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Stacking a 4D geometry into an Einstein-Gauss-Bonnet bulk

Carlos Barcelo´, Roy Maartens, Carlos F. Sopuerta, and Fermı´n Viniegra
Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 2EG, United Kingdom

~Received 4 November 2002; published 28 March 2003!

In Einstein gravity there is a simple procedure to buildD-dimensional spacetimes starting from
(D21)-dimensional ones, by stacking any (D21)-dimensional Ricci-flat metric into the extra dimension. We
analyze this procedure in the context of Einstein-Gauss-Bonnet gravity, and find that it can be applied only to
metrics with a constant Krestschmann scalar. For instance, we show that solutions of the black-string type are
not allowed in this framework.
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I. INTRODUCTION

One of the main ingredients in most attempts to unify
four fundamental interactions known at present in nature
the existence of additional dimensions. If there is a limit
which one can make sense of these additional dimens
classically, it will be fundamentally important to know wh
the field equations are that govern the higher-dimensio
spacetime. Lovelock@1# proved that, for an arbitrary numbe
of dimensions, the most general classical gravitational
grangian with the associated field equationsGAB50, such
thatGAB is symmetric, divergence-free, and constructed w
up to second derivatives of the metric, is formed by a lin
combination~with arbitrary coefficients! of the dimension-
ally extended Euler densities. As is well known, in four d
mensions there are only two Euler densities that are not
pological invariants, and therefore have a nontriv
dynamical content. They are the scalar curvature term
the cosmological constant term in the Einstein-Hilbert
tion. Experimentally it has been possible to determine
values of their two associated coefficients: Newton’s c
stant and the cosmological constant. InD55 and beyond
there are additional Euler densities that have to be con
ered. The relative weight of these additional terms in
dynamics of the system is something to be determined
perimentally.

From our four-dimensional point of view, the highe
dimensional geometries of more immediate interest are th
suitable for standard or exotic Kaluza-Klein reduction.
this paper we will consider only five-dimensional geometr
of this type. In five dimensions there is only one addition
Euler density to be considered: the Gauss-Bonnet term.
main motivation for studying five-dimensional geometri
with a Gauss-Bonnet term comes from the exotic Kalu
Klein reduction realized in the Randall-Sundrum branewo
scenario@2,3#. In this scenario our universe is described a
four-dimensional brane immersed in a five-dimensio
anti–de Sitter bulk. When the braneworld scenario is con
ered as the low-energy limit of string or M theory it becom
even more natural to consider the effects of the Gau
Bonnet term@4,5#.

In the presence of Gauss-Bonnet modifications, it w
first proved that it is possible to obtain a vacuum geome
equivalent to that of Randall and Sundrum apart from a
definition of the constants@6#. This redefinition is such that i
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allows a Minkowski brane in an anti–de Sitter bulk ev
without a bulk negative cosmological constant and a posi
brane tension@7#. A massless graviton is also shown to a
pear in this construction@8,9#. In the context of self tuning
mechanisms for the vanishing of the cosmological cons
~see, for example,@10# and references therein!, the Gauss-
Bonnet term allows one to avoid the presence of naked
gularities in the bulk@11#. Cosmology on the brane in thi
scenario has received much attention@12–17#. In all this
work the brane is maximally symmetric or of cosmologic
type. Here, we analyze branes with arbitrary metric~but with
specific extensions into the bulk!.

In Einstein general relativity there is an easy procedure
produce five-dimensional solutions of the field equations
trivially extending vacuum four-dimensional solutions in
the extra dimension@18#. This procedure was used to find
black-string solution@19# and a plane-wave solution@20# in
the realm of braneworlds. We show that this procedure
generating solutions does not generalize to Einstein-Ga
Bonnet gravity. For the procedure to be applicable, the fo
dimensional geometry has to satisfy an additional constra
its Krestschmann scalar has to be constant. This implie
particular that geometries of black-string type cannot be c
structed in this framework.

In the next section we review and generalize the pro
dure for generatingD-dimensional solutions starting from
(D21)-dimensional ones. We show that the proced
works not only for vacuum solutions@18#, but for Einstein
manifolds. Then, in Sec. III we investigate what happens
the case of Einstein-Gauss-Bonnet gravity withD55. Fi-
nally, we discuss the results and conclude.

II. STACKING TECHNIQUE

There is a set of solutions toD-dimensional Einstein grav
ity that can be constructed in a simple way starting fro
vacuum (D21)-dimensional solutions. The procedure
based on the stacking of any vacuum (D21)-dimensional
solution into the additional dimension@18#. Given any metric
gmn(x) such that the (D21)-dimensional Einstein tenso
satisfiesGmn50, then

ds25dy21gmn~x!dxmdxn ~1!

is a solution of the D-dimensional Einstein equation
(D)GAB50. This procedure can also be used when
©2003 The American Physical Society23-1
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D-dimensional negative cosmological constantuLDu5(D
22)(D21)/2l 2 is present in the bulk: any metric(D)gAB of
the form

ds25dy21e22y/ lgmn~x!dxmdxn, ~2!

wheregmn(x) is a (D21)-dimensional vacuum solution, is
solution of

(D)GAB52LD
(D)gAB . ~3!

Starting with solutions of the type~2! one can easily con
struct braneworld geometries by using the standard cut-a
paste procedure. For instance, the metric

ds25dy21e22uyu/ lgmn~x!dxmdxn ~4!

represents a braneworld geometry withZ2 symmetry with
respect to the location of the brane (y50). In D55, if we
take gmn to be the four-dimensional Schwarzschild metr
we reproduce the black-string geometry@19#. Instead, if we
take gmn to be app wave we have a five-dimensionalpp
wave travelling parallel to the brane@20#.

This technique can be further generalized to the stack
of any Einstein manifold. Using the ansatz for th
D-dimensional metric1

ds25dy21e22A(y)gmn~x!dxmdxn, ~5!

the Einstein equations~3! can be split into

Gmn~x!52C2~y!gmn~x!, ~6!

which correspond to themn components, and

C3~y!1C4~y!R~x!50, ~7!

corresponding to theyy component, whereR5gmnRmn . The
coefficients are given by

C2~y!5FLD2~D22!S A92
~D21!

2
A82D Ge22A, ~8!

C3~y!5LD1
~D21!~D22!

2
A82, ~9!

C4~y!52
1

2
e2A. ~10!

By differentiating Eq.~7! with respect to any brane coord
natexm we obtain

C4~y!R~x! ,m50, ~11!

so that the Ricci scalar has to be constant. For convenie
we write this constant as

1It is interesting to note that, by using additional freedom in t
way in which a (D21)-dimensional geometry is embedded into
D-dimensional Einstein manifold, one can locally and isometrica
embed any metric@21#.
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R56
~D21!~D22!

L2 . ~12!

From Eq.~7! and for a negative cosmological constant in t
bulk, we have an equation forA(y) of the form

~D21!~D22!

2 S 2
1

l 2 1A827
1

L2 e2AD50. ~13!

Then Eq.~6! becomes

Gmn~x!57
~D22!~D23!

2L2 gmn~x!, ~14!

which shows thatgmn(x) must be a (D21)-dimensional
Einstein metric. Equation~13! can be easily solved. Whe
L→` we haveA(y)5y/ l 1b, i.e., the solution in Eq.~2!
~the constantb is irrelevant for the geometry!. For L5” 0 and
definingA52 ln B we have

B825
B2

l 2 6
1

L2 . ~15!

The solution corresponding to the plus sign~positively
curved brane! is

ds25dy21S l

L D 2

sinh2S y2y0

l Dgmn~x!dxmdxn, ~16!

and that corresponding to the minus sign~negatively curved
brane! is

ds25dy21S l

L D 2

cosh2S y2y0

l Dgmn~x!dxmdxn. ~17!

Again one can start from these bulk solutions to build bra
world models. The braneworld models with maximally sym
metric branes, four-dimensional de Sitter and anti–de Si
branes@22#, are the simplest illustration of this procedur
What we have shown here is that by using the same w
factors one can have not only maximally symmetric bran
but any brane of the Einstein type.

For the case of a positive cosmological constant in
bulk, B(y) satisfies

B8252
B2

l 2 6
1

L2 , ~18!

which has solutions only for the plus sign~positively curved
sections!:

B~y!5
l

L
sinS y2y0

l D or B~y!5
l

L
cosS y2y0

l D .

~19!

The case with zero bulk cosmological constant can be
tained by taking the limitl→`:

B~y!5
y2y0

L
. ~20!
3-2
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For completeness, it is interesting to observe that
technique can also be used to generate bulk solutions
positive cosmological constant and arbitrarily curved s
tions. The result in this case differs from the previous one
the following respect: given any Euclidean metricgmn(x)
such thatRmn56@(D22)/L2#gmn(x), then

ds252dt21B~ t !2gmn~x!dxmdxn, ~21!

with

B~ t !55
e2t/ l for L→`, ~22!

l

L
coshS y2y0

l D for the positive sign, ~23!

l

L
sinhS y2y0

l D for the negative sign, ~24!

are LorentzianD-dimensional Einstein manifolds of positiv
curvature. This might be of interest in standard cosmolo
One can deduce this result easily from the above solut
for a negative bulk cosmological constant via the subst
tions l→2 i l , t→ i t , andL→2 iL .

III. EINSTEIN-GAUSS-BONNET GRAVITY

Our central aim is to investigate the stacking technique
the simplest modification of Einstein gravity for highe
dimensional spacetimes, the Einstein-Gauss-Bonnet the
From now on we will setD55. The theory is defined by th
action

S5
1

2k5
2E dx5A2 (5)g@ (5)R22L51a (5)LGB#, ~25!

where

(5)LGB5 (5)RABCD (5)RABCD24 (5)RAB (5)RAB1 (5)R2,
~26!

and a is the coupling constant. The field equations asso
ated with the Einstein-Gauss-Bonnet action are

(5)GAB52L5
(5)gAB2a (5)HAB , ~27!

with

(5)HAB52 (5)RACDE
(5)RB

CDE24 (5)RACBD
(5)RCD

24 (5)RAC
(5)RB

C12 (5)R (5)RAB

2
1

2
(5)gAB

(5)LGB . ~28!

This tensor is divergence-free,¹A (5)HAB50, and so it can
be considered as some type of source in the Einstein e
tions. The existence of this term has dramatic conseque
for the stacking procedure.
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A. Stacking with a Gauss-Bonnet term

We consider a metric of the form given in Eq.~5!, and
introduce it into the Einstein-Gauss-Bonnet equations.
doing this, we obtain a set of equations playing the role
the effective four-dimensional Einstein equations@the mn
components of Eq.~27!#:

C1~y!Gmn~x!52C2~y!gmn~x!, ~29!

and an additional condition@the yy component of Eq.~27!#:

C3~y!1C4~y!R~x!1C5~y!LGB~x!50, ~30!

where

C1~y!5114a~A92A82!, ~31!

C2~y!5@L523~A922A82!

112aA82~A92A82!#e22A, ~32!

C3~y!5L516A82~122aA82!, ~33!

C4~y!52S 1

2
22aA82De2A, ~34!

C5~y!52
a

2
e4A. ~35!

By dividing Eq. ~30! by C5(y) and differentiating with re-
spect toy, we obtain

S C3~y!

C5~y! D 8
2S C4~y!

C5~y! D 8
(4)R~x!50. ~36!

Now, differentiating it with respect to any brane coordina
x, we arrive at

FC4~y!

C5~y!G8R~x! ,m50, ~37!

so that eitherR(x) ,m50 or (C4 /C5)850. We call the first
case physical because it has a well defined limit whena
tends to zero, the Einsteinian limit. Einstein-Gauss-Bon
theory is ambiguous from a dynamical point of view. Th
Lagrangian is quartic in first derivatives of the metric a
thus the same initial data can give rise to different evolutio
@23#. To resolve this ambiguity, one possibility is to choo
as the physical branch that approaching proper general
tivity in the limit a50 @24#. The second case, without a
Einsteinian limit, we call ‘‘purely’’ Gauss-Bonnet.

B. Physical case:R,µÄ0

We write the constant Ricci scalar as

R56
12

L2 . ~38!

By Eq. ~30!, LGB is also a constant,LGB5S1, and then Eq.
~30! gives
3-3
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6A82~122aA82!2S 1

2
22aA82De2AS 6

12

L2D
2

a

2
e4AS11L550, ~39!

or, rearranging,

2aA842S 16
4a

L2 DA821S 2
L5

6
6

1

L2 e2A1
a

12
e4AS1D50.

~40!

Multiplying Eq. ~39! by e24A and differentiating we see tha
Eqs.~29! can be reexpressed as proper Einstein equation
the four-dimensional geometry,

Gmn~x!57
3

L2 gmn~x!. ~41!

In summary,for a metric of the form Eq. (brane! to be a
solution of Einstein-Gauss-Bonnet theory in five dimensio
the four-dimensional metric gmn must be an Einstein metric
Moreover, and this is the important point,it must have a
constant Gauss-Bonnet term, i.e., LGB5const.These condi-
tions imply that the Krestschmann scalar, or equivalently
this case the square of the four-dimensional Weyl curvat
has to be constant. Their values in terms of the const
previously introduced are

RmngsRmngs5S1 , CmngsCmngs5S12
24

L4
. ~42!

This condition precludes the existence of stacking soluti
of the black-string type@19# and most of the solutions o
astrophysical interest. The trivial conformal nature of ma
mally symmetric andpp-wave spacetimes allows them to b
stacked to form five-dimensional bulk solutions and sub
quently braneworld models.

For arbitrary values of the constantS1 the solution of Eq.
~40! cannot be expressed in closed form. However, for
particular valueS1524/L4, which is the relevant value fo
stacking maximally symmetric metrics on the brane, clos
form solutions can be given. For 0.L5526/l 2,

A825
1

4aS 16
4a

L2 e2A1sA12
8a

l 2 D ~43!

wheres561. This expression has a well defined limit fo
a→0 only whens521. For this case and 0<a< l 2/8, we
can definel̃ and L̃ as

1

l̃ 2
5

1

4a S 12A12
8a

l 2 D , ~44!

1

L̃2
5

4a

L2 . ~45!
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Then, substitutingA52 ln B, Eq. ~43! is seen to be equiva
lent to Eq.~15!, i.e.,

B825
B2

l̃ 2
6

1

L̃2
. ~46!

Therefore the warp factors for the Einstein-Gauss-Bon
theory are formally equal to those discussed in Sec. II
with redefined values of the curvature of the stacking hyp
surfaces and the bulk curvature.

Solutions with a,0 are completely equivalent.2 Their
only peculiarity is that positively curved and negative
curved stacking hypersurfaces interchange their associ
warp factors.

The solutions for the cases51 are of purely Einstein-
Gauss-Bonnet type in the sense that they do not have a
defined Einsteinian limit. Particularly interesting is the fa
that in this case the Gauss-Bonnet term can produce a n
tively curved bulk even in the absence of a bulk cosmolo
cal constant@7#. Here we take the view that these solutio
are unphysical. However, a definitive analysis of their phy
cal nature should consider not their proximity to fiv
dimensional Einstein solutions, but their proximity to fou
dimensional Einstein solutions in the reduced fou
dimensional theory that emerges once the compactifica
~exotic or not! has taken place. This is beyond the scope
the present paper.

C. Purely Gauss-Bonnet case

This case is characterized by (C4 /C5)850, so that con-
dition ~37! is satisfied. Therefore,

C4~y!

C5~y!
5S 1

a
24A82De22A5S2 , ~47!

whereS2 is a constant. From Eq.~30!,

C3~y!

C5~y!
1S2R~x!1LGB~x!50, ~48!

and therefore

C3~y!

C5~y!
52

2

a
e24A@L516A82~122aA82!#5S3 , ~49!

S2R~x!1LGB~x!5S3 , ~50!

with S3 another constant. From Eqs.~47! and ~49!, we de-
duce that there are two cases.

~1! S2
25(22/3)S35” 0, L5523/4a. Again, for a.0

we can define constantsl̄ and L̄ via

2In the Gauss-Bonnet modification to general relativity arisi
from string theory,a must be positive. From this viewpoint, thes
solutions are not physical.
3-4
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1

l̄ 2
5

1

4a
, ~51!

1

L̄2
5

uS2u
4

. ~52!

SettingA52 ln B we arrive at an equation equivalent to E
~15!,

B825
B2

l̄ 2
1sgn~S1!

1

L̄2
, ~53!

and therefore at the same formal solutions for the warp
tors. For these warp factors, we can check thatC1(y)
5C2(y)50 and so we reach the intriguing result that the
is a single equation for the four-dimensional metric:

S2R~x!1LGB~x!52
3

2
S2

2 . ~54!

~2! A(y)5const. Without lost of generality we can s
A(y)50, and thenS251/a andS352L5 /a. In this case the
reduced set of equations to solve is, by Eqs.~29! and ~49!,

Gmn52L5gmn , LGB52
2L5

a
. ~55!

If, moreover,L550, these equations do not depend ona
and therefore this case does in fact have a well defined
steinian limit.

IV. DISCUSSION AND CONCLUSIONS

We have seen that in the presence of a Gauss-Bonnet
the generation of five-dimensional bulk solutions via sim
stacking of four-dimensional metrics does not hold, as m
have been naively expected. Although the Gauss-Bon
term is a topological invariant in four dimensions, in th
process of reducing the system from five to four dimensi
the dynamical degrees of freedom of the Gauss-Bonnet t
in five dimensions leave their traces in the reduced the
~cf. @25#!.

Let us consider a different point of view. In the simple
case, with zero bulk cosmological constant and no warp
tor (A50), we substitute the ansatzds25dy2

1gmn(x)dxmdxn into the five-dimensional action,

S5
1

2k5
2E dx5A2 (5)g@ (5)R1a (5)LGB#, ~56!
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and integrate overy ~one can consider a cylindrical conditio
on y to obtain a finite result!. In this way one finds a reduce
action in four dimensions of the Einstein-Hilbert form:

S5
1

2k̃5
2E dx4A2gR. ~57!

~The trivial additive constant left by the Gauss-Bonnet te
has not been written. The Gauss-Bonnet term has bec
topological in the reduction process.! This is the standard
Kaluza-Klein reduction in the absence of the electromagn
part of the metric~in Kaluza-Klein terminology!; therefore
we recover vacuum Einstein gravity in four dimensions@26#.
In standard Kaluza-Klein reduction, the five-dimension
Gauss-Bonnet term modifies the way in which the elect
magnetic field interacts with gravity@27#, but in the absence
of this field there is no other higher-dimensional manifes
tion of the Gauss-Bonnet term. However, what we have s
is that, if one uses first the action Eq.~56! to obtain the
five-dimensional equations of motion and then specialize
the above metric ansatz, one does recover the fo
dimensional Einstein equationsRmn50, but, in addition, one
finds the conditionLGB50. This condition puts a strong re
striction on the allowed geometries. Actually, this conditi
is equivalent toCmnrsCmnrs50, so it permits the existenc
of only conformally trivial four-geometries of this type
Therefore, in the presence of a Gauss-Bonnet term, the
cess of dimensional reduction of the action and subseq
variation is not equivalent to the process of first varying t
five-dimensional action and then reducing dimensionally
resulting equations.

What we have seen in this paper is that this phenome
is general and shows up in braneworld~exotic! compactifi-
cations as well. Our simple ansatz does not allow any cur
ture singularity on the brane, in particular ruling out blac
string-type braneworlds. In this sense our result is in tu
with the well known idea that Gauss-Bonnet corrections
Einstein relativity might smooth out the singularities. Tryin
to find nontrivial brane geometries would involve the cons
eration of an electromagnetic and/or dilaton part for the m
ric with their corresponding effects.
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