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Explicit solutions to the time-independent perturbation equations
of the Reissner-Nordstran geometry
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It is proven that the equations for the time-independent, negative-parity, gravitational and electromagnetic
perturbations of the Reissner-Nordsirgeometry havéfor each angular momentyrone solution in the form
of a finite power series in th€Schwarzschild-likgradial coordinate. The explicit form of these solutions is
given. Therefrom the second fundamental solutions of these equations, and the positive-parity perturbations,
can also be constructed explicitly.
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I. INTRODUCTION be considered. However, for eatliand o) there exists an
axial mode(with negative parity and a polar modéwith
In 1974 four different groups derived, obviously indepen-positive parity. According to the analysis of Moncrief
dently, the differential equations obeyed by the first ordef4—6], for givenl>1, o, and given parity {-), there exists
perturbations of the Reissner-Nordstro(RN) geometry:  only one gauge invariant metric perturbation, and one gauge
Zerilli [1] worked in the Regge-Wheeler gaugd] and de- invariant electromagnetic perturbation. In the notation of
rived coupled second-order equations between the gravit&shandrasekhalr10] these are calleti$™)(r) and H{™)(r).
tional and the electromagnetic multipoles for both the oddBy introducing the following linear combinations between
parity (or magneti¢ and the even paritfor electrig case, but  gravitational and electromagnetic perturbations
he did not decouple these equations. Sibgatullin and Alek-

seeV{ 3] derived in a different gauge decoupled, Scinger- 2 =qH + V= ga0.HE, (2a)
like equations for combined gravitational and electromag-
netic perturbations, again for both parities. Moncrief applied + + +

P g P 5 2= ——agHO R, @

his Hamiltonian formalisni4], in which the gauge invariant
perturbations are explicitly singled out, separately to the odd-
parity case[5] and to the even-parity ca§é]. He indicated ~ With
that the resulting equations can be decoupled without work-
ing this out explicitly. Lun[7] worked in the Newman- 01,,=3M = JIM?+4g*(1 - 1)(1+2),
Penrose spin coefficient formalisfB] and derived coupled
equations, but only for the case of odd parifjhe structur- the Einstein-Maxwell equations for the perturbations of the
ally similar differential equation for scalar perturbations of RN metric reducefor eachl and o) to the following four
the RN geometry was already derived in 1972 byaRif9].)  Schralinger-like differential equations

The RN geometry is, in Schwarzschild-like coordinates,

given by the metric d] ey, 9 i oo
ds’=g,,,dx“dx" (1) ar["Uars TR TR AR
=0,
= —F(Nd2+F(r) "4 r2(do? + sitode?), WM
with F(r)=1-—2M/r+qg?/r%. The perturbed metric is usu- =) Oy 402
ally denoted byg,,=g,,+h,,, similarly the perturbed Va (r)_r_z_r_3+r_4’

electromagnetic field by ,,=F,,+f,,, whereF,, has

only one nontrivial componerf,, = —q/r2. It is advanta- and

geous to expand the gravitational perturbatibps in tensor

harmonics(with respect to and ¢), and the electromag- 2

netic ions i ics, i iti - 1 8q
perturbations in vector harmonics, in addition to ex VI ()= (L—2)| L(L—2)+ —

panding both perturbations in their Fourier components 4 [(L=2)r+q,]? rs

~¢'’'. Since the RN metric is static and spherically symmet-

ric, all these perturbation modes decouple. Furthermore only 2 (L-2)2 6M
axisymmetric modes with angular momentum “quantum X\ M- T b r + r_2
number” | and magnetic “quantum numberh=0 have to
2M  2(L-2)g* 2q¢?
X(L—2+T—%—%) ]
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wherea#b=1,2, andL=I(I+1). Obviously, the equations
for the odd-parity perturbationg! ) are much simpler, and
in Secs. Il and Il we will first look for explicit solutions to
these equation@n the time-independent case=0). It turns
out that the more complicated equationsléf‘) do not have
to be solved separately, because Chandrasefhal; see
also[10]) has succeeded in expressiag~ by z{) and its
r-derivative. [Our expression for\/g”(r) is considerably
simpler than the expressions [i] and[10]. Obviously no-
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time-independent case. However, in special cases explicit so-
lutions have been found: Bik [12] has considered time-
independent perturbations of the extreme RN geomeify (
=M?), and has given all odd-parity solutions as finite power
series in (—M) and ¢ —M) %, and the even-parity solu-
tions as similar power series multiplied by a faciqilL
—2)r?+6Mr—4M?]" L. (In these expressions again some
cancellations lead to the much simpler formul&s"
=&t e+ 1)[(1+2)e+1], and RIM=¢"'(&+1)/(l
—1)¢+1+1].) For generalg andM, andl=1 (and c=0)

body has seen hitherto that the denominators in their pote

tials ng)(g) can be factorized intc{(L—Z)rnga]z[(L one explicit solution of Eq(3). Briggs et al.[15] (see also
—2)r+qp]°, and that the factof(L—2)r+q,]° cancels [16]) have considered stationary and odd-parity
with the same factor in the numerator. This cancellation ig|=1)-perturbations, i.e., rotational perturbations of a gen-

also necessary in order that Chandrasekhar’s solution fasral RN geometry. They have found one fundamental solu-

"Bicak and co-worker$13,14] have found, for both parities,

z{")—see our Eq(19) in Sec. lll—can satisfy Eq(3).]
Concerning explicit solutions to E¢3), it seems that no

tion z{) as a finite power series inandr ~* and the other
fundamental solution as a similar power series, combined

general analysis has been performed hitherto, not even in theith the function

S(r;M,q)=
1

A similar result, but for even paritgg?=0, and generdl has
already been indicated by Fackerlr], but no explicit so-
lutions as power series have been provided.

1 r—M+yM?—g?
log
2yM?—g* \r—-M-yM?-q?

(r—=m)—*

—arCCO(
q2 -M 2

) for q?<M?,

2_n2
for g°=M~*, @)
r-m
_ for q>>M?2.
/qZ_MZ

tromagnetic and/or gravitational fields, to the motion of
small charged objects in the vicinity of a charged BH, and as
a test bed of numerical codes for BH physics. In special

In Sec. Il it is proven that in the case of negative paritycases such applications have already been worked out in

Eqg. (3) for =0 allows one solution of the fornZ_g’)(r)
=31 ol (=r/2M)K, with r-independent coefficients
a{'®  and witha{"?=0 (as indicated already if16]). Fur-

thermore it is shown that the second fundamental solution

has the formz{)(r)=MZ{)(r)S(r;M,q) +257(r), with
S(r;M,q) from Eq. (4), and with Z{)(r)=x}__,80?

(—r/2M)X. [In [9] it has been shown that the differential

[3,9,13,14,19,2D

Il. PROOF FOR THE EXISTENCE OF
TIME-INDEPENDENT SOLUTIONS AS FINITE POWER
SERIES IN r AND r~%

We confine ourselves here to the odd-parity solutions

equation for the scalar perturbations of the RN geometry carZ$, ’, and to the time-independent case 0. Obviously, the

by the substitutior — &= (r—M)/VM2—q?, be converted

differential equation(3) for Z{ ") has four singular points:

to the Legendre equation whose fundamental solutions are0, r=o, and the zeros of (r), resulting in the horizons
pOlynomiaIS, reSpeCtiVEly pOIynomiaIS combined with therlzzMiﬂMz—qzl In princip|e’ such a differential equa-

function S from Eq. (4). In the Schwarzschild cas=0 a
similar observation was already made by IsrfH]. Our

tion can be reduced to the Heun equatj@d]. Its solutions
will in general be more complicated than the solutions of the

results forz{") andZ{") can be considered as generaliza-hypergeometric differential equatiotwith three singular

tions of the Legendre functior]s.
In Sec. Il the coefficients{'® and B{"® are explicitly

points. It is easily seen that near=0 andr=c the solu-
tions can be represented by power series andr ! (at

calculated, and also the simpler coefficients for the time£ach point one of the fundamental solutions being regular,
independent perturbations of the Schwarzschild geometry af@e other being singularIn contrast, at the horizons, ,
given. These results are applicable to the late time behavior M =\ M?—q? there is, besides one regular solution, a fun-
of a slightly nonspherical collapse to a charged or unchargedamental solution with logarithmic behavior which, combin-

black hole(BH), to the motion of such a BH in weak elec-

ing the two horizons, can be represented by
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2;‘)(r):fl(r)8(r;M,q)+f2(r)’ (5) [For the Schwarzschild casg?=0, Eq. (8) reduces to a
simpler 2-term recursion relatignin the following we will

with S(r;M,q) from Eq.(4), and with functions ,(r), f,(r) omit the upper indicesl (a) in the coefficientsy, and in the
being regular at=r, ,. Now, concerning exact solutions of expressions,. They should be re-introduced in the final
Eq. (3) for Zf.;), it is expected that normally infinite power results. In order that a solution of E() is also valid for
series inr and/orr ! are necessary for representi@§ g?=0, it is advisable to start with the highest coefficient
and that equally the functiorfs(r),f,(r) in Eq. (5) will be ~ @k+2, and to calculate from Eq8) the lower coefficients.
infinite power series(It is known from quantum mechanics Due to the factor [(+1—Kk) in the first term, there obviously
that only for a few special potential functions and then onlyexists a solution witha, ,#0 but with o, ,=a),3="--
for discrete energy values there exist solutions of the time=0. Then the recursion relation is trivially satisfied flor

independent radial Schdmger equation which are =I+1J+2,.... Fork=I we get a;=(¢,/2)a,,,;, and
essentially—besides factors like " or e~ Kr2_given by  similarly we can successively calculate all lower coefficients
finite power serie$. as multiples ofe,, 4. If we arrive atk=2, the last term of

However, we will now show that for E43) for z{ ), and  Eq. (8) vanishes(for all g values, with the result(for |
for =0, the potentiaV{)(r) has such a special form, and >1) a,=[c,/(I—1)(I+2)]az. Because of this relation,
such a special relation to the functifi(r) that there exists and due tac;c,=(g*M?)(I—1)(I+2), in the recursion re-
one fundamental solutiod! ) as a finite power series in  lation fork=1 the last two terms cancel, with the resut

andr !, and that the second fundamental solution has the=0. Fromk=0 we getay=—[39%2M?(I+1)]a,, and

form from k=-1: a_;=[c_1/(1-1)(1+2)]ay (for 1>1).
Because of this relation, and due to;c_,=(g*/M?)(l
Z_)(r)=Mzg_)(r)S(r;M,q)+2§;)(r), ) —1)(I1+2), in the recursion relation fok=—2 again the

last two terms cancel, with the resuit ,=0 (compulsory

ture of the first term on the right-hand si@®HS) of Eq.(6)  Ed- (8) vanishes, with the result_;=0, and consequently

is also suggested by d’Alembert’s reduction procedure, givalsOa_s=a_s=...=0. In summary, we have proven that
N S00). for I>1 one fundamental solution of E() with 0=0 has
ing Z; ’ from Z3 /- the form

__ _ r dr/
75 ry=7) —

Za_ (r): ak’a(—) y

K 2M

C)

The Ansdze for the solutionsz{ ) and z{ ) are of course
also suggested by the resyli®,15-17 for special caseslt
is quite obvious that the same “miracle” cannot happen for,, o =
general values ofr, and we have not checked whether there
exist discrete values,#0 with similar power series solu-
tions)

So we start with thé\nsatz

0. The casé=1 obviously has to be considered
separately. It turns out that fa=1 the resulting Eq(9)
remains valid but the arguments are somewhat different: The
recursion relation fok=—1 leaves the coefficient_; un-
determined, butx_, is “later” determined by the demand

o K that the relations fork=-2,k=-3,... result in a_,
zg;)(r):E al® _> , 7 =a_3=...=0. For a=2 the recursion relations fok
k 2M =1, k=0, andk=—1 are in contradiction to each oth@or

a,#0 and q?#2M?), i.e., no solution as a finite power
for one of the fundamental solutions of £§). The range of  series inr andr ! exists. There does not even exist any
thg k value_s will be detgrmmed in the following. Inserting gauge-invariant solutioﬁg;)z for =1, because, as was al-
th|s Ansat.zmto Eq.(3) with =0 leads to the 3-term recur- ready stressed by Bik [22], there exist only electromag-
sion relation netic but no gravitational gauge-invariant dipole degrees of
freedom[Forl =1, we haveg,=0 in Egs.(2a), (2b), i.e., no
coupling between gravitational and electromagnetic pertur-
bations]

Coming now to the second fundamental solution of Eq.
X(k—2)a{;3=0 (8 (3 for z{) and ¢=0, we have the task to show that the

form of Eq. (6) really solves Eq(3) for ¢=0, and thafz{ "
is again a finite power series mandr 1. If we insert the
\/ = Ansatzof Eq. (6) with Z{)(r)==,803(—r/2M)¥ into Eq.

g+_(|_1)(|+2) (3) with o=0, we get, again omitting the upper indices
4 M2 '

2
(I+k)(1+1-k)al?—cl@al@ - #(k+3)

with

C(Ira):kz_ E—f—
k = . :
2 (I,a), the recursion relation
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2 =C_,B_1— (/M) By—2a_,. Inserting here the results for
(I+K) (1 +1=k) Bk—CkBr+1— —— (K+3)(K=2) By 2 B_1 and B, all the B-terms cancel, and also the remaining
4M a,-terms cancel, due to the relations between, ,aq, e,
—Kayes 1. (10) and a3. So we get3_,=0. Fork=—3 the last term of the
LHS of Eq.(10) cancels, and, together with_,=0, we get
The LHS of Eq.(10) is of course equivalent to the LHS of @_3=0, and consequently alsa _4=a _s=...=0. In

Eq. (8) [becausez ) and 2’) have to satisfy the same Stmmary, we have proven that for 1

differential equation(3)], however, Eq(10) has a nontrivial |

RHS (an “inhomogeneity?’), resulting from the derivatives 7 (ry= Z B(I,a)(__r
of the functionS(r;M,q) [see Eq(6)]. We will now analyze a TR\ 2m
the recursion relatiorf10) in a similar way as we did with

Eqg. (8), and we try to prove that there exists again a solutiorForl =1 anda=1, this formula is still valid, although due to
with a finite number of terms, . [Since the solutiorz{ ) ~ somewhat different arguments. Aer 1 anda=2, again the
behaves asymptotically like'™*, and we know from the argument counts that no gauge-invariant gravitational dipole
analysis of the asymptotic behavior of E8) that the second degrees of freedom exist.

fundamental solutiorff;) behaves liker ~!, we could also

k
. (12)

determine the highestl ZoefficientsB through the condi-  !Il: EXPLICIT CALCULATION OF THE FINITE POWER

tion that they cancel the terms coming from a power series SERIES SOLUTIONS

expansion oMZ{)(r)S(r;M,q).] Due toa, ,=0, the re- __According to Sec. Il, in the seriensatzof Eq. (7) for
1 . a +1

=Bi+o=---=0. Fork=Il we getB ;=3 1,70, and simi- 5 5geneods The lower coefficientsy; ,a; 4, ... can be

larly we can successively calculate all lower coefficieBis  cajculated recursively from E¢8). Performing this for a few
as multiples ofa, ;. If we arrive atk=2, the last term of steps, it is seen that a useful abbreviation is
the LHS of Eq.(10) vanishes, with the resulifor 1>1) 3,

=(CyB3+2a3)/(1—21)(1+2). Due to this relation, and due . . IV
to ¢1¢,=(q%M?)(1-1)(1+2), in the recursion relation for 7](|,a)=1(2|+1 Na+s=jd=2-j)
k=1 the contributions proportional t85 cancel, with the . g et
resultB;=(c,+2cq) az/(I—1)I(I+1)(1+2), generally be-

ing nonzero, in contrast ta;=0. Fromk=0 we getB, The valuesy _,=7,,,=—4M?/g? are especially simple;
=[coB1—(39%2M?)B,]/I(1+1), and fromk=—-1: g_; all other 7; contain the square root appearingcin With the
=[c_1B80— (39%/2M?) B, — ap]/(1—1)(I1+2) (for 1>1).  abbreviation(12) it can then be seen and proven that the
From k=—2 we get in the first placel-2)(I+3)B_, general formula for the coefficients, reads

(12

k

(21 _k_l)!i:Ho Cii [(k+1)/2] 5 1N k—2(n-1) k—2(n-2) k-2
A PTITTCE VTP N | brvri PSR P m4--{m13%2+2"ml
K
X ) 2 ﬂjn) ) ]a|+l. (13)
in=in-1*2

Here, as usualj(k+1)/2] denotes the largest integer being smaller or equalkte 1)/2, and forn=0 the expression
{---} should have the value 1. In formuld3) one does not see explicitly that;=0, anda_,=a_3=---=0, and the
formula may be formally inapplicable for some of the highéstevani k-values, especially for low values. But these
coefficients have already been considered explicitly in Sec. .

For the Schwarzschild cagg=0 formula(13) of course simplifies considerably: We get, o= 1 (andk=<I|—2), i.e., for
electromagnetic test fields on the Schwarzschild geometry,

@KL (19

n_ N
(kD1 (I—k)!(1—k=2)!(2n! “+ 1

(,
g

and, fora=2 (andk<I|-3, andl>1),

o (2I—k=1)I(1+2)1(1-2)! 02 s

(1, \
KT K+ D)1 —k+ D)1 (I—k—3)1 (21! ¥1+1

a

Furthermore one gets in this caad'V=a'1=0, i.e., the serieg9) begins with a termay"Y#0. Similarly af?=af?
=a?=0, i.e., this series begins with a term} 2+ 0.
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The coefficientss,, appearing in Eq(11) for Z(a’) have, with,= 3, ,#0, similarly been calculated recursively from Eq.
(10). Here it is advantageous to introduce, besia}éé‘) from Eq.(12), the abbreviation

I-j
fld=—— (16)
! ct®

Then one conjectures from the first few recursion steps, and can prove generally that the coefficients the form
k

(Zl—k—l)!HO Ci—i [ki2] g2 "2 k-2(n—2)
=
Bt &) |z 2 | 2, T
k—2 k k
X N E 7]] _1 ) E ’)7] E fJ |11, (17)
In-1=In-2712 " In=ln-1t2 n. =0
J#Fl1d1-1
i#inin-1

where forn=0 the expressiof- - -} should have the value According to[13] one fundamental solution of EqR0) for
Ejkzofj . For the Schwarzschild cag@=0 formula(17) sim- =0 reads
plifies to

k
Blk:(E fj)alkv (18 Z(Jr)(r):3M2r3_6Mq2r2+(4q2_M2)q2I’ (21)
1=0 ! 3Mr — 22 ’

with a,_ from Egs.(14) and(15). In contrast to the vanish-
ing of the lowest coefficientsy,, all coefficientsB, until —
B_, stay nonzero. simplifying to Z{*)(r)=Mr? for g?=0. The other funda-

As indicated in the Introduction, the positive-parity solu- mental solution results in analogy to E@), or by integrat-
tions Z{") can be explicitly constructed from the above ing the corresponding d’Alembert formula, as
negative-parity squtionz(a’). In detail the formula reads
([10,11)) for =0, andl>1, and withK=(I—=21)I(I+1)(l

+2 = — 3Mr(Mr+M2?-2¢?
: 2= S, - ot 5 i
. 2F(r)q2 - 3Mr—2q -
Za =11t Kr[(L—2)r +qp] Za (22
2PN d () b=1.2 19 =
K arZs » arb=12. (9  nq it simplifies to Z{7(r)=—Mr[1+(r/2M)log(l

—2M/r)] for g®>=0.

The casd =1 has again to be considered separately, but |f one is interested in the explicit form of allgauge-
only the subcasa=1 is relevant. In this case our expression dependentcomponents,, of the metric perturbations, and
for V{")(r) formally diverges. A consistent differential equa- e components ,, of the electromagnetic perturbations,
tion for Z{") for | =1 can, however, be found 8] and[22]:  these can be calculated from the gauge invariant perturba-

d o2 tionszgf) by formulas which can be found in all detail, e.g.,
— —|7(+) (+) in [22].
ar| FO 57|28 +F(r)z1 [22]
( , 18v%g?  16Mq’
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