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Stacking a 4D geometry into an Einstein-Gauss-Bonnet bulk
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In Einstein gravity there is a simple procedure to bullddimensional spacetimes starting from
(D —1)-dimensional ones, by stacking ary { 1)-dimensional Ricci-flat metric into the extra dimension. We
analyze this procedure in the context of Einstein-Gauss-Bonnet gravity, and find that it can be applied only to
metrics with a constant Krestschmann scalar. For instance, we show that solutions of the black-string type are
not allowed in this framework.
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[. INTRODUCTION allows a Minkowski brane in an anti—de Sitter bulk even
without a bulk negative cosmological constant and a positive
One of the main ingredients in most attempts to unify thebrane tensiori7]. A massless graviton is also shown to ap-
four fundamental interactions known at present in nature iear in this constructiof8,9]. In the context of self tuning
the existence of additional dimensions. If there is a limit inmechanisms for the vanishing of the cosmological constant
which one can make sense of these additional dimensior§ee, for example[10] and references therginthe Gauss-
classically, it will be fundamentally important to know what Bonnet term allows one to avoid the presence of naked sin-
the field equations are that govern the higher-dimensionggularities in the bul{11]. Cosmology on the brane in this
spacetime. Lovelockl] proved that, for an arbitrary number Scenario has received much attentid@®2-17. In all this
of dimensions, the most general classical gravitational Lawork the brane is maximally symmetric or of cosmological
grangian with the associated field equatighg=0, such type. Here, we analyze branes with arbitrary meftoiat with
thatG,g is symmetric, divergence-free, and constructed withSPecific extensions into the bulk
up to second derivatives of the metric, is formed by a linear In Einstein general relativity there is an easy procedure to
combination(with arbitrary coefficients of the dimension- Produce five-dimensional solutions of the field equations by
ally extended Euler densities. As is well known, in four di- trivially extending vacuum four-dimensional solutions into
mensions there are only two Euler densities that are not tghe extra dimensiofil8]. This procedure was used to find a
pological invariants, and therefore have a nontrivialPlack-string solutiorf19] and a plane-wave solutidi20] in
dynamical content. They are the scalar curvature term anthe realm of braneworlds. We show that this procedure for
the cosmological constant term in the Einstein-Hilbert ac-generating solutions does not generalize to Einstein-Gauss-
tion. Experimentally it has been possible to determine thdonnet gravity. For the procedure to be applicable, the four-
values of their two associated coefficients: Newton's condimensional geometry has to satisfy an additional constraint:
stant and the cosmological constant. D=5 and beyond its Krestschmann scalar has to be constant. This implies in
there are additional Euler densities that have to be considarticular that geometries of black-string type cannot be con-
ered. The relative weight of these additional terms in thestructed in this framework.
dynamics of the system is something to be determined ex- N the next section we review and generalize the proce-
perimentally. dure for generating>-dimensional solutions starting from
From our four-dimensional point of view, the higher- (D—1)-dimensional ones. We show that the procedure
dimensional geometries of more immediate interest are thos&orks not only for vacuum solutions 8], but for Einstein
suitable for standard or exotic Kaluza-Klein reduction. Inmanifolds. Then, in Sec. lll we investigate what happens in
this paper we will consider only five-dimensional geometriesthe case of Einstein-Gauss-Bonnet gravity widk=5. Fi-
of this type. In five dimensions there is only one additionalnally, we discuss the results and conclude.
Euler density to be considered: the Gauss-Bonnet term. Our
main motivation for studying five-dimensional geometries Il. STACKING TECHNIQUE
with a Gauss-Bonnet term comes from the exotic Kaluza- There is a set of solutions @-dimensional Einstein grav-
Klein reduction realized in the Randall-Sundrum braneworld. X ; 9
scenarid2,3]. In this scenario our universe is described as a'ty that can be cgnstrupted In a §|mple way starting frqm
vacuum O —1)-dimensional solutions. The procedure is

four-dimensional brane immersed in a five-dimensionalb‘,ised on the stacking of any vacuui < 1)-dimensional
anti—de Sitter bulk. When the braneworld scenario is consid- Ing y vacuu : !

ered as the low-energy limit of string or M theory it becomessOIUtion into the additional dim(_ensicﬁm_8]. Give_n any metric
even more natural to consider the effects of the GausngV.(X.) such that the R —1)-dimensional Einstein tensor
Bonnet tern{4,5]. satisfiesG,,=0, then

~ In the presence of Gauss-Bonnet modifications, it was d?=dy?+g,,,(x)dx*dx” (1)
first proved that it is possible to obtain a vacuum geometry

equivalent to that of Randall and Sundrum apart from a reis a solution of the D-dimensional Einstein equations
definition of the constan{$]. This redefinition is such thatit (®)G,g=0. This procedure can also be used when a
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D-dimensional negative cosmological constanty|=(D (D-1)(D-2)
—2)(D—1)/22 is present in the bulk: any metri®) g,g of Rex——7—. (12)
the form

From Eq.(7) and for a negative cosmological constant in the

— 2 —2yll v

ds’=dy*+e 9,u(x)dx*dX", 2) bulk, we have an equation fé(y) of the form
whereg,,(x) is a (D —1)-dimensional vacuum solution, is a (D—1)(D—-2) 1 1
solution of — —|—2+A’21Fe2A =0. (13

O)Gpg=—AP)gps- 3
AB b’Gap @ Then Eq.(6) becomes
Starting with solutions of the typ€) one can easily con-

struct braneworld geometries by using the standard cut-and- G, (X)= I(D—Z)(D—3) 9,.(X) (14)
paste procedure. For instance, the metric wy 2L° ppR T

ds?’=dy?+e g, (x)dx“dx” (49 which shows thatg,,(x) must be a D~ 1)-dimensional

) Einstein metric. Equatioril3) can be easily solved. When
represents a braneworld geometry with symmetry with | o we haveA(y)=y/l+b, i.e., the solution in Eq(2)

respect to the location of the brang=<0). InD=5, if we  (the constanb is irrelevant for the geometyyFor L+0 and
takeg,, to be the four-dimensional Schwarzschild metric, gefiningA= —In B we have

we reproduce the black-string geomefg]. Instead, if we

takeg,, to be app wave we have a five-dimensionpp ' B2 1

wave travelling parallel to the bra0]. B =1z %= (15)
This technique can be further generalized to the stacking

of any Einstein manifold. Using the ansatz for theThe solution corresponding to the plus sigpositively

D-dimensional metrit curved brangis
ds?’=dy?+e 2AWg  (x)dx* dx”, (5) 1)2 -
g d2=dy?+ E) sinf?(#)gw(x)dxﬂdx”, (16)
the Einstein equation@) can be split into
G, (X)=—Cy(y)g,,(X) (6) and that corresponding to the minus sigregatively curved
wr py e brane is

which correspond to thgv components, and )

Y—Yo
= 2 — Z JOPRINRY
Cs(y) +Caly)R(X) =0, ™ ds'=dy* | 005*?( i )gw(x)dx . an
corresponding to thgy component, wher&=g*’R,,,. The  Again one can start from these bulk solutions to build brane-
coefficients are given by world models. The braneworld models with maximally sym-

metric branes, four-dimensional de Sitter and anti—de Sitter

Co(y)=| A —(D—Z)(A”— (D_l)Afz) e 2A (g branes[22], are the simplest illustration of this procedure.
2 b 2 ’ What we have shown here is that by using the same warp
factors one can have not only maximally symmetric branes
(b-1)(D-2) , but any brane of the Einstein type.
Ca(y)=Ap+ 2 A ©) For the case of a positive cosmological constant in the
bulk, B(y) satisfies
1
Cyly)=— e 10 B2 1
a(y) 2 (10) B,z__l_ip, (18)
By differentiating Eq.(7) with respect to any brane coordi- ) ) . .
natex“ we obtain which has solutions only for the plus sigpositively curved
section$.
C4(y)R(x) ,=0, (11
B(v)— - ain YO Bv)— - cod VYO
so that the Ricci scalar has to be constant. For convenience ()= L sin | or (y)= L co | )
we write this constant as (19

The case with zero bulk cosmological constant can be ob-
Uit is interesting to note that, by using additional freedom in thetained by taking the limit—co:
way in which a O —1)-dimensional geometry is embedded into a
D-dimensional Einstein manifold, one can locally and isometrically B(y)= Y~ Yo (20)
embed any metri¢21]. L
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For completeness, it is interesting to observe that this A. Stacking with a Gauss-Bonnet term
technique can also be used to generate bulk solutions wWith \yie consider a metric of the form given in E6), and

positive cosmological constant and arbitrarily curved seCiniroduce it into the Einstein-Gauss-Bonnet equations. By

tions. The_result in this case differs fror_n the previc_)us one ir}joing this, we obtain a set of equations playing the role of
the following respect: given any Euclidean metge,(X)  the effective four-dimensional Einstein equatiditse v
such thatR,,,= +=[(D—2)/L°]g,.(X), then components of Eq27)]:

ds*=—dt*+B(t)?g,,(x)dx*dx", (21) Ci(¥)Gu(x) == Ca(Y)g,u(X), (29)
with and an additional conditiofthe yy component of Eq(27)]:
eZt/| for L—oo (22) C3(y)+C4(y)R(X)+C5(y)LGB(X):01 (30)
[ — where
—cos)‘( Y yo) for the positive sign, (23)
B(t)={ L ' Ci(y)=1+4a(A"—A'?), (31)
| —
Esinl-( Y Iyo for the negative sign, (24) C,(y)=[As—3(A"—2A’?)
+12aA'?(A"—A'?)]e A, (32
are LorentziarD-dimensional Einstein manifolds of positive
curvature. This might be of interest in standard cosmology. Ci(y)=As+6A'%(1—2aA’?), (33

One can deduce this result easily from the above solutions
for a negative bulk cosmological constant via the substitu- 1 2| on
tions|——il, t—it, andL— —iL. Caly)=—|5—2aA’" e, (34)

I1l. EINSTEIN-GAUSS-BONNET GRAVITY a .
Cs(y)=— e (39

Our central aim is to investigate the stacking technique in
the simplest modification of Einstein gravity for higher-
dimensional spacetimes, the Einstein-Gauss-Bonnet theor.
From now on we will seD=5. The theory is defined by the
action

By dividing Eq. (30) by Cs(y) and differentiating with re-
pect toy, we obtain

Cs(y)> T ( Ca(y)

Cs(y) Cs(y)

Now, differentiating it with respect to any brane coordinate
X, we arrive at

) (*R(x)=0. (36)

1
S= ﬁf dXS\/— [5jg[(5)R—2A5+ a’(S)LGB], (25)
5

where
Ca(y)

Cs(y)

so that eitheR(x) ,=0 or (C,/Cs)'=0. We call the first
and « is the coupling constant. The field equations associ;fasg pthy5|cal k;r?caéjgetlt_ h_as ? v_\;eIIE.deTn.edGhmn WBhen ¢
ated with the Einstein-Gauss-Bonnet action are enas fo zero, the Einstéinian fimrt. Einstéin->auss-bonne
theory is ambiguous from a dynamical point of view. The
Lagrangian is quartic in first derivatives of the metric and
thus the same initial data can give rise to different evolutions
[23]. To resolve this ambiguity, one possibility is to choose
as the physical branch that approaching proper general rela-
tivity in the limit «=0 [24]. The second case, without an

_ c c X LT

CHpg=2 CRpcpe PRg “PE-4 CIRycpp PIRCP Einsteinian limit, we call “purely” Gauss-Bonnet.

—4 (5)RAC (5)RB C120R (5)RAB

R(x),.=0, (37)
(5)|_GB: (5)RABCD(5)RABCD_ 4 B)RAB (5)RABJF (5)R2, ,

(26)

(S)GAB: _AS(S)gAB_a'(S)HA81 (27)

with

B. Physical caseR ;=0

— %(S)QAB(S)LGB- (28) We write the constant Ricci scalar as
12
This tensor is divergence-fre§” (®)H,z=0, and so it can R=*1z- (38)

be considered as some type of source in the Einstein equa-
tions. The existence of this term has dramatic consequenc&y Eq. (30), Lgg is also a constant,gg=S;, and then Eq.
for the stacking procedure. (30) gives
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1 12 Then, substitutindA= —In B, Eq. (43) is seen to be equiva-
12 12 12 L2A .
6A(1-2aA"")—| 5 —2aA"" |7 £ 17 lent to Eq.(15), i.e.,

a . _ ., B 1

of, rearranging Therefore the warp factors for the Einstein-Gauss-Bonnet

Ao A 1 o theory are formally equal to those discussed in Sec. Il but

2aA’4— ( 1t—z)A’2+ ( _ 5 + e?At —e“ASl) =0. with redefined values of the curvature of the stacking hyper-
6 L 12 surfaces and the bulk curvature.

(40 Solutions with «<0 are completely equivalefAtTheir

only peculiarity is that positively curved and negatively
curved stacking hypersurfaces interchange their associated
%arp factors.
The solutions for the case=1 are of purely Einstein-
3 Gauss-Bonnet type in the sense that they do not have a well
G, (X) = ;Fgw(x)_ (41 defined Einsteinian limit. Particularly interesting is the fact
that in this case the Gauss-Bonnet term can produce a nega-
tively curved bulk even in the absence of a bulk cosmologi-
In summary,for a metric of the form Eq. (braneto be a  cal constanf7]. Here we take the view that these solutions
solution of Einstein-Gauss-Bonnet theory in five dimensionsgre unphysical. However, a definitive analysis of their physi-
the four-dimensional metric g must be an Einstein metric. cal nature should consider not their proximity to five-
Moreover, and this is the important poirit, must have a dimensional Einstein solutions, but their proximity to four-
constant Gauss-Bonnet term, i.egd=const.These condi- dimensional Einstein solutions in the reduced four-
tions imply that the Krestschmann scalar, or equivalently indimensional theory that emerges once the compactification

this case the square of the four-dimensional Weyl curvatureexotic or noj has taken place. This is beyond the scope of
has to be constant. Their values in terms of the constanie present paper.

previously introduced are

Multiplying Eq. (39) by e~ ** and differentiating we see that
EQs.(29) can be reexpressed as proper Einstein equations f
the four-dimensional geometry,

C. Purely Gauss-Bonnet case

REVYIR ye=S1, CH7C,0=S1— - (42 This case is characterized b€ {/Cs)' =0, so that con-
L dition (37) is satisfied. Therefore,
This condition precludes the existence of stacking solutions Culy) AP
of the black-string typd19] and most of the solutions of Cly) S AN eT=S,, (47)

astrophysical interest. The trivial conformal nature of maxi-
mally symmetric ang p-wave spacetimes allows them to be .
stacked to form five-dimensional bulk solutions and subse\—Nheresz 's a constant. From Ed30),
quently braneworld models.
For arbitrary values of the constaB the solution of Eq. Ca(y) +S,R(X)+Lgg(x)=0 (49)
(40) cannot be expressed in closed form. However, for the Cs(y) B '
particular valueS,=24/L*, which is the relevant value for
stacking maximally symmetric metrics on the brane, closedand therefore
form solutions can be given. ForfAg=—6/2,

—_ ze‘4A[A5+ 6A'%(1-2aA’?)]=S;, (49

, 1 da 8a C
A 22@( 1x 76 o1~ Tf) (43) ()

S;R(X)+Lgp(X)=Ss, (50)
whereo=*1. This expression has a well defined limit for 8
— H 2
a—0 Omyj"’he”f_ 1. For this case and<9a<I*/8, we ity 5. another constant. From Eq&l7) and (49), we de-
can definel andL as duce that there are two cases.
(1) S3=(—2/3)S3#0, As=—3/4a. Again, for «>0

1 1 8a we can define constantsandL via
T‘z—ﬁ(l‘V 1‘?)’ “9

2In the Gauss-Bonnet modification to general relativity arising
=—. (45) from string theory,c must be positive. From this viewpoint, these
L solutions are not physical.
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and integrate ovey (one can consider a cylindrical condition

_iz = 4i (51 ony to obtain a finite result In this way one finds a reduced
| @ action in four dimensions of the Einstein-Hilbert form:
_i = @ (52 1
L2 4 S= Tzf dx*V—gR. (57)
2kg
SettingA= —In B we arrive at an equation equivalent to Eq.
(19, (The trivial additive constant left by the Gauss-Bonnet term
B2 1 has not been written. The Gauss-Bonnet term has become
B'2=— +sgn(S,)—, (53)  topological in the reduction processthis is the standard
12 L Kaluza-Klein reduction in the absence of the electromagnetic

i part of the metric(in Kaluza-Klein terminology; therefore
and therefore at the same formal solutions for the warp facye recover vacuum Einstein gravity in four dimensi¢26].
tors. For these warp factors, we can check tRa(y) |n standard Kaluza-Klein reduction, the five-dimensional
=C,(y)=0 and so we reach the intriguing result that theregauss-Bonnet term modifies the way in which the electro-

is a single equation for the four-dimensional metric: magnetic field interacts with gravifi27], but in the absence
3 of this field there is no other higher-dimensional manifesta-
S,R(X)+ Lgg(x)=— = S2. (54)  tion of the Gauss-Bonnet term. However, what we have seen
2 is that, if one uses first the action E@6) to obtain the

. i . five-dimensional equations of motion and then specializes to
(2) A(y)=const. Without lost of generality we can set the above metric ansatz, one does recover the four-

A(y)=0, and ther, =1/a andS;=2As/a. In this case the  y o ncional Einstein equatiof,, =0, but, in addition, one

reduced set of equations to solve is, by E@s) and(49), finds the conditiorL;g=0. This condition puts a strong re-
2As striction on the allowed geometries. Actually, this condition
Guv=—As0,,, Leg=— o (55 is equivalent teC,,,,,,C*"?7=0, so it permits the existence

of only conformally trivial four-geometries of this type.
Therefore, in the presence of a Gauss-Bonnet term, the pro-
gess of dimensional reduction of the action and subsequent
variation is not equivalent to the process of first varying the
five-dimensional action and then reducing dimensionally the
resulting equations.

What we have seen in this paper is that this phenomenon

We have seen that in the presence of a Gauss-Bonnet terisi general and shows up in branewofkkotic) compactifi-
the generation of five-dimensional bulk solutions via simplecations as well. Our simple ansatz does not allow any curva-
stacking of four-dimensional metrics does not hold, as mayure singularity on the brane, in particular ruling out black-
have been naively expected. Although the Gauss-Bonnetring-type braneworlds. In this sense our result is in tune
term is a topological invariant in four dimensions, in the with the well known idea that Gauss-Bonnet corrections to
process of reducing the system from five to four dimensionginstein relativity might smooth out the singularities. Trying
the dynamical degrees of freedom of the Gauss-Bonnet terit® find nontrivial brane geometries would involve the consid-
in five dimensions leave their traces in the reduced theorgration of an electromagnetic and/or dilaton part for the met-
(cf. [25]). ric with their corresponding effects.

Let us consider a different point of view. In the simplest
case, with zero bulk cosmological constant and no warp fac-

If, moreover, As=0, these equations do not depend @n
and therefore this case does in fact have a well defined Ei
steinian limit.

IV. DISCUSSION AND CONCLUSIONS
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