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We discuss various features and details of two versions of the Barrett-Crane spin foam model of quantum
gravity: first of theSpin4)-symmetric Riemannian model and second of 81€2,C)-symmetric Lorentzian
version in which all tetrahedra are spacelike. Recently, Livine and Oriti proposed to introduce a causal
structure into the Lorentzian Barrett-Crane model from which one can construct a path integral that corre-
sponds to the causédFeynman propagator. We show how to obtain convergent integrals for thesgbols
and how a dimensionless constant can be introduced into the model. We propose a “Wick rotation” which turns
the rapidly oscillating complex amplitudes of the Feynman path integral into positive real and bounded
weights. This construction does not yet have the status of a theorem, but it can be used as an alternative
definition of the propagator and makes the causal model accessible by standard numerical simulation algo-
rithms. In addition, we identify the local symmetries of the models and show how their four-simplex ampli-
tudes can be reexpressed in terms of the ordinary relativisticsgtbols. Finally, motivated by possible
numerical simulations, we express the matrix elements that are defined by the model, in terms of the continu-
ous connection variables and determine the most general observable in the connection picture. Everything is
done on a fixed two complex.
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[. INTRODUCTION degenerate metrics. TopologicBF theory is then regular-
ized and quantized on a triangulated four manifold which
Spin foam models have been proposed as candidates forrasults in a topological spin foam model. The bivector con-
quantum theory of gravity; see, for example, the review arStraints are finally implemented into this quantum theory.
ticles [1,2]. A spin foam[3] whose symmetry group is a The result is a spin foam model which dynamically assigns
suitable Lie groupG, is an abstract oriented two-complex geometric data to a purely combinatorial triangulation.
consisting of faces, edges and vertices, together with a col- 1he path integral of the spin foam model can then be used
oring of the faces with representations@and a coloring of N order to define the matrix elements of some operator be-
the edges with compatible intertwinefiepresentation mor- \WeeN spin network states. There have bee“n'dlfferent conjec-
phisms of G. Spin foam models are defined by a path inte-tUres, for example, that it is some unitary “time evolution
gral in terms of a sum over spin foams, often over all color-operator or that this operator is the projection from some
ings of a fixed two complex or in addition over a class of two kinematical H|I_bert space onto the physical Hilbert space of
complexes. quantum gravity. The precise role of the fourth direction

. . . . “time?” ) in thi h integral, however, remain re.
The most carefully studied model in this context is the(t e?") in this path integral, however, remained obscure

. o In particular it was observef7], see also Ref8], that the
Barrett-Crane modgH] which was initially formulated for a amplitudes of this path integral are positive real so that it

Riemannian signature and a locapir(4) symmetry. A Ver-  qqeq not ook similar to a complex oscillating “real time”
sion with Lorentzian signature arl(2,) symmetry can bé path integral at all. Formally, it could be an Euclidean
constructed along similar lines. Here we are interested in thesimaginary time”) path integral, but this was not the inten-
model[5] in which all tetrahedra are spacelike; i.e., if the tjon of the construction, and a physical interpretation of this
model is formulated on the two complex dual to a triangu-picture is also lacking.
lated four manifold, then the model assigns a geometry to the Recently, Livine and Orit[9] proposed a modification of
two complex such that each tetrahedron has a timelike nothe amplitudes of the Lorentzian Barrett-Crane model in
mal vector. which they employ, for each pair of triangle and four sim-
The idea for the construction of the Barrett-Crane modeblex, only one out of two summands of the amplitude with a
[3,4,6,23 can be sketched as follows. General relativity inparticular sign in the exponent. This guarantees that the con-
four dimensions is reformulated as a topologiB& theory  struction is compatible with a causal structure imposed on
with a symmetry grouBSpin4) or SL(2,C), depending on the four simplices and that the model resembles a “real
the signature, subject to bivector constraints which break théme” Feynman(i.e., causalpath integral of a quantum field
topological properties and which ensure that the theory isheory with four-dimensional Lorentzian Regge action. In the
classically equivalent to general relativity, possibly allowing following, we call this version of the model the causal
Lorentzian Barrett-Crane model. Livine and Of#] derive
consistency conditions on the relevant signs for the construc-
*E-mail address: hpfeiffer@perimeterinstitute.ca tion of this model.
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A causal version of the Riemannian Barrett-Crane modefirst order formulation of general relativity. We therefore ex-
can be defined by analogy. This, however, is not more thapect that we can independently euclideanize both the Rie-
just a toy model because in this case the causal structure hasannian and the Lorentzian signature models and that their
to be imposed completely by hand and is no longer related teignatures and symmetry groups do not change under such a
the signature of the metric. We do include this possibility intransformation.
the following because it is occasionally very helpful for tech-  Since up to now, there does not exist any generally ac-
nical reasons. cepted way of achieving independence of the Barrett-Crane

Given the causal model with its definition of the Feynmanmodel from the chosen triangulation, we cannot restore the

path integral, there are a number of natural questions to askull diffeomorphism symmetry. Therefore we cannot yet
What is the status of the measure? Are the integrals conveerify all of the generalized Osterwalder-Schrader axioms
gent, at least for a fixed triangulation and a fixed assignmert11].
Of I’epl’esenta’[ions to the triangIES? HaVing |dent|f|ed anh ac- The main motivation for Searching an Euc“dean Version
tion for the path integral, is there any coupling constant ingf the causal model is the fact that the resulting model with
the model which can affect the dominant contributions to theis positive real amplitudes can be tackled by standard simu-
path integral? Is there a consistent “Wick rotation” in order |4;ion algorithms. We call the resulting “Wick rotated”

,tf) rer_1der a.II a{nplitudes positive f.ea' gnd to ot_Jtain @Mmodel the Euclidean (Riemannian or LorentzianBarrett-
imaginary time” model whose physical interpretation we ~.. .o odel. Note that the terBiuclideanrefers to the use

? i . . . . .
understand? Whlch numbers can we extract from the model(jf “imaginary time” as opposed to the terrRiemannian
In the present article, we address various aspects of theseh. e
questions which denotes the metric signatufre.

In particular, we give an explicit construction of suitable . In th? resultmg.Euclldean model, one W|shes o cal-culate
sign factors that satisfy the conditions of Livine and Cji9i. mtgrestmg guantities. We addrgss the question of which are
We rephrase the causal model so that it becomes manifeStitable observableghere meaning numbers we can extract
that a future-pointing increase in the lapse function of thd™m the model on a fixed two complgin the connection
path integral(for details, see Refl9]) corresponds to four picture the reformulation which uses continuous variables
simplices with positive four volume. We demonstrate how to@nd which was developed for the Riemannian model in Ref.
split measure and'® amplitude so that all integrals originat- [12] and calculate the most general function of the connec-
ing from the 10 symbols are well defined, and we introduce tion variables that is compatible with the local symmetries of
a dimensionless coupling constant into the model. the model. Finally, starting from the analysis of the local

As far as the Wick rotation is concerned, we follow ideassymmetries, we show how both the causal and the Euclidean
from the area of dynamical triangulations0] and proceed model can still be reexpressed in terms of relativisti¢ 10
four simplex by four simplex, introducingor —i into the ~ symbols which are familiar from the original model.
exponents in order to obtain an Euclidean action, depending The present article is organized as follows. In Sec. I, we
on whether the simplex itself or its opposite oriented counintroduce our notation for oriented two complexes and intro-
terpart appears in the Feynman propagator_ It should b@uce the Riemannian and Lorentzian Barrett-Crane models
pointed out that the relation of this Euclidean theory with thein their original formulation. In Sec. Ill, we review the causal
original one does not yet have the status of a theorem con¥ersions of these models, present a construction of all re-
parable to the situation in axiomatic quantum field theory.quired signs, carefully choose an appropriate measure and
What is the status of Wick rotation in quantum gravity in identify a dimensionless coupling constant. The transition
general? In a path integral of quantum gravity one has t@mplitudes are euclideanized in Sec. IV. We study in Sec. V
sum, in one way or another, over all possible four metricghe most general observables of the model in the connection
most of which do not admit any global time coordinate picture. In Sec. VI, we show how the causal and the Euclid-
which one could use in order to Wick rotate a Lorentzian toean models can be rephrased in terms of the relativisic 10
a Riemannian manifold. In addition, the choice of a timesymbols, similar to the original formulation of the model.
coordinate is obviously not a diffeomorphism invariant con-Section VII contains some concluding comments.
cept. These problems render Wick rotation in a generic quan-
tum gravity setting highly questionable. Why then discuss
Wick rotation at all? II. NOTATION AND CONVENTIONS

The answer is that one should not take Wick rotation lit-
erally and not try to substitute— —i = for some coordinate
Rather, there exists a generalizat{dd] of the Osterwalder- We consider the triangulation of an oriented piecewise
Schrader Euclidean reconstruction theorem to backgrouniihear four manifoldM and its dual two-complex. This two
independent theories which relates a path integral theorgomplex is described by se¥sof vertices E of edges, andr
which is defined on a four manifold of the topolodyx R of faces together with maps indicating the source(e)
and whose measure is reflection positive, with a canonicak V and targety, (e) e V of each edgec E as well as all
quantum theory in terms of Hilbert space and Hamiltonian
onX. In a spin foam context, such a procedure will be inde-
pendent of the metric signature because the local frame sym-tunfortunately, the term “Euclidean” was historically also used in
metry is treated as an internal symmetry in the underlyingorder to denote the Riemannian signature.

A. Triangulations and two complexes
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CAUSAL BARRETT-CRANE MODEL: MEASURE. . .

edgesd;(f ) e E in the boundary of each fade= F. Here 1
<j=<N(f) enumerates all these edges.

As far as the orientations are concerned, we wgite)
e{—1,+1} depending on whether the four simplex dual to
v eV is isomorphic to a simplex iM or whether this is true
for its counterpart with opposite orientation, denotedvBy
For eachv eV, ecE, we write e(v,e) e {—1,+ 1} for the
orientation of the tetrahedron dualéan the boundary of the
four simplex dual taw.

In the interior ofM, each tetrahedron is contained in the

boundary of exactly two four simplices so that it appears

once with either orientation. Therefore

e(vy,8)e(vy)=—¢(v,,8)e(vy), (2.1

where the tetrahedron dual tee E is contained in the
boundary of the two four-simplices dual tq,v,e V.

Finally, we writee(e,f ) e {—1,+ 1} for the orientation of
the triangle(dual to the facgf e F in the boundary of the
tetrahedrondual to the edgeecE.

In our formulas, we always use the notation of the two
complex (V,E,F). If we mean the two complex dual to a
triangulation, we often omit the words “dual to” and speak
of the four simplexv e V, the tetrahedroee E, etc. As the

motivation of the causal Barrett-Crane model involves re- . N C .
é;rouﬁ1 is SL(2,C) in the version in which all tetrahedra are

épacelike[S], is defined in complete analogy by the partition

sults from Regge calculus, we are initially restricted to thes
two complexes dual to triangulations. In the subsequent se
tions of this article, however, our formulas will be valid on
any oriented two complex\{,E,F).

B. The original models

The partition function of the Riemannian or
Spir(4)-symmetrié Barrett-Crane moddl4] can be written
[12]

Zr= 2j++1 f dx(+)f dx)
R f];[F jfe;/Z\o ( Jf ) G];[E § e § e
X H Af)(H Ae> H
feF ecE eV
it) _
X f];uo Ky (xéjzf,w.xgzg,v))), (2.2

where the set,CF includes all faces that contain the vertex
v € V in their boundary, ané . (f,v) € E denotes the edge in
the boundary of the facd e F that has the vertex
=g, (e) eV as its target, similarhe_(f,v). The function

_sin(2j+1)dr(X,y)]
©(2j+1)sindg(x,y) '

()
R

K

(x,y): (2.3

°Note that we can equally well start from &0(4) symmetry
without changing the resulting modgl2]. Also note that we con-
sider the version of the original propogd! that employs the rela-
tivistic 10j symbols.
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denotes the(normalized character ofSU(2) in the (2
+1)-dimensional irreducible representation. It depends only
on the relative polar angle

dr(X,y):=cos (x-y)=0 (2.9
on S’=SU(2) where we write normalized vectors,y
e S’C R* and denote the standard scalar produdtrusing
a center dot.

The model(2.2) contains a sum over all simplealso
alled balanced irreducible representations/j®vj?‘ of
SQO(4) WhereV]ECZ'+1 denotes the irreducible representa-
tions of SU(2). There are also continuous variables in the
model, namely two integrals oves® for each edge which
originate from the integral presentatiptg] of the Riemann-
ian 10 symbols. The last product over th¢)) in Eq.(2.2) is
the integrand of the 3j0symbol. For the geometric interpre-
tation of the continuous variables, see HéR)|.

The functionsA; and A, in the integrand of Eq(2.2)
denote amplitudes for each face and for each edge which are
not fixed by the geometric conditions imposed in the con-
struction of the Barrett-Crane model]. There exist several
proposals for these amplitudes in the literature so that we
leave them unspecified in the following calculations.

The Lorentzian Barrett-Crane model whose symmetry

(>

function

2= (L [ otom| [ IL [ o[ | IL
feF JO eckE HJr HJr feF
(Pr)(+) (-)
X GEIE Ae) UE[V (fgo KL (Xe-:(f,v) ’Xe_(f,v)))’ (2.5
where
sin pd.(x,y)]
(p) . B
and
d,(x,y):=cosh }(x-y)=0 2.7

denotes the relative rapiditthyperbolic distance of x,y

e H3 CRY" 3. Here we denote by
H3:={xeR"3 x.-x=1 and x>0} (2.9

three-dimensional hyperbolic space, written as the set of fu-

ture pointing timelike unit vectors in Minkowski spaté *3
whose standard scalar producty is diagonal with entries

Swe useV]-®Vj* instead of the isomorphi¥/;®V; in order to
remove all unnecessary signs from the expressions, see also Refs.
[8,12].

4By an analogous argument as before, we could have rather cho-
senS(y(1,3), the connected component of the Lorentz group that
contains the unitthe proper orthochronous group
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(1, -1, —1, —1). Note that we are following the conventions £(Xe.,Xe,)=cOSh 1(m,. -m,.), (3.2
of Refs.[5,14] here. It should be mentioned that the integrals v v

over H3 in Eq. (2.5 converge only after division by an or else in thethick wedgesituation in which it corresponds to
infinite volume factor[14]. We keep this fact in mind, but an exterior one

leave our formulas unchanged in order to preserve their full

symmetry. &(Xe,Xe,) = —COSH Y- M, Me,). (3.2

IIl. THE CAUSAL MODELS As all x, are future pointing, we are in the thin wedge case if

and only if
A. A construction

Livine and Oriti[9] have proposed a modification of the e(v.e)e(ey,f)e(v.e)e(ey,f)=~+1. 33

Lorentzian model2.5 in which one writes the sine in the

. It can thus be shown that the relevant rapidity is always
numerator of each factd¢(P’ as a sum of two exponentials picity y

and keeps only one of the exponentials, discarding the other. E(Xe X ) i=2(v,81)e(e1,f )e(v,8,)
What matters is the sign that appears in the exponent. The 12
authors derive consistency conditions under which one can Xe(e,,f )COSh_l(Xel'Xez)- (3.4

make this choice for the entire triangulation so that one ob-
- . S . - . . . . . . i
tains a total amplitudee™ in the integrand in whiclSis  The contribution to the Lorentzian Regge action from a
related to the four-dimensional Lorentzian Regge action. ”biven trianglef e F is, therefore,
this section, we present a full construction of the relevant

signs. B

We use the notation introduced in Sec. Il A and observe Si=A¢ Ef f(xéizf,v) XS o)) (3.5
that the condition(85) of Ref. [9] coincides with our Eq. velo
(2.7).

. . . whereA; denotes the area of the triandle F and the set

In order to '.”terpre‘ the .mOdQE'S) geomet.nc.ally asn foCV contains all four simplices in whose boundary the tri-
Ref. [12]’“\';’6 W'3$h to associate two future pointing t|m_el|k_e anglef occurs, so that the sum is over all pairs of tetrahedra
vectorsx, '€ HY} to each tetrahedron. The only question is e.(f,v), e_(f,v) that share the triangleand that are con-
what future pointing means for a purely combinatorial trian-t5ined in the boundary of the same four simplex V.
gulation. While the Regge actio8; for any single triangle is of the

There is some additional information required, namely, &, (3.5), each triangle can contribute with a different total
partial order “>" on the setV of four simplices such that the signe(f)e{—1,+1} so that the overall action is rather

relation is at least defined for each pair of four simplices that
share a tetrahedron in their boundary. Without loss of gener-
ality, we can then put only tetrahedginto the setE for S=« > e(f)S, (3.9
which d, (e)>d_(e). Otherwise we rather include® in the fef
setE and adapt the(,-) factors of Sec. Il A accordingly. 06 e have also introduced a dimensionless “coupling”

Observe that if we had triangulated an oriented Lorent2|a|?:

. . ; onstantx.

four manifold with only spacelike tetrahedra, we could have
derived the partial order*" from the causal structure of the
metric, i.e., “>" means “in the causal future of,” and the
above construction would precisely result in future pointing
timelike normal vectors.

The ¢(f) are not independent though. There exist rela-
tions for each four simplex from Stokes’ theorem for the
oriented normal vectors to the tetrahedra in its boundary
which can be evaluated differentially using the Lorentzian

The choice of signs in Refg] is based on the Lorentzian version of the Schié identities[16]. For each four simplex

L : ; eV and two tetrahedr&,,e, e E sharing a common tri-

Regge action in four dimensions. Therefore one has to caf lefcE. th ndition i
culate the “dihedral rapidities{generalized defect angles angleter, the co on1s
for all pairs of neighboring tetrahedre,,e, e E that co- _
bound a given triangldé e F. Neighboring here means that s(f)=s(v.e)s(erl)ov.&)s(ezMulv), (3.7
both t_etrahedra are contained in the boundary of Fhe SaMBherew(v) e{—1,+1} denotes an unspecified sign for each
four simplexv e V. Thelgl;tvv_ard normals are then given by ¢, simplex. This condition was given in RdfL6] writing
nejzzs(v,ej)s(v)xejeR , .16{1,2}, and lwe also define ag=e(v)e(v,e)e(ef).
normalsme, =¢(€;,f )n, which go clockwise “around the It would now even be possible to absorb &) into the
trianglef.” These are used in order to calculate the Lorentz-orientation of the four simplices of the selected triangulation
ian analogue of the defect angle. Recall that all triangles arby putting eitherv or v* into the setV so that allu(v)=
spacelike. +1. It is, however, also possible to keep the orientations of

Depending on the shape of the four simplexwe are the four simplices as they are and to chopge):=¢(v). As
either in thethin wedgesituation(see Ref[15] for the analo- we will see below, a four simplex witlk(v)=+1 is then
gous three-dimensional casén which the rapidity relevant interpreted as a future-pointing contribution to the causal
for the action corresponds to an interior angle path integral.
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According to Ref.[9], the causal Lorentzian Barrett- (2j+1
grane model is defined by replacid™(x,y) in Eq. (2.5 sn[(2j+1)e] "M T2 ¢ 2j+1 )
y 2t Dsine _ (2j+ Dsing 2% 72 ¢/
. measure amplitude
Ry S () ) (349
V)i =, Xi=€ g(v YY),
- 2ip sinhy g The cosine of the amplitude part can then still be written as

(38 ¢iSte1S We observe that the numerator of the measure
part goes to zero linearly as—0 canceling the divergence
depending on the trianglee F and the four simplex e V. and at the same time we get the expressioh¥/2)¢ in the
This expression leads precisely to the Lorentzian Regge agxponent of the amplitude part which uses the area eigen-
tion (3.6) in the exponent. In order to see this, combine Eqwalue (+1/2) of Ref.[19]. At this point the Riemannian
(3.4 with Eq. (3.7). We remind the reader that we are fol- model is very helpful because this area eigenvalue directly
lowing the conventions of Ref¢5,14] which differ from  motivates the choice of EG3.10.
those employed in Ref9]. By analogy with the Lorentzian ~ The new definitions which replace the causal amplitudes
model, we also define a causal Riemannian Barrett-Crang g) and (3.9) are, therefore,
model replacing<(F{)(x,y) in Eq. (2.2 by
2j+1

sin @

& (f)eis( @i+ e K le()(+12e (3,11

. X,y) e A
i) LN — R causdl (2j+1)sine
(3.9 and by analogy the Lorentzian case

[P
B. The measure sinl 5 x

(p) — ie(f ) (pl2)x
KL,causa(va) psinhy € , (3.12

Recall that the integrals ovde’r?jr in the original version of
the Lorentzian mode{2.5) had to be regularizefil4], ex-
ploiting theSL(2,C) invariance of the 10symbol and divid- where¢ and y are defined as in Eq$3.8) and(3.9).
ing by an infinite volume factor, in order to obtain absolutely  In the Riemannian case, the integrals over x@@ eS®
convergent integrals. It can be seen from E2j8) that the  converge because al{l), .. are bounded and integrated
same procedure will not suffice in order to define the correpyer a compact manifol&®x---xS3. In the Lorentzian
sponding integrals of the causal model because the overalhse, we notice that
numerator is of modulus one while the denominator goes to
zero linearly asy—0 so that these integrals will diverge. |KPLausd X V)= 2[KPP(x,y)], (3.13
Therefore the four-simplex amplitudes cannot even be de- ’
fined for a given assignment of representatignsto the  so that the proof of convergence of the integrals of
faces. KPP (x,y) over thex(") e H® which was presented in Ref.

This situation is different in nature from the expected di-[14], implies the existence of our integrals of tHEP) e

vergence of the partition function which is already familiar ;o thex(®*) c H® . We can use the same regularization pro-
from the Ponzano-Regge model in three dimensions, whic edure € *

originates just from the summation over infinitely many rep-
resentations and which can be understood as an infrared di-
vergencq 17].

In order to proceed, we therefore have to modify Eqgs. In our notation, we can simplify Eq$3.11) and(3.12 as
(3.8) and (3.9) in a suitable way. Let us consider the Rie- follows:
mannian case first. The first observation is that there is some
freedom in the splitting performed in R¢8] into one factor Ed x.y)
which is associated with the overall measure, here the de- ) 2 GLixy
nominator (3+1)sing, and another factor, here the nu- KL,causa(va):S(U)S(f)m
merator sif(2j+1)¢], which is interpreted as the amplitude ' (3.14
e'S+e 'S, The splitting was only motivated by the analogy
with the lower dimensional cases, as outlined, for exampleg () 4%.Y)
in Ref. [18]. The key condition is that the amplitude factor '™

C. A coupling constant

sin

eia(v)(p/Z)dL(X,y),

can be written as the sum of two complex conjugate terms of (2j+1
modulus one. S'”( dR(X’Y)) o
There exists, for example, the following alternative split-  =&(v)e(f) 2+ Dsind ) gle(@)(+1/2dr(xy)
ting which leads to a bounded measure part and still satisfies J indg(x,y
the required condition on the amplitude part (3.19
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so that the exponents depend only on one sign) per four
simplex. This links the orientation of four simplices with the

amplitudes of the causal model. Therefore we can write thekd)(x,y):=

partition function of the causal Lorentzian Barrett-Crane

model as
- 2d f d (+)j d (—)
HF fo PrdPpr el;[E H3 Xe H3 Xe

Z| causar ;
(11 Af)( 11 Ae)
feF eckE

PHYSICAL REVIEW D67, 064022 (2003

12]+1
Si —dR(x,y) 2j+1
(2j+1)sindg(x,y) 2COS< 2

KdR(le)) ’
(3.20

sm d (x,y)

KP(x,y):= 2COS(§KdL(X,y)>,

(3.21

p smhdL(x y)

and of the causal amplitudé€3.14) and(3.15 to

Pt
Slr{ 2 L(X(+(f v)’ 53 ()f v))}

x 1

veV \ fevy Pf SlnhdL(Xe L (f, v)’ €‘ fv))
X exp(iS,), (3.19
where
pf )
SL::KEV s(u) 2 2 (Xe L(f, v)’ e (f,v)) (317)
veE €V

denotes the Regge action in the variables of the Lorentzial
model in which the areas of the triangles F are given by
the p¢/2=0. Observe that the prefactoegv)e(f) of Eq.
(3.14 cancel in the product over all vertices and all faces.
attached to the vertices.

The causal Riemannian model is given by

Zroassa=| [ > i+ | 1] deé“fadxé))
feF jietiay, écE Js s
X H Af)(H Ae)
feF ecE
12 +1
sin — dR(XE;(fv)’ e fu))}

<11

veV

Il

fevg

(—)
f.0)Xe_(f.0))

(3.18

(2) ¢+ L)sindg(xg |
X exp(iSg),

where

Sgi= KE v)E

)
R(Xe+(f v) 1 X e (1)
EUO

(3.19

(]f+

sm d (x,y)

K(P)

ie(v)(p/2) kd (X,y)
L caus !

(3.22

4% y)=¢e(v)e(f )m

Lg,)CaUSaGX’ y)

12j+1
Si dr(X,y)

(2j+1)sindg(Xx,y)

i2(0)(j +1/2) kdg(x,y)

=g(v)e(f)

n

(3.23

Observe that we have inserted the coupling constamly
into the amplitude part, but not into the measure part, cf. Eq.
(3.10.

Once one has accepted the idea for the construction of the
causal model, some splitting such as E210 is necessary
in order to make the integrals ovblﬁ or S® convergent. The
constantx parametrizes in some sense the nonuniqueness of
such a splitting. Notice that the original model fer=1 no
longer satisfies the bivector constraints of Héi. nor does
the causal model satisfy them.

At this point, the various models diverge from each other,
and the important question is what the physical relevance of
the splitting(3.10 and of the constant is. In the following
sections, we provide some tools in order to study these ques-
tions. These are first the definition of an Euclidean version of
the causal model in order to apply numerical simulations and
second the study of the symmetries and the most general
observables of these models.

As far as the significance of the constanis concerned,
there seem to prevail two opposite philosophies among the
experts. If a classical limit can be obtained by studying the
large spin(or semiclassicallimit for a single four simplex,
the appearance of is unlikely to have much impact. If,
however, the four simplices are too strongly coupled and the

is the Regge action in terms of the variables of the Riemannelassical limit requires a nonperturbative renormalization by

ian model in which the triangle areas are givenjby 3.

“block-spin” or coarse graining transformations in the spirit

In both cases, the amplitudes of the causal model lead tof statistical mechanics, then the new parametean easily

the Regge action for the special valee=1 which in turn
indicates that there could have been be a free parameter

the Barrett-Crane model right from the beginning. This ob-

influence the results, even in the original Barrett-Crane
model. For numerical results in the original model, see Ref.
[20]. Even the fact that the original Barrett-Crane model with

servation suggests the following generalization of the origi-«#1 does not satisfy the bivector constraints anymore,

nal amplitudeg2.3) and(2.6) to

06402

would not necessarily be fatal. ¥ happens to control the
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renormalization scale, it is conceivable that the constraints
are satisfied only approximately at an effective coarseZr,Euc™ H f de;) f dx(e_))
. ' feF jretiay, eckE Js® s?
grained scale.
It was already observed in Rd®] that the variables of
the path integral, independent argasor j; and directions X fHF Af)( HE Ae)
x{") e H? or S°, indicate that the Regge actiof.17) and - o
(3.19 have to be understood as actions in a first order for- |12j¢t+1 +) 0
malism[21]. This is consistent with the fact that the Regge n— dr(Xe (1.0) X6 {10)
action appears only in the intermediate stage of the duality x I1 m e
transformation[12] in which both types of variables are 0eV \ fevo (2] 1)SINdR(Xg (1.0) Xe (1)
present. The necessary constrdidt] that the variation of % _ 44
the angles is only over dihedral angles that correspond to xR~ Sr Eu) 4.4
actual four-simplex geometries, has been automaticallypare
implemented in the construction of the causal model, see
Sec. Il A or Ref.[9].

I > @p+1)

SR Eucl—Kz z

veV fevg

IV. EUCLIDEANIZATION (4.9

(+) ())

Jf”L R(Xe, (1,0) Xe_(f.0)

In both partition functiong3.16 and (3.18, the Regge i.e., we have replacelagy’causa,by
action takes its simplest form, i.e., with the least number of
explicit signs, if one sums over all four simplices only in the de(X,y)
last step. If one interprets each four simplex witfv)= ROXGY
+1 as a futurc_a—pointing _contribqtion to the causa_l _path inte- KR Eucl(x y)= (2 +1)sde(x v)
gral, i.e., obtained after integrating only over positive lapse, (4.6)
for details see Ref.9], there is an obvious candidate for an
Euclidean model by a suitable modification of the ampli-We note thatS, g,.,=0 andSg g,=0 for any x=0.
tudes. This can be done four simplex by four simplex. If we Unfortunately, the Euclidean reconstructidi] does not
substitutes (v) -i into all exponents, we turn the oscillations provide a recipe of how to derive tHeuclidean actioni.e.,
into an exponential damping and arrive at the following pro-how to choose the four-dimensional path integral measure. In
posal for an Euclidean Lorentzian Barrett-Crane model:  a fixed background with a distinguishédoordinate, one is

usually guided by the heuristic substitutior> —i7 which

" typically changes some signs in the action wherever there are
J pfdpf)( f dx* f dx. )

sin

—(j+ 12 kdr(x,y)

time derivatives involved, i.e., in the kinetic energy part.
With the special “time” coordinate used in three-
) dimensional Lorentzian dynamical triangulations, there is

ZL,EucI: H
feF 3

still a similar substitution one can use in order to construct
the Euclidean actio10]. The substitution used in those
models essentially distinguishes spacelike from timelike sim-

ecE

X f];[FAf)(H Ae

sw{p dy (x) i X e o U))} plices and introduce's a relative sign.
<11 2 In the case of spin foam models, we d(_) not have su_ch a
sev \ fev Py sinhdL(xf;()f o) Xe o)) “time” coordinate at hand. However, since in the Lorentzian
case all triangles are spacelike and therefore treated on equal
Xexp— S ey (4.1  footing, we expect that no relative signs enter the Euclidean

action. As long as we capture the relevant local symmetries,
one can expect that Euclidean reconstruction will lead to the
correct canonical theory by universality arguments.
We observe that if we fix all representations associated to
Df + the faces to the same representation, we get regular flat sim-
St Eue= KUE\, EEUO d(xe zf v) 'Xe <f v (42 plices so that we are in a situation very similar to a single
configuration in a dynamical triangulation modél0]. The
main difference to the dynamical triangulation models is that
in those models all simplices have the same geometry, in
particular the same size, and that all dynamical properties of
the geometry are encoded in the sum over triangulations. In

where

This means that we have repladé{f’), .,by

sm di(x,y) the case of the Barrett-Crane models, we have the additional
K{Peuc(XY): —We’<p’z)"dL<x'y). (4.3 complication that the geometry of the individual simplices is
P LIX.y determined by the assignment of representatigrs ps to
the triangles. Therefore, the individual simplices can already
Similarly for Riemannian signature, be arbitrarily large. We also stress that the formytas) and
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(4.4 refer to a two complex with a causal structure imposed x(Psh, (e).xéﬂ’
on the vertices. This excludes in particular space times with "
closed timelike curves. Even stronger, if we have Euclidean

reconstruction following11] in mind, we cannot yet deal XS =hy g xS, (5.2
with topology change and have to require a global space-
time topology of2 X R. whereh, e SL(2,C) for eachv e V, and the dot denotes the

In the following section, we study expectation values ofaction of SL(2,C) on Minkowski spaceR!*3. Again, this
the continuous variables of the Barrett-Crane models. Withsymmetry is a consequence of the invariance of the scalar
these definitions, one can easily establish a dictionary in Ofproduct in Minkowski space under the action 8$f(2,C)

der to compare our constructions with the generalized Eughich appears in the definition of (x,y), cf. Eq.(2.7). All
clidean reconstruction of Reﬁll] Note that the Euclidean versions of the Lorentzian Signature modeL E(ng),

measure of Ref{11] includes the integration measures, the(3_16), and(4.1) are invariant under Eq5.2).
factors which we have called tieeasure paraind also what
we have called theamplitude part On very regular triangu-
lations, it is possible to check under which conditions the
Euclidean path integral measure of the Barrett-Crane model The most general functions of the variabks’ that are

is reflection positivethis refers to what is callelink reflec-  invariant under these local transformations, can be calculated
tion positive by lattice gauge theoristsThis condition is by standard techniquesee, for example, Ref22] for de-
satisfied provided that the edge and face amplitudes are reahiled examples An orthonormal basis for such functions is
i.e., if they do not change when one dualizes all representacharacterized byspin4) or SL(2;C) spin networks on the

B. Most general expectation values

tions involved. graph(V, B).
For the Riemannian case, lét,=03,1,..., specify a
V. OBSERVABLES simple irreducible representatidf ® Vi of Spin(4) for each

. . . edgeee E, and let
In this section, we consider all Barrett-Crane models men-

tioned so far as path integrals over the continuous connection p@)-
variablesx{*) e S* or H3. This point of view has already

been adopted in Ref12] for the Riemannian model where

we have shown that one can perform the sums over the rep-

T .
resentationg =0,2,1,... as soon as the edge amplitudes argjenote(an arbitrary, but suitably normalizedpin(4) inter-

sufficiently simple. This point of view is also more closely yyiner for each vertex e V. Then the spin network function
related to the Euclidean reconstructidii] than is the usual

® (V(®V7)
eeE:
v=d_(e)

o[ ©® (V,.®Vi)\—C
ecE: N €
v=4d,(e)

(5.9

picture in which the variables of the path integral are the 26,41 26,+1
representanon; attach(eg to the tnangles. In the foIIowmg, weF”({xgi)}): H H E H E
therefore consider the,~’ as the variables of the path inte- vev €cE: poig.=1 ecE: rois-l
gral while the rest of the partition function, including the v=0+(e) v=0-(e)
sums over the; or the integrals over thp;, belongs to the
amplitudes. ¢
(I e ()
eck: ete
A. Local symmetries v=d+le)
.A_II the versions of the Riemannian signaturg model, the <[ 11 m P
original one(2.2), the causal3.18), and the Euclidean one Sop. Tesee (rese) = (Pege) = |7
(4.4), are invariant under the following locapin4) [or v=0d_(e) VB ecE:
SQ(4)] symmetry[12] v=0_(¢) v=2,(e)
o (5.9
X(e+)Hha+(e)X(e )h(?Jr(e)'
is invariant under the local symmett$.1). Thet() are the
(=) (—f—1 representative functions @U(2)=S> and we follow the
Xe '—hy eXe "Ny (e (5.0

conventions of Ref{12]. Any L? function of thex(*) that is
invariant under the local symmetry, is a square summable

where (, ) e Spin(4), for allv e V, defines a generating SEres OVer spin network functions of the fotd).
function of this local gauge transformation. We have identi- FOr the Lorentzian case, l&fo,),q.=0, denote a simple
fied S>=SU(2), and theproducts in Eq(5.1) are inSU(2). irreducible representation &L(2,C) for each edgeeeE.
The independence follows from the invariance of the scalalhe vectors of these representation spaces can be modeled
productx-y in R in the definition ofdg(x,y), cf. Eq.(2.4). by functionsH® —C, see Refs[5,14] for details. Employing

The Lorentzian counterpart of this local symmetry isthe Gelfand-Graev transform, an orthonormal basis for
given by V(0g) IS given by the functions
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= o0 = [ Vim0 P R g | T [ad) Lok |Fostin
(55 |
I 2 @+

feF jrell2Ng

11 Af)
whereI” denotes the two-sphere of future-pointing lightlike fef
vectors whose spatial component are unit vectors, and the
integral is performed using the normalized Lebesgue mea-
sure ofl". The indices of the spherical harmoni¢g, are in

the rangg =0,1,2,..., and-j<msj. Let furthermore (5.9

11 A9>H (H KX ) 7X£e<)f,v)))’

ecE ecE \fevg

for spin network functions=, p of the form(5.4). Here the

. * ~ . L.
QWi ® Vg |®[ ® Vigy|—C (58 symbolX in Zgx andKgx stands for “original,” “causal,”
s i) oS iie) or “Euclidean,” respectively.

In the Lorentzian case, the analogous expectation value
reads

denote(an arbitrary SL(2,C) intertwiner for each vertex
eV, given in terms of the coefficients

Q(kenl, ..... (JeMe) s H
—_— — — 0
eckE: eck: X 2
v=d_(e) v=d,(e) fI;[F fo pfdpf)(fl;[': Af)

51 « 1 Ae)n (

ecE veV

(pp) -
IT KPRox <fu>,x<2f,v>>)-

fevg
with respect to the above basis. Then the spin network func-

tion (510
The Euclidean reconstructidi1] relies on this type of ex-
- ectation values in the construction of the physical Hilbert
Gttt =11 1| 11 » E b Py
veV ecE: j,=0 m,=—jy space. . .
v= Me’) The expression$5.9) and (5.10 can be reformulated in
the language of a path integral whose variables are represen-
0 k, tations assigned to the faces and in which the integrals over
I > > the x{*) are performed, resulting in relativistic l@ymbols
eck kem0me=ke as the vertex amplitudes. We call this formulation in which

the representationg; or p; are the variables of the path
x( 1—[ e e )) integral, therepresentation picturas opposed to theonnec-
A1 e tion picturein which the continuous variableg™ are the
variables of the path integral. The transformation from one to
the other picture proceeds in complete analogy to the calcu-

x{ I 4 () ) lation for the partition function presented in REf2].
k. n (x, ) Q(kg" ) (Jomy) ’ heref h i
eck: elle We can.t erefore reexpress t € expectation valbe3
v=09-(e) ecE:  eck: and (5.10 in the representation picture. In the case of the

v=29_(¢) v=39,(e)

original modelg2.2) and(2.5) with k=1, the result takes the
simplest form. If, say in the Riemannian version, the spin
network functionF, p is supported only on edges in the
boundary of the two complex, the expectation va{ée p)
is invariant under the local symmet(§.2). All L® functions  agrees with a matrix element of spin network states. This
of the x{™) that are invariant under this local symmetry, aremeans it is calculated by summing over all spin foams of the
PIanchereI integrals over spin network functions of the formBarrett-Crane model living on the given two complex, but
(5.8. There will, however, arise convergence issues similawith additional faces and edges added so that these faces and
to those studied in Ref14]. edges are colored by the same representations and intertwin-
If one views the partition function of the Barrett-Crane ers (¢.},{P()}) as those that characterize the spin network
model as a path integral over the continuous vanabi,e% functionF, p. These expressions are the desired matrix ele-
the numbers one can extract from the model are precisely thments between spin network states. A completely analogous
expectation values of spin network functions of the formresult holds for the original Lorentzian model.
(5.4 or (5.8, respectively. In the Riemannian case, these Observe that the expectation valugs9 and (5.10 are
expectation values read more general than just such matrix elements of spin network

(5.9
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states. First, we have shown that the intertwinefd and  representations of the symmetry group.

Q™ can be generiSpin4) or SL(2,C) intertwiners and are Consider first the Riemannian case. The functions
not restricted to the special Barrett-Crane intertwiners. Thé<(F§,)x(X,y) whereX stands for “original,” “causal,” or “Eu-
standard conjecture seems to be that for pure gravity, it islidean,” areL? functions S*x S*—C. Since they depend
sufficient to employrelativistic spin networks, i.e., spin net- only on cos(xy)=3x"?(g,-g; %), whereg,,g, e SU(2)
works whose representations are simple and whose integlenote the corresponding elementsdf(2)=S°, they are
twiners are the Barrett-Crane intertwiner. If this happens telass functions 08 U(2) and can be character expanded into
be true, then our calculation above parametrizes the mog square summable series

generic way of coupling other fields to pure gravity. This will

be of relevance when one studies the coupling of matter to KU (x,y)= KDy ® (g, goh),

the Barrett-Crane model. Indeed the choice of intertwiners RXKY kzozu:z,l ..... X9 By

(5.3) and (5.6) is the first occasion where the difference of

Spin4) or SL(2,C) verSL_JSSO(_4) or SOy(1,3) matters. Rf‘j)::f X(k)(g)Kg,)x(g)dg, (6.1)
The second aspect in which the expectation valsed Su(2)

and (5.10 are more general than matrix elements of spin () . - 0

network states, is the fact that they are not restricted to th;é;’hae:cir:’:’;ov;rgfgfé(gé in order to indicate thakgx(x.y)
. . = - X' y .

boundary of the four manifold. This can be seen as an anal With this expansion performed for each triangle F and

ogy to the Wilson loop in lattice gauge theory which is used Il four simplicesv e foCF that contain the triangl&in their

to determine the static potential between a quark-antiquar : )
pair. This loop is not only supported on the spacelike bound_gc_)undary, we can apply the techniques of R&g] and ob

ary of the four manifold, but it extends in time direction in

the interior. This construction serves as a simplified version 1

of a matter coupling which captures only the color properties (F, ,)= —(
of the matter field but which neglects its dynamics. Similar ’ Zrx
constructions may also prove useful in the study of spin

foam models of quantum gravity. (o)
In particular, a generic Wilson loop in the connection vari- X fE[F Ay 31;[E A, fE[F Ug, K fz
ables will give access to the curvature of the fafin4) or 0
SL(2,C) connection and therefore to dynamical properties Zhptl 21
and not just to its restriction to a spacelike boundary. Finally, X 5 I_JIV 271 HE 2—1
we stress that the study of expectation values sudffas) °° Sy vl (o)t
and (G q) is a convenient way of sidestepping the often
tedious technicalities when one deals with boundary terms. 26,41
I S VI P
VI. TECHNICAL ISSUES T
v=0_(e) eckE: eckE:
A. Back to the 1 symbols 0=9-(a) v=d ()
The expectation valued, p) and(G, o) become more <[ I 1t
complicated than what we have discussed so far, as soon as cep: ) ededingmy)
we consider the causal or the Euclidean modet#rl in the v=drle) ., fee_
original model. Recall that in the original partition function
(2.5), the integrations over the® together with the product % H e ‘
of K(Lp) form the relativistic 19 symbols(up to the regular- USE(;E) (npmp)s(npmp)-(rese)
ization mentioned aboyeAs soon as we replace tikg” by - feeo  feey
Egs. (3.2, (3.22, or (4.3, we no longer have a model 6.2

whose four-simplex amplitudes are the relativistig 9m-
bols. In the original model fok= 1, we were able to “solve”
the integrations over thel® and knew that the result of the
integration had an abstract definition as a relativisti¢ 10
symbol. After the modification of the integranﬁ.&t’&, there

is no obvious analogy available.

This expression looks more complicated than it actually is.
We can explain it in words as follows. There are two types of
summations over representations. These are first the sum
over all colorings of the trianglefse F with simple represen-
tationsv(]-f’J-;k)zvjf(z‘ovj*f of Spin (4), and second the sum

In the following we show how the local symmetry of Sec. OVer all colorings of the wedged ) with representations
V A can be exploited in order to expand the modified inte-Y(k, .k5,) - Here the wedges are denoted by specifying a dual

grand, a product of factor&{Py, into a series of ordinary facefeF and a four simplex e foCV whose intersection
relativistic 1§ symbols. The novel feature is that this step forms the wedge.

requires an additional colouring of theedges(the intersec- In addition to the face and edge amplitudds and A,
tion of a face of the two complex dual to the triangulation already present in the original mod@.2), there is now an
with a four simplex of the original triangulatiprvith simple  additional amplitudé((kjff) for each wedge, namely, a charac-
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Is there a Lorentzian counterpart of the decomposition
(6.1)? In order to derive that formula we have made use of
the identificationS®=SU(2) which does not have an imme-
diate analogue in the Lorentzian case. Let us reformulate the
argument so that we can generalize it.

The functionsk d(x,y) all have the symmetry

Kix(gx,9y)=Kix(x,y), (6.4

FIG. 1. The four-simplex amplitude of the expectation value
(Fep) in Eq. (6.2 is the relativistic 19 symbol (solid lineg in  for all x,yeS® and ge Spin(4) acting onS® (Sec. VA.
which a piece of the spin network (P) has been inserte@lashed ~Because of this symmetry, the function is already specified if
lines). The full dots denote the Barrett-Crane intertwiners and thewe know its valuesf(x) :=K%?X(X,e) whereee S® denotes
white dot the intertwineP of the spin network. the north pole. If we write the functioft S*— C as a function

on Spin4) which is constant on the left cosegt) whereU

ter expansion coefficient of E¢6.1). For the causal model, :=stalky,y4)(e)=SU(2) and S®=Spin(4)/U, the invari-
this amplitude will in general be complex. ance condition(6.4) implies thatf is also constant on the

The amplitude for each four simplexe V is given by the  right cosetsUg and therefore a zonal spherical function.
expression inside the square brackets in(@d). It is given  These functions are precisely the characterSdf2) using
by the usual relativistic Jj0symbol with a piece of the spin the identificationS*=SU(2) employed above.
network (¢,P) inserted(Fig. 1). The various summations A generalization of Eq(6.1) to the Lorentzian case is now
contract the indices of the Barrett-Crane intertwiners whichavailable since we know that the zonal spherical functions
are denoted by for the quotient \SL(2;C)/V, V=staly.(e), &
=(1,0,0,0), are precisely the functioks” (x,e,) [see Eq.

[(+8): o V « = ® V « (2.6)]. Therefore we obtain the result that ahy function
(Keg (e>'kfa (e)) ( (keg (e)’kfa (e))) 3 3 B o fi
fee_ * + fee, ’ . f:HI XHI —C which satisfies
V *y,
Pl f(gxay) = f(xy), 65
I(f.e>:f ® Vi, *k?ue))_)(f ® Vi, o vk?a,(eﬂ) for all x,y e H3 andg e SL(2;(), is a Plancherel integral of
€€+ €€+ the form
®V((e’p;) , (63) "
f(x,y)=J0 f(p)K{P(x,y)p’dp, (6.6

using the conventions of R€fL2]. Here the sete.. CF con-
tain all trianglesf that are contained in the boundary of the R
tetrahedrore e E with orientatione(e,f )= =1. If the inter-  for a suitable functiorf:R, —C.
twiner P of the spin network {,P) is a Barrett-Crane inter- Therefore the strategy which has lead to E2), can be
twiner, this amplitude is an evaluated relativistic spin net-directly applied to the Lorentzian case. We do not repeat the
work and therefore non-negative real. For the Riemannia@nalogue of Eq(6.2) here as the required substitutions are
case, this was shown in Ré¢B] whereas for the Lorentzian now obvious: replace the sums over half integers by integrals
analogue, this is a plausible conject(i7g. Jop?dp and make use of the integral presentation of the
Observe that the representatiojysattached to the tri- Barrett-Crane intertwiners™®). The analogues of the com-
angles appear only in the expressions for the character exaents listed below Eq(6.2) also apply to the Lorentzian

pansion Coefficientﬁ(kjff). The representations for which the case.

10j symbols are evaluated, are no longer the but rather
the representatiorls;, associated with the wedges, (). B. Averaging over the stabilizer

Equation(6.2_) iIIustrates_ the impact that the choice of the |, Ref. [12] we have developed the quantum geometry of
causal or Euclidean amplitudes has on the structure and Qe garrett-Crane model in the connection picture. This in-

the symmetries of the model. The central new feature is theges in particular the interpretation of the integrals dser
additional coloring of the wedges with representations. OnlyOr H3 that appear in the Barrett-Crane intertwiner, as inte-

for the original Barrett-Crane model with=1, there exists a 515" gver possible directions of the vectors normal to the

significant simplification because in this casf’ is already  tetrahedra. The fact that there are two such variables for each
an SU(2) character. This implies tha‘t(k”=5]k so that all  tetrahedron was interpreted as the consequence of a non-
wedges {,v) of a given dual facef e F are assigned the trivial parallel transport which is associated with each tetra-
same representatioky,=j;. In this special case, E¢6.2)  hedron and which maps the first normal to the second one.
reduces to the original Barrett-Crane mo{#] with a spin  This parallel transport, however, is not a fufipin4)-or
network (¢,P) inserted into its 1P symbols. SL(2;C)-parallel transport, but it is rather specified only up
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to elements of the stabilizer which leave the first normal ) L ) —
vector fixed. It was then possible to express what is the dif- JSU , t ) (1,my) (PxUBy D du= 8,oH Py (B H{P, (by).
ference betweeBF theory and the Barrett-Crane model. It is 2 (6.10
precisely this averaging over the stabilizers. For more de-

tails, see Ref[12].

The geometric interpretation was developed originally for ; :
Riemannian signature, see Sec. 4.2 of R&g]. These re- |°70MYyge SL(2,L) atan edge, it matters only hagects on
sults can be easily translated to Lorentzian signature by th +- Therefore we choose some H*, calculatey=gx and
replacement ofSpin(4)/SU(2)=S® by SL(2,)/SU(2)  average over the stabilizer ambiguity. The integration over
~H3 . The comparison of the Barrett-Crane rr'10del VRE the group which is present in the path integral then results in
theo+r)'/ in Sec. 4.3 of Ref12] relies on lemma 4.4 therein the desired integrations over’ . This is the Lorentzian ana-
whose generalization we sketch in the following. logue of lemma 4.4 of Ref.12].

Let t(P) )i m, denote a representative function of

SL(2;C) in a representation of typé, ) ,n e Z,p>0, of the VII. DISCUSSION
principal series. We realize the representakign,, as a sulit-

The construction of Ref[12] then says that for any ho-

What we have explained in Secs. IV and V, the Euclidean

able space of sections of a line bun S’ and obtain an econstruction and the analysis of the degrees of freedom of
orthonormal basis from the spherical functions on the tota[ y grees .
he Barrett-Crane model from an understanding of its local

spaceS® so that the range of the indices of the representativ% mmetries. is onlv one motivation for studving the observ-
functions is given byj,=|n/2|, |n/2|+1,.., and m, y ' y ying

T . a . . ables in the connection picture. Another motivation arises
e{~je.~J¢+1...i¢} for £=1.2. Itis then possible to show from the observatiof12] that for some edge amplitudes, the

that partition function in the connection picture is particularly
simple and resembles a spin modjist “spin,” not “spin
0 if n#0, foam”) with variables inS® or H with local interaction
tmP o (gu)du= (p) _ terms at the faces. In particular, no evaluations gf 4¢m-
fSU(Z) (Uam)izmz) Hiim, 8j,00mo if n=0. bols are necessary in this case which makes numerical simu-

(6.7) lations computationally cheaper. One has just to tabulate the
interaction terms.

For the original Riemannian model it was observed in
N . both formulations, in the connection picturg2] and in the
Ijere SU(Z)Q?"(Z’L) IS embe_dded(gs the stabilizer ef representation pictur20], that the dominant configurations
=(1,0,0,0)HZ, and th% functionsd;y, form an orthonor- - ¢y yartition function often correspond to degenerate ge-
mal basis of functions4* —C, see(5.5. This shows that ,metries. With the results presented here, there are two new
there exists a® U(2)-invariant subspace ) only ifthe  geyelopments which can modify this conclusion. This is first
representation is simple,=0, and that this subspace is one ne introduction of the constart(Sec. 111 Q) which provides
dimensional. We therefore obtain basis functions 80 a natural way of controlling the width of the peaks in the
=SL(2;()/SU(2) from representative functions 8(2;C)  picture of Ref.[12]. This is what a coupling constaftem-
by averaging over the rigfU(2) action. peraturé in a path integral[statistical mechani¢dsmodel

Now we consider two pointx,yeH?. For eachz  typically does. The constark may play an important role
eHi, there exists some boodi,e SL(2;C) such that when one tries to locate a critical point at which one can
b,(e)=z. The group elementge SL(2;C) that mapgy  renormalize the model. Second, the causal and the Euclidean
=x are of the form model have amplitudes very different from the original

model. In the connection picture, the Euclidean version can
be studied by exactly the same techniques as the original
. version so that one can start to investigate and compare the
g=b,by, “uy, (6.8 models and their physical interpretation. The transformation
of Sec. VIA then allows us to perform the same studies in
the representation picture.

Finally, we note that all our formulas for partition func-
tions, matrix elements and expectation values use the lan-
guage of generic two complexes. These are not restricted to
be dual to a given triangulation. The only exceptions were
the motivating steps which explicitly involved results from

where uyestaly;;.)(y)=SU(2). However, if u,
e stabf), thenb,, 1uybye stabg,) and conversely, therefore

g:bxut—lb;l, 6.9 Regge calculus which are available only on triangulations.
ACKNOWLEDGMENTS
for someu, e stab,;). We use this parametrization gfand The author would like to thank Etera Livine and Daniele
average over the stabilizer: Oriti for discussions.

064022-12



CAUSAL BARRETT-CRANE MODEL: MEASURE. . .

[1] J. C. Baez, inGeometry and quantum physidsecture Notes
in Physics No. 543Springer, Berlin, 2000 pp. 25-93.

[2] D. Oriti, Rep. Prog. Phys64, 1703(2001).

[3] J. C. Baez, Class. Quantum Gra, 1827(1998.

[4] J. W. Barrett and L. Crane, J. Math. Ph$8, 3296(1998.

[5] J. W. Barret and L. Crane, Class. Quantum Grh¥. 3101
(2000.

[6] J. C. Baez and J. W. Barrett, Adv. Theor. Math. PH3;s815
(1999.

[7] J. C. Baez and J. D. Christensen, Class. Quantum G&v.
2291(2002.

[8] H. Pfeiffer, “Positivity of relativistic spin network evalua-
tions,” gr-qc/0211106[Adv. Theor. Math. Phys(to be pub-
lished].

[9] E. R. Livine and D. Oriti, “Implementing causality in the spin
foam quantum geometry,” gr-qc/0210064.

[10] J. Ambjarn, J. Jurkiewicz, and R. Loll, Phys. Rev. 64,
044011(2002).

[11] A. Ashtekar, D. Marolf, J. MoUm, and T. Thiemann, Class.

Quantum Grav17, 4919(2000.

PHYSICAL REVIEW D 67, 064022 (2003

[12] H. Pfeiffer, Class. Quantum Gra%9, 1109(2002.

[13] J. W. Barrett, Adv. Theor. Math. Phyg, 593 (1998.

[14] J. C. Baez and J. W. Barrett, Class. Quantum Gi8y.4683
(2002.

[15] J. W. Barrett and T. J. Foxon, Class. Quantum Gidy.543
(1994.

[16] J. W. Barrett and C. M. Steele, “Asymptotics of relativistic
spin networks,” gr-qc/0209023.

[17] L. Freidel and D. Louapre, “Diffeomorphisms and spin foam
models,” gr-qc/0212001.

[18] M. Arnsdorf, Class. Quantum Gra%9, 1065(2002.

[19] A. Alekseev, A. P. Polychronakos, and M. Smedback, “On
area and entropy of a black hole,” hep-th/0004036.

[20] J. C. Baez, J. D. Christensen, T. R. Halford, and D. C. Tsang,
Class. Quantum Grax9, 4627 (2002.

[21] J. W. Barrett, Class. Quantum Grahd, 2723(1994).

[22] H. Pfeiffer, “Exact duality transformations for sigma models
and gauge theories,” hep-1at/0205013.

[23] R. De Pietri and L. Freidel, Class. Quantum Gra6, 2187
(1999.

064022-13



