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Gravitational radiation in D-dimensional spacetimes
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Gravitational wave solutions to Einstein’s equations and their generation are examatinrensional flat
spacetimes. First the plane wave solutions are analyzed; then the wave generation is studied with the solution
for the metric tensor being obtained with the help of retafdedimensional Green’s functions. Because of the
difficulties in handling the wave tails in odd dimensions we concentrate our study on even dimensions. We
compute the metric quantities in the wave zone in terms of the energy-momentum tensor at retarded time.
Some special cases of interest are studied. First we study the slow motion approximation, where the
D-dimensional quadrupole formula is deduced. Within the quadrupole approximation, we consider two cases of
interest: a particle in circular orbit and a particle falling radially into a higher dimensional Schwarzschild black
hole. Then we turn our attention to the gravitational radiation emitted during collisions lasting zero seconds,
i.e., hard collisions. We compute the gravitational energy radiated during the collision of two point particles, in
terms of a cutoff frequency. In the case in which at least one of the particles is a black hole, we argue that this
cutoff frequency should be close to the lowest gravitational quasinormal frequency. In this context, we compute
the scalar quasinormal frequencies of higher dimensional Schwarzschild black holes. Finally, as an interesting
new application of this formalism, we compute the gravitational energy release during the quantum process of
black hole pair creation. These results might be important in light of the recent proposal that there may exist
extra dimensions in the Universe, one consequence of which may be black hole creation at the Large Hadron
Collider at CERN.
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[. INTRODUCTION formalism is the most famous example of slow motion tech-
niques to compute wave generation. All these techniques
One expects to finally detect gravitational waves in thebreak the nonlinearity of Einstein’s equations by imposing a
forthcoming years. If this happens, and if the observed wavepower series in some small quantity and keeping only the
forms match the predicted templates, general relativity willlowest or the lowest few order terms. The quadrupole for-
have passed a crucial test. Moreover, if one manages tmalism starts from a flat background and expands the rel-
cleanly separate gravitational waveforms, we will open aevant quantities ifR/\, whereR is the size of the source and
new and exciting window on the Universe, a window from \ the wavelength of the waves. Perturbation formalisms, on
which one can look directly into the heart of matter, as gravithe other hand, start from some nonradiative background,
tational waves are weakly scattered by matter. A lot of effortwhose metric is known exactly, for example, the Schwarzs-
has been spent in recent years on trying to build gravitationathild metric, and expand in deviations from that background
wave detectors, and a new era will begin with gravitationalmetric. For a catalog of the various methods and their de-
wave astronomy1,2]. The property that makes gravitational scription we refer the reader to the review works by Thorne
wave astronomy attractive, the weakness with which gravi{6] and Damour{7]. The necessity of developing all such
tational waves are scattered by matter, is also the majamethods was driven, of course, by the lack of exact radiative
source of technical difficulties when trying to develop ansolutions to Einstein’s equation&lthough there are some
apparatus that interacts with them. Nevertheless, some aforthy exceptions, such as tiiemetric[8]), and by the fact
these highly nontrivial technical difficulties have been sur-that even nowadays solving the full set of Einstein’s equa-
mounted, and we have detectors already operdtBp].  tions numerically is a monumental task, and has been done
Additional effort is being dedicated by theoreticians in trying only for the more tractable physical situations. All the exist-
to obtain accurate templates for the various physical proing methods seem to agree with each other when it comes
cesses that may give rise to the waves impinging on thelown to the computation of waveforms and energies radiated
detector. We now have a well established theory of waveluring physical situations, and also agree with the few avail-
generation and propagation, which started with Einstein andble results from a fully numerical evolution of Einstein’s
his quadrupole formula. The quadrupole formula expressesquations.
the energy lost to gravitational waves by a system moving at In this work we extend some of these results to higher
low velocities, in terms of its energy content. The quadrupoledimensional spacetimes. There are several reasons why one
should now try to do it. It seems impossible to formulate in
four dimensions a consistent theory that unifies gravity with

*Electronic address: vcardoso@fisica.ist.utl.pt the other forces in nature. Thus, most efforts in this direction
TElectronic address: oscar@fisica.ist.utl.pt have considered a higher dimensional arena for our Uni-
*Electronic address: lemos@kelvin.ist.utl.pt verse, one example being string theories which have recently
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made some remarkable achievements. Moreover, recent iquency of the black hole, and compute some values of the
vestigationgd 9] propose the existence of extra dimensions inscalar quasinormal frequencies for higher dimensional
our Universe in order to solve the hierarchy problem, i.e., theéschwarzschild black holes, expecting that the gravitational
huge difference between the electroweak and the Plancguasinormal frequencies will behave in the same manner.
scales,mgy/Mp~10"%". The fields of the standard model Finally, we apply this formalism to compute the generation
would inhabit a four-dimensional submanifold, the brane Of gravitational radiation during black hole pair creation in
whereas the gravitational degrees of freedom would propa@ur and higher dimensions, a result that has never been
gate throughout all dimensions. One of the most spectaculd¥orked out, even foD=4. In our presentation we shall
consequences of this scenario would be the production dhostly follow Weinberg's 16] exposition.

black holes at the Large Hadron ColliddtHC) at CERN

[10] (for recent relevant work related to this topic we refer Il. LINEARIZED D-DIMENSIONAL

the reader t¢11-13). Now, one of the experimental signa- EINSTEIN'S EQUATIONS

tures of black hole production will be a missing energy, per- ) . ] ] .

haps a large fraction of the center of mass en¢igy. This Because of the nonlinearity of Einstein’s equations, the

will happen because, when the partons collide to form gdreatment of the gravitational radiation problem is not an
black hole, some of the initial energy will be converted to€asy one since the energy-momentum tensor of the gravita-
gravitational waves, and due to the small amplitudes intional wave contributes to its own gravitational field. To
volved there is no gravitational wave detector capable ofvercome this difficulty it is a standard procedure to work
detecting them, so they will appear as missing_ Thus, thé)nly with the weak radiative solution, in the sense that the
collider could in fact indirectly serve as a gravitational wave €nergy-momentum content of the gravitational wave is small
detector. This calls for the calculation of the energy givenenough in order to allow us to neglect its contribution to its
away as gravitational waves when two high energy particle®Wn propagation. This approach is justified in practice since
collide to form a black hole, which lives in all the dimen- We expect the detected gravitational radiation to be of low
sions. The work done so far on this subjgb4,15 in higher  Intensity.

dimensions is mostly geometric, and generalizes a construc-

tion by Penrose to fi_nq trapped surfaces on thg union of two A. The inhomogeneous wave equation

shock waves, describing boosted Schwarzschild black holes.

On the other hand, there are clud2,13 indicating that a . ;
formalism described by Weinbefd6] to compute the gravi- ground_ formallsn(whqse details can be found, e.g.,[ltﬁ])
that will be needed in later sections. Then we obtain the

tational energy radiated in the collision of two point particles . ) ) .
gives results correct to an order of magnitude when app"eaneanzeqmhomogeneous wave equation. o

to the collision of two black holes. This formalism assumes a  Creek indices vary as Q.1...D—1 and latin indices as
hard collision, i.e., a collision lasting zero seconds. It is im-L: - o b __1 and our unlts are suph thee1. We'work ona
portant to apply this formalism in higher dimensions, trying D-dimensional spacetime described by a megrj¢ that ap-
to see if there is agreement between the two results. This Rroaches asymptotically tHe-dimensional Minkowski met-
one of the topics discussed in this paper. The other topic wiC 7x»=diag(=1,+1,...,+1), and thus we can write
study in this paper is the quadrupole formula in higher di-
mensions. Due to the difficulties in handling the wave tails in

odd dimensions, we concentrate our study on even dimen- ) ) )
sions whereh,,, is small, i.e.|h,,|<1, so that it represents small

This paper is organized as follows. In Sec. Il we linearizecorrections to the flat background. The exact Einstein field

Einstein’s equations in a fla-dimensional background and €duationsG ,,=8=gT,, (with G being the usual Newton
arrive at an inhomogeneous wave equation for the metri€onstantcan then be written as

perturbations. The source-free equations are analyzed in
terms of plane waves, and then the general solution to the
homogeneous equation is deduced in terms of the
D-dimensional retarded Green’s function. In Sec. Il we
compute theD-dimensional quadrupole formul@ssuming
slowly moving sources expressing the metric and the radi-
ated energy in terms of the time-time component of the e B

energy-momentum tensor. We then apply the quadrupole for- =0t (Tapttap)- ©)
mula to two cases: a particle in circular motion in a generic

background, and a particle falling into B-dimensional Here R(l)M,, is the part of the Ricci tensor linear im,,,
Schwarzschild black hole. In Sec. IV we consider a hardRM*,=»**R%);,, and 7,, is the effective energy-
collision between two particles, i.e., the collision takes zeranomentum tensor, containing contributions fram, , the
seconds, and introduce a cutoff frequency necessary to haemergy-momentum tensor of the matter source, apgd
meaningful results. We then apply it to the case where one oithich represents the gravitational contribution. The pseudot-
the colliding particles is a black hole. We propose that thisensort,,, contains the difference between the exact Ricci
cutoff should be related to the gravitational quasinormal freterms and the Ricci terms linear i, ,

We begin this subsection by introducing the general back-

9uv="u 0y, wv=01,...D—1, (1)

1
RY,,— 57, R =87Gr,,, 2

with
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1 1 1 B. The plane wave solutions
ty=a—=|Ruw—509,R%RY,,+57 VR(WQ} o : o
8wg| *v 27K my o e In vacuum, the linearized equations for the gravitational
(@)  field areR™,,=0 or, equivalently, the homogeneous equa-
tionsh,,=0, subjected to the harmonic gauge conditions
The Bianchi identities imply that,,, is locally conserved,  (10). The solutions of these equations, the plane wave solu-

tions, are important since the general solutions of the inho-

d,m™"=0. (5 mogeneous equatiori$0) and(11) approach the plane wave
) _ _ ) : solutions at large distances from the source. Setting

and considering & —1 volumeV with a boundary spacelike and wave vector, the plane wave solutions can be written as
n, Eq. (5) yields
g h(tx)=e, e " +e* e ke, (13
gt dPIx Ov=— f d®~2x n;7". (6)
v s
where e,,=e,, is called the polarization tensor ant

This means that one may interpret means the complex conjugate. These solutions satisfy Eq.
(12) with S,,,=0 if k,k*=0, and obey the harmonic gauge
51 o conditions(10) if 2k e*,=k,e* .
p'= fvd Xr"’ (7 An important issue that must be addressed is the number
of different polarizations that a gravitational wave [ndi-
mensions can have. The polarization tersgy, being sym-
metric, has in generd) (D +1)/2 independent components.
However, these components are subject to Bhbarmonic
gauge conditions that reduce Iy the number of indepen-
dent components. In addition, under the infinitesimal change
of coordinates x’'#=x*+ ¢*(x), the polarization tensor
Flux= f d®2x n;t'”. (8) transforms intoe;,,=e,,—d,&,~d,&,. Now, e/, ande,,,
S describe the same physical system for arbitrary values of the
D parameters*(x). Therefore, the number of independent
components oé,,, i.e., the number of polarization states of
a gravitational wave irD dimensions, isD(D+1)/2—D
—D=D(D—3)/2. From this computation we can also see
that gravitational waves are present only wier 3. There-
fore, from now on we assunie>3 whenever we refer tb.
In what concerns the helicity of the gravitational waves, for
arbitrary D the gravitons are always spin 2 particles.
To end this subsection on gravitational plane wave solu-
tions, we present the average gravitational energy-

In this setting and choosing a convenient coordinate Systenrpomentum tensor of a plane wave, a quantity that will be

that obeys the harmoni@lso called Lorenfzgauge condi- needed later. Notice that in vacuum, since the matter contri-
tions y gaug bution is zero T,,=0), we cannot neglect the contribution

of the gravitational energy-momentum tenspy. From Eq.
(4), and neglecting terms of order higher that the gravi-
tational energy-momentum tensor of a plane wave is given

as the total energy-momentufpseudgvector of the system,
including matter and gravitation, and” as the correspond-
ing flux. Since the matter contribution is containedtt,
the flux of gravitational radiation is

In this context of linearized general relativity, we neglect
terms of order higher than the first Im,, and all the indices
are raised and lowered using'”. We also neglect the con-
tribution of the gravitational energy-momentum tensgy
(ie., |t,,|<|T,,|) since from Eq.(4) we see that,, is of
higher order inh,,. Then the conservation equatiof)
yield

3,TH=0. (9)

2d,h*,=d,h, (10)

(where d,,= dl 9x*), the first order Einstein field equations by
(2) yield
1 1

Oh,,=—16mGS,,, (11 t,= s_wg[ R® ,,— 5 an@)aa} , (14

1
Suv=Tur™ D-2 TuvT e (12 and through a straightforward calculatitsee, e.g.[16] for

detaily we get the average gravitational energy-momentum
where]= »*"d,4, is theD-dimensional Laplacian, arf§},,  tensor of a plane wave,
will be called the modified energy-momentum tensor of the
matter source. Equationdl) and (12) subject to Eq.(10)
allow us to find the gravitational radiation produced by a (t, )= KKy,
matter sources,,, . wve16wg

1
ety glent s
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g 10-3 4

The general solution to the inhomogeneous differential G™{(t,x)= 2x | 2mror 22— 2| D odd.
equation(11) may be found in the usual way in terms of a 22)
Green’s function as

C. The D-dimensional retarded Green'’s function at) [

It is sometimes convenient to work with the Fourier trans-
h,.(t,x)= —16ng dt'f d® xS, (t',x") form (in the time coordinateof the Green’s function. One
finds[23] an analytical result independent of the parityDof
X G(t—t',x—x")+homogeneous solutions,

(16) iDr ) (D-3)2
Gret(w’x)zm T H(lD_s),z(wr), (23)

where the Green'’s functio@(t—t’,x—x') satisfies

7*'d,0,G(t—t" x—x")=8(t—t")8(x—x"), (17) where H,l,(z) is a modified Bessel functiofl7,1§. Of
course, the different structure of the Green’'s function for
where §(z) is the Dirac delta function. In the momentum different D is again embodied in these Bessel functions.

representation this reads Equationg21) and(23) are one of the most important results
we shall use in this paper. F@@=4 Egq. (21) obviously
Do1r ik, e iet reproduces well known resulf&3]. Now, one sees from Eq.
G(t,x)=— (27T)Df d° k€ Xf do PEEY (18)  (21) that, although there are delta function derivatives on the

even D Green’s function, the localization of the Green'’s
function on the light cone is preserved. However, E2R)

tells us that the retarded Green’s function for odd dimensions
is nonzero inside the light cone. The consequence, as has
been emphasized by different auth¢t®,22,24, is that for

odd D the Huygens principle does not hold: the fact that the
retarded Green’s function support extends to the interior of
the light cone implies the appearance of radiative tails in Eq.
(16). In other words, we still have a propagation phenom-

wherek?=k5+k3+ - - - +k3_,. To evaluate this, it is con-
venient to perform thé integral by using spherical coordi-
nates in the D — 1)-dimensionak space. The required trans-
formation, along with some useful formulas which shall be
used later on, is given in the Appendix. The result for the
retarded Green’s function in those spherical coordinates is

Gei(t,x) = — o) % 1 enon for the wave equation in odd dimensional spacetimes,
(27r)(P-12 ((D=3)i2 in so far as a localized initial state requires a certain time to

reach a point in space. Huygens principle no longer holds,

% f k(D_g)/zJ(D_3),2(kr)sir1( kt)dk, (19) Jl{)_ece}use the effe_ct of the initial state is _not_sharply Ii_mited in
ime: once the signal has reached a point in space, it persists

there indefinitely as a reverberation.

wherer?=x3+x5+---+x3_;, and@(t) is the Heaviside This fact coupled to the analytic structure of the Green’s

function defined as function in odd dimensions make it hard to get a grip on
_ radiation generation in odd dimensional spacetimes. There-

1 if t>0, fore, from now on we shall focus on even dimensions, for

0= 0 if t<o. (20 which the retarded Green’s function is given by E2{).

The functionJp _3)2(kr) is a Bessel functiofil7,18. The  p The evendD-dimensional retarded solution in the wave zone
structure of the retarded Green’s function will depend on the

parity of D, as we shall see. This dependence on the parity, 1he retarded solution for the metrjc perturbattop,, ob-
which implies major differences between even and odd@ined by using the retarded Green's functi@l) and dis-
spacetime dimensions, is connected to the structure of thgarding the homogeneous solution in E&©), is given by

Bessel function. For evel, the index of the Bessel function

is semi-integral and then the Bessel function is expressible in h,(t X)zl&rgJ dt'f dP~Ix's, (t',x")
. . . MV wv ’
terms of elementary functions, while for oddthis does not
happen. A concise explanation of the difference between re- XG®(t—t,x—X'), (24)

tarded Green’s functions in even and dddand the physical
consequences that it entails, is presentedl1®] (see also
[20-22). A complete derivation of the Green’s function in
higher dimensional spaces may be found in Has$28].
The result is

with G™(t—t’,x—x’) as in Eq.(21). For D=4, for ex-
ample, one has

1 8(t—
Gre‘(t,x)zﬂ (tr r), D=4, (25)

J
2ror

, D even,

(D4)/2[ 5(t_ r)

1
GrEt(t,X)ZE[ ;

(21 which is the well known result. FdD =6, we have
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To find the Fourier transform of the metric, one uses the
, D=6, (26 representation23) for the Green’s function. Now, in the
wave zone, the Green’s function may be simplified using the
asymptotic expansion for the Bessel funct{d]:
where§’ (t—r) means the derivative of the Dirac delta func-

1 [(8(t=r) &(t—r)
G"™(t,x)=— +
) 8?2 r2 r3

tion with respect to its argument. FBr=8, we have ) > .
Hio-3)y@r)~ Tr(wr)e'[“’r (TO-2)]  yr oo,
1 [o"(t=r) _o'(t=r) _o(t—r -
G"(t,x)= ( )+3 ( )+3 : ))! (30
:|.6’7T3 I‘3 r4 r5 . .
This yields
D=8. @7
h,(w,X)=— L (D—4)/2giwr
We see that in general evéhdimensions the Green’s func- (271)(0-2)72
tion consists of inverse integer powers fin spanning all
values between 1P =22 and 1¢°~3, including these. Now, x f d°-IX'S,, (w,X). 31

the retarded solution is given by E@4) as a product of the
Green'’s function times the modified energy-momentum ten-_ ) )
sorS,,. The net result of having derivatives on the delta This could also have been arrived at directly from Ezp),

functions is to transfer these derivatives to the energy¥Sing the rule time derivative- —i for Fourier transforms,

momentum tensor as time derivativithis can be seen by £duations28) and(31) are one of the most important results

integrating Eq.(24) by parts in thet integral. derived in this paper, _and will bel the basis for the whole
A close inspection then shows that the retarded field poéubsequent section. Similar equat_lons, but not as _general'as

sesses a kind of peeling property in that it consists of termd1€ Ones presented here, were given by Chen, Li, and Lin

with different falloff at infinity. Explicitly, this means that the [27] In the context of gravitational radiation by a rolling

retarded field will consist of a sum of terms possessing alf2chyon. o

integer inverse powers in between D—2)/2 andD —3. To get the energy spectrum, we use Etp), yielding

The term that dies off more quickly at infinity isr/ 3,

typically a static term, since it comes from the Laplacian. As d’E _s wP?

a matter of fact this term was already observed in a higher dwdQ g(zﬂ_)D—4

dimensional black hole by Tangherlii25] (see also Myers

and Perry[26]). We will see that the term falling more

slowly, the one that varies asr{? 22, gives rise to gravi-

tational radiation. It is well defined, in the sense that the

1
v X\ 2
X | TH (w,k)T;V(w,k)——D_2|T>\(w,k)| .

power crossing sufficiently large hyperspheres with different (32)
radii is the same, because the volume element varie8 &
and the energy a$|%~1/rP~2, lIl. THE EVEN D-DIMENSIONAL

In radiation problems, one is interested in finding the field QUADRUPOLE FORMULA

at large distances from the souraer\, where\ is the
wavelength of the waves, and also much larger than th
source’s dimensionR. This is defined as the wave zone. In  When the velocities of the sources that generate the gravi-
the wave zone, one may neglect all terms in the Green'sational waves are small, it is sufficient to know tfF&°
function that decay faster thanr?-2)2. So, in the wave component of the gravitational energy-momentum tensor in
zone, we find order to have a good estimate of the energy they radiate. In
this subsection, we will deduce thHe-dimensional quadru-
pole formula and in the next subsection we will apply it to

eA. Derivation of the even D-dimensional quadrupole formula

h,(t,x)= —BWQTZ),Zﬁt(D_4)/2 (1) a particle in circular orbit and2) a particle in free fall
(27r) into a D-dimensional Schwarzschild black hole.
We start by recalling that the Fourier transform of the
X JdD‘lx’SW(t—|x—x’|,x’) , (28  energy-momentum tensor is

where {°~*? stands for the (D —4)/2]th derivative with Tuv(“"k):f dP~ixe e f dt €T (t,x) +c.c.,
respect to time. Fob =4 Eq.(298) yields the standard result (33
[16]:
where c.c. means the complex conjugate of the preceding
4G ( o_1, o term. Then, the conservation equatig®s for T#"(t,x) ap-
h(tX)=— Tf d°7 XS, (t=|x=x'|,x"), D=4. plied to Eq.(33) yield k“T,, (w,k)=0. Using this last result
(29 we obtain Tofw,k)=kikiTji(w,k) and Ty(wk)=
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—KITji(w,k), wherek=k/w. We can then write the energy ForD=4, Eq.(39) yields the well known result16]

spectrum, Eq(32), as a function only of the spacelike com- dE ¢ 1

ponents ofT**(« k), i = g| D5 (DD ()~ #D (1?40
d2E (1)D72

dwdQ) :Zg(zﬂ.)D—4Aij,Im(R)T*ij(w,k)T”(a),k),

B. Applications of the quadrupole formula: Test particles in a
(34 background geometry

The quadrupole formula has been used successfully in

where almost all kinds of problems involving gravitational wave
. R 1 R generation. By “successful,” we mean that it agrees with
Aij im(K) = 83t 8jm = 2KjKmdi + 55 (= 8ij im + Kikm4; other more accurate methods. Its simplicity and the fact that

it gives results correct to within a few percent make it an

o D-3.. .. invaluable tool in estimating gravitational radiation emission.

+kikjdim) + g okikjkike. (35  We shall in the following present two important examples of

the application of the quadrupole formula.
At this point, we make a new approximatigim addition to o )
the wave zone approximatiprand assume thabR<1, 1. A particle in circular orbit
whereR is the source’s radius. In other words, we assume The radiation generated by particles in circular motion
that the internal velocities of the sources are small and thugas perhaps the first situation to be considered in the analy-
the source’s radius is much smaller than the characteristigis of gravitational wave generation. For orbits with low fre-
wavelength~ 1/w of the emitted gravitational waves. Within guency, the quadrupole formula yields excellent results. As
this approximation, one can set'* ¥ ~1 in Eq.(33) (since  expected it is difficult to find in nature a system with perfect
R=|x'|may. Moreover, after a straightforward calculation, circular orbits; they will in general be elliptic. In this case the
one can also use in E¢34) the approximatiorT ' (w,k)=  agreement is also remarkable, and one finds that the quadru-
- (wZ/Z)Dij(w). where pole formalism can account with precision for the increase in
period of the pulsar PSR 19336, due to gravitational wave
emission[28]. In four dimensions the full treatment of the
elliptic orbital motion is discussed by Peté29]. In dimen-
) ) sions higher than four, it has been shol25] that there are
Finally, using no stable geodesic circular orbits, and so geodesic circular
motion is not as interesting for highBr. For this reason, and
J dQp_, k; R]_ =——24, also because we only want to put in evidence the differences
D-1 that arise in gravitational wave emission as one varies the
spacetime dimensioB, we will just analyze the simple cir-
caaa 30p, cular, not necessarily geodesic motion, to see whether the
f d€p -, kikjkikm= D2—1 (6ij Sim+ it Sjm+ Sim i), results are nontrivially changed as one incred3e€onsider
(37) then two bodies of equal massin circular orbits a distance
| apart. Suppose they revolve around the center of mass,
whereQ_, is the O —2)-dimensional solid angle defined which is atl/2 from both masses, and that they orbit with
in Eqg. (A5), we obtain theD-dimensional quadrupole for- frequencyw in the x-y plane. A simple calculatiof29,30

Dij(w):f d® X XX T w,x). (36)

mula yields
dE 227 Pz (P-92GD-3)D ll
— = il 9( ) wP T2 D,,= ——coq2wt) + const, (42
do  T[(D-1)/2](D%?-1)(D—-2) 4
X[(D—1)D} (@)Dij(w)—|Di(w)[?], (38 Dyy= Dy, (42
where the Gamma functiohi[ z] is defined in the Appendix. mI2
As the dimensiorD grows it is seen that the rate of gravita- Dyy= Tsin(Zwt)+const, (43

tional energy radiated increases@3*2. Sometimes it will

be more useful to have the time rate of emitted energy.: independently of the dimension in which they are embedded

dE 22-D~(0-5)2G(p —3)D and with all other components being zero. We therefore get,
= from Eq. (39),

dt  T[(D-1)/2](D>~1)(D-2)
dE 26D(D-3)

dt 70-52r[(D—1)/2 —2
9P+, (1)[2). (39 T [(D-1)/2](D+1)(D-2) "

% [(D _ 1)(9ED+2)/2Di*j (t)aED+2)/2Dij (t) m2|4wD+2.

064026-6



GRAVITATIONAL RADIATION IN D-DIMENSIONAL . ..

For D=4 one gets

dE 8g 214 6
a——ml W,

. (45)

which agrees with known resulf£9,30. Equation(44) is
telling us that as one climbs up in dimension numbethe
frequency effect gets more pronounced.

2. A particle falling radially into a higher dimensional
Schwarzschild black hole

As yet another example of the use of the quadrupole for-
mula Eq.(39) we now calculate the energy given away as

gravitational waves when a point particle with masgalls

PHYSICAL REVIEW D 67, 064026 (2003

16mGM 1

_ 2
(D-2)0p 5 03"

d32=—<1

16mGM 1

D20, o

-1
) dr?+rP=2d02 _,.

(46)

Consider a particle falling along a radial geodesic, and at rest
at infinity. Then the geodesic equations give

dr 167GM 1
dt (D—2)Qp_, (D3’

(47)

into aD-dimensional Schwarzschild black hole, a metric firstwhere we make the flat space approximatienr. We then

given in[25]. Historically, the case of a particle falling into a

have, in these coordinateB,;;=r?, and all other compo-

D=4 Schwarzschild black hole was one of the first to benents vanish. From Eq39) we get the energy radiated per

studied[31,37 in connection with gravitational wave gen-

second, which yields

eration, and later served as a model calculation when one

wanted to evolve Einstein’s equations fully numerically

[33,34]. This process was first studi¢82] by numerically
solving Zerilli's [31] wave equation for a particle at rest at
infinity and then falling into a Schwarzschild black hole.
Dauvis et al. [32] found numerically that the amount of en-
ergy radiated to infinity as gravitational waves Wag,,,
=0.01m?/M, wherem is the mass of the particle falling in
andM is the mass of the black hole. It is found that the
=4 quadrupole formula yield$85] AE .= 0.019m%/ M, so

dE B 22_D77_(D_5)/2Q(D—3)
dt  T[(D-1)/2](D?-1)

D|oP*2"D |2 (48

We can perform the derivatives and integrate to get the total
energy radiated. There is a slight problem though: where do
we stop the integration? The expression for the energy di-
verges at =0 but this is no problem, as we know that as the
particle approaches the horizon the radiation will be infi-
nitely redshifted. Moreover, the standard pict{i8&] is that

it is of the same order of magnitude as that given by fullyof a particle falling in, and in the last stages being frozen
relativistic numerical results. Despite the fact that the quadnear the horizon. With this in mind we integrate fraoms

rupole formula fails somewhere near the black Htihe mo-
tion is not slow, and the background is certainly not)flét

to some point near the horizon, seybXxr, , wherer, is
the horizon radius antl is some number larger than unity,

looks as if one can get an idea of how much radiation will beand we get
released with the help of this formula. Based on this good

agreement, we shall now consider this process but for higher

dimensional spacetimes. The metric for thedimensional
Schwarzschild black hole int(,6,,6, ...,0p_5) coordi-
nates(see the Appendixis

(3—D)%(5—D)%(7—3D)%(8—4D)%(9—5D)?. - - (D/2+4—D?/2)?

D(D—2)m m?

N2
o204 X~ PI2x -, (49)

where

I'[(D—1)/2]%D-1)(D+1)(D+3)

To understand the effect of both the dimension numiber

(50

=12, for example, we can see that a changbe from 1 to

and the parametdron the total energy radiated according to 1.3 gives a corresponding change XE of 3x10° to

the quadrupole formula, we list in Table | some vallgs
for different dimensions, and between 1 and 1.3.
The parameteb is in fact a measure of our ignorance of

0.0665. This is eight orders of magnitude lower. Since there
is as yet no Regge-Wheeler-Zer{I81,36 wave function for
higher dimensional Schwarzschild black holes, there are no

what goes on near the black hole horizon, so if the energyully relativistic numerical results to compare our results

radiated does not vary much withit means that our lack of
knowledge does not affect the results very much. Ber4
that indeed happens. Puttifig=1 gives an energy only 2.6
times larger than witlb= 1.3, and still very close to the fully
relativistic numerical result for 0.04%/M. However, as we
increaseD, the effect ofb increases dramatically. Fdp

with. Thus D=4 is just the perfect dimension to predict,
through the quadrupole formula, the gravitational energy
coming from collisions between particles and black holes, or
between small and massive black holes. It is not a problem
related to the quadrupole formalism, but rather one related to
D. A small change in parameters translates itself, for figh
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TABLE |. The energy radiated by a particle falling from rest particle 2 with massn=m, with Lorentz factory,, collid-
into a higher dimensional Schwarzschild black hole, as a functionng to form a particle at rest. Without loss of generality, one
of dimension. The integration is stoppedatr ., , wherer , is the may orient the axis so that the motion is in they(;,Xp)
horizon radius. plane, and thexp axis is the radiation directioiisee the
Appendix. We then have

AEXM/m?
D b=1 b=1.2 b=1.3 P;=7ym(1,0,Q...,v,Sin6;,v,C086;),
4 0.019 0.01 0.0076 .
6 0.576 0.05 0.0167 P1=(E100.. -0,0), (52
8 180 1.19 0.13 .
10 24567 6.13 0.16 P,=7vy,my(1,0,Q...,—v,Sinf;,—v,C0s6,),
12 3.3x10° 14.77 0.0665 .,
P,=(E5,0,0...,0,0). (53

into a large variation in the final result. Thus, as the dimenMomentum conservation leads to the additional relation
sion D grows, the knowledge of the cutoff radis<r,  Y1Miv1=Y2Mpv,. Replacing Egs.(52) and (53) in the
becomes essential for accurate computation of the energ§"€rdy-momentum tens¢1) and using Eq(32) we find
released.
d’E 26 D-3
IV. INSTANTANEOUS COLLISIONS IN EVEN dodQ (27)P-2D-2
D DIMENSIONS

2.2 2 2 4

In general, whenever two bodies collide or scatter there X Yimii(vato,)7sin by X wP 4,
will be gravitational energy released due to the changes in (1—vycosf;)*(1+v,c0s6;)?
momentum involved in the process. If the collision is hard, (54)
meaning that the incoming and outgoing trajectories have
constant velocities, there is a method first envisaged byve see that for the arbitrafgven D the spectrum is not flat.
Weinberg[16,37], and later explored if38] by Smarr to  Flatness happens only f@r=4. For anyD, the total energy
compute exactly the metric perturbation and energy releasethtegrated over all frequencies would diverge so one needs a
The method is valid for arbitrary velocitigene will still be  cutoff frequency which will depend on the particular prob-
working in the linear approximation, so energies have to béem under consideration. Integrating E§4) from w=0 to
low). Basically, it assumes a collision lasting for zero sec-the cutoff frequencyw,, we have
onds. It was found that in this case the resulting spectra were
flat, precisely what one would expect based on one’s experi- (g 2G 1
ence with electromagnetisp39], and so to give a meaning a0 -, Dp2D_2
to the total energy a cutoff frequency is needed. This cutoff (2m)
frequency depends upon some physical cutoff in the particu-
lar problem. We shall now generalize this construction for
arbitrary dimensions. (1—v, cos6;)?(1+v,cos6;)?

yimivi(vy+vy)?sin 6]

X w23, (55

A. Derivation of the radiation formula in terms of a cutoff for Two limiting cases are of interest here, naméiy,the colli-
a head-on collision sion between identical particles afig the collision between

) ) ~alight particle and a very massive one. In céigereplacing
Consider therefore a system of freely moving partlcle%l:mzzm v1=v,=v, Eq.(55) gives

with D-momentaP!, energiesE;, and © — 1)-velocitiesv,

which due to the collision change abruptlytat0 to corre- dE 8¢ 1 y2m%*sin ¢
sponding primed quantities. For such a system, the energy- —= = 5 5 X w273, (56)

momentum tensor is dQ  (2m) D—-2 (1-v2%cog6,)
PPy In case (i) considering m;y;=my<my,y,, v1=v>v5,,
Tt =3 T -1y vne(—t) £0. (55 yields gmyy;=My<mMyyz, v 2

Ei )

PP dE 26 1 y?m?*sing;

L —ve(t),  (51) —= Xwg ®. (57)
E/ ( ( dQ  (2m)P2D-2(1-ypcosh)?

from which, using Eqs(31) and(32), one can get the quan- Notice that the technique just described is expected to break
tities h,,, and also the radiation emitted. Let us consider thedown if the velocities involved are very low, since then the
particular case in which one has a head-on collision of twacollision would not be instantaneous. In fact, a condition for
particles, particle 1 with mass; and Lorentz factory; and  this method to work can be stated.
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Indeed, one can see from EqG55 that, if v L dE
—0, dE/dw—0, even though we knovsee Sec. IV Athat ™7, %
AE#0. In any case, if the velocities are small one can use o
the quadrupole formula instead.

.26

B. Applications: The cutoff frequency when one of the
particles is a black hole and radiation from
black hole pair creation

1=3
1. The cutoff frequency when one of the head-on colliding 0.075 =4
particles is a black hole 003 /
We shall now restrict ourselves to the cdsg of the last 057\ oM
subsection, in which at least one of the particles participating
in the collision is a massive black hole, with mags>m FIG. 1. The energy spectra as a function of the angular number
(where we have pum;=m and m,=M). Formulas(55)— I, for a highly relativistic particle falling into ® =4 Schwarzschild

(57) are useless unless one is able to determine the cutoffack hole[13]. The particle begins to fall with a Lorentz factgr
frequencyw, present in the particular problem under consid-Notice that for eacth there is a cutoff frequency., which is equal
eration. In the situation where one has a small particle colto the quasinormal frequenayqy after which the spectrum decays
liding at high velocities with a black hole, it has been sug-éxponentially. So it is clearly seen thaky works as a cutoff fre-
gested by Smarf38] that the cutoff frequency should be duency. The tota! energy radiated is given by a sum Q\A_ﬁhic_h is
we.~1/2M, presumably because the characteristic Collisiorfhe_ same as saying that the _effectlve cutoff frequency is given by a
time is dictated by the large black hole whose radiush. 2 Weighted average of the various,

Using this cutoff he finds )
(CFT) and dS/CFT[43] correspondence conjecture. We ar-

,M gue here that it is indeed the quasinormal frequency that
AEsmar 0.2y ™M (58 dictates the cutoff, and not the horizon radius. Bot 4 it s
happens that the weighted averag&)glfis 0.613M, which,
The exact result, using a relativistic perturbation approachys we said, is quite similar to, = 1/2M. The reason for the
which reduces to the numerical integration of a second ordegytoff being dictated by the quasinormal frequency can be
differential equation(the Zerilli wave function, has been ynderstood using some WKB intuition. The presence of a

2

given by Cardoso and Lem¢43] as potential barrier outside the horizon means that waves with
2 some frequencies get reflected back on the barrier while oth-
m ) .
AE gyae=0.26y2 —. (59)  €rs can cross. Frequencies such thdtis lower than the
M maximum barrier heigh¥ ., will be reflected back to infin-

. . . _ ity where they will be detected. However, frequencie$
This is equivalent to saying thab,=0.613M~1/1.6M,  |5146r than the maximum barrier height cross the barrier and

and so it looks as if the cutoff is indeed the inverse of thégniar the plack hole, thereby being absorbed and not contrib-

horizon radlu_s. However, in the. numerical work by Cardosouting to the energy detected at infinity. So only frequencies
and Lemos, it was found that it was not the presence of

: ) . %2 lower than this maximum barrier height are detected at
honzqn that qontrlbutgd to this cgtoff, but the presence of <"}nfinity. It has been show44] that the gravitational quasi-
P°tef_“'a' barn_er\/ out5|_de the horlz_on. B_y deco_mposmg the normal frequencies are to first order equal to the square root
_f|eld in tensorial spherical harmonics with the indestand- of the maximum barrier height. In view of this picture, and
ing for the angu!ar.quantum number,. we found that for eacr3:onsidering the physical meaning of the cutoff frequency, it
| the spectrum is indeed fighs predl_cted by Eq(55)_for seems quite natural to say that the cutoff frequency is equal
D=4], until a cutoff frequencyw,, which was numerically ;e quasinormal frequency. If the frequencies are higher
equal to the lowest gravitational quasinormal frequencythan the barrier height, they do not get reflected back to
wgn- For o>, the spectrum decays exponentially. This infinity. This discussion is very important to understanding
behavior is illustrated in Fig. 1. The quasinormal frequenciediow the total energy varies with the numkrof dimen-

[40] are those frequencies that correspond to only outgoingions. In fact, if we sew.~1/r,, we find that the total
waves at infinity and only ingoing waves near the horizon.energy radiated decreases rapidly with increasing dimension
As such, the gravitational quasinormal frequencies will innumber, because, increases rapidly with the dimension.
general have a real and an imaginary part, the latter denotinghis conflicts with recent resulfd4,15, which, using shock
gravitational wave emission and therefore a decay in the pewaves that describe boosted Schwarzschild black holes and
turbation. There have been a wealth of works dwelling onsearching for apparent horizons, indicate an increaseith
guasinormal modes on asymptotically flat spacetiaks, So we need the gravitational quasinormal frequencies for
due to its close connection with gravitational wave emissionhigher dimensional Schwarzschild black holes. To arrive at a
and also on nonasymptotically flat spacetimes, like asympwave equation for gravitational perturbations of higher di-
totically anti—de Sittef41] or asymptotically de Sittef42] = mensional Schwarzschild black holes, and therefore to com-
spacetimes, mainly due to the AdS conformal field theorypute its gravitational quasinormal frequencies, one needs to
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TABLE Il. The lowest scalar quasinormal frequencies for normal frequencies will have the same behavemd some
spherically symmetricl0) scalar perturbations of higher dimen- very recent studieg$46] relating black hole entropy and
sional Schwarzschild black holes, obtained using a WKB methocuamped quasinormal frequencies seem to point thaj,wag
[44]. Notice that the real part of the quasinormal frequency is altgtg| energy radiated during high energy collisions does

ways of the same order of magnitude as the square root of th,deed increase witlD, as some studiefl4,15 seem to
maximum barrier height. We show also the maximum barrier heighjngicate.

as well as the horizon radius as a function of dimendionThe
massM of the black hole has been set to 1. 2. The gravitational energy radiated during black hole
pair creation

D R won] Im[won] Wimax 1 L L -

As a new application of this instantaneous collision for-
4 0.10 —-0.12 0.16 0.5 malism, we now consider the gravitational energy released
6 1.033 —-0.713 1.441 1.28 during the quantum creation of pairs of black holes, a pro-
8 1.969 —1.023 2.637 1.32 cess that as far as we know has not been analyzed in the
10 2.779 —1.158 3.64 1.25 context of gravitational wave emission, even ipre=4. It is
12 3.49 —1.202 4.503 1.17 well known that vacuum quantum fluctuations produce vir-

tual electron-positron pairs. These pairs can becomd 4&al

if they are pulled apart by an external electric field, in which
decompose Einstein's equations rdimensional tensorial case the energy for the pair materialization and acceleration
harmonics, which would lead to some quite complex expresecomes from the external electric field energy. Likewise, a
sions. It is not necessary to go that far though, because ongtack hole pair can be created in the presence of an external
can get an idea of how the gravitational quasinormal frefield whenever the energy pumped into the system is enough
quencies vary by searching for the quasinormal frequencies) make the pair of virtual black holes reaee Diag48] for

of scalar perturbations, and scalar quasinormal frequencies review on black hole pair creatiprif one tries to predict

are a lot easier to find. One hopes that the scalar frequenciéise spectrum of radiation coming from pair creation, one
will behave withD in the same manner as do the gravita-expects, of course, a spectrum characteristic of accelerated
tional ones. Scalar perturbationsDadimensional Schwarzs- masses, but one also expects that this follows some kind of
child spacetimes obey the wave equati@onsult[45] for  signal indicating pair creation. In other words, the process of

detaily pair creation itself, which involves the sudden creation of
Pd(w,r) particles, must imply emission of radiation. It is .thi.s phase
—2'+[w2—V(r)]¢(w,r)=O. (60)  we shall focus on, forgetting the subsequent emission of ra-

ar diation caused by the acceleration.
Pair creation is a purely quantum-mechanical process in
The potentiaV(r) appearing in Eq(60) is given by nature, with no classical explanation. But, given that the pro-

, cess does occur, one may ask about the spectrum and inten-
(D—-2)(D-4)f(r) + (D—2)f'(r) sity of the radiation accompanying it. The sudden creation of
4r? 2r ’ pairs can be viewed for our purposes as an instantaneous
(61) creation of particlesi.e., the time reversed process of instan-
taneous collisions the violent acceleration of particles ini-
wherea=1(1+D—3) is the eigenvalue of the Laplacian on tially at rest to some final velocity in a very short time, and
the hyperspher&®~2, the tortoise coordinate, is defined  the technique described at the beginning of this section ap-
as drlar, =f(r)={1-[16mGM/(D—-2)Qp_,1(1/°"%)},  plies. This is quite similar to another purely quantum-
and f’(r)=df(r)/dr. We have found the quasinormal fre- mechanical process, the beta decay. The electromagnetic ra-
quencies of spherically symmetrid £0) scalar perturba- diation emitted during beta decay has been computed
tions, by using a WKB approach developed by Schutz, andlassically by Chang and Falkdf#9] and is also presented
collaborators[44]. The results are presented in Table I, in Jackson[39]. The classical calculation is similar in all
where we also show the maximum barrier height of the poaspects to the one described in this secttbe instantaneous
tential in Eq.(61), as well as the horizon radius. collision formalism assuming the sudden acceleration to en-
The first thing worth noticing is that the real part of the ergiesE of a charge initially at rest, and also requires a cutoff
scalar quasinormal frequency is to first order reasonablyh the frequency, which has been assumed to be given by the
close to the square root of the maximum barrier heighuncertainty principlew.~E/%. Assuming this cutoff, one
VVmax Supporting the previous discussion. Furthermore, théinds that the agreement between the classical calculation
scalar quasinormal frequency grows more rapidly than thand the quantum calculatidd9] is extremely goodespe-
inverse of the horizon radiusrl/ as one increasds. In fact,  cially in the low frequency regime and, more important,
the scalar quasinormal frequency grows widhwhile the  was verified experimentally. Summarizing, form#) also
horizon radiusr . gets smaller. Note that, from purely di- describes the gravitational energy radiated when two black
mensional arguments, for fixdd, wx1/r , . The statement holes, each with mass and energyE, form through quan-
here is that the constant of proportionality depends on théum pair creation. The typical pair creation time can be esti-
dimensionD—more explicitly it grows withD—and can be mated by the uncertainty principlegeaior/E~#A/my,
found from Table Il. Assuming that the gravitational quasi-and thus we find the cutoff frequency as

a
V() =f(r)] <+
r
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spectrum of the gravitational radiation emitted during pair
creation to be given by Eq54) with my=m, andv,=v,
(we are considering the pair creation of two identical black

[OF S

APPENDIX: SPHERICAL COORDINATES
IN D—1 DIMENSIONS

holes:
In this appendix we list some important formulas and re-
d’E 8¢ D-3 y’mZ’sing] 4 sults used throughout this paper. We shall first present the
dodQ (2m)P~2D =2 (1—y2co4,)? Xo™ transformation mapping O0—1) Cartes[an coord'inates
(63) (X1,X2,X3, ... Xp_1) onto (D—1) spherical coordinates
(r,01,0,, ...,0p_5). The transformation reads

and the total frequency integrated energy per solid angle is
X1=rSinf#,sinb,---sinbp_,,

dE 8G v*sing] (my)P~1
m_(27T)D_2(D—2) (1—1120037-6'1)2>< aP—3 Xp=1SIN0ySiNG;: - -Sinfp 5 COSOp -2,
(64)
For example, in four dimensions and for pairs withr 1 one
obtains X;=r sinf;siné,---sinfy_;_,co0Sbp_;,
dE 4¢
do 772m2, (65

. . . . Xp-1=T COSH;.
and will have for the total energy radiated during production

itself, using the cutoff frequenci62), The Jacobian of this transformation is
33 .
AE:gyhm (66) J=rP72sing0 3singy 4. - -sing® ' "2 . .sindp_g,
T (A1)

This could lead under appropriate numbersnofand y to and the volume element becomes

huge quantities. Although one cannot be sure as to the cutoff

frequency, and therefore the total ene(g@), it is extremely d®~Ix=Jdrd6,d6,- - -dbp_,=rP2drdQp_,, (A2)
likely that, as was verified experimentally in beta decay, the

zero frequency limit, Eq(65), is exact. where

V. SUMMARY AND DISCUSSION dQp_,=sing? 3sing3 .. .sinb,_3do,d6, --dbp_,,

We have developed the formalism to compute gravita- (A3)
tional wave generation in high& dimensional spacetimes, is the element of thel — 1)-dimensional solid angle. Fi-
with D even. Several examples have been worked out, anga”y using[50]
one cannot help the feeling that our apparently four- ’

dimensional world is the best one to make predictions about - I[(n+1)/2]

the intensity of gravitational waves in concrete situations, in f sind"= \/; _—, (A4)
the sense that a small variation of parameters leads inhigh 0 I(n+2)/2]

to a huge variation of the energy radiated. Much more work

is still needed if one wants to make precise predictions abodfis Yields

gravitational wave generation iD-dimensional spacetimes. (D-1)12

For example, it would be important to find a way to treat O = 2m (A5)
gravitational perturbations of higher dimensional Schwarzs- P=2"T[(D-1)/2]"

child black holes. One of the examples worked out, the

gravitational radiation emitted during black hole pair cre-Here, I'[z] is the Gamma function, whose definition and
ation, was not previously considered in the literature, and iproperties are listed ifiL8]. In this work the main properties
seems to be a good candidate, eveiDia 4, to radiate in- of the Gamma function that were used &ifgz+ 1]=zI"[ z]
tensely through gravitational waves. andI'[1/2]= .
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