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Causal Barrett-Crane model: Measure, coupling constant, Wick rotation, symmetries,
and observables

Hendryk Pfeiffer*
Perimeter Institute for Theoretical Physics, 35 King Street N, Waterloo, Ontario, N2J 2W9, Canada
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We discuss various features and details of two versions of the Barrett-Crane spin foam model of quantum
gravity: first of theSpin~4!-symmetric Riemannian model and second of theSL(2,C)-symmetric Lorentzian
version in which all tetrahedra are spacelike. Recently, Livine and Oriti proposed to introduce a causal
structure into the Lorentzian Barrett-Crane model from which one can construct a path integral that corre-
sponds to the causal~Feynman! propagator. We show how to obtain convergent integrals for the 10j symbols
and how a dimensionless constant can be introduced into the model. We propose a ‘‘Wick rotation’’ which turns
the rapidly oscillating complex amplitudes of the Feynman path integral into positive real and bounded
weights. This construction does not yet have the status of a theorem, but it can be used as an alternative
definition of the propagator and makes the causal model accessible by standard numerical simulation algo-
rithms. In addition, we identify the local symmetries of the models and show how their four-simplex ampli-
tudes can be reexpressed in terms of the ordinary relativistic 10j symbols. Finally, motivated by possible
numerical simulations, we express the matrix elements that are defined by the model, in terms of the continu-
ous connection variables and determine the most general observable in the connection picture. Everything is
done on a fixed two complex.

DOI: 10.1103/PhysRevD.67.064022 PACS number~s!: 04.60.Nc
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I. INTRODUCTION

Spin foam models have been proposed as candidates
quantum theory of gravity; see, for example, the review
ticles @1,2#. A spin foam @3# whose symmetry group is
suitable Lie groupG, is an abstract oriented two-comple
consisting of faces, edges and vertices, together with a
oring of the faces with representations ofG and a coloring of
the edges with compatible intertwiners~representation mor
phisms! of G. Spin foam models are defined by a path in
gral in terms of a sum over spin foams, often over all col
ings of a fixed two complex or in addition over a class of tw
complexes.

The most carefully studied model in this context is t
Barrett-Crane model@4# which was initially formulated for a
Riemannian signature and a localSpin~4! symmetry. A ver-
sion with Lorentzian signature andSL(2,C) symmetry can be
constructed along similar lines. Here we are interested in
model @5# in which all tetrahedra are spacelike; i.e., if th
model is formulated on the two complex dual to a triang
lated four manifold, then the model assigns a geometry to
two complex such that each tetrahedron has a timelike
mal vector.

The idea for the construction of the Barrett-Crane mo
@3,4,6,23# can be sketched as follows. General relativity
four dimensions is reformulated as a topologicalBF theory
with a symmetry groupSpin~4! or SL(2,C), depending on
the signature, subject to bivector constraints which break
topological properties and which ensure that the theory
classically equivalent to general relativity, possibly allowi
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degenerate metrics. TopologicalBF theory is then regular-
ized and quantized on a triangulated four manifold wh
results in a topological spin foam model. The bivector co
straints are finally implemented into this quantum theo
The result is a spin foam model which dynamically assig
geometric data to a purely combinatorial triangulation.

The path integral of the spin foam model can then be u
in order to define the matrix elements of some operator
tween spin network states. There have been different con
tures, for example, that it is some unitary ‘‘time evolution
operator or that this operator is the projection from so
kinematical Hilbert space onto the physical Hilbert space
quantum gravity. The precise role of the fourth directi
~‘‘time?’’ ! in this path integral, however, remained obscu
In particular it was observed@7#, see also Ref.@8#, that the
amplitudes of this path integral are positive real so tha
does not look similar to a complex oscillating ‘‘real time
path integral at all. Formally, it could be an Euclidea
~‘‘imaginary time’’! path integral, but this was not the inten
tion of the construction, and a physical interpretation of t
picture is also lacking.

Recently, Livine and Oriti@9# proposed a modification o
the amplitudes of the Lorentzian Barrett-Crane model
which they employ, for each pair of triangle and four sim
plex, only one out of two summands of the amplitude with
particular sign in the exponent. This guarantees that the c
struction is compatible with a causal structure imposed
the four simplices and that the model resembles a ‘‘r
time’’ Feynman~i.e., causal! path integral of a quantum field
theory with four-dimensional Lorentzian Regge action. In t
following, we call this version of the model the caus
Lorentzian Barrett-Crane model. Livine and Oriti@9# derive
consistency conditions on the relevant signs for the const
tion of this model.
©2003 The American Physical Society22-1
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HENDRYK PFEIFFER PHYSICAL REVIEW D67, 064022 ~2003!
A causal version of the Riemannian Barrett-Crane mo
can be defined by analogy. This, however, is not more t
just a toy model because in this case the causal structure
to be imposed completely by hand and is no longer relate
the signature of the metric. We do include this possibility
the following because it is occasionally very helpful for tec
nical reasons.

Given the causal model with its definition of the Feynm
path integral, there are a number of natural questions to
What is the status of the measure? Are the integrals con
gent, at least for a fixed triangulation and a fixed assignm
of representations to the triangles? Having identified an
tion for the path integral, is there any coupling constant
the model which can affect the dominant contributions to
path integral? Is there a consistent ‘‘Wick rotation’’ in ord
to render all amplitudes positive real and to obtain
‘‘imaginary time’’ model whose physical interpretation w
understand? Which numbers can we extract from the mo
In the present article, we address various aspects of t
questions.

In particular, we give an explicit construction of suitab
sign factors that satisfy the conditions of Livine and Oriti@9#.
We rephrase the causal model so that it becomes man
that a future-pointing increase in the lapse function of
path integral~for details, see Ref.@9#! corresponds to four
simplices with positive four volume. We demonstrate how
split measure andeiS amplitude so that all integrals origina
ing from the 10j symbols are well defined, and we introdu
a dimensionless coupling constant into the model.

As far as the Wick rotation is concerned, we follow ide
from the area of dynamical triangulations@10# and proceed
four simplex by four simplex, introducingi or 2 i into the
exponents in order to obtain an Euclidean action, depend
on whether the simplex itself or its opposite oriented co
terpart appears in the Feynman propagator. It should
pointed out that the relation of this Euclidean theory with t
original one does not yet have the status of a theorem c
parable to the situation in axiomatic quantum field theo
What is the status of Wick rotation in quantum gravity
general? In a path integral of quantum gravity one has
sum, in one way or another, over all possible four metr
most of which do not admit any global time coordina
which one could use in order to Wick rotate a Lorentzian
a Riemannian manifold. In addition, the choice of a tim
coordinate is obviously not a diffeomorphism invariant co
cept. These problems render Wick rotation in a generic qu
tum gravity setting highly questionable. Why then discu
Wick rotation at all?

The answer is that one should not take Wick rotation
erally and not try to substitutet°2 i t for some coordinatet.
Rather, there exists a generalization@11# of the Osterwalder-
Schrader Euclidean reconstruction theorem to backgro
independent theories which relates a path integral the
which is defined on a four manifold of the topologyS3R
and whose measure is reflection positive, with a canon
quantum theory in terms of Hilbert space and Hamilton
on S. In a spin foam context, such a procedure will be ind
pendent of the metric signature because the local frame s
metry is treated as an internal symmetry in the underly
06402
l
n
as

to

-

k.
r-

nt
c-
n
e

n

l?
se

st
e

g
-
e

-
.

o
s

-
n-
s

-

d
ry

al
n
-
m-
g

first order formulation of general relativity. We therefore e
pect that we can independently euclideanize both the R
mannian and the Lorentzian signature models and that t
signatures and symmetry groups do not change under su
transformation.

Since up to now, there does not exist any generally
cepted way of achieving independence of the Barrett-Cr
model from the chosen triangulation, we cannot restore
full diffeomorphism symmetry. Therefore we cannot y
verify all of the generalized Osterwalder-Schrader axio
@11#.

The main motivation for searching an Euclidean vers
of the causal model is the fact that the resulting model w
its positive real amplitudes can be tackled by standard si
lation algorithms. We call the resulting ‘‘Wick rotated
model theEuclidean ~Riemannian or Lorentzian! Barrett-
Crane model. Note that the termEuclideanrefers to the use
of ‘‘imaginary time’’ as opposed to the termRiemannian
which denotes the metric signature.1

In the resulting Euclidean model, one wishes to calcul
interesting quantities. We address the question of which
suitable observables~here meaning numbers we can extra
from the model on a fixed two complex! in the connection
picture, the reformulation which uses continuous variab
and which was developed for the Riemannian model in R
@12# and calculate the most general function of the conn
tion variables that is compatible with the local symmetries
the model. Finally, starting from the analysis of the loc
symmetries, we show how both the causal and the Euclid
model can still be reexpressed in terms of relativistic 1j
symbols which are familiar from the original model.

The present article is organized as follows. In Sec. II,
introduce our notation for oriented two complexes and int
duce the Riemannian and Lorentzian Barrett-Crane mo
in their original formulation. In Sec. III, we review the caus
versions of these models, present a construction of all
quired signs, carefully choose an appropriate measure
identify a dimensionless coupling constant. The transit
amplitudes are euclideanized in Sec. IV. We study in Sec
the most general observables of the model in the connec
picture. In Sec. VI, we show how the causal and the Euc
ean models can be rephrased in terms of the relativisticj
symbols, similar to the original formulation of the mode
Section VII contains some concluding comments.

II. NOTATION AND CONVENTIONS

A. Triangulations and two complexes

We consider the triangulation of an oriented piecew
linear four manifoldM and its dual two-complex. This two
complex is described by setsV of vertices,E of edges, andF
of faces together with maps indicating the source]2(e)
PV and target]1(e)PV of each edgeePE as well as all

1Unfortunately, the term ‘‘Euclidean’’ was historically also used
order to denote the Riemannian signature.
2-2
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CAUSAL BARRETT-CRANE MODEL: MEASURE, . . . PHYSICAL REVIEW D 67, 064022 ~2003!
edges] j ( f )PE in the boundary of each facef PF. Here 1
< j <N( f ) enumerates all these edges.

As far as the orientations are concerned, we write«(v)
P$21,11% depending on whether the four simplex dual
vPV is isomorphic to a simplex inM or whether this is true
for its counterpart with opposite orientation, denoted byv* .
For eachvPV, ePE, we write «(v,e)P$21,11% for the
orientation of the tetrahedron dual toe in the boundary of the
four simplex dual tov.

In the interior ofM, each tetrahedron is contained in th
boundary of exactly two four simplices so that it appe
once with either orientation. Therefore

«~v1 ,e!«~v1!52«~v2 ,e!«~v2!, ~2.1!

where the tetrahedron dual toePE is contained in the
boundary of the two four-simplices dual tov1 ,v2PV.

Finally, we write«(e, f )P$21,11% for the orientation of
the triangle~dual to the face! f PF in the boundary of the
tetrahedron~dual to the edge! ePE.

In our formulas, we always use the notation of the tw
complex (V,E,F). If we mean the two complex dual to
triangulation, we often omit the words ‘‘dual to’’ and spea
of the four simplexvPV, the tetrahedronePE, etc. As the
motivation of the causal Barrett-Crane model involves
sults from Regge calculus, we are initially restricted to the
two complexes dual to triangulations. In the subsequent
tions of this article, however, our formulas will be valid o
any oriented two complex (V,E,F).

B. The original models

The partition function of the Riemannian o
Spin~4!-symmetric2 Barrett-Crane model@4# can be written
@12#

ZR5S )
f PF

(
j fP1/2N0

~2 j f11! D S )
ePE

E
S3

dxe
~1 !E

S3
dxe

~2 !D
3S )

f PF
Af D S )

ePE
AeD )

vPV

3S )
f Pv0

KR
~ j f !~xe1~ f ,v !

~1 ! ,xe2~g,v !
~2 ! ! D , ~2.2!

where the setv0#F includes all faces that contain the verte
vPV in their boundary, ande1( f ,v)PE denotes the edge in
the boundary of the facef PF that has the vertexv
5]1(e)PV as its target, similarlye2( f ,v). The function

KR
~ j !~x,y!ª

sin@~2 j 11!dR~x,y!#

~2 j 11!sindR~x,y!
, ~2.3!

2Note that we can equally well start from anSO(4) symmetry
without changing the resulting model@12#. Also note that we con-
sider the version of the original proposal@4# that employs the rela-
tivistic 10j symbols.
06402
s

-
e
c-

denotes the~normalized! character ofSU(2) in the (2j
11)-dimensional irreducible representation. It depends o
on the relative polar angle

dR~x,y!ªcos21~x•y!>0 ~2.4!

on S3>SU(2) where we write normalized vectorsx,y
PS3#R4 and denote the standard scalar product inR4 using
a center dot.

The model~2.2! contains a sum over all simple3 ~also
called balanced! irreducible representationsVj ^ Vj* of
SO(4) whereVj>C2 j 11 denotes the irreducible represent
tions of SU(2). There are also continuous variables in t
model, namely two integrals overS3 for each edge which
originate from the integral presentation@13# of the Riemann-
ian 10j symbols. The last product over theKR

( j ) in Eq. ~2.2! is
the integrand of the 10j symbol. For the geometric interpre
tation of the continuous variables, see Ref.@12#.

The functionsAf and Ae in the integrand of Eq.~2.2!
denote amplitudes for each face and for each edge which
not fixed by the geometric conditions imposed in the co
struction of the Barrett-Crane model@4#. There exist severa
proposals for these amplitudes in the literature so that
leave them unspecified in the following calculations.

The Lorentzian Barrett-Crane model whose symme
group4 is SL(2,C) in the version in which all tetrahedra ar
spacelike@5#, is defined in complete analogy by the partitio
function

ZL5S )
f PF

E
0

`

pf
2dpf D S )

ePE
E

H1
3

dxe
~1 !E

H1
3

dxe
~2 !D S )

f PF
Af D

3S )
ePE

AeD )
vPV

S )
f Pv0

KL
~pf !~xe1~ f ,v !

~1 ! ,xe2~ f ,v !
~2 ! ! D ,

~2.5!

where

KL
~p!~x,y!ª

sin@pdL~x,y!#

p sinhdL~x,y!
, ~2.6!

and

dL~x,y!ªcosh21~x•y!>0 ~2.7!

denotes the relative rapidity~hyperbolic distance! of x,y
PH1

3 #R113. Here we denote by

H1
3
ª$xPR113: x•x51 and x0.0% ~2.8!

three-dimensional hyperbolic space, written as the set of
ture pointing timelike unit vectors in Minkowski spaceR113

whose standard scalar productx•y is diagonal with entries

3We useVj ^ Vj* instead of the isomorphicVj ^ Vj in order to
remove all unnecessary signs from the expressions, see also
@8,12#.

4By an analogous argument as before, we could have rather
senSO0(1,3), the connected component of the Lorentz group t
contains the unit~the proper orthochronous group!.
2-3
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HENDRYK PFEIFFER PHYSICAL REVIEW D67, 064022 ~2003!
~1, 21, 21, 21!. Note that we are following the convention
of Refs.@5,14# here. It should be mentioned that the integr
over H1

3 in Eq. ~2.5! converge only after division by an
infinite volume factor@14#. We keep this fact in mind, bu
leave our formulas unchanged in order to preserve their
symmetry.

III. THE CAUSAL MODELS

A. A construction

Livine and Oriti @9# have proposed a modification of th
Lorentzian model~2.5! in which one writes the sine in th
numerator of each factorKL

(p) as a sum of two exponential
and keeps only one of the exponentials, discarding the o
What matters is the sign that appears in the exponent.
authors derive consistency conditions under which one
make this choice for the entire triangulation so that one
tains a total amplitudeeiS in the integrand in whichS is
related to the four-dimensional Lorentzian Regge action
this section, we present a full construction of the relev
signs.

We use the notation introduced in Sec. II A and obse
that the condition~85! of Ref. @9# coincides with our Eq.
~2.1!.

In order to interpret the model~2.5! geometrically as in
Ref. @12#, we wish to associate two future pointing timelik
vectorsxe

(6)PH1
3 to each tetrahedron. The only question

what future pointing means for a purely combinatorial tria
gulation.

There is some additional information required, namely
partial order ‘‘s’’ on the setV of four simplices such that the
relation is at least defined for each pair of four simplices t
share a tetrahedron in their boundary. Without loss of ge
ality, we can then put only tetrahedrae into the setE for
which ]1(e)s]2(e). Otherwise we rather includee* in the
setE and adapt the«~•,•! factors of Sec. II A accordingly.

Observe that if we had triangulated an oriented Lorentz
four manifold with only spacelike tetrahedra, we could ha
derived the partial order ‘‘s’’ from the causal structure of the
metric, i.e., ‘‘s’’ means ‘‘in the causal future of,’’ and the
above construction would precisely result in future pointi
timelike normal vectors.

The choice of signs in Ref.@9# is based on the Lorentzia
Regge action in four dimensions. Therefore one has to
culate the ‘‘dihedral rapidities’’~generalized defect angles!
for all pairs of neighboring tetrahedrae1 ,e2PE that co-
bound a given trianglef PF. Neighboring here means tha
both tetrahedra are contained in the boundary of the s
four simplexvPV. The outward normals are then given b
nej

ª«(v,ej )«(v)xej
PR113, j P$1,2%, and we also define

normalsmej
5«(ej , f )nej

which go clockwise ‘‘around the
triangle f.’’ These are used in order to calculate the Loren
ian analogue of the defect angle. Recall that all triangles
spacelike.

Depending on the shape of the four simplexv, we are
either in thethin wedgesituation~see Ref.@15# for the analo-
gous three-dimensional case!, in which the rapidity relevant
for the action corresponds to an interior angle
06402
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j~xe1
,xe2

!5cosh21~me1
•me2

!, ~3.1!

or else in thethick wedgesituation in which it corresponds to
an exterior one

j~xe1
,xe2

!52cosh21~2me1
•me2

!. ~3.2!

As all xe are future pointing, we are in the thin wedge case
and only if

«~v,e1!«~e1 , f !«~v,e2!«~e2 , f !511. ~3.3!

It can thus be shown that the relevant rapidity is always

j~xe1
,xe2

!ª«~v,e1!«~e1 , f !«~v,e2!

3«~e2 , f !cosh21~xe1
•xe2

!. ~3.4!

The contribution to the Lorentzian Regge action from
given trianglef PF is, therefore,

Sf5Af (
vP f 0

j~xe1~ f ,v !
~1 ! ,xe2~ f ,v !

~2 ! !, ~3.5!

whereAf denotes the area of the trianglef PF and the set
f 0#V contains all four simplices in whose boundary the t
anglef occurs, so that the sum is over all pairs of tetrahe
e1( f ,v), e2( f ,v) that share the trianglef and that are con-
tained in the boundary of the same four simplexvPV.

While the Regge actionSf for any single triangle is of the
form ~3.5!, each triangle can contribute with a different tot
sign «( f )P$21,11% so that the overall action is rather

S5k (
f PF

«~ f !Sf , ~3.6!

where we have also introduced a dimensionless ‘‘couplin
constantk.

The «( f ) are not independent though. There exist re
tions for each four simplex from Stokes’ theorem for t
oriented normal vectors to the tetrahedra in its bound
which can be evaluated differentially using the Lorentzi
version of the Schla¨fli identities @16#. For each four simplex
vPV and two tetrahedrae1 ,e2PE sharing a common tri-
angle f PF, the condition is

«~ f !5«~v,e1!«~e1f !«~v,e2!«~e2 , f !m~v !, ~3.7!

wherem(v)P$21,11% denotes an unspecified sign for ea
four-simplex. This condition was given in Ref.@16# writing
aeª«(v)«(v,e)«(e, f ).

It would now even be possible to absorb them(v) into the
orientation of the four simplices of the selected triangulat
by putting eitherv or v* into the setV so that allm(v)5
11. It is, however, also possible to keep the orientations
the four simplices as they are and to choosem(v)ª«(v). As
we will see below, a four simplex with«(v)511 is then
interpreted as a future-pointing contribution to the cau
path integral.
2-4
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CAUSAL BARRETT-CRANE MODEL: MEASURE, . . . PHYSICAL REVIEW D 67, 064022 ~2003!
According to Ref. @9#, the causal Lorentzian Barret
Crane model is defined by replacingKL

(p)(x,y) in Eq. ~2.5!
by

K̃L
~p!~x,y!ª

«~ f !ei«~ f !px

2ip sinhx
, xª«~ f !«~v !dL~x,y!,

~3.8!

depending on the trianglef PF and the four simplexvPV.
This expression leads precisely to the Lorentzian Regge
tion ~3.6! in the exponent. In order to see this, combine E
~3.4! with Eq. ~3.7!. We remind the reader that we are fo
lowing the conventions of Refs.@5,14# which differ from
those employed in Ref.@9#. By analogy with the Lorentzian
model, we also define a causal Riemannian Barrett-Cr
model replacingKR

( j )(x,y) in Eq. ~2.2! by

K̃R
~ j !~x,y!ª

«~ f !ei«~ f !~2 j 11!w

2i ~2 j 11!sinw
, wª«~ f !«~v !dR~x,y!.

~3.9!

B. The measure

Recall that the integrals overH1
3 in the original version of

the Lorentzian model~2.5! had to be regularized@14#, ex-
ploiting theSL(2,C) invariance of the 10j symbol and divid-
ing by an infinite volume factor, in order to obtain absolute
convergent integrals. It can be seen from Eq.~3.8! that the
same procedure will not suffice in order to define the cor
sponding integrals of the causal model because the ov
numerator is of modulus one while the denominator goe
zero linearly asx→0 so that these integrals will diverge
Therefore the four-simplex amplitudes cannot even be
fined for a given assignment of representationspf to the
faces.

This situation is different in nature from the expected
vergence of the partition function which is already famili
from the Ponzano-Regge model in three dimensions, wh
originates just from the summation over infinitely many re
resentations and which can be understood as an infrare
vergence@17#.

In order to proceed, we therefore have to modify E
~3.8! and ~3.9! in a suitable way. Let us consider the Ri
mannian case first. The first observation is that there is s
freedom in the splitting performed in Ref.@9# into one factor
which is associated with the overall measure, here the
nominator (2j 11)sinw, and another factor, here the n
merator sin@(2j11)w#, which is interpreted as the amplitud
eiS6e2 iS. The splitting was only motivated by the analog
with the lower dimensional cases, as outlined, for exam
in Ref. @18#. The key condition is that the amplitude fact
can be written as the sum of two complex conjugate term
modulus one.

There exists, for example, the following alternative sp
ting which leads to a bounded measure part and still satis
the required condition on the amplitude part
06402
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The cosine of the amplitude part can then still be written
eiS1e2 iS. We observe that the numerator of the meas
part goes to zero linearly asw→0 canceling the divergenc
and at the same time we get the expression (j 11/2)w in the
exponent of the amplitude part which uses the area eig
value (j 11/2) of Ref. @19#. At this point the Riemannian
model is very helpful because this area eigenvalue dire
motivates the choice of Eq.~3.10!.

The new definitions which replace the causal amplitud
~3.8! and ~3.9! are, therefore,

KR,causal
~ j ! ~x,y!ª

sinS 2 j 11

2
w D

~2 j 11!sinw
ei«~ f !~ j 11/2!w, ~3.11!

and by analogy the Lorentzian case

KL,causal
~p! ~x,y!ª

sinS p

2
x D

p sinhx
ei«~ f !(p/2)x, ~3.12!

wherew andx are defined as in Eqs.~3.8! and ~3.9!.
In the Riemannian case, the integrals over thexe

(6)PS3

converge because allKR,causal
( j ) are bounded and integrate

over a compact manifoldS33¯3S3. In the Lorentzian
case, we notice that

uKL,causal
~p! ~x,y!u<2uKL

~p/2!~x,y!u, ~3.13!

so that the proof of convergence of the integrals
KL

(p)(x,y) over thexe
(6)PH1

3 which was presented in Ref
@14#, implies the existence of our integrals of theKL,causal

(p)

over thexe
(6)PH1

3 . We can use the same regularization pr
cedure.

C. A coupling constant

In our notation, we can simplify Eqs.~3.11! and~3.12! as
follows:

KL,causal
~p! ~x,y!5«~v !«~ f !

sinFp

2
dL~x,y!G

p sinhdL~x,y!
ei«~v !~p/2!dL~x,y!,

~3.14!

KR,causal
~ j ! ~x,y!

5«~v !«~ f !

sinS 2 j 11

2
dR~x,y! D

~2 j 11!sindR~x,y!
ei«~v !~ j 11/2!dR~x,y!,

~3.15!
2-5
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so that the exponents depend only on one sign«(v) per four
simplex. This links the orientation of four simplices with th
amplitudes of the causal model. Therefore we can write
partition function of the causal Lorentzian Barrett-Cra
model as

ZL,causal5S )
f PF

E
0

`

pf
2dpf D S )

ePE
E

H1
3

dxe
~1 !E

H1
3

dxe
~2 !D

3S )
f PF

Af D S )
ePE

AeD
3 )

vPV
S )

f Pv0

sinFpf

2
dL~xe1~ f ,v !

~1 ! ,xe2~ f ,v !
~2 ! !G

pf sinhdL~xe1~ f ,v !
~1 ! ,xe2~ f ,v !

~2 ! !
D

3exp~ iSL!, ~3.16!

where

SLªk (
vPV

«~v ! (
f Pv0

pf

2
dL~xe1~ f ,v !

~1 ! ,xe2~ f ,v !
~2 ! ! ~3.17!

denotes the Regge action in the variables of the Lorent
model in which the areas of the trianglesf PF are given by
the pf /2>0. Observe that the prefactors«(v)«( f ) of Eq.
~3.14! cancel in the product over all vertices and all fac
attached to the vertices.

The causal Riemannian model is given by

ZR,causal5S )
f PF

(
j fP1/2N0

~2 j f11! D S )
ePE

E
S3

dxe
~1 !E

S3
dxe

~2 !D
3S )

f PF
Af D S )

ePE
AeD

3 )
vPV

S )
f Pv0

sinF2 j f11

2
dR~xe1~ f ,v !

~1 ! ,xe2~ f ,v !
~2 ! !G

~2 j f11!sindR~xe1~ f ,v !
~1 ! ,xe2~ f ,v !

~2 ! !
D

3exp~ iSR!, ~3.18!

where

SRªk (
vPV

«~v ! (
f Pv0

S j f1
1

2DdR~xe1~ f ,v !
~1 ! ,xe2~ f ,v !

~2 ! !

~3.19!

is the Regge action in terms of the variables of the Riema
ian model in which the triangle areas are given byj f1

1
2 .

In both cases, the amplitudes of the causal model lea
the Regge action for the special valuek51 which in turn
indicates that there could have been be a free parameterk in
the Barrett-Crane model right from the beginning. This o
servation suggests the following generalization of the or
nal amplitudes~2.3! and ~2.6! to
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e

n

s

n-

to

-
i-

KR
~ j !~x,y!ª

sinF2 j 11

2
dR~x,y!G

~2 j 11!sindR~x,y!
•2 cosS 2 j 11

2
kdR~x,y! D ,

~3.20!

KL
~p!~x,y!ª

sinFp

2
dL~x,y!G

p sinhdL~x,y!
•2 cosS p

2
kdL~x,y! D ,

~3.21!

and of the causal amplitudes~3.14! and ~3.15! to

KL,causal
~p! ~x,y!5«~v !«~ f !

sinFp

2
dL~x,y!G

p sinhdL~x,y!
ei«~v !~p/2!kdL~x,y!,

~3.22!

LR,causal
~ j ! ~x,y!

5«~v !«~ f !

sinF2 j 11

2
dR~x,y!G

~2 j 11!sindR~x,y!
ei«~v !~ j 11/2!kdR~x,y!.

~3.23!

Observe that we have inserted the coupling constantk only
into the amplitude part, but not into the measure part, cf.
~3.10!.

Once one has accepted the idea for the construction o
causal model, some splitting such as Eq.~3.10! is necessary
in order to make the integrals overH1

3 or S3 convergent. The
constantk parametrizes in some sense the nonuniquenes
such a splitting. Notice that the original model forkÞ1 no
longer satisfies the bivector constraints of Ref.@4# nor does
the causal model satisfy them.

At this point, the various models diverge from each oth
and the important question is what the physical relevance
the splitting~3.10! and of the constantk is. In the following
sections, we provide some tools in order to study these q
tions. These are first the definition of an Euclidean version
the causal model in order to apply numerical simulations a
second the study of the symmetries and the most gen
observables of these models.

As far as the significance of the constantk is concerned,
there seem to prevail two opposite philosophies among
experts. If a classical limit can be obtained by studying
large spin~or semiclassical! limit for a single four simplex,
the appearance ofk is unlikely to have much impact. If
however, the four simplices are too strongly coupled and
classical limit requires a nonperturbative renormalization
‘‘block-spin’’ or coarse graining transformations in the spi
of statistical mechanics, then the new parameterk can easily
influence the results, even in the original Barrett-Cra
model. For numerical results in the original model, see R
@20#. Even the fact that the original Barrett-Crane model w
kÞ1 does not satisfy the bivector constraints anymo
would not necessarily be fatal. Ifk happens to control the
2-6
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renormalization scale, it is conceivable that the constra
are satisfied only approximately at an effective coa
grained scale.

It was already observed in Ref.@9# that the variables of
the path integral, independent areaspf or j f and directions
xe

(6)PH1
3 or S3, indicate that the Regge actions~3.17! and

~3.19! have to be understood as actions in a first order
malism @21#. This is consistent with the fact that the Reg
action appears only in the intermediate stage of the dua
transformation@12# in which both types of variables ar
present. The necessary constraint@21# that the variation of
the angles is only over dihedral angles that correspond
actual four-simplex geometries, has been automatic
implemented in the construction of the causal model,
Sec. III A or Ref.@9#.

IV. EUCLIDEANIZATION

In both partition functions~3.16! and ~3.18!, the Regge
action takes its simplest form, i.e., with the least number
explicit signs, if one sums over all four simplices only in th
last step. If one interprets each four simplex with«(v)5
11 as a future-pointing contribution to the causal path in
gral, i.e., obtained after integrating only over positive lap
for details see Ref.@9#, there is an obvious candidate for a
Euclidean model by a suitable modification of the amp
tudes. This can be done four simplex by four simplex. If
substitute«(v)• i into all exponents, we turn the oscillation
into an exponential damping and arrive at the following p
posal for an Euclidean Lorentzian Barrett-Crane model:

ZL,Eucl5S )
f PF

E
0

`

pf
2dpf D S )

ePE
E

H1
3

dxe
~1 !E

H1
3

dxe
~2 !D

3S )
f PF

Af D S )
ePE

AeD
3 )

vPV
S )

f Pv0

sinFpf

2
dL~xe1~ f ,v !

~1 ! ,xe2~ f ,v !
~2 ! !G

pf sinhdL~xe1~ f ,v !
~1 ! ,xe2~ f ,v !

~2 ! !
D

3exp~2SL,Eucl!, ~4.1!

where

SL,Euclªk (
vPV

(
f Pv0

pf

2
dL~xe1~ f ,v !

~1 ! ,xe2~ f ,v !
~2 ! !. ~4.2!

This means that we have replacedKL,causal
(p) by

KL,Eucl
~p! ~x,y!ª

sinFp

3
dL~x,y!G

p sinhdL~x,y!
e2~p/2!kdL~x,y!. ~4.3!

Similarly for Riemannian signature,
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ZR,Eucl5S )
f PF

(
j fP1/2N0

~2pf11! D S )
ePE

E
S3

dxe
~1 !E

S3
dxe

~2 !D
3S )

f PF
Af D S )

ePE
AeD

3 )
vPV

S )
f Pv0

sinF2 j f11

2
dR~xe1~ f ,v !

~1 ! ,xe2~ f ,v !
~2 ! !G

~2 j f11!sindR~xe1~ f ,v !
~1 ! ,xe2~ f ,v !

~2 ! !
D

3exp~2SR,Eucl!, ~4.4!

where

SR,Euclªk (
vPV

(
f Pv0

S j f1
1

2DdR~xe1~ f ,v !
~1 ! ,xe2~ f ,v !

~2 ! !.

~4.5!

i.e., we have replacedKR,causal
( j ) by

KR,Eucl
~ j ! ~x,y!ª

sinF2 j 11

2
dR~x,y!G

~2 j 11!sindR~x,y!
e2~ j 11/2!kdR~x,y!.

~4.6!

We note thatSL,Eucl>0 andSR,Eucl>0 for anyk>0.
Unfortunately, the Euclidean reconstruction@11# does not

provide a recipe of how to derive theEuclidean action, i.e.,
how to choose the four-dimensional path integral measure
a fixed background with a distinguishedt coordinate, one is
usually guided by the heuristic substitutiont°2 i t which
typically changes some signs in the action wherever there
time derivatives involved, i.e., in the kinetic energy pa
With the special ‘‘time’’ coordinate used in three
dimensional Lorentzian dynamical triangulations, there
still a similar substitution one can use in order to constr
the Euclidean action@10#. The substitution used in thos
models essentially distinguishes spacelike from timelike s
plices and introduces a relative sign.

In the case of spin foam models, we do not have suc
‘‘time’’ coordinate at hand. However, since in the Lorentzia
case all triangles are spacelike and therefore treated on e
footing, we expect that no relative signs enter the Euclide
action. As long as we capture the relevant local symmetr
one can expect that Euclidean reconstruction will lead to
correct canonical theory by universality arguments.

We observe that if we fix all representations associated
the faces to the same representation, we get regular flat
plices so that we are in a situation very similar to a sin
configuration in a dynamical triangulation model@10#. The
main difference to the dynamical triangulation models is t
in those models all simplices have the same geometry
particular the same size, and that all dynamical propertie
the geometry are encoded in the sum over triangulations
the case of the Barrett-Crane models, we have the additi
complication that the geometry of the individual simplices
determined by the assignment of representationsj f or pf to
the triangles. Therefore, the individual simplices can alrea
be arbitrarily large. We also stress that the formulas~4.1! and
2-7
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~4.4! refer to a two complex with a causal structure impos
on the vertices. This excludes in particular space times w
closed timelike curves. Even stronger, if we have Euclide
reconstruction following@11# in mind, we cannot yet dea
with topology change and have to require a global spa
time topology ofS3R.

In the following section, we study expectation values
the continuous variables of the Barrett-Crane models. W
these definitions, one can easily establish a dictionary in
der to compare our constructions with the generalized
clidean reconstruction of Ref.@11#. Note that the Euclidean
measure of Ref.@11# includes the integration measures, t
factors which we have called themeasure partand also what
we have called theamplitude part. On very regular triangu-
lations, it is possible to check under which conditions t
Euclidean path integral measure of the Barrett-Crane mo
is reflection positive~this refers to what is calledlink reflec-
tion positive by lattice gauge theorists!. This condition is
satisfied provided that the edge and face amplitudes are
i.e., if they do not change when one dualizes all represe
tions involved.

V. OBSERVABLES

In this section, we consider all Barrett-Crane models m
tioned so far as path integrals over the continuous connec
variablesxe

(6)PS3 or H1
3 . This point of view has already

been adopted in Ref.@12# for the Riemannian model wher
we have shown that one can perform the sums over the

resentationsj 50,1
2 ,1,... as soon as the edge amplitudes

sufficiently simple. This point of view is also more close
related to the Euclidean reconstruction@11# than is the usua
picture in which the variables of the path integral are
representations attached to the triangles. In the following,
therefore consider thexe

(6) as the variables of the path inte
gral while the rest of the partition function, including th
sums over thej f or the integrals over thepf , belongs to the
amplitudes.

A. Local symmetries

All the versions of the Riemannian signature model,
original one~2.2!, the causal~3.18!, and the Euclidean one
~4.4!, are invariant under the following localSpin~4! @or
SO(4)] symmetry@12#

xe
~1 !°h]1~e!xe

~1 !h̃]1~e!
21 ,

xe
~2 !°h]2~e!xe

~2 !h̃]2~e!
21 , ~5.1!

where (hv ,h̃v)PSpin(4), for all vPV, defines a generating
function of this local gauge transformation. We have iden
fied S3>SU(2), and theproducts in Eq.~5.1! are inSU(2).
The independence follows from the invariance of the sca
productx•y in R4 in the definition ofdR(x,y), cf. Eq. ~2.4!.

The Lorentzian counterpart of this local symmetry
given by
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xe
~1 !°h]1~e!•xe

~1 ! ,

xe
~2 !°h]2~e!•xe

~2 ! , ~5.2!

wherehvPSL(2,C) for eachvPV, and the dot denotes th
action of SL(2,C) on Minkowski spaceR113. Again, this
symmetry is a consequence of the invariance of the sc
product in Minkowski space under the action ofSL(2,C)
which appears in the definition ofdL(x,y), cf. Eq. ~2.7!. All
versions of the Lorentzian signature model, Eqs.~2.5!,
~3.16!, and~4.1! are invariant under Eq.~5.2!.

B. Most general expectation values

The most general functions of the variablesxe
(6) that are

invariant under these local transformations, can be calcula
by standard techniques~see, for example, Ref.@22# for de-
tailed examples!. An orthonormal basis for such functions
characterized bySpin~4! or SL(2;C) spin networks on the
graph~V, E!.

For the Riemannian case, let,e50,1
2 ,1,..., specify a

simple irreducible representationV, ^ V,* of Spin~4! for each
edgeePE, and let

P~v !:S ^

ePE:
v5]2~e!

~V,e
^ V,e

* ! D ^ S ^

ePE:
v5]1~e!

~V,e
^ V,e

* ! D→C

~5.3!

denote~an arbitrary, but suitably normalized! spin~4! inter-
twiner for each vertexvPV. Then the spin network function

~5.4!

is invariant under the local symmetry~5.1!. The tpq
(,) are the

representative functions ofSU(2)>S3 and we follow the
conventions of Ref.@12#. Any L2 function of thexe

(6) that is
invariant under the local symmetry, is a square summa
series over spin network functions of the form~5.4!.

For the Lorentzian case, letV(0,qe) ,qe>0, denote a simple

irreducible representation ofSL(2,C) for each edgeePE.
The vectors of these representation spaces can be mod
by functionsH1

3 →C, see Refs.@5,14# for details. Employing
the Gel’fand-Graev transform, an orthonormal basis
V(0,q) is given by the functions
2-8
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H jm
~q! :H1

3 →C, x°H jm
~q!~x!ªE

G
Yjm~j!~x•j!212 ipdj,

~5.5!

whereG denotes the two-sphere of future-pointing lightlik
vectors whose spatial component are unit vectors, and
integral is performed using the normalized Lebesgue m
sure ofG. The indices of the spherical harmonicsYjm are in
the rangej 50,1,2,..., and2 j <m< j . Let furthermore

Q~v !:S ^

ePE:
v5]2~e!

V~0,qe!
* D ^ S ^

ePE:
v5]1~e!

V~0,qe!D→C ~5.6!

denote~an arbitrary! SL(2,C) intertwiner for each vertexv
PV, given in terms of the coefficients

~5.7!

with respect to the above basis. Then the spin network fu
tion

~5.8!

is invariant under the local symmetry~5.2!. All L2 functions
of the xe

(6) that are invariant under this local symmetry, a
Plancherel integrals over spin network functions of the fo
~5.8!. There will, however, arise convergence issues sim
to those studied in Ref.@14#.

If one views the partition function of the Barrett-Cran
model as a path integral over the continuous variablesxe

(6) ,
the numbers one can extract from the model are precisely
expectation values of spin network functions of the fo
~5.4! or ~5.8!, respectively. In the Riemannian case, the
expectation values read
06402
he
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r

he

e

^F,,P&5
1

ZR,X
S )

ePE
E

S3
dxe

~1 !E
S3

dxe
~2 !DF,,P~$xe

6%!

3S )
f PF

(
j fP1/2N0

~2 j f11! D S )
f PF

Af D
3S )

ePE
AeD )

ePE
S )

f Pv0

KR,X
~ j f !~xe1~ f ,v !

~1 ! ,xe2~ f ,v !
~2 ! ! D ,

~5.9!

for spin network functionsF,,P of the form ~5.4!. Here the
symbolX in ZR,X andKR,X stands for ‘‘original,’’ ‘‘causal,’’
or ‘‘Euclidean,’’ respectively.

In the Lorentzian case, the analogous expectation va
reads

^Gq,Q&5
1

ZL,X
S )

ePE
E

H1
3

dxe
~1 !E

H1
3

dxe
~2 !DGq,Q~$xe

6%!

3S )
f PF

E
0

`

pf
2dpf D S )

f PF
Af D

3S )
ePE

AeD )
vPV

S )
f Pv0

KL,X
~pf !~xe1~ f ,v !

~1 ! ,xe2~ f ,v !
~2 ! ! D .

~5.10!

The Euclidean reconstruction@11# relies on this type of ex-
pectation values in the construction of the physical Hilb
space.

The expressions~5.9! and ~5.10! can be reformulated in
the language of a path integral whose variables are repre
tations assigned to the faces and in which the integrals o
the xe

(6) are performed, resulting in relativistic 10j symbols
as the vertex amplitudes. We call this formulation in whi
the representationsj f or pf are the variables of the pat
integral, therepresentation pictureas opposed to theconnec-
tion picture in which the continuous variablesxe

(6) are the
variables of the path integral. The transformation from one
the other picture proceeds in complete analogy to the ca
lation for the partition function presented in Ref.@12#.

We can therefore reexpress the expectation values~5.9!
and ~5.10! in the representation picture. In the case of t
original models~2.2! and~2.5! with k51, the result takes the
simplest form. If, say in the Riemannian version, the sp
network functionF,,P is supported only on edges in th
boundary of the two complex, the expectation value^F,,P&
agrees with a matrix element of spin network states. T
means it is calculated by summing over all spin foams of
Barrett-Crane model living on the given two complex, b
with additional faces and edges added so that these faces
edges are colored by the same representations and inter
ers ($,e%,$P(v)%) as those that characterize the spin netwo
function F,,P . These expressions are the desired matrix e
ments between spin network states. A completely analog
result holds for the original Lorentzian model.

Observe that the expectation values~5.9! and ~5.10! are
more general than just such matrix elements of spin netw
2-9
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states. First, we have shown that the intertwinersP(v) and
Q(v) can be genericSpin~4! or SL(2,C) intertwiners and are
not restricted to the special Barrett-Crane intertwiners. T
standard conjecture seems to be that for pure gravity,
sufficient to employrelativistic spin networks, i.e., spin net
works whose representations are simple and whose in
twiners are the Barrett-Crane intertwiner. If this happens
be true, then our calculation above parametrizes the m
generic way of coupling other fields to pure gravity. This w
be of relevance when one studies the coupling of matte
the Barrett-Crane model. Indeed the choice of intertwin
~5.3! and ~5.6! is the first occasion where the difference
Spin~4! or SL(2,C) versusSO(4) or SO0(1,3) matters.

The second aspect in which the expectation values~5.9!
and ~5.10! are more general than matrix elements of s
network states, is the fact that they are not restricted to
boundary of the four manifold. This can be seen as an a
ogy to the Wilson loop in lattice gauge theory which is us
to determine the static potential between a quark-antiqu
pair. This loop is not only supported on the spacelike bou
ary of the four manifold, but it extends in time direction
the interior. This construction serves as a simplified vers
of a matter coupling which captures only the color propert
of the matter field but which neglects its dynamics. Simi
constructions may also prove useful in the study of s
foam models of quantum gravity.

In particular, a generic Wilson loop in the connection va
ables will give access to the curvature of the fullSpin~4! or
SL(2,C) connection and therefore to dynamical propert
and not just to its restriction to a spacelike boundary. Fina
we stress that the study of expectation values such as^F,,P&
and ^Gq,Q& is a convenient way of sidestepping the oft
tedious technicalities when one deals with boundary term

VI. TECHNICAL ISSUES

A. Back to the 10j symbols

The expectation valueŝF,,P& and ^Gq,Q& become more
complicated than what we have discussed so far, as soo
we consider the causal or the Euclidean model orkÞ1 in the
original model. Recall that in the original partition functio
~2.5!, the integrations over theH1

3 together with the produc
of KL

(p) form the relativistic 10j symbols~up to the regular-
ization mentioned above!. As soon as we replace theKL

(p) by
Eqs. ~3.21!, ~3.22!, or ~4.3!, we no longer have a mode
whose four-simplex amplitudes are the relativistic 10j sym-
bols. In the original model fork51, we were able to ‘‘solve’’
the integrations over theH1

3 and knew that the result of th
integration had an abstract definition as a relativistic 1j
symbol. After the modification of the integrandsKL,X

(p) , there
is no obvious analogy available.

In the following we show how the local symmetry of Se
V A can be exploited in order to expand the modified in
grand, a product of factorsKL,X

(p) , into a series of ordinary
relativistic 10j symbols. The novel feature is that this st
requires an additional colouring of thewedges~the intersec-
tion of a face of the two complex dual to the triangulati
with a four simplex of the original triangulation! with simple
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representations of the symmetry group.
Consider first the Riemannian case. The functio

KR,X
( j ) (x,y) whereX stands for ‘‘original,’’ ‘‘causal,’’ or ‘‘Eu-

clidean,’’ are L2 functions S33S3→C. Since they depend
only on cosdR(x,y)51

2x
(1/2)(gx•gy

21), wheregx ,gyPSU(2)
denote the corresponding elements ofSU(2)>S3, they are
class functions onSU(2) and can be character expanded in
a square summable series

KR,X
~ j ! ~x,y!5 (

k50,1/2,1,...,
K̂k

~ j !x~k!~gx•gy
21!,

K̂k
~ j !
ªE

SU~2!
x~k!~g!KR,X

~ j ! ~g!dg, ~6.1!

where we writeKR,X
( j ) (g) in order to indicate thatKR,X

( j ) (x,y)
is a function ofg5gx•gy

21.
With this expansion performed for each trianglef PF and

all four simplicesvP f 0#F that contain the trianglef in their
boundary, we can apply the techniques of Ref.@12# and ob-
tain

~6.2!

This expression looks more complicated than it actually
We can explain it in words as follows. There are two types
summations over representations. These are first the
over all colorings of the trianglesf PF with simple represen-
tations V( j f , j

f* )5Vj f
^ Vj f

* of Spin ~4!, and second the sum

over all colorings of the wedges (f ,v) with representations
V(kf v ,k

f v* ) . Here the wedges are denoted by specifying a d

face f PF and a four simplexvP f 0#V whose intersection
forms the wedge.

In addition to the face and edge amplitudesAf and Ae
already present in the original model~2.2!, there is now an
additional amplitudeK̂k

( j f ) for each wedge, namely, a chara

f v

2-10
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ter expansion coefficient of Eq.~6.1!. For the causal model
this amplitude will in general be complex.

The amplitude for each four simplexvPV is given by the
expression inside the square brackets in Eq.~6.2!. It is given
by the usual relativistic 10j symbol with a piece of the spin
network (,,P) inserted~Fig. 1!. The various summation
contract the indices of the Barrett-Crane intertwiners wh
are denoted by

I ~1,e!: ^

f Pe2

V~kf ]1~e! ,k
f ]1~e!
* !→ S ^

f Pe1

V~kf ]1~e! ,k
f ]1~e!
* !D

^ V~,e ,,
e* ! ,

I ~2,e!: ^

f Pe1

V~kf ]2~e! ,k
f ]2~e!
* !→ S ^

f Pe1

V~kf ]2~e! ,k
f ]2~e!
* !D

^ V~,e ,,
e* ! , ~6.3!

using the conventions of Ref.@12#. Here the setse6#F con-
tain all trianglesf that are contained in the boundary of th
tetrahedronePE with orientation«(e, f )561. If the inter-
twiner P of the spin network (,,P) is a Barrett-Crane inter
twiner, this amplitude is an evaluated relativistic spin n
work and therefore non-negative real. For the Riemann
case, this was shown in Ref.@8# whereas for the Lorentzian
analogue, this is a plausible conjecture@7#.

Observe that the representationsj f attached to the tri-
angles appear only in the expressions for the character
pansion coefficientsK̂kf v

( j f ) . The representations for which th

10j symbols are evaluated, are no longer thej f , but rather
the representationskf v associated with the wedges (f ,v).

Equation~6.2! illustrates the impact that the choice of th
causal or Euclidean amplitudes has on the structure an
the symmetries of the model. The central new feature is
additional coloring of the wedges with representations. O
for the original Barrett-Crane model withk51, there exists a
significant simplification because in this caseKR

( j ) is already

an SU(2) character. This implies thatK̂k
( j )5d jk so that all

wedges (f ,v) of a given dual facef PF are assigned the
same representationkf v5 j f . In this special case, Eq.~6.2!
reduces to the original Barrett-Crane model@4# with a spin
network (,,P) inserted into its 10j symbols.

FIG. 1. The four-simplex amplitude of the expectation val
^F,,P& in Eq. ~6.2! is the relativistic 10j symbol ~solid lines! in
which a piece of the spin network (,,P) has been inserted~dashed
lines!. The full dots denote the Barrett-Crane intertwiners and
white dot the intertwinerP of the spin network.
06402
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Is there a Lorentzian counterpart of the decomposit
~6.1!? In order to derive that formula we have made use
the identificationS3>SU(2) which does not have an imme
diate analogue in the Lorentzian case. Let us reformulate
argument so that we can generalize it.

The functionsKR,X
( j ) (x,y) all have the symmetry

KR,X
~ j ! ~gx,gy!5KR,X

~ j ! ~x,y!, ~6.4!

for all x,yPS3 and gPSpin(4) acting onS3 ~Sec. V A!.
Because of this symmetry, the function is already specifie
we know its valuesf (x)ªKR,X

( j ) (x,e) whereePS3 denotes
the north pole. If we write the functionf :S3→C as a function
on Spin~4! which is constant on the left cosetsgU whereU
ªstabSpin(4)(e)>SU(2) and S3>Spin(4)/U, the invari-
ance condition~6.4! implies that f is also constant on the
right cosetsUg and therefore a zonal spherical functio
These functions are precisely the characters ofSU(2) using
the identificationS3>SU(2) employed above.

A generalization of Eq.~6.1! to the Lorentzian case is now
available since we know that the zonal spherical functio
for the quotient V\SL(2;C)/V, V5stabSL(2;C)(et), et

5(1,0,0,0), are precisely the functionsKL
(p)(x,et) @see Eq.

~2.6!#. Therefore we obtain the result that anyL2 function
f :H1

3 3H1
3 →C which satisfies

f ~gx,gy!5 f ~x,y!, ~6.5!

for all x,yPH1
3 andgPSL(2;C), is a Plancherel integral o

the form

f ~x,y!5E
0

`

f̂ ~p!KL
~p!~x,y!p2dp, ~6.6!

for a suitable functionf̂ :R1→C.
Therefore the strategy which has lead to Eq.~6.2!, can be

directly applied to the Lorentzian case. We do not repeat
analogue of Eq.~6.2! here as the required substitutions a
now obvious: replace the sums over half integers by integ
*0

`p2dp and make use of the integral presentation of
Barrett-Crane intertwinersI (6,e). The analogues of the com
ments listed below Eq.~6.2! also apply to the Lorentzian
case.

B. Averaging over the stabilizer

In Ref. @12# we have developed the quantum geometry
the Barrett-Crane model in the connection picture. This
cludes in particular the interpretation of the integrals overS3

or H1
3 that appear in the Barrett-Crane intertwiner, as in

grals over possible directions of the vectors normal to
tetrahedra. The fact that there are two such variables for e
tetrahedron was interpreted as the consequence of a
trivial parallel transport which is associated with each tet
hedron and which maps the first normal to the second o
This parallel transport, however, is not a fullSpin~4!-or
SL(2;C)-parallel transport, but it is rather specified only u

e

2-11
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to elements of the stabilizer which leave the first norm
vector fixed. It was then possible to express what is the
ference betweenBF theory and the Barrett-Crane model. It
precisely this averaging over the stabilizers. For more
tails, see Ref.@12#.

The geometric interpretation was developed originally
Riemannian signature, see Sec. 4.2 of Ref.@12#. These re-
sults can be easily translated to Lorentzian signature by
replacement ofSpin(4)/SU(2)>S3 by SL(2,C)/SU(2)
>H1

3 . The comparison of the Barrett-Crane model withBF
theory in Sec. 4.3 of Ref.@12# relies on lemma 4.4 therein
whose generalization we sketch in the following.

Let t ( j 1m1)( j 2m2)
(n,p) denote a representative function

SL(2;C) in a representation of typeV(n,p) ,nPZ,p.0, of the
principal series. We realize the representationV(n,p) as a suit-
able space of sections of a line bundleS3→S2 and obtain an
orthonormal basis from the spherical functions on the to
spaceS3 so that the range of the indices of the representa
functions is given by j ,5un/2u, un/2u11,..., and m,

P$2 j , ,2 j ,11,...,j ,% for ,51,2. It is then possible to show
that

E
SU~2!

t ~ j 1m1!~ j 2m2!
~n,p! ~gu!du5H 0 if nÞ0,

H j 1m1

~p! d j 20dm20 if n50.
~6.7!

Here SU(2)#SL(2,C) is embedded as the stabilizer ofet

5(1,0,0,0)PH1
3 , and the functionsH jm

(p) form an orthonor-
mal basis of functionsH1

3 →C, see~5.5!. This shows that
there exists anSU(2)-invariant subspace ofV(n,p) only if the
representation is simple,n50, and that this subspace is on
dimensional. We therefore obtain basis functions onH1

3

>SL(2;C)/SU(2) from representative functions ofSL(2;C)
by averaging over the rightSU(2) action.

Now we consider two pointsx,yPH1
3 . For each z

PH1
3 , there exists some boostbzPSL(2;C) such that

bz(et)5z. The group elementsgPSL(2;C) that mapgy
5x are of the form

g5bxby
21uy , ~6.8!

where uyPstabSL(2;C)(y)>SU(2). However, if uy

Pstab(y), thenby
21uybyPstab(et) and conversely, therefor

g5bxut
21by

21, ~6.9!

for someutPstab(et). We use this parametrization ofg and
average over the stabilizer:
06402
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E
SU~2!

t ~ j 1m1!~ j 2m2!
~n,p! ~bxuby

21!du5dn0H j 1m1

~p! ~bx!H j 2m2

~p! ~by!.

~6.10!

The construction of Ref.@12# then says that for any ho
lonomygPSL(2,C) at an edge, it matters only howg acts on
H1

3 . Therefore we choose somexPH1
3 , calculatey5gx and

average over the stabilizer ambiguity. The integration o
the group which is present in the path integral then result
the desired integrations overH1

3 . This is the Lorentzian ana
logue of lemma 4.4 of Ref.@12#.

VII. DISCUSSION

What we have explained in Secs. IV and V, the Euclide
reconstruction and the analysis of the degrees of freedom
the Barrett-Crane model from an understanding of its lo
symmetries, is only one motivation for studying the obse
ables in the connection picture. Another motivation aris
from the observation@12# that for some edge amplitudes, th
partition function in the connection picture is particular
simple and resembles a spin model~just ‘‘spin,’’ not ‘‘spin
foam’’! with variables inS3 or H1

3 with local interaction
terms at the faces. In particular, no evaluations of 10j sym-
bols are necessary in this case which makes numerical s
lations computationally cheaper. One has just to tabulate
interaction terms.

For the original Riemannian model it was observed
both formulations, in the connection picture@12# and in the
representation picture@20#, that the dominant configuration
of the partition function often correspond to degenerate
ometries. With the results presented here, there are two
developments which can modify this conclusion. This is fi
the introduction of the constantk ~Sec. III C! which provides
a natural way of controlling the width of the peaks in th
picture of Ref.@12#. This is what a coupling constant@tem-
perature# in a path integral@statistical mechanics# model
typically does. The constantk may play an important role
when one tries to locate a critical point at which one c
renormalize the model. Second, the causal and the Euclid
model have amplitudes very different from the origin
model. In the connection picture, the Euclidean version
be studied by exactly the same techniques as the orig
version so that one can start to investigate and compare
models and their physical interpretation. The transformat
of Sec. VI A then allows us to perform the same studies
the representation picture.

Finally, we note that all our formulas for partition func
tions, matrix elements and expectation values use the
guage of generic two complexes. These are not restricte
be dual to a given triangulation. The only exceptions we
the motivating steps which explicitly involved results fro
Regge calculus which are available only on triangulation
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