism can account with precision for the increase
period of the pulsar PSR 1913116, due to gravitational wave
emission@28#. In four dimensions the full treatment of th
elliptic orbital motion is discussed by Peters@29#. In dimen-
sions higher than four, it has been shown@25# that there are
no stable geodesic circular orbits, and so geodesic circ
motion is not as interesting for higherD. For this reason, and
also because we only want to put in evidence the differen
that arise in gravitational wave emission as one varies
spacetime dimensionD, we will just analyze the simple cir-
cular, not necessarily geodesic motion, to see whether
results are nontrivially changed as one increasesD. Consider
then two bodies of equal massm in circular orbits a distance
l apart. Suppose they revolve around the center of m
which is at l /2 from both masses, and that they orbit wi
frequencyv in the x-y plane. A simple calculation@29,30#
yields

Dxx5
ml2

4
cos~2vt !1const, ~41!

Dyy52Dxx , ~42!

Dxy5
ml2

4
sin~2vt !1const, ~43!

independently of the dimension in which they are embed
and with all other components being zero. We therefore
from Eq. ~39!,

dE

dt
5

2GD~D23!

p (D25)/2G@~D21!/2#~D11!~D22!
m2l 4vD12.

~44!
6-6
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For D54 one gets

dE

dt
5

8G
5

m2l 4v6, ~45!

which agrees with known results@29,30#. Equation~44! is
telling us that as one climbs up in dimension numberD the
frequency effect gets more pronounced.

2. A particle falling radially into a higher dimensional
Schwarzschild black hole

As yet another example of the use of the quadrupole
mula Eq.~39! we now calculate the energy given away
gravitational waves when a point particle with massm falls
into aD-dimensional Schwarzschild black hole, a metric fi
given in@25#. Historically, the case of a particle falling into
D54 Schwarzschild black hole was one of the first to
studied@31,32# in connection with gravitational wave gen
eration, and later served as a model calculation when
wanted to evolve Einstein’s equations fully numerica
@33,34#. This process was first studied@32# by numerically
solving Zerilli’s @31# wave equation for a particle at rest
infinity and then falling into a Schwarzschild black hol
Davis et al. @32# found numerically that the amount of en
ergy radiated to infinity as gravitational waves wasDEnum
50.01m2/M , wherem is the mass of the particle falling in
and M is the mass of the black hole. It is found that theD
54 quadrupole formula yields@35# DEquad50.019m2/M , so
it is of the same order of magnitude as that given by fu
relativistic numerical results. Despite the fact that the qu
rupole formula fails somewhere near the black hole~the mo-
tion is not slow, and the background is certainly not flat!, it
looks as if one can get an idea of how much radiation will
released with the help of this formula. Based on this go
agreement, we shall now consider this process but for hig
dimensional spacetimes. The metric for theD-dimensional
Schwarzschild black hole in (t,r ,u1 ,u2 , . . . ,uD22) coordi-
nates~see the Appendix! is
r
to

of
rg

f
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ds252S 12
16pGM

~D22!VD22

1

r D23D dt2

1S 12
16pGM

~D22!VD22

1

r D23D 21

dr21r D22dVD22
2 .

~46!

Consider a particle falling along a radial geodesic, and at
at infinity. Then the geodesic equations give

dr

dt
;

16pGM

~D22!VD22

1

r D23
, ~47!

where we make the flat space approximationt5t. We then
have, in these coordinates,D115r 2, and all other compo-
nents vanish. From Eq.~39! we get the energy radiated pe
second, which yields

dE

dt
5

222Dp2(D25)/2G~D23!

G@~D21!/2#~D221!
Du] t

(D12)/2D11u2. ~48!

We can perform the derivatives and integrate to get the t
energy radiated. There is a slight problem though: where
we stop the integration? The expression for the energy
verges atr 50 but this is no problem, as we know that as t
particle approaches the horizon the radiation will be in
nitely redshifted. Moreover, the standard picture@35# is that
of a particle falling in, and in the last stages being froz
near the horizon. With this in mind we integrate fromr 5`
to some point near the horizon, sayr 5b3r 1 , wherer 1 is
the horizon radius andb is some number larger than unity
and we get

DE5A
D~D22!p

22D24
3b(92D2)/23

m2

M
, ~49!

where
A5
~32D !2~52D !2~723D !2~824D !2~925D !2

•••~D/2142D2/2!2

G@~D21!/2#2~D21!~D11!~D13!
. ~50!
ere

no
lts
t,
rgy
, or
lem
d to
To understand the effect of both the dimension numbeD
and the parameterb on the total energy radiated according
the quadrupole formula, we list in Table I some valuesDE
for different dimensions, andb between 1 and 1.3.

The parameterb is in fact a measure of our ignorance
what goes on near the black hole horizon, so if the ene
radiated does not vary much withb it means that our lack o
knowledge does not affect the results very much. ForD54
that indeed happens. Puttingb51 gives an energy only 2.6
times larger than withb51.3, and still very close to the fully
relativistic numerical result for 0.01m2/M . However, as we
increaseD, the effect ofb increases dramatically. ForD
y

512, for example, we can see that a change inb from 1 to
1.3 gives a corresponding change inDE of 33106 to
0.0665. This is eight orders of magnitude lower. Since th
is as yet no Regge-Wheeler-Zerilli@31,36# wave function for
higher dimensional Schwarzschild black holes, there are
fully relativistic numerical results to compare our resu
with. Thus D54 is just the perfect dimension to predic
through the quadrupole formula, the gravitational ene
coming from collisions between particles and black holes
between small and massive black holes. It is not a prob
related to the quadrupole formalism, but rather one relate
D. A small change in parameters translates itself, for highD,
6-7
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into a large variation in the final result. Thus, as the dim
sion D grows, the knowledge of the cutoff radiusb3r 1

becomes essential for accurate computation of the en
released.

IV. INSTANTANEOUS COLLISIONS IN EVEN
D DIMENSIONS

In general, whenever two bodies collide or scatter th
will be gravitational energy released due to the change
momentum involved in the process. If the collision is ha
meaning that the incoming and outgoing trajectories h
constant velocities, there is a method first envisaged
Weinberg @16,37#, and later explored in@38# by Smarr to
compute exactly the metric perturbation and energy relea
The method is valid for arbitrary velocities~one will still be
working in the linear approximation, so energies have to
low!. Basically, it assumes a collision lasting for zero se
onds. It was found that in this case the resulting spectra w
flat, precisely what one would expect based on one’s exp
ence with electromagnetism@39#, and so to give a meanin
to the total energy a cutoff frequency is needed. This cu
frequency depends upon some physical cutoff in the part
lar problem. We shall now generalize this construction
arbitrary dimensions.

A. Derivation of the radiation formula in terms of a cutoff for
a head-on collision

Consider therefore a system of freely moving partic
with D-momentaPi

m , energiesEi , and (D21)-velocitiesv,
which due to the collision change abruptly att50 to corre-
sponding primed quantities. For such a system, the ene
momentum tensor is

Tmn~ t,v!5(
Pi

mPi
n

Ei
dD21~x2vt !Q~2t !

1
P8 i

mP8 i
n

Ei8
dD21~x82v8t !Q~ t !, ~51!

from which, using Eqs.~31! and~32!, one can get the quan
tities hmn and also the radiation emitted. Let us consider
particular case in which one has a head-on collision of t
particles, particle 1 with massm1 and Lorentz factorg1 and

TABLE I. The energy radiated by a particle falling from re
into a higher dimensional Schwarzschild black hole, as a func
of dimension. The integration is stopped atb3r 1 , wherer 1 is the
horizon radius.

DE3M /m2

D b51 b51.2 b51.3

4 0.019 0.01 0.0076
6 0.576 0.05 0.0167
8 180 1.19 0.13
10 24567 6.13 0.16
12 3.33106 14.77 0.0665
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particle 2 with massm5m2 with Lorentz factorg2, collid-
ing to form a particle at rest. Without loss of generality, o
may orient the axis so that the motion is in the (xD21 ,xD)
plane, and thexD axis is the radiation direction~see the
Appendix!. We then have

P15g1m1~1,0,0, . . . ,v1 sinu1 ,v1 cosu1!,

P185~E18,0,0, . . . ,0,0!, ~52!

P25g2m2~1,0,0, . . . ,2v2 sinu1 ,2v2 cosu1!,

P285~E28,0,0, . . . ,0,0!. ~53!

Momentum conservation leads to the additional relat
g1m1v15g2m2v2. Replacing Eqs.~52! and ~53! in the
energy-momentum tensor~51! and using Eq.~32! we find

d2E

dvdV
5

2G
~2p!D22

D23

D22

3
g1

2m1
2v1

2~v11v2!2 sin u1
4

~12v1 cosu1!2~11v2 cosu1!2
3vD24.

~54!

We see that for the arbitrary~even! D the spectrum is not flat
Flatness happens only forD54. For anyD, the total energy
integrated over all frequencies would diverge so one nee
cutoff frequency which will depend on the particular pro
lem under consideration. Integrating Eq.~54! from v50 to
the cutoff frequencyvc , we have

dE

dV
5

2G
~2p!D22

1

D22

3
g1

2m1
2v1

2~v11v2!2 sin u1
4

~12v1 cosu1!2~11v2 cosu1!2
3vc

D23 . ~55!

Two limiting cases are of interest here, namely,~i! the colli-
sion between identical particles and~ii ! the collision between
a light particle and a very massive one. In case~i!, replacing
m15m25m, v15v25v, Eq. ~55! gives

dE

dV
5

8G
~2p!D22

1

D22

g2m2v4 sin u1
4

~12v2 cos2u1!2
3vc

D23 . ~56!

In case ~ii ! considering m1g1[mg!m2g2 , v1[v@v2,
Eq. ~55! yields

dE

dV
5

2G
~2p!D22

1

D22

g2m2v4 sinu1
4

~12v cosu1!2
3vc

D23 . ~57!

Notice that the technique just described is expected to br
down if the velocities involved are very low, since then t
collision would not be instantaneous. In fact, a condition
this method to work can be stated.

n
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Indeed, one can see from Eq.~55! that, if v
→0, dE/dv→0, even though we know~see Sec. IV A! that
DE5” 0. In any case, if the velocities are small one can
the quadrupole formula instead.

B. Applications: The cutoff frequency when one of the
particles is a black hole and radiation from

black hole pair creation

1. The cutoff frequency when one of the head-on colliding
particles is a black hole

We shall now restrict ourselves to the case~ii ! of the last
subsection, in which at least one of the particles participa
in the collision is a massive black hole, with massM@m
~where we have putm15m and m25M ). Formulas~55!–
~57! are useless unless one is able to determine the cu
frequencyvc present in the particular problem under cons
eration. In the situation where one has a small particle c
liding at high velocities with a black hole, it has been su
gested by Smarr@38# that the cutoff frequency should b
vc;1/2M , presumably because the characteristic collis
time is dictated by the large black hole whose radius is 2M .
Using this cutoff he finds

DESmarr;0.2g2
m2

M
. ~58!

The exact result, using a relativistic perturbation appro
which reduces to the numerical integration of a second o
differential equation~the Zerilli wave function!, has been
given by Cardoso and Lemos@13# as

DEexact50.26g2
m2

M
. ~59!

This is equivalent to saying thatvc50.613/M;1/1.63M ,
and so it looks as if the cutoff is indeed the inverse of
horizon radius. However, in the numerical work by Cardo
and Lemos, it was found that it was not the presence o
horizon that contributed to this cutoff, but the presence o
potential barrierV outside the horizon. By decomposing th
field in tensorial spherical harmonics with the indexl stand-
ing for the angular quantum number, we found that for ea
l the spectrum is indeed flat@as predicted by Eq.~55! for
D54], until a cutoff frequencyvcl

, which was numerically
equal to the lowest gravitational quasinormal frequen
vQN. For v.vcl

the spectrum decays exponentially. Th
behavior is illustrated in Fig. 1. The quasinormal frequenc
@40# are those frequencies that correspond to only outgo
waves at infinity and only ingoing waves near the horizo
As such, the gravitational quasinormal frequencies will
general have a real and an imaginary part, the latter deno
gravitational wave emission and therefore a decay in the
turbation. There have been a wealth of works dwelling
quasinormal modes on asymptotically flat spacetimes@40#,
due to its close connection with gravitational wave emissi
and also on nonasymptotically flat spacetimes, like asym
totically anti–de Sitter@41# or asymptotically de Sitter@42#
spacetimes, mainly due to the AdS conformal field the
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~CFT! and dS/CFT@43# correspondence conjecture. We a
gue here that it is indeed the quasinormal frequency
dictates the cutoff, and not the horizon radius. ForD54 it so
happens that the weighted average ofvcl

is 0.613/M , which,

as we said, is quite similar tor 151/2M . The reason for the
cutoff being dictated by the quasinormal frequency can
understood using some WKB intuition. The presence o
potential barrier outside the horizon means that waves w
some frequencies get reflected back on the barrier while
ers can cross. Frequencies such thatv2 is lower than the
maximum barrier heightVmax will be reflected back to infin-
ity where they will be detected. However, frequenciesv2

larger than the maximum barrier height cross the barrier
enter the black hole, thereby being absorbed and not con
uting to the energy detected at infinity. So only frequenc
v2 lower than this maximum barrier height are detected
infinity. It has been shown@44# that the gravitational quasi
normal frequencies are to first order equal to the square
of the maximum barrier height. In view of this picture, an
considering the physical meaning of the cutoff frequency
seems quite natural to say that the cutoff frequency is eq
to the quasinormal frequency. If the frequencies are hig
than the barrier height, they do not get reflected back
infinity. This discussion is very important to understandi
how the total energy varies with the numberD of dimen-
sions. In fact, if we setvc;1/r 1 , we find that the total
energy radiated decreases rapidly with increasing dimen
number, becauser 1 increases rapidly with the dimension
This conflicts with recent results@14,15#, which, using shock
waves that describe boosted Schwarzschild black holes
searching for apparent horizons, indicate an increase withD.
So we need the gravitational quasinormal frequencies
higher dimensional Schwarzschild black holes. To arrive a
wave equation for gravitational perturbations of higher
mensional Schwarzschild black holes, and therefore to c
pute its gravitational quasinormal frequencies, one need

FIG. 1. The energy spectra as a function of the angular num
l, for a highly relativistic particle falling into aD54 Schwarzschild
black hole@13#. The particle begins to fall with a Lorentz factorg.
Notice that for eachl there is a cutoff frequencyvcl

which is equal
to the quasinormal frequencyvQN after which the spectrum decay
exponentially. So it is clearly seen thatvQN works as a cutoff fre-
quency. The total energy radiated is given by a sum overl, which is
the same as saying that the effective cutoff frequency is given b
weighted average of the variousvcl

.
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decompose Einstein’s equations inD-dimensional tensoria
harmonics, which would lead to some quite complex expr
sions. It is not necessary to go that far though, because
can get an idea of how the gravitational quasinormal f
quencies vary by searching for the quasinormal frequen
of scalar perturbations, and scalar quasinormal frequen
are a lot easier to find. One hopes that the scalar frequen
will behave withD in the same manner as do the gravi
tional ones. Scalar perturbations inD-dimensional Schwarzs
child spacetimes obey the wave equation~consult @45# for
details!

]2f~v,r !

]r
*
2

1@v22V~r !#f~v,r !50. ~60!

The potentialV(r ) appearing in Eq.~60! is given by

V~r !5 f ~r !F a

r 2
1

~D22!~D24! f ~r !

4r 2
1

~D22! f 8~r !

2r G ,

~61!

wherea5 l ( l 1D23) is the eigenvalue of the Laplacian o
the hypersphereSD22, the tortoise coordinater * is defined
as ]r /]r * 5 f (r )5$12@16pGM /(D22)VD22#(1/r D23)%,
and f 8(r )5d f(r )/dr. We have found the quasinormal fre
quencies of spherically symmetric (l 50) scalar perturba-
tions, by using a WKB approach developed by Schutz,
collaborators@44#. The results are presented in Table
where we also show the maximum barrier height of the
tential in Eq.~61!, as well as the horizon radius.

The first thing worth noticing is that the real part of th
scalar quasinormal frequency is to first order reasona
close to the square root of the maximum barrier hei
AVmax, supporting the previous discussion. Furthermore,
scalar quasinormal frequency grows more rapidly than
inverse of the horizon radius 1/r 1 as one increasesD. In fact,
the scalar quasinormal frequency grows withD while the
horizon radiusr 1 gets smaller. Note that, from purely d
mensional arguments, for fixedD, v}1/r 1 . The statement
here is that the constant of proportionality depends on
dimensionD—more explicitly it grows withD—and can be
found from Table II. Assuming that the gravitational qua

TABLE II. The lowest scalar quasinormal frequencies f
spherically symmetric (l 50) scalar perturbations of higher dimen
sional Schwarzschild black holes, obtained using a WKB met
@44#. Notice that the real part of the quasinormal frequency is
ways of the same order of magnitude as the square root of
maximum barrier height. We show also the maximum barrier he
as well as the horizon radius as a function of dimensionD. The
massM of the black hole has been set to 1.

D Re@vQN# Im@vQN# AVmax 1/r 1

4 0.10 20.12 0.16 0.5
6 1.033 20.713 1.441 1.28
8 1.969 21.023 2.637 1.32
10 2.779 21.158 3.64 1.25
12 3.49 21.202 4.503 1.17
06402
s-
ne
-
es
es
ies
-

d

-

ly
t
e
e

e

-

normal frequencies will have the same behavior~and some
very recent studies@46# relating black hole entropy and
damped quasinormal frequencies seem to point that way!, the
total energy radiated during high energy collisions do
indeed increase withD, as some studies@14,15# seem to
indicate.

2. The gravitational energy radiated during black hole
pair creation

As a new application of this instantaneous collision fo
malism, we now consider the gravitational energy relea
during the quantum creation of pairs of black holes, a p
cess that as far as we know has not been analyzed in
context of gravitational wave emission, even forD54. It is
well known that vacuum quantum fluctuations produce v
tual electron-positron pairs. These pairs can become real@47#
if they are pulled apart by an external electric field, in whi
case the energy for the pair materialization and accelera
comes from the external electric field energy. Likewise
black hole pair can be created in the presence of an exte
field whenever the energy pumped into the system is eno
to make the pair of virtual black holes real~see Dias@48# for
a review on black hole pair creation!. If one tries to predict
the spectrum of radiation coming from pair creation, o
expects, of course, a spectrum characteristic of acceler
masses, but one also expects that this follows some kin
signal indicating pair creation. In other words, the process
pair creation itself, which involves the sudden creation
particles, must imply emission of radiation. It is this pha
we shall focus on, forgetting the subsequent emission of
diation caused by the acceleration.

Pair creation is a purely quantum-mechanical proces
nature, with no classical explanation. But, given that the p
cess does occur, one may ask about the spectrum and i
sity of the radiation accompanying it. The sudden creation
pairs can be viewed for our purposes as an instantane
creation of particles~i.e., the time reversed process of insta
taneous collisions!, the violent acceleration of particles in
tially at rest to some final velocity in a very short time, an
the technique described at the beginning of this section
plies. This is quite similar to another purely quantum
mechanical process, the beta decay. The electromagneti
diation emitted during beta decay has been compu
classically by Chang and Falkoff@49# and is also presente
in Jackson@39#. The classical calculation is similar in a
aspects to the one described in this section~the instantaneous
collision formalism! assuming the sudden acceleration to e
ergiesE of a charge initially at rest, and also requires a cut
in the frequency, which has been assumed to be given by
uncertainty principlevc;E/\. Assuming this cutoff, one
finds that the agreement between the classical calcula
and the quantum calculation@49# is extremely good~espe-
cially in the low frequency regime!, and, more important,
was verified experimentally. Summarizing, formula~56! also
describes the gravitational energy radiated when two bl
holes, each with massm and energyE, form through quan-
tum pair creation. The typical pair creation time can be e
mated by the uncertainty principletcreation;\/E;\/mg,
and thus we find the cutoff frequency as

d
l-
he
t
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vc;
1

tcreation
;

mg

\
. ~62!

Here we would like to draw the reader’s attention to the f
that the units of Planck’s constant\ change with dimension
numberD: according to our convention of settingc51 the
units of \ are@M # (D22)/(D23). With this cutoff, we find the
spectrum of the gravitational radiation emitted during p
creation to be given by Eq.~54! with m15m2 and v15v2
~we are considering the pair creation of two identical bla
holes!:

d2E

dvdV
5

8G
~2p!D22

D23

D22

g2m2v4 sinu1
4

~12v2 cos2u1!2
3vD24,

~63!

and the total frequency integrated energy per solid angle

dE

dV
5

8G
~2p!D22~D22!

v4 sinu1
4

~12v2 cos2u1!2
3

~mg!D21

\D23
.

~64!

For example, in four dimensions and for pairs withv;1 one
obtains

dE

dv
5

4G
p

g2m2, ~65!

and will have for the total energy radiated during product
itself, using the cutoff frequency~62!,

DE5
4G
p

g3m3

\
. ~66!

This could lead under appropriate numbers ofm and g to
huge quantities. Although one cannot be sure as to the cu
frequency, and therefore the total energy~66!, it is extremely
likely that, as was verified experimentally in beta decay,
zero frequency limit, Eq.~65!, is exact.

V. SUMMARY AND DISCUSSION

We have developed the formalism to compute grav
tional wave generation in higherD dimensional spacetimes
with D even. Several examples have been worked out,
one cannot help the feeling that our apparently fo
dimensional world is the best one to make predictions ab
the intensity of gravitational waves in concrete situations
the sense that a small variation of parameters leads in higD
to a huge variation of the energy radiated. Much more w
is still needed if one wants to make precise predictions ab
gravitational wave generation inD-dimensional spacetimes
For example, it would be important to find a way to tre
gravitational perturbations of higher dimensional Schwar
child black holes. One of the examples worked out,
gravitational radiation emitted during black hole pair cr
ation, was not previously considered in the literature, an
seems to be a good candidate, even inD54, to radiate in-
tensely through gravitational waves.
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APPENDIX: SPHERICAL COORDINATES
IN DÀ1 DIMENSIONS

In this appendix we list some important formulas and
sults used throughout this paper. We shall first present
transformation mapping (D21) Cartesian coordinate
(x1 ,x2 ,x3 , . . . ,xD21) onto (D21) spherical coordinates
(r ,u1 ,u2 , . . . ,uD22). The transformation reads

x15r sinu1 sinu2•••sinuD22 ,

x25r sinu1 sinu2•••sinuD23 cosuD22 ,

A

xi5r sinu1 sinu2•••sinuD2 i 21 cosuD2 i ,

A

xD215r cosu1 .

The Jacobian of this transformation is

J5r D22 sinu1
D23 sinu2

D24
•••sinu i

D2 i 22
•••sinuD23 ,

~A1!

and the volume element becomes

dD21x5Jdrdu1du2•••duD225r D22drdVD22 , ~A2!

where

dVD225sinu1
D23 sinu2

D24
•••sinuD23 du1du2•••duD22,

~A3!

is the element of the (D21)-dimensional solid angle. Fi
nally, using@50#

E
0

p

sinun5Ap
G@~n11!/2#

G@~n12!/2#
, ~A4!

this yields

VD225
2p (D21)/2

G@~D21!/2#
. ~A5!

Here, G@z# is the Gamma function, whose definition an
properties are listed in@18#. In this work the main properties
of the Gamma function that were used areG@z11#5zG@z#
andG@1/2#5Ap.
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