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Waves in Schwarzschild spacetimes: How strong can imprints of the
spacetime curvature be
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Emitted radiation can be reprocessed in curved spacetimes, due to the breakdown of the Huyghens principle.
A maximization procedure for the energy diffusion allows one to obtain wave patietsitational and
electromagneticthat are particularly strongly backscattered. Examples are shown with the backscattered part
exceeding by one order the remnants of the initial signals. A robust ringing can be observed, with amplitudes
exceeding the leftovers of the main radiation pulse. An analysis of the results obtained allows one to set
demands on some parameters in the numerical description of a realistic process of the collapse of two black
holes.
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[. INTRODUCTION built into initial data—notice that even in the Minkowski
. . . pacetime one can easily form a QNM-like structure by pro-
It has been known essentially since the time of Hadamargy,,cing suitable initial data. The simplest possibility is to con-
[1] that curved spacetimes can affect the propagation ofjger the purely backscattered part of the initial radiation,
waves. The breakdown of the Huyghens principlé (or  which is absent in the Minkowski geometry but which al-
backscatter, a name adopted by the general relativity conways exists in a curved spacetime.
munity after DeWitt and Brehmf2]) can influence both the It would be meaningless to try to accomplish our aim by
energy and the energy flux of a wave signal. Backscatter catie method of “trial and error"—by selecting at random
leave its imprint on the frequency spectrum and can aﬂ‘ecvariOUS initial wave configurations from the ocean of all pos-

the transmission time. The manifestations of this effect aréible data. Rather, one should focus on initial data that are

the so-called tails and, most impressively, the quasinormal€Xiremal’” in some sense, which can generate, in the first

modes(QNM's). The literature on backscattering and related!"Stance. “extremal” asymptotic templates, but also can set

henomena is quite extensive—sg®-23 and numerous pounds on some parameters used in the numerical descrip-
P . tions. In the present paper, we follow the second strategy,
references therein.

, . using as a guiding principle the idea of extremizing the so-
_ The QNM's have some features of scattering-type solu¢q|ieq diffusion parametd4] and addressing the following
tions and they have been studied in the context of generas es. First, we estimate the maximal strength of the back-
relativity for more than three decad¢§]. Many of their  gcatter. The corresponding profiles of initial wave packets are
characteristics are well known for black holist], for in-  found to favor vigorous ringing and/or strong deformation of
stance, theilcompley frequency spectrum. An observer lo- the initial signals. Second, and in relation to the former point,
cated at a fixed space position would find that QNM’s oscil-we obtain information on the process of taking waveforms
late with amplitudes decreasing exponentially in time. Thefrom specific properties of the backscattered radiation. The
oscillation periods and the damping exponents are the rearder of the rest of this paper is as follows. Section Il pro-
and the imaginary parts of a frequency, respectively. Theyides basic information on the wave equations. Section Il
depend only on a few global characteristics of black holes—describes in detail the procedure of maximizing the diffusion
their asymptotic mass, angular momentum, and/or globaparameter and shows exemplary initial data for the wave
electric charge. Therefore their identification in an observed@volution. Section 1V reviews some representative examples
wave Spectrum would unambiguous|y identify a black h0|eOf wave temp_lates. In Sec. V we again review those features
(and in fact provide an argument, closest to the direct obseff the numerical examples that could be useful for the nu-
vation, in favor of the existence of black hole€xtensive merical relativists dealing with a full nqnllnear descrlptlon of
reviews are presented j&0] and[21]. Tail terms were stud- the_collapse (_)f two black holes. Section VI summarizes the
ied in the 1970s beginning from Prid&], but interest in Main conclusions.

them has revived again recenfl®3].

The spectra of QNM'’s and the decay exponents of the
tails are universal, independent of initial data, but the very A. Equations
existence of QNM’s and their amplituddas well of the
tails) do depend on initial wave conditions. The main aim of
this paper is to show the strongest imprints of the spacetime dR?
curvature that are present in the form of QNM'’s in a propa- ds’= — prdt?+ — + R*dQ?, (1)
gating wave. The implementation of this task requires the R
separation of the genuine geometric effects from those beingrheret is a time coordinateR is the radial areal coordinate,

II. BASIC DEFINITIONS AND CONCEPTS

The spacetime geometry is defined by the line element

0556-2821/2003/66)/0640249)/$20.00 67 064024-1 ©2003 The American Physical Society



KARKOWSKI et al. PHYSICAL REVIEW D 67, 064024 (2003

7r=1-2m/R, and dQ?=d#?+sirfdd¢? is the line ele- ([27] and[28]). The integration in Eq(8) is done along the
ment on the unit sphere0¢<2m and 0< §<. Through-  outgoing null cone that starts from at t=0. In the
out this paper the Newtonian constadiand the velocity of ~Minkowski spacetimdset formallym=0 in Eq. (2)] all of
light c are put equal to 1. an initially outgoing radiation would get to infinity; in this
We will study the propagation of polar and axial modes ofcas€ 6E,=0, since there is no diffusion through the null
the quadrupole gravitational wavé&W's) and the dipole cone that expands outward from the initial positR# a. It
electromagnetic waveéEW's) in the Schwarzschild back- is meaningful to distinguish between the momentarily outgo-

flat, spacetime. One can give either an operational or an ana-
(— a2+ P2V =V (2)  lytic definition. Imagine a directional wave generator that
; .

sends all radiation in a fixed direction, when located in an
almost flat region[That makes sense, since it is known from
analytic estimates, that the fraction of the backscattered en-
ergy must fall off at least a€x (2m/a)?, whereC is of the
2 63m2(1+ m/R) order of unit'y[27,28 and[29]. By choosing a sufficien.tly
>+ 7R : (3)  distant location one can make the diffused enefgy, arbi-
R 2R*(1+3m/2R)? trarily small] This generator, when carefully moved to a
strongly curved region, will preserve its property of generat-
for the axial GW ing directed radiation, which can be initially purely outgoing
(or initially purely ingoing. Alternatively, one can work out
an analytic definition. Initial data can always be split into
two parts, one “initially outgoing”(defined below; in the
Minkowski spacetime that would all get to the infinitsgnd
and for the dipole EW the other purely ingoingdits form is similar to the former—
just changer*—t into r*+t and some signs in the
R expansion—but it is purely ingoing in the Minkowski space-
V(R):Zﬁf' (5) time). We will show in Sec. Il that the concept of initially
outgoing waves is useful in bulding a nontrivial construction,
The evolution equations corresponding to the first two potenand that fact in itself justifies this notion.
tials are called the Zerilli equatiof25] and the Regge-

Wheeler equatioi26], respectively. C. Initial data for wave equations

Let us define

Here r* =R+2mIn(R/2m—1) is the tortoise coordinate
while the potential term reads for the polar GW

V(R)=6§(1—g); (4)

B. Conserved energy

Equation(2) possesses a conserved energy TR =Ty(r* 1)+ W (r*—t) +\If2(r* -t ©
I - 0 R R2 I
E(Rt)=fmﬂ((a V)24 (9, W) 2+ VI¥?); (6)
' R ' ’ where theW;’s (i=0,1,2) satisfy the following relations:

that is, the rate of change & in a fixed volume equals the oWV =3V, ¥,=¥,—mo¥,,
total flow through the boundarff27] and[28]). This agrees

(up to a constant factpwith the energy deduced from the m
stress-energy tensor for the EW. Equati@ represents a oV ,=3V,, 9V,=V,—-9V,,
mathematically useful quantity in the case of the gravita- 2
tional waves, with the density being asymptotically propor-

tional to the density in the quadrupole formula. In either aV,=V¥,, W¥,=0, (10
case, the energy conservation becomes important in our
forthcoming construction. for the polar GW, axial GW, and dipole EW, respectively. In

Assume that initial dat& andd,'V vanish inside a sphere he Minkowski spacetime the functioll exactly solves Eq.
having a radiug>2m. From the conservation law one eas-ri

F(r* t=0)’ i = -
ily finds that the amount of the energy that reaches a dista fc)e \t/x(:ltaoslflurgﬁ;ho?tt:]?tlrs:eétfur?gtii)\ég?li?]k;tg)rzlz;a.) tlgn
observer is equal to y 0

be freely chosen.

We will say that the initial data are purely outgoing if on
the initial hypersurfacal =¥ and 9, =4,¥. The full so-
where lution of Eq.(2) can now be split into the known pa#t and
an unknownd,

SE, = wdt U+ 9,4 V)2 + VP2 8 -
a fo (0 W) ) (8) S A (11

Ea()=E(a,t=0)— 5E,, W)
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with null initial values foré andé;é. ¢ is evolved according
to the inhomogeneous wave equation

(— 02+ %) 6=V 5+, (12)
where
2
~ 7R Wy Wy 2myg v,
VZ(V—6§2) \I’O‘l‘ ?4— Ez) T( —3\1’14‘ 2?
(13
for polar gravitational modes,
~ 10nﬂR
V= R5 ‘2 (14
for axial GW'’s, and
V=6m_g ¥, (15

for the electromagnetic case. The splittifid) has been cru-
cial in obtaining analytic estimates of the backscaff—

30] but it appears to be advantageous also from the numeri-

cal point of view.

Ill. EXTREMIZING THE DIFFUSION PARAMETER
A. Diffusion parameter and the variational problem

Let us define the reprocessed radiatiBfR) as that reach-

PHYSICAL REVIEW B7, 064024 (2003

r*(Ry)+r*(a)
2

_ r*(Ry)—r*(a)
( R,=R = 5 .
Obviously the change dR; would changex as well, but it
has been established that above some critical vallr dfie
value of x stabilizes. It has been found by the method of trial
and error that the choid®;~150m is satisfactory.

B. Discretization of the variational problem

In the second step we determine a functional discrete ba-
sis {fi} (i=1,...N) on the closed interval
[r*(a),r*(R;)]. The dimension of that basis was usually
250 (but tests with smaller and bigger dimensions were also
done—a number much smaller than the number of points
(8000 in the spatial grid; that facilitated greatly the numeri-
cal calculation, without losing accuracy. The best results
were obtained for the basis consisting of the first 250 Leg-
endre polynomials with odd indices.

Let the expansion of the functio#, [the only free func-
tion in the initial data set—see the remark following Eq.
(10)] be

N
\I’o(r*,t)zz Cifi

r*—t—r*(a)

FR)-rr@) )

Then one finds from Eq6) that the total initial energy has a
positive definite quadratic form:

ing a distant observer after the passage of the initial pulse; Rydr
the delay is caused by multiple backscatterings. RR would be E(a,R;,t=0)= f 7((at\P)2+(ar*\P)z+V\P2)
a r

absent in the Minkowski spacetim@=or an example, see in t=0
Figs. 8—13 below the parts of waveforms to the rightxof

=0.) We study hereafter the RR generated by initially out- N

going waves, in order to separate the genuine effects of the = > Bjj(a,Ry)CC;, (18

geometric curvature from those implied by artificial initial Mt

data.
The diffusion parametek is defined as the ratio of the
diffused energy and the initial energy,

where the matrixB;; is known from numerical calculation.
Each element¥,;=f; determines some initial values
(Wt )t=0,(d:¥¢)i—0; they give rise to solution&’ in the
domain of dependence. These solutions are linearly indepen-
dent[due to the uniqueness of solutions of EB)]. There-
fore the solution generated by the initial data defined by Eqg.
Our aim in this section is to provide outgoing initial data that(17) can be expressed as the linear combination
maximize k. This will be done in a class of data that do
vanish forR=a. The intuition behind this is that i is large
then the fraction of the energy of the reprocessed radiation
should also be large. That in turn should translate into effects
like vigorous ringing modes or tail terms. We conjecture, thatT
there exists a correlation betweanand (defined in some

SE,

K= ———

E(a0)’ (16)

N

‘If(r*,t)=21 Ci¥y. (19

hus the energyE, diffused through the null cone connect-

way) the strength of QNM'’s.

Expressing things in technical terms: we want to maxi-

mize the nonnegative quadratic for@E, while keeping
fixed the positive quadratic forrg(a,0). In numerical cal-

ing (a,0) with (R,,t) has the form
N

SE(a, Rz):_Z1 Aj(a,Ry)C(C; . (20)
1,]=

culations this task reduces to a multidimensional algebraic
eigenvalue problem, as we shall demonstrate. In the first stefagain the matrixA is obtained numerically.

we choose some large,>a—the upper end of the initial

The task of maximizing the ratio of the two quadratic

support—and maximizec in the future domain of depen- forms is equivalent to finding eigenvalues in the generalized

dence of ,R;) with the apex at

eigenvalue problem
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FIG. 1. An eigenvector is matched to an asymptotically constant
function (lower branch, solid ling The upper branckbroken ling FIG. 2. Axial GW. Initial energy densities for the first eigenvec-
represents the eigenvector before matching. Xtexis showsr*  tor. Herea=2.01. Thex axis shows values of* —r*(a) and is
—r*(a) and is scaled in units ah. scaled in units ofm.

N N initial values of the locally extremizing solutioW 1. With
E AijC,:?\E B, C;., (22) an increase oRy, \{vh?le keepinga fixgd, the functionllfg1
j=1 i=1 changes. In the limit one should in principle obtain the
) ) ) ) sought-after extremizing solutioﬂf=|ileHx\PR1. In nu-
where A is the eigenvalue andQ) is the corresponding merical practice the integration region must be finite. The

eigenvector. There are many excellent numerical procedure Ry .
for solving the generalized problem. We chose one from th ependence o, on R, suggests tha?,*~const outside

fastEISPACK package. This allowed us to find several largestS°Me region of compact support. The pdits numerically
eigenvaluesh ¥, the eigenvectors qj(k))’ and, from Eq. determined as bem_g so*me pomt*near the*transmon region. In
) . ® our case we obtained* (8m)=<r*(G)=r (25m). There-

(17), the corresponding functionsPy”(a,R;,N) for k  fore the chosent, approaches an asymptotically constant
=1,2... .Having¥{? one finds initial data using Eqé9)  value. Figure 1 shows initial profiles of the the third eigen-
and(10). vector¥, for a=2.001(GW, the polar mode

As a consistency check, in a number of cases the wave we would like to point out that this process of matching is
packet given by o(a,R;,N) was evolved and the diffusion to a degree arbitrary, and the eigenvectors obtained can be

parameter was found directly from the definition. In the caseexpected to be closéut not necessarily identidato the
of disagreement the procedure could be repeated with otheixtremizing eigenvectors.

values of numerical parameters. A disagreement was never

observed for the vectors maximizing but it was found in IV. NUMERICAL RESULTS
number of cases with fourth and fifth eigenvecttrg con-
vention, the eigenvectors are ordered according to decreasing
eigenvalues, A;>A,>---). The parameters N Figures 2 and 3 show the distribution of the initial energy
=250, r*(R;)~r*(a)+160m, the size of the gridthat are  densities of the first and the fifth axial GW modes. As one
reported above seem to be optimal, in the sense that thmight expect, the mass center is closer to the horizon in the
corresponding integration time was not too long while thecase of the extremal data, whileot so obviouslythe graph
accuracy was reasonably good. These values were obtainedfl the fifth vector suggests a larger contribution of high fre-

A. Extremizing initial data and & versusa

by performing many series of numerical calculations. guency radiation.
0.12
C. Final preparation of extremal initial data

These pre-prepared initial data that are maximizing within 0.1}
the chosen regioffin the future dependence zone of data
defined on &,R;)] undergo a process of extending the initial 0.08
data beyondr;. Strictly, we match a function 0.06 |

f(r*)=C,+Cyexp —r*/10) (22 0.04 |
to each eigenvecto¥ {¥(a,R;,N). The matching is differ- 0.02 |
entiable and the gluing poir@ is selected independently for
each eigenvector. The value &f was obtained as follows. o LA : : : .
.. . Rq . . 0 5 10 15 20 25 30

Fixing a andRy, one findsV ;* (the upper index is put here
in order to stress the local character of the procedarel FIG. 3. As Fig. 2, but for the fifth eigenvector.
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FIG. 4. Polar GW. Initial energyE(R)=E(a,0)—E(R,0) FIG. 6. As Fig. 5 for the axial GW.

X(y axis) as a function of* —r*(a) for a=2.1m (solid line), a

=3.Im (broken ling, anda=4m (dotted ling. The scale of the 5y the numerics is feasible only whenis not too big.
ordinate is arbitrary while the abscissa is in unitsof Fortunately, analytic estimates show that the diffusion pa-
rameter quickly decreases with increasing distance, at least
Figure 4 demonstrates that the energy support of maxias quickly as (#/a)?, and becomes small at large[31].
mizing initial data increases with the increase @f The  Tnerefore, ifa>2m no modes with largex can exist, and it
larger a, the larger the distance at which the value of thegyffices to restrict the present analysisatbeing relatively
energy stabilizes. That feature of the maximal initial data issmall. In this paper the numerics is done &&6m.
counterintuitive at first glance, since the backscatter is stron- Figures 5—7 show the dependencexobn a for the five
gest in regions with large values of the potentialaround gy ccessive eigenvectors with largest eigenvalues, in each of
R~3m orr*~0) and one would expect accumulation of the the considered wave sectors. Whileaatery close to 2 the
energy neam if a>2m. The reason why it is not so is that |argest eigenvalue is close to 1 in all three cases, the eigen-
the backscatter depends also on the frequency; radiation aga|ye fifth in the order is smaller than 0.01 for EW’s and
cumulated ata would be dominated by high frequency cjose to 0.1 for polar GW's, with the axial GW's lying in
waves, which are weakly backscattered. _ between. The next observation that should be made is that
~ The main lesson that can be drawn from the foregoingyith an increase of, the largest eigenvalue changes more
discussion is that the extremizing initial data can occupy &jowly than the remaining ones and the falloff of eigenvalues

large region that extends far away from the black hole horiig quickest for EW’s and slowest for polar GW's.
zon.

A question arises as to whether one can have modes with

large k in the case of waves that are initially well separated ] ]
from the horizon, i.e., whea>2m. As it happens, in order Our earlier observation that QNM'’s can be born and can

to give an answer one has to combine the numerical apdie [24], when observation points are moved away from the
proach and an analytic insight. This is because the numeric&lack hole horizon, can be rephrased as a demonstration that

time is proportionalwith some large coefficiento (a/2m)2 ~ templates can critically depend on the distance of an ob-
server from the horizanBelow we repeat that study and

establish a lower bound on the distance of the observer from

B. Stability of templates

T the horizon that is needed in order to detect a reliable wave
041 | profile.
0.01 | :
0.001 | -
01 ¢
0.0001 |
1X1 0-5_ 001 F
1x10°8t 0.001 ¢
1x107 : ' . ‘ ‘ L
2.00001 2.001 2.01 2.1 3.0 10.0 0.0001
5[ 3
FIG. 5. Eigenvaluesc for the first five eigenvectors for the 1x10° 4 o N g
dipole EW in dependence am The points are connected by lines 1x10° 5 — = . ‘ ‘ ‘
(sphd, broken, et().ln_order to make e_a_S|er the |d§nt|f|cat|0r! of 00001 2001 2.01 2.1 3.0 100
eigenvectors. The axis shows the position cd and is scaled in
units of m. FIG. 7. As Fig. 5 for the polar GW.
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FIG. 8. Polar GWa=3m. Waveforms (lii'|) generated by the FIG. 10. As Fig. 8 forR=100m.
three strongest eigenvectofiso. 1, solid line, no. 2, broken line,
and no. 3, dotted lingtaken atR=10m (Fig. 8). The abscissais in ported herg the waveforms did not change significantly
units of m. The scale of the ordinate is arbitrary and the amplitudesghoveR= 100m.
of each type of eigenvector are properly normalized, for the sake of
clarity. The data to the right of=0 correspond to the purely back-

L C. Strong ringing modes
scattered radiation. g ringing

One of our aims is to find initial data that give the stron-
gest possible ringing within the reprocessed radiation. The
diffusion energysE, bounds the energies of QNM’s, the tall
(and pretail term, and also the radiation falling into a black
hole. While we do not have analytic estimates of the shares
of the particular contributing terms ifE,, it is obvious that
configurations with largec have some room for robust os-
cillations. For that reason we study waves defined by the
extremal initial data.

Figures 11-13 present the radiation corresponding to the
W and GW initial pulses as seen by an “observer” situated
at R=100m. Thex=0 point of the abscissa corresponds to

Figure 8 shows that there are many oscillationsRat
=10m, which gradually die when the observation point is
moved away tdR=100m (Fig. 10 below. One can see that
only the first eigenvector produces some distorted oscilla
tions atR=100m while the remaining two fail completely to
show any ringing.

Notice that, while the amplitude of the surviving QNM
seems to increase moderately, the (aitd pretail part ex-
tends and significantly gains in power. This agrees with theE
conclusions of 24]. Particularly interesting is the compari-

son of templates shown in Fig. 9, takenfat 25m [32] and the moment of time&=r*(100m)—r*(a). This train of data

in Fig. 10, determined aR=100m. They are clearly that moves with the speed of light is seen earfiiex 100m
different—the ringing phase can be much shorter or even

. . R —r*(a)] and it lies to the left oix=0. To the right ofx
d|sap_pear, while the remna_nts of the |n|t|§I détee parts of —0 we havet>100n—r*(a); in the absence of back-
the diagrams to the left of=0) seen aR=25m are com- ttering th Id b ianal at all

letely different from those detected Rt=100m. One can scatiering fhere woulld be no signal at at. —

P ) s Notice that the amplitudes of the strongest ringing mode
conclude thathe process of taking waveforms is unstable

nder the translation of the observation peirthe templat are of the order of the largest amplitudes of remnants of the
under the transiation of the observation p € tempiates original radiation. This is particularly clearly manifested in
can strongly depend on the location of the observer.

One can also infer from the preceding information thatthe case of the strongest polar GW eigenvector. Observe also

25m is too close to be the observation point and hoday a strong deformation of the original signal just befdre
well be the lower bound for the observer’s position. To this

. . 0
point, let us add that in many analyzed examplest re-

40 L . . ) . .
-100 -50 0 50 100 150 200

FIG. 11. Templates (|¥]) of the axial GW for the three stron-
gest eigenvectorgdepicted as in Figs. 8—10The “observer” is
located atR=100m and the parametea=2.001. The part to the
FIG. 9. As Fig. 8 forR=25m. right of x=0 is the purely backscattered radiation.

-50 0 50 100 150 200
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' : : ‘ : : 30 L . — . :
-100 -50 0 50 100 150 200 -100 .50 0 50 100
FIG. 12. As Fig. 11 for the polar GW. FIG. 13. As Fig. 11 for the EW's.
=r*(100m); initial waveform would be zero at=0, while V. LINEAR VERSUS NONLINEAR DESCRIPTIONS
in Figs. 8—13 one can see a gradual buildup of a backscat- OF THE POSTMERGER EVOLUTION
tered signal. Again, the effect is strongest for the polar GW A. How typical are ringing modes?

(Fig. 12, the first eigenvectprwhen the backscattered part , ) . )
exceeds the remaining signal by a factor of 10. We would. T_hat IS a ba5|_c tenet of g.eneral reIat|V|ty,.d|ctat_ed by be-
also like to direct the attention of the reader to Fig. 10. Ther%'gz]'nt;hte (E[osm|c CetnSWShf'tﬁfﬁ] Iand r/1o—ha|r ctc;1njecturest

the ringing is absent for the second and third eigenvector » that at some stage atler plunge/merger the geometry

but a very strong pretail term is observed, comparable to th enerated by a pair of black holes can be represented as a
very g pretait ' P ingle perturbed black hole. The perturbations would be rep-
remainder of the main signal.

. i . resented by gravitational waves and the final black hole
Thesg examples es'sent|ally confirm our qonjecture tha\;\/ould be either spinningthe Kerr black holg or nonspin-
there exists a correlation between the dlffusmn_factor anq]ing (the Schwarzschild black holethe latter in the case of
some featuregstrongest QNM and/or the longevity of the peaq-on collision. The so-called close limit approximation
ringing phasgof the ringing.(The reservation “essentially” [36_3g seems to assert that the linear approximation is valid
is caused by the fact that the ringing belonging to the secongfter the formation of a common apparent horizon. Anninos
axial mode in Fig. 12 is stronger than that of the first eigen-et al.[37] give some arguments in favor of this claim that are
vector; but in this case the diffusion parameters differ onlysupportedalbeit with some reservationby their analysis of
by a factor of 2, An intuitive explanation with analytic fla- head-on collision§39], with initial data of Misner typg40].
vor would be the following. There is effectively @,®#)>  Gomezet al. [41] provide other supporting arguments in
contribution to the observed energy flux, if the observationtheir discussion of fissioning white holes. An interesting new
point is located far away from the horizdthe asymptotic feature of recent work by Huset al. [42], which uses the
zone, where radiation is dominated by tiig-type term and  close approximation, is a weak dependence of the waveforms
d¥~—d;«V). Quasinormal modes oscillate and thereforeon the collision velocity of the two black holes.
they give a more significant contribution to the total back- If this scenario is right then the naive expectation would
scattered energy than, say, tail terms. Hence smatould e that most of the radiation is concentrated in the vicinity of
be prohibitive for any ringing, while strong leaves this the horizon[43]. (This is in fact observed: see Fig. 10 in

possibility open. This reasoning suggests also that the dif3/» Which shows that the initial perturbation extends to
fused energy might well be the best measiimeperfect, ad- regions very close t&=2m.) One can split these initial data

; : into initially ingoing and outgoing parts, according to the
mlct)tfiglgy)wcgv?%jrslgggy of quasinormal modes generated b descriptions of Secs. 11 B and Il Gln the example given in

It was reported earliefsee, for instance, Sec. IX [85)) Fig. 10 of[37] the ingoing radiation remains forever inside

: . : ; the potential well[44].) The latter can be expanded in the
thaF there e.X|.s.ts ésharp value Ofth? critical W|dth(§U|Fany diag?)nalizing bas%s (}efined in Sec. Illl and C(?nsisting of 250
defined of initial data corresponding to strong ringing and base vectors, with the parameterwhich in fact specifies
that both sub- and super-critical data generate much Weak%s basis—see Sec. Jlbeing very close to &. But if a
ringing. While we observe a kind of similar dependence, it iS< 5y, then Sec. IV A suggests that there appear a number of
certainly less dramatic and no sharp indicator seems 10 bgigenvectorgfrom at least 2 for EW’s to at least 4-5 in the
appropriate. Admittedly, we deal with a different situation— case of polar GWswith diffusion parameters being close to
there is only an(initially) outgoing radiation, while if35] 1. The initial data for the linear phase are determined by the
there are botttinitially) ingoing and outgoing components— preceding nonlinear evolution; if these were purely random,
but that probably is not relevant. More important might bethen the chance of having large(and strong ringingwould
the different shape of the initial data, here determined by thée of the order of 1%. Leaving aside the question of whether
extremization procedure of the preceding section, biiBF  the merger phase can be regarded as a random process, the
assumed to be Gaussian. least one can say is that the maximizing initial data of Sec.
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[l should not be excluded priori. Another argument is that this idea—provided that the collision {almos) head-on. At

the process of the backscatter is selective—waves longéhis stage the spacetime can be regarded as consisting of a
than QNM'’s are more strongly backscattered. Since theingle black hole having a mass and some gravitational
present gravitational wave detectors are tuned to frequenceadiation that propagates on a Schwarzschlid-type back-
smaller(even by one order in the case of less massive binaground. The initial data for the linear evolution of the gravi-
ries of black holeg36]) than the QNM'’s characteristic for tational radiation should be provided by a numerical solution
the most likely sources of the gravitational radiation, thereof the preceding phases of the collapse. This task is at
are reasons to expect that the detected radiation will bpresent{and presumably for some years to comeavailable
strongly backscattere@ven if the ringing itself is undetect- for numerical relativists. In this context the existence of uni-

able. versal imprints of the spacetime curvature like QNM'’s could
be of relevance, but only if their amplitudes are strong
B. Taking of waveforms: Some parameters enough.

. . . We invent a variational procedure that generates initial
We pointed out in Sec. IV B that in some examples theda P 9

i lat table with {1 h f the * ta corresponding to strong backscatter. These initial data
emplates are unstable with respect fo a change ot the Obﬁave some features that might look counterintuitive; they

servation” point. No significant changes in the wave prOﬁIeShave an extended support and a significant fraction of the
ga_vgstr)fen otgservefd beglondqffEmObu'; the vgave prlc()flles ath wave signal energy comes from a distant regi®»@2m).
B can be profoundly different from those taken at t eThey generate strong ringing modes(idrthe ringing is ab-

former point. This suggests that the determination of tem; ; ;
B . senj robust terms preceding the tail. In many cases the back-
plates should be done &25m and thatR=100m might scattered terms and QNM'’s are much stronger than the rem-

be thetsmgllestt_ reqlﬂﬁd dlstanci: Off ttrrlme ob.s.ervler.. In ISO ants of the original signal; therefore the QNM'’s waveforms
cases he duration ol the remnants of the onginal signal anfly,not pe ruled out as objects of interest for gravitational

2]‘5 (E?qe baclégcajt-tergd paE[- comparab-lef in hstreﬂgth _e.xcele ave astrophysics.
) (s_ee 19. P From |sdone| canin %r th attne m|n|81a Finally, it has been shown how from the linear description
integration time must exceed at least 450t happens to be o0 5, get clues as to the preparation of templates in the

longer the closer th? initial pulsg IS Iocated.to the horizon of umerical analysis of the full nonlinear problem of collaps-
a black hole. There is no numerical calculation, in the case o;

] - °>* *ing (head-on black holes.

the full nonlinear collisions, to our knowledge, that satisfies 9l »

both requirements. For instance, [i7], the observations

were held alR=25m through the time interval 100. ACKNOWLEDGMENTS
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VI. CONCLUDING REMARKS
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