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Waves in Schwarzschild spacetimes: How strong can imprints of the
spacetime curvature be
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3Max-Planck-Institut fu¨r Gravitationsphysik, Albert-Einstein-Institut, Am Mu¨hlenberg 1, Golm, Germany
~Received 14 October 2002; published 28 March 2003!

Emitted radiation can be reprocessed in curved spacetimes, due to the breakdown of the Huyghens principle.
A maximization procedure for the energy diffusion allows one to obtain wave packets~gravitational and
electromagnetic! that are particularly strongly backscattered. Examples are shown with the backscattered part
exceeding by one order the remnants of the initial signals. A robust ringing can be observed, with amplitudes
exceeding the leftovers of the main radiation pulse. An analysis of the results obtained allows one to set
demands on some parameters in the numerical description of a realistic process of the collapse of two black
holes.
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I. INTRODUCTION

It has been known essentially since the time of Hadam
@1# that curved spacetimes can affect the propagation
waves. The breakdown of the Huyghens principle@1# ~or
backscatter, a name adopted by the general relativity c
munity after DeWitt and Brehme@2#! can influence both the
energy and the energy flux of a wave signal. Backscatter
leave its imprint on the frequency spectrum and can af
the transmission time. The manifestations of this effect
the so-called tails and, most impressively, the quasinor
modes~QNM’s!. The literature on backscattering and relat
phenomena is quite extensive—see@3–23# and numerous
references therein.

The QNM’s have some features of scattering-type so
tions and they have been studied in the context of gen
relativity for more than three decades@6#. Many of their
characteristics are well known for black holes@14#, for in-
stance, their~complex! frequency spectrum. An observer lo
cated at a fixed space position would find that QNM’s os
late with amplitudes decreasing exponentially in time. T
oscillation periods and the damping exponents are the
and the imaginary parts of a frequency, respectively. T
depend only on a few global characteristics of black hole
their asymptotic mass, angular momentum, and/or glo
electric charge. Therefore their identification in an observ
wave spectrum would unambiguously identify a black h
~and in fact provide an argument, closest to the direct ob
vation, in favor of the existence of black holes!. Extensive
reviews are presented in@20# and@21#. Tail terms were stud-
ied in the 1970s beginning from Price@8#, but interest in
them has revived again recently@23#.

The spectra of QNM’s and the decay exponents of
tails are universal, independent of initial data, but the v
existence of QNM’s and their amplitudes~as well of the
tails! do depend on initial wave conditions. The main aim
this paper is to show the strongest imprints of the spacet
curvature that are present in the form of QNM’s in a prop
gating wave. The implementation of this task requires
separation of the genuine geometric effects from those b
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built into initial data—notice that even in the Minkowsk
spacetime one can easily form a QNM-like structure by p
ducing suitable initial data. The simplest possibility is to co
sider the purely backscattered part of the initial radiatio
which is absent in the Minkowski geometry but which a
ways exists in a curved spacetime.

It would be meaningless to try to accomplish our aim
the method of ‘‘trial and error’’—by selecting at random
various initial wave configurations from the ocean of all po
sible data. Rather, one should focus on initial data that
‘‘extremal’’ in some sense, which can generate, in the fi
instance, ‘‘extremal’’ asymptotic templates, but also can
bounds on some parameters used in the numerical des
tions. In the present paper, we follow the second strate
using as a guiding principle the idea of extremizing the
called diffusion parameter@24# and addressing the following
issues. First, we estimate the maximal strength of the ba
scatter. The corresponding profiles of initial wave packets
found to favor vigorous ringing and/or strong deformation
the initial signals. Second, and in relation to the former po
we obtain information on the process of taking wavefor
from specific properties of the backscattered radiation. T
order of the rest of this paper is as follows. Section II pr
vides basic information on the wave equations. Section
describes in detail the procedure of maximizing the diffus
parameter and shows exemplary initial data for the wa
evolution. Section IV reviews some representative examp
of wave templates. In Sec. V we again review those featu
of the numerical examples that could be useful for the
merical relativists dealing with a full nonlinear description
the collapse of two black holes. Section VI summarizes
main conclusions.

II. BASIC DEFINITIONS AND CONCEPTS

A. Equations

The spacetime geometry is defined by the line elemen

ds252hRdt21
dR2

hR
1R2dV2, ~1!

wheret is a time coordinate,R is the radial areal coordinate
©2003 The American Physical Society24-1
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hR5122m/R, and dV25du21sin2udf2 is the line ele-
ment on the unit sphere, 0<f,2p and 0<u<p. Through-
out this paper the Newtonian constantG and the velocity of
light c are put equal to 1.

We will study the propagation of polar and axial modes
the quadrupole gravitational waves~GW’s! and the dipole
electromagnetic waves~EW’s! in the Schwarzschild back
ground. The evolution equation has the form

~2] t
21] r*

2
!C5VC. ~2!

Here r * 5R12m ln(R/2m21) is the tortoise coordinate
while the potential term reads for the polar GW

V~R!56
hR

2

R2 1hR

63m2~11m/R!

2R4~113m/2R!2
; ~3!

for the axial GW

V~R!56
hR

R2 S 12
m

RD ; ~4!

and for the dipole EW

V~R!52
hR

R2 . ~5!

The evolution equations corresponding to the first two pot
tials are called the Zerilli equation@25# and the Regge-
Wheeler equation@26#, respectively.

B. Conserved energy

Equation~2! possesses a conserved energy

E~R,t !5E
R

`dr

h r
~~] tC!21~] r* C!21VC2!; ~6!

that is, the rate of change ofE in a fixed volume equals the
total flow through the boundary~@27# and @28#!. This agrees
~up to a constant factor! with the energy deduced from th
stress-energy tensor for the EW. Equation~6! represents a
mathematically useful quantity in the case of the grav
tional waves, with the density being asymptotically prop
tional to the density in the quadrupole formula. In eith
case, the energy conservation becomes important in
forthcoming construction.

Assume that initial dataC and] tC vanish inside a spher
having a radiusa.2m. From the conservation law one ea
ily finds that the amount of the energy that reaches a dis
observer is equal to

Ea~`![E~a,t50!2dEa , ~7!

where

dEa5E
0

`

dt~~] tC1] r* C!21VC2! ~8!
06402
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~@27# and @28#!. The integration in Eq.~8! is done along the
outgoing null cone that starts froma at t50. In the
Minkowski spacetime@set formallym50 in Eq. ~2!# all of
an initially outgoing radiation would get to infinity; in this
casedEa50, since there is no diffusion through the nu
cone that expands outward from the initial positionR5a. It
is meaningful to distinguish between the momentarily outg
ing and ingoing radiation also in a curved, but asymptotica
flat, spacetime. One can give either an operational or an
lytic definition. Imagine a directional wave generator th
sends all radiation in a fixed direction, when located in
almost flat region.@That makes sense, since it is known fro
analytic estimates, that the fraction of the backscattered
ergy must fall off at least asC3(2m/a)2, whereC is of the
order of unity @27,28# and @29#. By choosing a sufficiently
distant location one can make the diffused energydEa arbi-
trarily small.# This generator, when carefully moved to
strongly curved region, will preserve its property of gener
ing directed radiation, which can be initially purely outgoin
~or initially purely ingoing!. Alternatively, one can work ou
an analytic definition. Initial data can always be split in
two parts, one ‘‘initially outgoing’’~defined below; in the
Minkowski spacetime that would all get to the infinity! and
the other purely ingoing~its form is similar to the former—
just change r * 2t into r * 1t and some signs in the
expansion—but it is purely ingoing in the Minkowski spac
time!. We will show in Sec. III that the concept of initially
outgoing waves is useful in bulding a nontrivial constructio
and that fact in itself justifies this notion.

C. Initial data for wave equations

Let us define

C̃~R,t !5C0~r * 2t !1
C1~r * 2t !

R
1

C2~r * 2t !

R2 , ~9!

where theC i ’s ( i 50,1,2) satisfy the following relations:

] tC153C0 , ] tC25C12m] tC1 ,

] tC153C0 , ] tC25C12
m

2
] tC1 ,

] tC15C0 , C250, ~10!

for the polar GW, axial GW, and dipole EW, respectively.
the Minkowski spacetime the functionC̃ exactly solves Eq.
~2!. We assume that theC̃ i(r * ,t50)’s vanish forR<a. No-
tice that only one of the three functions~for instanceC0) can
be freely chosen.

We will say that the initial data are purely outgoing if o
the initial hypersurfaceC5C̃ and ] tC5] tC̃. The full so-
lution of Eq.~2! can now be split into the known partC̃ and
an unknownd,

C5C̃1d, ~11!
4-2
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with null initial values ford and] td. d is evolved according
to the inhomogeneous wave equation

~2] t
21] r*

2
!d5Vd1Ṽ, ~12!

where

Ṽ5S V26
hR

2

R2D S C01
C1

R
1

C2

R2 D1
2mhR

R4 S 23C112
C2

R D
~13!

for polar gravitational modes,

Ṽ5
10mhR

R5 C2 ~14!

for axial GW’s, and

Ṽ56m
hR

R4 C1 ~15!

for the electromagnetic case. The splitting~11! has been cru-
cial in obtaining analytic estimates of the backscatter@27–
30# but it appears to be advantageous also from the num
cal point of view.

III. EXTREMIZING THE DIFFUSION PARAMETER

A. Diffusion parameter and the variational problem

Let us define the reprocessed radiation~RR! as that reach-
ing a distant observer after the passage of the initial pu
the delay is caused by multiple backscatterings. RR would
absent in the Minkowski spacetime.~For an example, see in
Figs. 8–13 below the parts of waveforms to the right ox
50.! We study hereafter the RR generated by initially o
going waves, in order to separate the genuine effects of
geometric curvature from those implied by artificial initi
data.

The diffusion parameterk is defined as the ratio of th
diffused energy and the initial energy,

k5
dEa

E~a,0!
. ~16!

Our aim in this section is to provide outgoing initial data th
maximize k. This will be done in a class of data that d
vanish forR<a. The intuition behind this is that ifk is large
then the fraction of the energy of the reprocessed radia
should also be large. That in turn should translate into effe
like vigorous ringing modes or tail terms. We conjecture, t
there exists a correlation betweenk and ~defined in some
way! the strength of QNM’s.

Expressing things in technical terms: we want to ma
mize the nonnegative quadratic formdEa while keeping
fixed the positive quadratic formE(a,0). In numerical cal-
culations this task reduces to a multidimensional algeb
eigenvalue problem, as we shall demonstrate. In the first
we choose some largeR1@a—the upper end of the initia
support—and maximizek in the future domain of depen
dence of (a,R1) with the apex at
06402
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S R2[RF r * ~R1!1r * ~a!

2 G ,t5 r * ~R1!2r * ~a!

2 D .

Obviously the change ofR1 would changek as well, but it
has been established that above some critical value ofR1 the
value ofk stabilizes. It has been found by the method of tr
and error that the choiceR1'150m is satisfactory.

B. Discretization of the variational problem

In the second step we determine a functional discrete
sis $ f i% ( i 51, . . . ,N) on the closed interva
@r * (a),r * (R1)#. The dimension of that basis was usua
250 ~but tests with smaller and bigger dimensions were a
done!—a number much smaller than the number of poi
~8000! in the spatial grid; that facilitated greatly the nume
cal calculation, without losing accuracy. The best resu
were obtained for the basis consisting of the first 250 L
endre polynomials with odd indices.

Let the expansion of the functionC0 @the only free func-
tion in the initial data set—see the remark following E
~10!# be

C0~r * ,t !5(
i 51

N

Ci f i S r * 2t2r * ~a!

r * ~R1!2r * ~a! D . ~17!

Then one finds from Eq.~6! that the total initial energy has
positive definite quadratic form:

E~a,R1 ,t50!5E
a

R1dr

h r
~~] tC!21~] r* C!21VC2!U

t50

5 (
i , j 51

N

Bi j ~a,R1!CiCj , ~18!

where the matrixBi j is known from numerical calculation.
Each elementC0,i5 f i determines some initial value

(C f i
) t50 ,(] tC f i

) t50; they give rise to solutionsC f i
in the

domain of dependence. These solutions are linearly indep
dent @due to the uniqueness of solutions of Eq.~2!#. There-
fore the solution generated by the initial data defined by
~17! can be expressed as the linear combination

C~r * ,t !5(
i 51

N

CiC f i
. ~19!

Thus the energydEa diffused through the null cone connec
ing (a,0) with (R2 ,t) has the form

dE~a,R2!5 (
i , j 51

N

Ai j ~a,R1!CiCj . ~20!

Again the matrixA is obtained numerically.
The task of maximizing the ratio of the two quadrat

forms is equivalent to finding eigenvalues in the generaliz
eigenvalue problem
4-3
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(
j 51

N

Ai j Cj5l(
j 51

N

Bi j Cj , ~21!

where l is the eigenvalue and (Ci) is the corresponding
eigenvector. There are many excellent numerical proced
for solving the generalized problem. We chose one from
fast EISPACK package. This allowed us to find several larg
eigenvaluesl (k), the eigenvectors (Cj

(k)), and, from Eq.

~17!, the corresponding functionsC0
(k)(a,R1 ,N) for k

51,2 . . . .HavingC0
(k) one finds initial data using Eqs.~9!

and ~10!.
As a consistency check, in a number of cases the w

packet given byC0(a,R1 ,N) was evolved and the diffusion
parameter was found directly from the definition. In the ca
of disagreement the procedure could be repeated with o
values of numerical parameters. A disagreement was n
observed for the vectors maximizingk, but it was found in
number of cases with fourth and fifth eigenvectors~by con-
vention, the eigenvectors are ordered according to decrea
eigenvalues, l1.l2.•••). The parameters (N
5250, r * (R1)'r * (a)1160m, the size of the grid! that are
reported above seem to be optimal, in the sense that
corresponding integration time was not too long while t
accuracy was reasonably good. These values were obta
by performing many series of numerical calculations.

C. Final preparation of extremal initial data

These pre-prepared initial data that are maximizing wit
the chosen region@in the future dependence zone of da
defined on (a,R1)] undergo a process of extending the initi
data beyondR1. Strictly, we match a function

f ~r * !5C21C1 exp~2r * /10! ~22!

to each eigenvectorC0
(k)(a,R1 ,N). The matching is differ-

entiable and the gluing pointG is selected independently fo
each eigenvector. The value ofG was obtained as follows
Fixing a andR1, one findsC0

R1 ~the upper index is put her
in order to stress the local character of the procedure! and

FIG. 1. An eigenvector is matched to an asymptotically cons
function ~lower branch, solid line!. The upper branch~broken line!
represents the eigenvector before matching. Thex axis showsr *
2r * (a) and is scaled in units ofm.
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initial values of the locally extremizing solutionCR1. With
an increase ofR1, while keepinga fixed, the functionC0

R1

changes. In the limit one should in principle obtain t
sought-after extremizing solutionC5 limR1→`CR1. In nu-
merical practice the integration region must be finite. T
dependence ofC0 on R1 suggests thatC0

R1'const outside
some region of compact support. The pointG is numerically
determined as being some point near the transition region
our case we obtainedr * (8m)<r * (G)<r * (25m). There-
fore the chosenC0 approaches an asymptotically consta
value. Figure 1 shows initial profiles of the the third eige
vectorC0 for a52.001~GW, the polar mode!.

We would like to point out that this process of matching
to a degree arbitrary, and the eigenvectors obtained ca
expected to be close~but not necessarily identical! to the
extremizing eigenvectors.

IV. NUMERICAL RESULTS

A. Extremizing initial data and k versusa

Figures 2 and 3 show the distribution of the initial ener
densities of the first and the fifth axial GW modes. As o
might expect, the mass center is closer to the horizon in
case of the extremal data, while~not so obviously! the graph
of the fifth vector suggests a larger contribution of high fr
quency radiation.

t
FIG. 2. Axial GW. Initial energy densities for the first eigenve

tor. Herea52.01. Thex axis shows values ofr * 2r * (a) and is
scaled in units ofm.

FIG. 3. As Fig. 2, but for the fifth eigenvector.
4-4
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Figure 4 demonstrates that the energy support of m
mizing initial data increases with the increase ofa. The
larger a, the larger the distance at which the value of t
energy stabilizes. That feature of the maximal initial data
counterintuitive at first glance, since the backscatter is str
gest in regions with large values of the potentialV ~around
R'3m or r * '0) and one would expect accumulation of t
energy neara if a@2m. The reason why it is not so is tha
the backscatter depends also on the frequency; radiation
cumulated ata would be dominated by high frequenc
waves, which are weakly backscattered.

The main lesson that can be drawn from the forego
discussion is that the extremizing initial data can occup
large region that extends far away from the black hole h
zon.

A question arises as to whether one can have modes
largek in the case of waves that are initially well separat
from the horizon, i.e., whena@2m. As it happens, in orde
to give an answer one has to combine the numerical
proach and an analytic insight. This is because the nume
time is proportional~with some large coefficient! to (a/2m)2

FIG. 4. Polar GW. Initial energyE(R)[E(a,0)2E(R,0)
3(y axis! as a function ofr * 2r * (a) for a52.1m ~solid line!, a
53.1m ~broken line!, and a54m ~dotted line!. The scale of the
ordinate is arbitrary while the abscissa is in units ofm.

FIG. 5. Eigenvaluesk for the first five eigenvectors for the
dipole EW in dependence ona. The points are connected by line
~solid, broken, etc.! in order to make easier the identification
eigenvectors. Thex axis shows the position ofa and is scaled in
units of m.
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and the numerics is feasible only whena is not too big.
Fortunately, analytic estimates show that the diffusion
rameter quickly decreases with increasing distance, at l
as quickly as (2m/a)2, and becomes small at largea @31#.
Therefore, ifa@2m no modes with largek can exist, and it
suffices to restrict the present analysis toa being relatively
small. In this paper the numerics is done fora<6m.

Figures 5–7 show the dependence ofk on a for the five
successive eigenvectors with largest eigenvalues, in eac
the considered wave sectors. While ata very close to 2m the
largest eigenvalue is close to 1 in all three cases, the eig
value fifth in the order is smaller than 0.01 for EW’s an
close to 0.1 for polar GW’s, with the axial GW’s lying in
between. The next observation that should be made is
with an increase ofa, the largest eigenvalue changes mo
slowly than the remaining ones and the falloff of eigenvalu
is quickest for EW’s and slowest for polar GW’s.

B. Stability of templates

Our earlier observation that QNM’s can be born and c
die @24#, when observation points are moved away from t
black hole horizon, can be rephrased as a demonstration
templates can critically depend on the distance of an
server from the horizon. Below we repeat that study an
establish a lower bound on the distance of the observer f
the horizon that is needed in order to detect a reliable w
profile.

FIG. 6. As Fig. 5 for the axial GW.

FIG. 7. As Fig. 5 for the polar GW.
4-5
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Figure 8 shows that there are many oscillations atR
510m, which gradually die when the observation point
moved away toR5100m ~Fig. 10 below!. One can see tha
only the first eigenvector produces some distorted osc
tions atR5100m while the remaining two fail completely to
show any ringing.

Notice that, while the amplitude of the surviving QNM
seems to increase moderately, the tail~and pretail! part ex-
tends and significantly gains in power. This agrees with
conclusions of@24#. Particularly interesting is the compar
son of templates shown in Fig. 9, taken atR525m @32# and
in Fig. 10, determined atR5100m. They are clearly
different—the ringing phase can be much shorter or e
disappear, while the remnants of the initial data~the parts of
the diagrams to the left ofx50) seen atR525m are com-
pletely different from those detected atR5100m. One can
conclude thatthe process of taking waveforms is unstab
under the translation of the observation point—the templates
can strongly depend on the location of the observer.

One can also infer from the preceding information th
25m is too close to be the observation point and 100m may
well be the lower bound for the observer’s position. To th
point, let us add that in many analyzed examples~not re-

FIG. 8. Polar GW,a53m. Waveforms (lnuCu) generated by the
three strongest eigenvectors~no. 1, solid line, no. 2, broken line
and no. 3, dotted line!, taken atR510m ~Fig. 8!. The abscissa is in
units ofm. The scale of the ordinate is arbitrary and the amplitud
of each type of eigenvector are properly normalized, for the sak
clarity. The data to the right ofx50 correspond to the purely back
scattered radiation.

FIG. 9. As Fig. 8 forR525m.
06402
-

e

n

t

ported here! the waveforms did not change significant
aboveR5100m.

C. Strong ringing modes

One of our aims is to find initial data that give the stro
gest possible ringing within the reprocessed radiation. T
diffusion energydEa bounds the energies of QNM’s, the ta
~and pretail! term, and also the radiation falling into a blac
hole. While we do not have analytic estimates of the sha
of the particular contributing terms indEa , it is obvious that
configurations with largek have some room for robust os
cillations. For that reason we study waves defined by
extremal initial data.

Figures 11–13 present the radiation corresponding to
EW and GW initial pulses as seen by an ‘‘observer’’ situat
at R5100m. The x50 point of the abscissa corresponds
the moment of timet5r * (100m)2r * (a). This train of data
that moves with the speed of light is seen earlier@ t,100m
2r * (a)# and it lies to the left ofx50. To the right ofx
50 we have t.100m2r * (a); in the absence of back
scattering there would be no signal at all.

Notice that the amplitudes of the strongest ringing mo
are of the order of the largest amplitudes of remnants of
original radiation. This is particularly clearly manifested
the case of the strongest polar GW eigenvector. Observe
a strong deformation of the original signal just beforet

s
of

FIG. 10. As Fig. 8 forR5100m.

FIG. 11. Templates (lnuCu) of the axial GW for the three stron
gest eigenvectors~depicted as in Figs. 8–10!. The ‘‘observer’’ is
located atR5100m and the parametera52.001. The part to the
right of x50 is the purely backscattered radiation.
4-6
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WAVES IN SCHWARZSCHILD SPACETIMES: HOW . . . PHYSICAL REVIEW D67, 064024 ~2003!
5r* (100m); initial waveform would be zero atx50, while
in Figs. 8–13 one can see a gradual buildup of a backs
tered signal. Again, the effect is strongest for the polar G
~Fig. 12, the first eigenvector!, when the backscattered pa
exceeds the remaining signal by a factor of 10. We wo
also like to direct the attention of the reader to Fig. 10. Th
the ringing is absent for the second and third eigenvect
but a very strong pretail term is observed, comparable to
remainder of the main signal.

These examples essentially confirm our conjecture
there exists a correlation between the diffusion factor a
some features~strongest QNM and/or the longevity of th
ringing phase! of the ringing.~The reservation ‘‘essentially’
is caused by the fact that the ringing belonging to the sec
axial mode in Fig. 12 is stronger than that of the first eige
vector; but in this case the diffusion parameters differ o
by a factor of 2.! An intuitive explanation with analytic fla-
vor would be the following. There is effectively a (] tC)2

contribution to the observed energy flux, if the observat
point is located far away from the horizon~the asymptotic
zone, where radiation is dominated by theC0-type term and
] tC'2] r* C). Quasinormal modes oscillate and therefo
they give a more significant contribution to the total bac
scattered energy than, say, tail terms. Hence smallk would
be prohibitive for any ringing, while strongk leaves this
possibility open. This reasoning suggests also that the
fused energy might well be the best measure~imperfect, ad-
mittedly! of the energy of quasinormal modes generated
moving wave pulses.

It was reported earlier~see, for instance, Sec. IX in@35#!
that there exists a~sharp value of! the critical width~suitably
defined! of initial data corresponding to strong ringing an
that both sub- and super-critical data generate much we
ringing. While we observe a kind of similar dependence, i
certainly less dramatic and no sharp indicator seems to
appropriate. Admittedly, we deal with a different situation
there is only an~initially ! outgoing radiation, while in@35#
there are both~initially ! ingoing and outgoing components—
but that probably is not relevant. More important might
the different shape of the initial data, here determined by
extremization procedure of the preceding section, but in@35#
assumed to be Gaussian.

FIG. 12. As Fig. 11 for the polar GW.
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V. LINEAR VERSUS NONLINEAR DESCRIPTIONS
OF THE POSTMERGER EVOLUTION

A. How typical are ringing modes?

That is a basic tenet of general relativity, dictated by b
lief in the cosmic censorship@33# and no-hair conjectures
@34#, that at some stage after plunge/merger the geom
generated by a pair of black holes can be represented
single perturbed black hole. The perturbations would be r
resented by gravitational waves and the final black h
would be either spinning~the Kerr black hole! or nonspin-
ning ~the Schwarzschild black hole!, the latter in the case o
head-on collision. The so-called close limit approximati
@36–38# seems to assert that the linear approximation is va
after the formation of a common apparent horizon. Annin
et al. @37# give some arguments in favor of this claim that a
supported~albeit with some reservations! by their analysis of
head-on collisions@39#, with initial data of Misner type@40#.
Gomez et al. @41# provide other supporting arguments
their discussion of fissioning white holes. An interesting n
feature of recent work by Husaet al. @42#, which uses the
close approximation, is a weak dependence of the wavefo
on the collision velocity of the two black holes.

If this scenario is right then the naive expectation wou
be that most of the radiation is concentrated in the vicinity
the horizon@43#. ~This is in fact observed: see Fig. 10 i
@37#, which shows that the initial perturbation extends
regions very close toR52m.! One can split these initial dat
into initially ingoing and outgoing parts, according to th
descriptions of Secs. II B and II C.~In the example given in
Fig. 10 of @37# the ingoing radiation remains forever insid
the potential well@44#.! The latter can be expanded in th
diagonalizing basis defined in Sec. III and consisting of 2
base vectors, with the parametera ~which in fact specifies
this basis—see Sec. III! being very close to 2m. But if a
'2m then Sec. IV A suggests that there appear a numbe
eigenvectors~from at least 2 for EW’s to at least 4–5 in th
case of polar GW’s! with diffusion parameters being close t
1. The initial data for the linear phase are determined by
preceding nonlinear evolution; if these were purely rando
then the chance of having largek ~and strong ringing! would
be of the order of 1%. Leaving aside the question of whet
the merger phase can be regarded as a random proces
least one can say is that the maximizing initial data of S

FIG. 13. As Fig. 11 for the EW’s.
4-7
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KARKOWSKI et al. PHYSICAL REVIEW D 67, 064024 ~2003!
III should not be excludeda priori. Another argument is tha
the process of the backscatter is selective—waves lon
than QNM’s are more strongly backscattered. Since
present gravitational wave detectors are tuned to freque
smaller~even by one order in the case of less massive b
ries of black holes@36#! than the QNM’s characteristic fo
the most likely sources of the gravitational radiation, the
are reasons to expect that the detected radiation will
strongly backscattered~even if the ringing itself is undetect
able!.

B. Taking of waveforms: Some parameters

We pointed out in Sec. IV B that in some examples t
templates are unstable with respect to a change of the ‘
servation’’ point. No significant changes in the wave profi
have been observed beyond 100m, but the wave profiles a
R525m can be profoundly different from those taken at t
former point. This suggests that the determination of te
plates should be done atR@25m and thatR5100m might
be the smallest required distance of the observer. In s
cases the duration of the remnants of the original signal
of the backscattered part comparable in strength exce
150m ~see Fig. 12!. From this one can infer that the minima
integration time must exceed at least 150m; it happens to be
longer the closer the initial pulse is located to the horizon
a black hole. There is no numerical calculation, in the cas
the full nonlinear collisions, to our knowledge, that satisfi
both requirements. For instance, in@37#, the observations
were held atR525m through the time interval 100m.

VI. CONCLUDING REMARKS

The Schwarzschild spacetime is believed to provide
good approximation to the last phase of the collapse of
black holes—the so-called close limit@36–38# is based on
l
,

on

s
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this idea—provided that the collision is~almost! head-on. At
this stage the spacetime can be regarded as consisting
single black hole having a massm and some gravitationa
radiation that propagates on a Schwarzschlid-type ba
ground. The initial data for the linear evolution of the grav
tational radiation should be provided by a numerical solut
of the preceding phases of the collapse. This task is
present~and presumably for some years to come! unavailable
for numerical relativists. In this context the existence of u
versal imprints of the spacetime curvature like QNM’s cou
be of relevance, but only if their amplitudes are stro
enough.

We invent a variational procedure that generates ini
data corresponding to strong backscatter. These initial d
have some features that might look counterintuitive; th
have an extended support and a significant fraction of
wave signal energy comes from a distant region (R@2m).
They generate strong ringing modes or~if the ringing is ab-
sent! robust terms preceding the tail. In many cases the ba
scattered terms and QNM’s are much stronger than the r
nants of the original signal; therefore the QNM’s waveform
cannot be ruled out as objects of interest for gravitatio
wave astrophysics.

Finally, it has been shown how from the linear descripti
one can get clues as to the preparation of templates in
numerical analysis of the full nonlinear problem of collap
ing ~head-on! black holes.
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Grav.19, 953 ~2002!.

@29# E. Malec and G. Scha¨fer, Phys. Rev. D64, 044012~2001!.
@30# E. Malec, Phys. Rev. D62, 084034~2000!.
@31# The estimates are relatively sharp for the EW and axial G

@28# and @27# and exclude any significant backscatter ata
>6m anda>10m, respectively. The estimates of@29# for the
polar GW require some enhancement, but they are effective
a>20m.

@32# R525m seems to be the canonical choice for the determi
tion of waveforms—see@37#.

@33# R. Penrose, Riv. Nuovo Cimento1, 252 ~1969!.
@34# P. Mazur, J. Phys. A15, 3173~1982!.
@35# N. Andersson, Phys. Rev. D51, 353 ~1994!.
@36# J. Pullin, Prog. Theor. Phys. Suppl.136, 107 ~1999!.
@37# P. Anninos, R. H. Price, J. Pullin, E. Seidel, and W.-M. Su
06402
or

-

,

Phys. Rev. D52, 4462~1995!.
@38# R. Gleiser, G. Khanna, R. Price, and J. Pullin, New J. Phys2,

3 ~2000!.
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