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Rotating black holes at future colliders: Greybody factors for brane fields
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We study theoretical aspects of rotating black hole production and evaporation in extra dimension scenarios
with TeV scale gravity, within the mass range in which the higher dimensional Kerr solution provides a good
description. We evaluate the production cross section of black holes, taking their angular momenta into
account. We find that it becomes larger than the Schwarzschild radius squared, which is conventionally utilized
in the literature, and our result nicely agrees with the recent numerical study by Yoshino and Nambu within a
few percent error for the higher dimensional case. In the same approximation used to obtain the above result,
we find that the production cross section becoraeger for a black hole with larger angular momentum.
Second, we derive the generalized Teukolsky equation for spin 0, 1/2, and 1 brane fields in higher dimensional
Kerr geometry and explicitly show that it is separable in any dimensions. For a five-dimendRamalall-
Sundrum black hole, we obtain analytic formulas for the greybody factors in the low frequency expansion and
we present the power spectra of the Hawking radiation as well as their angular dependence. The phenomeno-
logical implications of our results are briefly sketched.
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I. INTRODUCTION signaturg10,11] and of collider signaturgl2—14. (In Ref.
[15], it is claimed that the black hole production cross sec-
The fundamental gravitational scale can be lowered downion would be exponentially suppressed rather than being
to the TeV scale to remedy the hierarchy between the Plancgeometrical; this was later answered by a semiclassical
and Higgs boson mass scales in the large extra dimensicargument [16] and by the correspondence principle applied
[Arkani-Hamed—-Dimopoulos—DvaliADD)] scenario [1]  to the production cross sections of black holes and strings
(see also Ref[2] for its stringy realization® In the warped  [21].%)
compactification(Randall-Sundrumscenario, both of them Black hole phenomenology opens up the fascinating pos-
scale together along the location in the warped extra dimersibility of experimental investigation of quantum gravity
sion, leading again to the TeV fundamental scale at our visthe following sense. As is emphasized in Réf|, the black
ible braneg{4]. When nature realizes such a TeV scale gravityhole production hides all shorter distance processes than the
scenario, it is predicted that black hole production will domi- Planck length scale behind the event horizon and infrared-
nate over two-body scattering well above the fundamentaliltraviolet duality emerges, i.e., the larger the c.m. energy
scale, with a geometrical cross section of the order of théyecomes, the better is the semiclassical treatfr@&jtof the
Schwarzschild radius squargdf the black hole mass equal resultant black holésince its Hawking temperature becomes
to the center of maséc.m) energy of the scatterifd5].  lowen. In string theory, where a nonperturbative definition is
Following the observation that black holes will mainly decay not yet established, this kind of situatioduality) often ap-
into the standard model fields on the brane rather than intpears so that one picture is valid in one limit while the other
the bulk mode$6], the collider signatures of black hole pro- is valid in the opposite limitsee, e.g., Ref25] for a review
duction and evaporation were studied comprehensively imnd also Refs[26,21]). The region of true interest is the
Ref. [7] and independently in Ref8]. These two pioneer- intermediate one at which both pictures break down and the
ing results have been applied in a lot of papers on the blackonperturbative formulation of quantum gravifgr string
hole phenomenology of the ultrahigh energy cosmic neutrinaheory) becomes relevant. Given the status of the theoretical
development, the experimental signature of quantum gravity

*Email address: d.ida@th.phys.titech.ac.jp
"Email address: odakin@ph.tum.de 3The further claim that classical black hole formation in two-body
*Email address: spark@kias.re.kr scattering has been proved only with zero impact parani@@ris
When the number of extra dimensions igaéhd hence their size  answered in Refd18-20.
is around the millimeter scalethe rather stringent cosmological “We may observe a similar correspondence in the power of the
constraintM =100 TeV is imposed3]. exponential suppression of the hard scattering cross sel@&in
2See also Ref[9] for a study before this observation. following the argument in Ref.23].
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in this intermediate region would be observed as a discrepsponding modé&. Unfortunately, the greybody factors have
ancy with the semiclassical behavior in the black hole picturéeen calculated only for brane- and bulk-scalar modes with
valid in the high energy limit. Therefore in order to investi- the Schwarzschild black hole at presp4t]. In current black
gate the quantum gravity effect, it is essential to predict thidole phenomenology, the Hawking radiation is either not
semiclassical behavior as precisely as possible. This is theonsidered(typically in the cosmic neutrino signatyrer
main motivation of our work. considered with the greybody factor in the geometrical optics
After the production phaséhe “balding” phase, black  limit.*° To study the evaporation of a higher dimensional
holes are well described by the higher dimensional Kerr soPlack hole and to make further progress in the phenomenol-
lution [27] if the mass of the produced black hole- (the ~ ©9Y: it is a prerequisite to obtain the greybody factors of the

c.m. energy of the collisionis large enough that we can brane fields(vyhich are the main decay modes of the black
nole as mentioned aboye

neglect the brane tension at the horizon and also smai . . . .
In this paper, we obtain the brane field equations general-
enough that we can neglect the topology and curvature of the

X . o 1zing Teukolsky’s method in four dimensior88,40—42.
gxtra dimensiofs) (7] W'thm the CERN Larg.e. HaQron .Co.I- We show that they are separable into radial and angular
lider (LHC) energy region, the former condition is satisfied

(or marginal and the latter is perfect in the ADD scenario parts. _For the five-dimensional Kerr black ho!e, we find the
[7.8] while the former is the same as in the ADD Scenarioanalytlc formulas of the greybody factors within the low fre-

. P ‘guency expansion.
and the latter is satisfied in the Randall-Sundrum scenario In Sec. Il, we present the geometrical production cross
[when thg ho_rlzon radius is smaller than t.he curvature Iengtgection of rotating black holes with finite angular momenta
scale, which is one or two ordgf of magnitude larger than

; in the approximation neglecting the balding phase. Our result
the Planck length scafp[7,11]. Throughout this paper, we  fo e largest impact parametby,,, for black hole forma-
assume that both conditions are satisfied.

The black hol : fi dh | tion turns out to be in good agreement with the numerical
ef 'ack hole en(;ns mcist ofits qui;gfn hence l?ses result of Yoshino and Nambj20]. Within the same approxi-
mo;t 0 Its mass and angular [nomen) oug Haw ing mation, we find that thédifferentia) cross section increases
radiation[24] when the above “large enoughfirst) condi-

tion | tisfied and h the few hot ; tted | thIinearly with the angular momentum for a given black hole
lon 'f salls "f and hence the few hot quanta emitted In e, - o & c.m. energy. We also estimate the production of
final “Planck” phase, which cannot be treated semchaSS|-t

. . he exploding black ring and find that it will possibly form
cally, do not constitute the main part of the decay IC)mduc(/vhen there are many extra dimensions. In Sec. lll, we study

[7]. (Remember _that thg smaller the bl.aCk hole becgmgs, thﬁwe Hawking radiation from a rotating black hole. First we

hotter the Hawking radiatioh.n ”!OSt Ilyeratu're the “spin- derive the brane field equations for spin 0, 1/2, and 1 brane

go:/vn rf’h(;"se_ of blac:< hole evolutlo[ﬂ_], m_wh;ch thel bIacOII< fields from the induced metric on the brane in a higher di-
ole sheds its angular momentum, Is simply neglected ang,qoqjonal Kerr black hole background and show that these

the Schwarz;child _black hole is used from th? start, re.lyin%quations are separable into radial and angular parts for any
on the four-dimensional resul82] that the half life for spin | b of exira dimensions. Next we find the analytic ex-

down is a few percent of the black hole lifetirfigo improve pression for the greybody factors for brane fields for the

this “Schwarzsch@ld approximat_ion," it is important t_o es_tij rotating five-dimensional(Randall-Sundrum black hole
mate the production cross section of black holes with f'n't%ithin the low frequency expansion. We present the power

angular momenta. In Ref33], the production cross section : -
. ; . spectra as well as their angular dependence by applying these
of rotating black holes is estimated from the quantum me- b g P y appying

hanical matrix el t betw the initial t I greybody factors. In Sec. IV, we present a summary and
chanical matrix element between the nitial two-p ane—wavemieﬂy comment on the phenomenological implications of

state and the “black hole state.” In this paper, we take a,
: : ur results.
more conservative approach based on tblassical geo-
metrical cross sectiohjn the spirit[16] that a classical de-
scription should be more or less valid for black hole produc- Il. PRODUCTION OF ROTATING BLACK HOLES
tion in order to avoid the Voloshin exponential suppression _ . . .
mentioned abové. First we briefly review the properties of the rotating (4

The Hawking radiation is determined for each mode by+n)-dimensional black hol€27]. Since we assume that the
the greybody factof24,31], i.e., the probability of absorp- large enough conditiotexplained in the Introductioris sat-

tion (by the black holg of an incoming wave of the corre- isfied, the charges of the black hole can be neglected; there
are at most a few coming from the initial two particles. In

general, a higher dimensional black hole may hape
+3)/2] angular momenta. When the black hole is produced

5Referenced28—3( considering mainly the application of the in the collision of two particles on the brane, where the ini-
AdS/CFT correspondence also support this view.

5The spin-down phase accounts for about 25% of the mass loss in
this four-dimensional cade2)]. 91t was first calculated for a spin 0 fie[@7], then for spin 1 and

"See also Ref[34] for an earlier heuristic attempt to estimate 2 fields [38—44, and finally for a spin 1/2 field31,37 for the
rotating black hole production. four-dimensional Kerr black hole.

8See Refs[35,36 for the quantum argument, which also claim 1%See, e.g., Ref§13,14 for consideration of the greybody factor
that Voloshin’s suppression is not applicable. in the geometrical optics limit for higher dimensional black holes.
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tial state has only a single angular moment{dinected into r(M,J)

the brang it is sufficient to consider that the single angular
momentum is nonzerp7]. (This implicitly assumes that the
balding phase can be neglected, namely, that the “junk”
emissions are negligible and do not change |{{ret+ 3)/2|
angular momenta during this phask Boyer-Lindquist co-
ordinates, the metric for a black hole with a single angular
momentum takes the following forfi27]:

BH forms when b <2r,(M,J) withJ = % .

-n+1 [N+l FIG. 1. Schematic picture for the condition of black hole for-
—l1— 2_gj 24324+ 32¢gj mation.
g=|1 E(r,ﬁ))dt sifd| r’+a’+a szﬁz(r,ﬁ)
. pn+l S(r,9) sion isJ;=bM;/2 (in the c.m. framg Suppose that a black
Xde?+2a Slnzﬁmdtdw— A dr? hole forms whenever the initial two particlésharacterized
' by M; andJ;) can be wrapped inside the event horizon of the
=3(r,9)d9?—r2 cog9dQ", (1)  black hole with massM=M; and angular momentund
=J; (see Fig. 1 for a schematic pictyye.e., when
where

b<2rh(M,J):2rh(Mi,bMi/Z), (4)
3(r,9)=r?+a?cosd,

wherer,(M,J) is defined through Eq$2) and(3). Since the
right hand side is a monotonically decreasing functior,of
We can see that the horizon occurs whe(n) =0, i.e., when there is a maximum value,,,, which saturates the inequality
r=ry, with (4):
1U(n+1)

= (1+a2) Mg, 2) Brnad( M) =2

A(r)y=r2+a2—pr "1,

1+

2

rh: rS(M)1 (5)

+2)2}—1/(n+1)
2
1+a2

wherea, =a/r, and the Schwarzschild radiug= x"*?  whererg(M) is defined byrg(M)=u(M)¥"*1) and Eq.

are introduced for later convenience. Note that there is only &). When b=Db,,,,, the rotation parametea, takes the
single horizon whenn=1 (in contrast to the four- maximal value &, )ma=(N+2)/2.

dimensional Kerr black hole, which has inner and outer ho-  The formula(5) fits the numerical result fdp,y,,, With full
rizong and its radius is independent of the angular coordi-consideration of general relativity by Yoshino and Nambu
nates. We can obtain the total ma$4 and angular [20]within an accuracy of less than 1.5% fo=2 and 6.5%

momentumJ of the black hole from the metri(l): for n=1 [although it just gives the Schwarzschild radius
bmax=Trs(M) for n=0, which is 24% larger than the numeri-
_ (N+2)An+2 J= iMa 3) cal result [18]] [see Table |, whereR denotes R
167G nt2 & =Dyl T S(M)].-

_ ) Our result is obtained in the approximation where we ne-
whereA, . ,=27"" 34T (n+3)/2) is the area of the unit glect all the effects of junk emissions in the balding phase
sphereS""? and G is the (4+ n)-dimensional Newton con-  and hence where the initial c.m. enerigly and angular mo-
stant. Therefore we may consideranda (orr, * anda,) as  mentumJ; become directly the resultant black hole mass
the normalized mass and angular momentum parameters, rgt=M, and angular momentud=J; 1! The coincidence of
spectively. We note that there is no upper bouncaamhen  our result with the numerical study20] suggests that this
n=2 nor ona, when n=1, in contrast to the four- approximation is actually viable for higher dimensional
dimensional case where bothand a, are bounded from plack hole formation at least unlebss very close tdpa,t?
above. In this paper, we concentrate on the brane field equa-
tions and hence only the induced metric on the brane is reF——

evant, where the last term in E@) vanishes and the angular  1The authors of Ref,20] found that the irreducible mass of the
variablesd and ¢ are redefined to take valuess®<m and  plack hole is substantially reduced wheénis close tob,., and

0= @<2m. The explicit form is given in Eq(Al). suggested that the balding phase is not negligible whet, .
However, the irreducible mass provides the lower bound on the
A. Production cross section final mass of the black hole; at this stage we cannot conclude how

. . . . much junk energy and angular momentum are radiated at the bald-
We estimate the production cross section of rotating black,q phase.

holes within the classical picture. Let us consider a collision 125ee Refs[44—44 for estimation of the energy loss during the
of two massless particles with finite impact paramét@nd  paiding phase for the head-on collision=0) case obtained from

c.m. energy/s=M; so that each particle has enengy/2 in gravitational radiation emitted during the infall of a particle into a
the c.m. frame. The initial angular momentum before colli-four-dimensional black hole.
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TABLE |. Comparison of analytical and numerical results for TABLE Il. Numerical values forj,, andk,.
DmadTs-
n 0 1 2 3 4 5 6 7
n 0 1 2 3 4 5 6 7

j, 0.0398 0.256 0.531 0.815 1.09 1.37 1.63 1.88
Ruumerica[20] 0.804 1.04 1.16 123 1.28 1.32 135 1.37 k, 0.0159 0.125 0.228 0.251 0.214 0.155 0.101 0.0603
Ranayic ~ 1.00 1.11 1.17 1.22 1.26 1.30 1.33 1.36 k,/j, 0.399 0.489 0.429 0.308 0.195 0.114 0.0619 0.0320

Once we neglect the balding phase and hence the junk B. Rotating black ring
emission, the initial impact parameterdirectly leads to the

resultant angular momentum of the black hdlebM/2. ot e homeomorphic to a two-sphere and there is unique-
Since the . Impact para'met@bzb+ db] contributes to the  hegg theorem for static or stationary black holes. On the other
cross section zbdb, this relation betweeb andJ tells us  panq 3 higher dimensional black hole can have various non-
th.e (differentia) production cross section of a black hole trivial topologies[47], and the uniqueness property of sta-
with massM and angular momentum i, J+dJ] tionary black holes fails in fivqand probably in higher
2 dimensions. A typical example in five dimensions has re-
dU(M,J):|8W‘]dJ/M (J<Jma (6) cently been given by Emparan and Rdd8]. They explic-

In four dimensions, the topology of the event horizon

0 (I>Jmax » itly provided a solution of the five-dimensional vacuum Ein-
stein equation, which represents the stationary rotating black
where ring (homeomorphic t&'x S?). In this case, the centrifugal
b M M | (0420 1) force prevents the_black ring from collapsing. When_ the an-
3 —ma —j @) gular momentum is not large enough, the black ring will
max-— 2 "\ Mp collapse to the Kerr black hole due to the gravitational at-
traction and some effective tension of the ring source. In fact,

with*3 this five-dimensional black ring solution has the minimum
_—r— Yin+1) possible value of the angular momentum given by
2NN~ ((n+3)/2)
= 312
(n+2)[1+[(n+2)/2]?] Jimin=Kgr M—P) : (10)
:((277)”)1/("”) ®) where kgr=0.282. On the other hand, we have the upper
P\ 87G ' bound for the angular momentum of the black holes pro-

duced by particle collisions:
The numerical values fay,, are summarized in Table II.

It is observed that the differential cross sect{éplinearly I
increases with the angular momentum. We expect that this max=J1
behavior is correct as the first approximation, so that the
black holes tend to be produced with larger angular mowhere j;=0.256. Since these numerical values are of the
menta. At the typical LHC energW/Mp=5, the value of same order, we cannot draw a conclusion about the possibil-
JmaxiS Ima=2.9,4.5 . .. 10,12 forn=1,2, . . . 6,7, respec- ity of black ring production at collider’
tively. This means that the semiclassical treatment of the Here we consider the possibility of a higher dimensional
angular momentum becomes increasingly valid for laige  black ring which is homeomorphic t8'xS". The corre-

M 3/2
) : (11

Mp

Integrating the expressiai®) simply gives sponding Newtonian situation would be the system of a ro-
tating massive circle. They are always unstable in higher
n+2\2]-20+D dimensions; a circle with slow rotation collapses and one

o(M)=7bye’=4 1+(T } mrg(M)? with rapid rotation explodes toward an infinitely large thin
circle. In general relativity, we have no idea as to the validity

=Fnrg(M)2. (9) of this picture due to the nonlinearity of the Einstein equa-

tion. We shall discuss in the following the possibility of
The factorF is summarized in Table III. black ring formation based on the Newtonian picture, assum-

This result implies that, apart from the four-dimensionaling that the nonlinear effects of gravity do not change the
case, we would underestimate the production cross section gualitative features. For simplicity, we just consider the
black holes if we did not take the angular momentum intogravitational attraction and the centrifugal force of the mas-
account, and that it becomes more significant for higher disive circle and neglect the effect of tension. ItgtM, andJ
mensions. We point out that this effect has often been over-
looked in the literature.

YEven if black rings are produced, they might be unstable due to
the existence o ,,i, and the black string instability. D.I. is indebted
Bsee, e.g., Ref.16] for different conventions foMp . to Roberto Emparan for this point.
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TABLE lll. Values of factorF in Eq. (9).

n 0 1 2 3 4 5 6 7

F numerical[20] 0.647 1.084 1.341 1.515 1.642 1.741 1.819 1.883
F analyic 1.000 1.231 1.368 1.486 1.592 1.690 1.780 1.863

be the radius, the mass, and the angular momentum of the probability of absorptiofby the holg¢ of the correspond-
massive circle. Then we obtain {)-dimensional effective ing mode[24,31]. The quantity 2-T" for each mode can be
theory with the Newton constai@®/27¢ by integrating out computed from the solutiolto the wave equation of that
along theS! direction. The Schwarzschild radius of the point mode having no outgoing fluxes at the horizon as the ratio
mass in the effective theory is given by of the incoming and outgoing flux at infinity.

It can be shown that a higher dimensional black hole ra-
diates comparable amounts of energy into one brane mode
and into one bulk modéwith the whole Kaluza-Klein tower
summed up[6]. Typically, the number of degrees of free-
Thus we expect a black ring witg' radius¢ andS" radius  dom is much larger for the brane mode than for the bulk
r. In flat space picture{>r should hold for a black ring. mode, i.e., tens of the standard model degrees of freedom are
This condition gives living on the brane while there are only a few degrees of

freedom of the gravitor{and possibly other fieldsin the
(13) bulk. Therefore a higher dimensional black hole radiates
mainly on the brané6]. For this reason, we concentrate on

the greybody factors for the brane mode in this paper.
On the other hand, the condition that the centrifugal force

dominates against the gravitational attraction becomes A. Brane field equations

1/n

16wG M iin

(N+1)A, ., 27l

8GM

- (n+1)A,,

12

8GM 1/(n+1)

== i DAL,

J=2~(n+3)2G112p —(n=1)/2\1 312, (14) We derive the wave equations of the brane modes using
the  induced four-dimensional metric of the
This combined with Eq(13) gives the minimum value of the (4+n)-dimensional rotating black hol¢27]. The wave
angular momentum for an exploding black ring: equations can be understood as a generalization of the Teu-
kolsky equation38,40—-42 to the higher dimensional Kerr

J=I —k M (n+2)/(n+1) 15 geometry. The derivation is shown in the Appendix.
—EminT R M ' (15 We present the brane field equations for a masslesssspin
field, which are obtained from the metrit) with the stan-
where dard decomposition
kn:2—(2n2+3n+7)/2(n+1)7T(n+6)(n—1)/4(n+1) q;S: RS(F)S(ﬁ)e_inim‘D, (17)

[((n+2)/2)] (1~ Di20+1) utilizing the Newman-Penrose formaligrbl]

_ 16

Snddo sin a9 [(s—aw cosY)

The numerical values fdk, are presented in Table II. This

result shows thal,;, for exploding black rings is one or two —(scotd+mesed)’?—s(s—1)+A]S=0,

orde«s) of magnitude smaller thad,,, for the collision limit

whenn is large. Therefore we expect that exploding black

rings can possibly be produced at colliders if there are many d ( HdR)
S

extra dimensions, although they will suffer from the black A’Sa ar

(18

string instability when they become sufficiently large thin
rings. In the rest of this paper, we do not follow the evolution
of the exploding black ring nor consider the radiation from it, +
since this is still at the heuristic stage; we concentrate on the

Hawking radiation from a higher dimensional Kerr black

hole after the balding phase. —n(n=1)ur "'+ 2maw— azwz—A} R=0,

K2

X'FS

4iwr—i A

,[2r+(n—1),ur‘”]K)

I1l. RADIATION FROM ROTATING BLACK HOLE (19

In this section, we study the Hawking radiati@v] from
a higher dimensional Kerr black hol@7]. The Hawking 5We note that the bulk graviton emission may not be negligible
radiation is thermal but not strictly blackbody due to thefor highly rotating black holes since the superradiant emission is
frequency dependent greybody factgrwhich is identical to  more effective for higher spin fieldg9,50.
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where

K=(r’+a?)w—ma. (20)

The solution of Eq(18) is called spin-weighted spheroi-

dal harmonics,S,,, (see, e.g., Ref§41,52) which reduces

to spin-weighted spherical harmonic¥,,, (see, e.g., Ref.

[53]) in the limit aw<1,

sslm(aw;ﬁ-‘P):sYIm(ﬁu(P)“'O(aw)- (21
wheré®
o maimg (IEML(I—m)t 21+ 1]42
Yim(9,0)=(—1)%e (1+s)!(1—s)! 4
9\2 |—s l+s
X sinE) 2 i |j+s—m
) 9 2j+s—m

><(—1)'ls<cot5> , (22)

with the sum ovej being understood in the range satisfying

both O<j<I|—-s and O<j+s—m=I+s. In this limit, the
eigenvalueA becomesA=A;+ O(aw) where Ag=I1(1+1)
—s(s+1) is defined for later convenience.

We may easily check that the radial equati@f) reduces
to the Teukolsky equatiof88,40—42 whenn=0 (henceu
=2GM). The asymptotic solutions of Eq19) at the hori-

zon and infinity are obtained in the same way as in four

dimensiond42]:

r—oo r—rp
outgoing ingoing outgoing ingoing
eiwr*/r25+1 e—iwr*/r eikr*A_S e—ikr*

where

k ma (24
—w— )
r2+a?
andr, is defined byr, —r for r—~ and
dr, r?+a’ -
dr  A(r) (25)

B. Hawking radiation and greybody factor

PHYSICAL REVIEW D 67, 064025 (2003

dEs,l,m _i sFI,m(rhua;w)
dtdoded cos® 27 glo—m)/T_(_1)2s

X|sslm(aw;"91€0)|2wv (26)

whereT and() are the Hawking temperature and the angular
velocity at the horizon, respectively, given by

(n+1)+(n—1)a2 a,
Am(1+ai)ry,

(27)

S (1+ad)ry,

and ¢I') (ry,a; w) is the greybody factof24,31, which is
identical to the absorption probability of the incoming wave

of the corresponding modéln this paper we consider only

the modes that can be treated as massless compared with the
Hawking temperaturd since the emissions from massive
modes are Boltzmann suppressed; typically, the standard
model fields can be treated as massless in the LHC energy
range) Integrating Eq(26) by the angular variables, we ob-
tain

CIEs,l,m:i sFIm o
dtdw 27 glo—m)IT_(_1)2s )

(28)

In the limit aw<1 we can also write down the angular de-
pendent power spectrum utilizing EQ1)

de. 1 oLim
dtdcosddew 27 glo-m/T_(_1)2s

2m
Xw J'O d‘P|SY|m(191(P)|2 ’ (29)

where the integral in the square brackets can be done with
Eq. (22); we summarize the results for the leading modes in
Table IV.

Approximately, the time dependence lgf and J can be
determined by

-l o)

1 * srl,m(rhva;w)
“on S;m gsfo dwe(w—mQ)/T_(_ 1)2s

. (30

m

Since we have shown that the massless brane field equa-
tions are separable into radial and angular parts, we mawheregs is the number of “massless” degrees of freedom at
write down the power spectrum of the Hawking radiationtemperatureT, namely, the number of degrees of freedom

[24] for each massless brane mode as

1%The so-called Condon-Shortley phase )™ is inserted to re-

duce this to the standard definition of spherical harmonics vghen

=0: OYIm(ﬁx(P) =Y|m(19,(p).

whose masses are smaller tHgnwith spins. (Typically gq

=4, 91,=90, andg;=24 whenT>m;,my and go=0,
010=78, andg;=18 whenm,<T<m,, for the standard
model fields) Therefore, once we obtain the greybody fac-

tors, we have completely determined the Hawking radiation

and the subsequent evolution of the black hole up to the
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TABLE IV. Results of integral in Eq(29) for leading modes. (Note that in the Schwarzschild lima, —0, Q becomes
O—w.) Then the radial equatiofl9) becomes

S | m é”d<P| sYIm(ﬁv‘P)|2

0 0 0 1/2 E2(£+2)7R (+2(s+ 1) E(E+1)(6+2)R +VR=0,

0 1 1 (3/4)siRd (33
0 1 0 (3/2)cody h

0 1 —1 (3/4)siRd where

ig ig _11’/22 Csc;g((g’é)) V=[@&(e+2)+ 012+ 2iswe(£+1)(£+2) — 2isO(E+1)
1 1 1 (3/8)(1-cosv)? —[Ay+0O(a, w)]E(E+2). (34)
1 1 0 (3/4)siRd

1 1 -1 (3/8)(1+ cos)? In the near horizon limitw&<1, the potential(34) be-

comes

Planck phase, at which the semiclassical description using V=02-2is(é+1)Q—Apé(é+2)+0(wé), (35

Hawking radiation breaks down and the few quanta radiated

are not predictable. and the solution of Eq(33) with the potential(35) is ob-
In the high frequency limit, the absorption cross sectiontained with the hypergeometric function

for each moder=(m/w?)I" is supposed to reach the geo-

metrical optics limit(see, e.g., Ref§13,14) g\ ~smion g s+
RNH:Cl E 1+ E
n+3\2* 43
=7 —F —Try. 31 ~
In all the phenomenological literature this limit has been ¢ iQ/2 ¢ ~s+iQ/2
applied when one calculates the Hawking radiatjém Refs. +C, 5) 1+ >
[13,14] the phenomenological weighting factors 2/3 and 1/4
are used to multiply Eq(31) for s=1/2 ands=1 fields, _ _ Y-
respectively, based on the result in four dimensi81d.] X oFq| —1+iQ,I+14+iQ,1+s+iQ; — 5)'

C. Greybody factors for Randall-Sundrum black hole (36)
To obtain the greybody factors from Eq48) and(19) in ~ To impose the ingoing boundary condition at the horizon

general dimensions, we need a numerical calculation, whick23), i.e.,

is beyond the scope of this paper and will be shown in Ref. .

[54]. In this paper we present an analytic expression for the dr, Q

greybody factors of brane fields for an=1 Randall- dé - 2_5

Sundrum black hole within the low frequency expansibn.

Here we outline our procedure. First we obtain the “nearwe putC,=0 and normalizeC,=1 without loss of general-

horizon” (NH) and “far field” (FF) solutions in the corre- ity, and then we obtain

sponding limits; then we match these two solutions at the

R~ gfsefikr*, k (37)

“overlapping region” in which both limits are consistently ¢ —s-iQr2 é —s+iQr2

satisfied; finally we impose the “purely ingoing” boundary Rnw= 2 1+ 2

condition at the near horizon side and then read the coeffi-

cients of “outgoing” and “ingoing” modes at the far field U -

side; the ratio of these two coefficients can be translated into XoF1| —I=sl=s+11-s-iQ;— 7). (39

the absorption probability of the mode, which is nothing but

the greybody factor itself. , , , In the far field limit&>1+|Q|, Eq. (33) becomes
First, for convenience, we define the dimensionless quan-

tities P T S Py 2 ’i5)

= _— —(s—2i
r—rnp -~ ~ ©—mQ . o & Sl ( @
52 ’ w=Thw, Q: _(1+a*)(0_ma*

I 27T B

(32) R, (39)

1 ~ -3
- E[Ao+0(w)]+0(§ )

17See Ref[55] for a study of the bulk scalar emission of a five- and the solution is obtained via Kummer’s confluent hyper-
dimensional black hole. geometric function
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0. 0. 02 0.4 0.6 038 1
l'th/dtdW_ rth/dtdW Fl I I I I I 1 I I I I
: 3 3-107 ¢ 3-107
3.107 F 13-1073 E
3 1 21073 2-1073
2-107% F 12-1073 1
1 10° E ] 1107 1-1073 1-1073
of jo 0 5 0

B ~ FIG. 4. Spinor 6=1/2) power spectrunt,dE/dtdw vs o
_ FG. 2. $calar €=0) power sp_ectrurmhd Efdtdw Vs 0=rhw . =ryw in a linear-linear plot. The two gray lingbottom and top
In a I|n_e§r-llnear plot. .The gray line corresponds the geomemcaEorrespond to the geometrical optics limit with and without the
optics limit. The black lines are our resultsf@,(fo, 05 .l'o’ a}nd phenomenological weighting factor 2/3, respectively. The black
1.5 from top to bottom. Note that our approximation is valid for lines are our results fa, =0, 0.5, 1.0, and 1.5, respectively, from
~ ) 1 , 0.5, 1.0, 9, .
w<min(la,”). right to left at the peak location. Note that our approximation is

valid for o<min(1a;%).

_ I—s
RFF_Bleiwg(i) 1F1(|—S+ 1,2 +2,2|(1)§)

- g -1 - g —2s—1
~ [ & —l-s—1 5 ROO:Yine_lmg( 2) +Youtelwg< 2) ) (42)
+Bze—'wf(2) 1Fi(—1—s,—2I;2iwé),
where
(40)
where singularity from Rbeing integer is regularized by the vy, — F@+Dr+2) F(lfsf_'g) (—4iw)~'*s 1
higher order terms imw. Fl=s+DI(+s+1) T(1+1-iQ)
Match-mg the. NH agd FF sol~ut|on(§8) ar.1d (40) in the F(=20)1(=21—1) T(1—s—i®) N
overlapping region ¥ |Q|<é<1/w, we obtain —diw)'"s,

P(=1=9)'(=1+s) T(-1-iQ)
r2+ 1T (1-s—id)

T —st )T (I+1-10)’ _T@+1r(21+2) F(1-5-iQ) I

T r(-s+1)]2 T+1-i0)

[(—-21-1)(1-s—iQ)

Bo= = (41) r(—2hr(-21-1) r(1-s—iQ) -~
2 D(=1-9(~-1-iD) L T 21 ) I _~Q) diw) s,
[T(-1-9)]* T(-1-iQ)
Then we extend the obtained FF solution toward the region 43)
& o,
Let us defineR _g as the solution of the equation obtained
mdE /dtdw by a flip of the sign ofs, i.e., s— —s from Eq. (19). When

A =2 as inn=1 (or as in the limitr>ry in n=2), we
may obtain the conserved current in the same way as in the

3 -3 . .
107 ¢ 3 10 four-dimensional case:

J=A(R_RE—REGR_+SA R_RY, (44

107 | {10

which satisfiess, 7=0. In the limitr>ry,

RSNYinefiwrrfl_i_ Youteiwrr72sfl,

1075 | L . ... g . _
102 10! 10° R,S~Zine"“”r’l+ ZOUIelwrrZSfl, (45)

whereZi,=Yinls_. -s andZ,= Youls— —s, and7 becomes

FIG. 3. Scalar §=0) power spectrum,dE/dtdw vSr,w in a
log-log plot. See the caption of Fig. 2 for explanation. T~2i0(ZinYin* —ZoutYout™ ) - (46)

064025-8



ROTATING BLACK HOLES AT FUTURE COLLIDERS:

mdE/dtdw 0O
1073
10
1075
1076
0 w00

FIG. 5. Spinor §=1/2) power spectrum,dE/dtdw vSrw in
log-log plot. See the caption of Fig. 4 for explantion.

Therefore, we may calculate the greybody fadfof= the
absorption probabilityin the same way as Page’s trif&1]

_ Youtzout‘ _ 1- C| 2
F_l_‘ YinZin‘_ _’1+C| ' (47)
where
(4i0)2 L ((1+9)1(1-9)1\%
-4 ((2|)!(2|+1)! (=iIQ=Dai+1, (49
with (),=11
bol.

PHYSICAL REVIEW 67, 064025 (2003

mdE /dtdw
3-107 107
2107 1073

1-107° - 1073

FIG. 6. Vector 6=1) power spectrum,dE/dtdw Vs o=r,o
in a linear-linear plot. The two gray ling®ottom and top corre-
spond to the geometrical optics limit with and without the phenom-
enological weighting factor 1/4, respectively. The black lines are
our results fora, =0, 0.5, 1.0, and 1.5, respectively, from bottom
to top at the left of the peaks. Note that our approximation is valid

for o<min(1a;%).

that the so-called-wave dominance is maximally violated
for spinor and vector fields since there arelrd) modes for
them.

D. Radiation from Randall-Sundrum black hole

The greybody factof47) is obtained from low frequency
expansions. In four dimensions, it is known that the grey-

n—1(a@+n’'—1) being the Pochhammer sym- body factors in the low frequency expansion provide a

smaller value for the right hand side of E80) than the one

For concreteness, we write down the explicit expansion ofrom a full numerical calculatiof32]. Therefore in this pa-

Eq. (47) up to O(w®) terms:

OFO,OZ 42)2_ 82)4+ O(;B) y

1= % (1+Q)+0(a),

1~~5 ~2 4
2= e (1 2, 2o,

2025\ a T4

~4
~ ~ w ~ ~
vl 12 m=0%(1+4Q%) - 7(1+4Q2)2+ O(w%),

»* 400% 16Q* -
1/2F3/2m:3_6(1+ 5 "o +0(w?),
1605
'im= 9 ——(1+Q%+0(w®),
46:05 5Q2 Q4
1F2'm—ﬁ( +T+T +O( O) (49)

Note that subleading terms i are already neglected when
we obtain Eq(47) and the terms from these contributions are
not written nor included in Eqg47) and (49). We also note

per we do not try to show the time evolution of the black
hole nor the time-integrated result.

In Figs. 2—7, we show the power spectr(@d) for spin 0,
1/2, and 1 fields. The black lines are our resultsdpr=0,
0.5, 1.0, and 1.5 utilizing the expressi¢fi7) with up tol
<7 modes, respectively, from bottom to top at the left of the
peak(and from top to bottom at the right of the peaklote
that our approximation is valid for the region satisfying both

a, w<1 andw<1, typically at the left of the peak. The two
gray lines (bottom and top are the corresponding power

1072 10! 10°
mdB ey e

F ~.1]
107 L m 10-

= 107

10~ L
1075 + 107
10 | - 107
1077 + 107

10°® L - 108

107 L e g

FIG. 7. Vector 6=1) power spectrum,dE/dtdw vSryw in a
log-log plot. See the caption of Fig. 6 for explanation.
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£z
=ZZ77 7

FIG. 8. Scalar §=0) power spectrunt,dE/dtdwd cosd vs

FIG. 10. Vector 6=1) power spectruni,dE/dtdwd cosd vs
rh,o and cosy for a, =1.5. 6=1) p p h w

r,o and cosy for a, =1.5.

spectra in the geometrical optics linf&1) with and without ) : _ ) "
a phenomenological weighting factor, respectivédya for dimensions im=1 (i.e., within .6._5% -Whem=1 and 1.5%.
spinors or 1/4 for vectoyd 13,14 Whenn%Z), although our pfedlcnon |s'the same as the naive
In Figs. 8-10, we present the angular dependent powefdlue in the Schwarzschild approximatidoya,=rs(M)
spectrum (29) for spin 0, 1/2, and 1 fields whem, whenn=0, which is 24% larger than the numerical result.
=(a,)max=1.5. The modes are taken up lts:1. We ob- (Here we note that our refinement of the Schwarzschild ap-
serve that there is a large angular dependence for spinors afgoximation results in an enlargement of the production cross
vectors. Note that¥=0 corresponds to the direction of the Section, contrary to the previous claim in the literatuRe-
angular momentum of the black hole that is perpendicular tdying on this agreement, we obtain(differential) cross sec-
the beam axis. The angular dependence shown in Figs. 8—1®n for a given mass antan interval of angular momen-

vanishes when we take the linat, —0. tum, which increases linearly with the angular momentum up
to the cutoff valued,,=bmaM/2. This result shows that
IV. SUMMARY black holes tend to be produced with large angular momenta.

We also studied the possibility of black ring formation and

We have studied theoretical aspects of rotating black holgind that a black ring would possibly form when there are
production and evaporation. many extra dimensions.

For production, we present an estimation of the geometri- For evaporation, we first calculate the brane field equa-
cal cross section up to unknown mass and angular momeiions for general spin and for an arbitrary number of extra
tum loss in the balding phase. Our result for the maximumdimensions. We show that the equations are separable into
impact parameten ., is in good agreement with the numeri- radial and angular parts like the four-dimensional Teukolsky
cal result by Yoshino and Nambu when the number of extraquations. From these equations, we obtain the greybody
factors for brane fields with general spin for a five-
dimensional 6=1) Kerr black hole within the low fre-
quency expansion. We present the resultant power spectrum
which is substantially different from the one using the geo-
metrical approximation utilized in the literature.

We address several phenomenological implications of our
results. The production cross section of the black holes is

0.001
0.00075 larger than the one calculated from the Schwarzschild radius.
0.0005 A more precise determination of the radiation power is now
0.00025 available. We have shown that the black holes are produced

with large angular momenta and that the resultant radiation
will have strong angular dependence for the 1/2 ands
=1 modes which point perpendicular to the beam axis, while
a very small angular dependence is expected for scalar
modes. When we average over opposite helicity states, the
up-down asymmetry with respect to the angular momentum
axis shown in Fig. 9 disappeatalthough there still remains
FIG. 9. Spinor 6=1/2) power spectrum,dE/dtdwd cos9 vs  the angular dependence it9€l67,58; we expect a similar
r,o and cosy for a, =1.5. result for the vector fieldéwhich correspond to Fig. 20A
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more quantitative estimation will need the greybody factors A direct calculation shows that the massless scalar field
for arbitrary frequency calculated numerically. equation separates on this background geometry. If we set
e=R(r)S(d)e " M¢ thenV2¢=0 becomes
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—n(n—1)ur ""*+2maw—a’w?—A|R=0, (A5)

where K=(r?+a?w—am. We note that the Hamilton-
APPENDIX: SEPARABILITY OF BRANE FIELDS Jacobi and massive scalar field equations are also separable
although we do not show them here; a test particle on the
The various field equations in the four-dimensional Kerrprane has an additional conserved quar(ﬂarter constant
background are known to be separable. This results from thgy addition to the energy and the angular momentum.
special feature of the four-dimensional Kerr metric, that is, To show the separability of higher spinor field equations,

the vacuum metric, which has a pair of degenerate principaie work in the Newman-Penrose formaligsil].*® We set
null directions(Petrov type D. The four-dimensional metric the null tetrad as follows:

considered in this paper is the induced metric of the totally
geodesic probe brane in a higher dimensional Kerr field. Al-

though this brane metric turns out to be of Petrov type D, it . 2
9 yp n,=o,—asinfysl— -5,

is not the vacuum metric itself. Nevertheless, it happens that 5 A
the massless fields on the brane are separable, as shown be-
low.
The induced metric on the three-brane in the , . . 1.,
(4+n)-dimensional Kerr metri¢with a single nonzero an- n,= §(5M—a3|n2195ﬁ)+ 55,“

gular momentumis given in terms of the Boyer-Lindquist
coordinate system by
i sind
\ 2 2
[a6,—(r°+a%) )]

m=————
g=(1—ﬁr1" a2+ 22 10 iR gt — sir? " 2%r+iacosd)
3 3
r—ia cosd
<9l r2+ a2 pa’ sint 1-n| g2 Edz S d92 o o1z 27
et g?— Tdr ,
Al —
- m,=m,, (A6)
where

where the overbar denotes complex conjugation. These are

(A2) subject to the normalizatiom,n’#=—-m,m’'#=1, n,n*
=n,n'#=m,m*=n,m*=n' m*“=0. An alternative de-
scription is given by the two-component spiradt, . via the

and the parameterg anda are equivalent to the total mass identification

M and the angular momentudn

S=r?2+a’cogd, A=r2+a’—purt "

(n“n'# m“m'#) e (0P AA oA A Por),
(N+2)Ani2m Aniopd (A7)
M="6:c * 77 8aG " (A3)

, ) ) 183e¢, e.g., Ref56] for a review of the Newman-Penrose formal-
where A, =273 ((n+3)/2) is the area of a unit ism and spinor calculations. We follow the conventions of this ref-
(n+2)-sphere. erence.
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with the symplectic structure”B=0"B— 208, €"l=¢,

=1. Each component of the spinor covariant derivaliyg
is denoted by

(VOO’VLL'VOL’VL_) (D,D,,(S,ﬁ,), (AS)
and the spin coefficients are defined by
D(0,t)=(e0—kt,— 7'0—€L),
D'(0,0)=(—€'0—711,—k'0+€"1),
8(0,0)=(Bo—ot,—p'0— ),

8"(0,0)=(—pB'o—pi,— ' 0+ 1.

(A9)
Then, all the nonzero spin-coefficients Hre
_iasin® 1 _ pcotd
T om0 PT T rSiacosy 22’
o iap?sind - p2;A . p;A
T = \/E ) p - 2 ) € _P 4 rs
B'=1+p. (A10)

Here, let us consider the Weyl equatics=1/2) and the
Maxwell equation §=1) on this background brane metric.
We define the component of the Weyl spingx simply
. Then, each component of the

by o= $x0" and 1{11: N
Weyl equationVA* i, becomes explicitly

Din— 6" ho=(B ' — 7)o+ (p—€)¢hy,
oY1—D " ho=(€" —p")pot+ (7= B) 1.

(A11)

(A12)

On the other hand, the Maxwell field is represented by the
second-rank symmetric spingr,g, and its components are

denoted by ¢o=hap0"0°, b= pap0™i®,
= papt™B, respectively. Then,
equationV** ¢ ,z=0 leads to

and ¢,

D1—6"hpo=(2B"—7") ot 2pb1— Kk, (AL3)
D=8 d1=0'do—27 d1+(p—2€) ¢y,  (Ald)
D' o~ d1=(p' —2€')po— 271 +0d,,  (Al5)
D' 1= 8hy=—«'dpo+2p 1+ (2B— 7).  (AL6)

The brane-induced metric turns out to be of Petrov type
D, namely, the gravitational spino¥ 5gcp has only a non-

1%Although we have defined the spin coefficients in spinor form,
the tensor calculus would work better in actual computation. See
Eqgs.(4.5.28 in Ref.[56] for the equivalent tensorial definition for

the spin coefficient.

the source-free Maxwell

PHYSICAL REVIEW D 67, 064025 (2003

zero componentV,= ‘I’ABCDO A0B.CP. In addition to this

condition, whenk=o=«"=0"=0 hold as in the present
case, we have the identities for the differential operators

[D—(p+1)e+e+qp—pl(—pp+an)—[5—(p+1)B

+B'— 7' +q7](D—pe+qp)=0, (AL7)
[D'—(p+1)e'+€ +qp' —p'1(6' —pB'+qr’)
—[8'—(p+1)B'+B—7+q7' (D' —pe’ +qp')=0,
(A18)

for any pair of numbers{,q), where we have used the
identities

SD-D&=(7 —B' +B)D+«kD’'—(p+e—e€)6—0ad,
(A19)
8'D'-D'8'=«'D+(7—B+B')D'—0¢'6
—(p'+e —€)5. (A20)

Applying (6+B8'—7'—17) to Eq.(A1l) and D+ e—p—p)

to Eq. (A12), subtracting one from the other, and using Eq.
(A17) for (p,q)=(—1,—1), we obtain the decoupled equa-
tion for ¢y:

(r2+a2)2 ) 2 r2_+_a2 (92
e — + —
= a’sintd e 2a| —3 e
a? 1\ ¢ (r’+a?)A . ik
A si?o)ag? | < 2 1a cos
aA, icosd|d PR
T2 s e N at ar
1 4 g cofy 1

“sno g0 Mot a2

+n(n—1),ur‘“‘1] o=0 (A21)

If we sety=R(r)S(9)e '“'*1M¢  then we obtain

m?
2 2 _
a’w? cogY e

a0 —aw cosY
m

S=0, (A22)

T 40012194' +A

K2
X'ﬁ‘ 2iwr

i [2r+(n—=21)ur "IK
5 A " )—n(n—l),urnl

—+

d dR
—12_" | A3
A dr (A dr

—I—2maw—a2w2—A}R=0. (A23)
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For the Maxwell field, applying §— 8+ 8’ — 7' —217) to
Eqg. (A13) and O — e+ e—2p—p) to Eq.(A14), subtracting
one from the other, and using E¢A17) for (p,q)=(0,
—2), we obtain

(r’+a?)® > [2a(r’+a?) 92
{ —x 2 sinf9 Freas i 2a FEr

. a_z_ 1 (9_2+ _,ur‘”[(n+1)r2+(n—1)a2]

A sirfd|de? A
] af2r+(n=2L)ur "

+2(r+iacosd) ﬁ+ — A
2i cosd| 4 149 ,9 1 a_aa
SO g Aar- ar sino vV a9

+cotzﬁ—1+n(n—1)ur”1]<p0=0. (A24)

Setting po=R(r)S(3)e " IM¢  then we have

L od/g ﬁds +| a2w? cog 9 m 2 3
mﬁ SN ﬁ a“w”Cco —m— aw COS

2mcosd £9+1+A|S=0 A25

sty °° =Y (A25)
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K? [2r+(n—1)ur "K
I+4|wr—| A

1d[,,0R
Aar\2ar

—n(n—1)ur "1+ 2maw—a2w2—A}R=0.
(A26)

In summary, the spig-massless field equation becomes
1 d/ . dSs
sind ——

sind @( do
—(scotd+mcsed)?—s(s—1)+A]S=0
(A27)

+[(s—aw cosd)?

and

2
—+s
A

d dR

-S___ s+1"
A dr(A dr
[2r+(n=Dur "K

—j A

+ 4iwr

)—n(n—l),ur‘”‘1

+2maw—a2w2—A}R=o. (A28)
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