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Explicit solutions to the time-independent perturbation equations
of the Reissner-Nordström geometry

Herbert Pfister*
Institute of Theoretical Physics, University of Tu¨bingen, D–72076 Tu¨bingen, Germany

~Received 31 October 2002; published 28 March 2003!

It is proven that the equations for the time-independent, negative-parity, gravitational and electromagnetic
perturbations of the Reissner-Nordstro¨m geometry have~for each angular momentum! one solution in the form
of a finite power series in the~Schwarzschild-like! radial coordinater. The explicit form of these solutions is
given. Therefrom the second fundamental solutions of these equations, and the positive-parity perturbations,
can also be constructed explicitly.
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I. INTRODUCTION

In 1974 four different groups derived, obviously indepe
dently, the differential equations obeyed by the first ord
perturbations of the Reissner-Nordstro¨m ~RN! geometry:
Zerilli @1# worked in the Regge-Wheeler gauge@2# and de-
rived coupled second-order equations between the gra
tional and the electromagnetic multipoles for both the o
parity ~or magnetic! and the even parity~or electric! case, but
he did not decouple these equations. Sibgatullin and A
seev@3# derived in a different gauge decoupled, Schro¨dinger-
like equations for combined gravitational and electrom
netic perturbations, again for both parities. Moncrief appl
his Hamiltonian formalism@4#, in which the gauge invarian
perturbations are explicitly singled out, separately to the o
parity case@5# and to the even-parity case@6#. He indicated
that the resulting equations can be decoupled without wo
ing this out explicitly. Lun @7# worked in the Newman-
Penrose spin coefficient formalism@8# and derived coupled
equations, but only for the case of odd parity.~The structur-
ally similar differential equation for scalar perturbations
the RN geometry was already derived in 1972 by Bicˇák @9#.!

The RN geometry is, in Schwarzschild-like coordinat
given by the metric

ds25gmndxmdxn ~1!

52F~r !dt21F~r !21dr21r 2~dq21sin2qdw2!,

with F(r )5122M /r 1q2/r 2. The perturbed metric is usu
ally denoted byg̃mn5gmn1hmn , similarly the perturbed
electromagnetic field byF̃mn5Fmn1 f mn , where Fmn has
only one nontrivial componentFtr52q/r 2. It is advanta-
geous to expand the gravitational perturbationshmn in tensor
harmonics~with respect toq and w), and the electromag
netic perturbations in vector harmonics, in addition to e
panding both perturbations in their Fourier compone
;eist. Since the RN metric is static and spherically symm
ric, all these perturbation modes decouple. Furthermore o
axisymmetric modes with angular momentum ‘‘quantu
number’’ l and magnetic ‘‘quantum number’’m50 have to
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be considered. However, for eachl ~and s) there exists an
axial mode~with negative parity! and a polar mode~with
positive parity!. According to the analysis of Moncrie
@4–6#, for given l .1, s, and given parity (6), there exists
only one gauge invariant metric perturbation, and one ga
invariant electromagnetic perturbation. In the notation
Chandrasekhar@10# these are calledH2

(6)(r ) and H1
(6)(r ).

By introducing the following linear combinations betwee
gravitational and electromagnetic perturbations

Z1
(6)5q1H1

(6)1A2q1q2H2
(6) , ~2a!

Z2
(6)52A2q1q2H1

(6)1q1H2
(6) , ~2b!

with

q1,253M6A9M214q2~ l 21!~ l 12!,

the Einstein-Maxwell equations for the perturbations of t
RN metric reduce~for eachl and s) to the following four
Schrödinger-like differential equations

d

dr FF~r !
d

drGZa
(6)1

s2

F~r !
Za

(6)5Va
(6)~r !Za

(6) , ~3!

with

Va
(2)~r !5

L

r 2
2

qb

r 3
1

4q2

r 4
,

and

Va
(1)~r !5

1

@~L22!r 1qb#2 H ~L22!FL~L22!1
8q2

r 3

3S M2
q2

r D G1qbF ~L22!2

r
1

6M

r 2

3S L221
2M

r
2

2~L22!q2

3Mr
2

2q2

r 2 D G J
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whereaÞb51,2, andL5 l ( l 11). Obviously, the equation
for the odd-parity perturbationsZa

(2) are much simpler, and
in Secs. II and III we will first look for explicit solutions to
these equations~in the time-independent cases50). It turns
out that the more complicated equations forZa

(1) do not have
to be solved separately, because Chandrasekhar~@11#; see
also @10#! has succeeded in expressingZa

(1) by Za
(2) and its

r-derivative. @Our expression forVa
(1)(r ) is considerably

simpler than the expressions in@3# and @10#. Obviously no-
body has seen hitherto that the denominators in their po
tials Va

(1)(r ) can be factorized into@(L22)r 1qa#2@(L
22)r 1qb#2, and that the factor@(L22)r 1qa#2 cancels
with the same factor in the numerator. This cancellation
also necessary in order that Chandrasekhar’s solution
Za

(1)—see our Eq.~19! in Sec. III—can satisfy Eq.~3!.#
Concerning explicit solutions to Eq.~3!, it seems that no

general analysis has been performed hitherto, not even in
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time-independent case. However, in special cases explici
lutions have been found: Bicˇák @12# has considered time
independent perturbations of the extreme RN geometryq2

5M2), and has given all odd-parity solutions as finite pow
series in (r 2M ) and (r 2M )21, and the even-parity solu
tions as similar power series multiplied by a factor@(L
22)r 216Mr 24M2#21. „In these expressions again som
cancellations lead to the much simpler formulasR1

(I )

5j l 11(j11)/@( l 12)j1 l #, and R2
(II )5j2 l(j11)/@( l

21)j1 l 11#.… For generalq andM, and l 51 ~ands50)
Bičák and co-workers@13,14# have found, for both parities
one explicit solution of Eq.~3!. Briggs et al.@15# ~see also
@16#! have considered stationary and odd-par
( l 51)-perturbations, i.e., rotational perturbations of a ge
eral RN geometry. They have found one fundamental so
tion Za

(2) as a finite power series inr and r 21 and the other
fundamental solution as a similar power series, combin
with the function
S~r ;M ,q!55
1

2AM22q2
logS r 2M1AM22q2

r 2M2AM22q2D for q2,M2,

~r 2M !21 for q25M2,

1

Aq22M2
arccotS r 2M

Aq22M2D for q2.M2.

~4!
of
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t in
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-

the

lar,

n-
n-
A similar result, but for even parity,q250, and generall has
already been indicated by Fackerell@17#, but no explicit so-
lutions as power series have been provided.

In Sec. II it is proven that in the case of negative par

Eq. ~3! for s50 allows one solution of the formZ̄a
(2)(r )

5(k521
l 11 ak

( l ,a)(2r /2M )k, with r-independent coefficient
ak

( l ,a) , and witha1
( l ,a)50 ~as indicated already in@16#!. Fur-

thermore it is shown that the second fundamental solu

has the formZ̄̄a
(2)(r )5MZ̄a

(2)(r )S(r ;M ,q)1Ẑa
(2)(r ), with

S(r ;M ,q) from Eq. ~4!, and with Ẑa
(2)(r )5(k521

l bk
( l ,a)

(2r /2M )k. @In @9# it has been shown that the differenti
equation for the scalar perturbations of the RN geometry c

by the substitutionr→j5(r 2M )/AM22q2, be converted
to the Legendre equation whose fundamental solutions
polynomials, respectively polynomials combined with t
function S from Eq. ~4!. In the Schwarzschild caseq250 a
similar observation was already made by Israel@18#. Our

results forZ̄a
(2) and Z̄̄a

(2) can be considered as generaliz
tions of the Legendre functions.#

In Sec. III the coefficientsak
( l ,a) and bk

( l ,a) are explicitly
calculated, and also the simpler coefficients for the tim
independent perturbations of the Schwarzschild geometry
given. These results are applicable to the late time beha
of a slightly nonspherical collapse to a charged or unchar
black hole~BH!, to the motion of such a BH in weak elec
n

n,

re

-

-
re
or
d

tromagnetic and/or gravitational fields, to the motion
small charged objects in the vicinity of a charged BH, and
a test bed of numerical codes for BH physics. In spec
cases such applications have already been worked ou
@3,9,13,14,19,20#.

II. PROOF FOR THE EXISTENCE OF
TIME-INDEPENDENT SOLUTIONS AS FINITE POWER

SERIES IN r AND rÀ1

We confine ourselves here to the odd-parity solutio
Za

(2) , and to the time-independent cases50. Obviously, the
differential equation~3! for Za

(2) has four singular points:r
50, r 5`, and the zeros ofF(r ), resulting in the horizons

r 1,25M6AM22q2. In principle, such a differential equa
tion can be reduced to the Heun equation@21#. Its solutions
will in general be more complicated than the solutions of
hypergeometric differential equation~with three singular
points!. It is easily seen that nearr 50 and r 5` the solu-
tions can be represented by power series inr and r 21 ~at
each point one of the fundamental solutions being regu
the other being singular!. In contrast, at the horizonsr 1,2

5M6AM22q2 there is, besides one regular solution, a fu
damental solution with logarithmic behavior which, combi
ing the two horizons, can be represented by
1-2
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Z̃a
(2)~r !5 f 1~r !S~r ;M ,q!1 f 2~r !, ~5!

with S(r ;M ,q) from Eq.~4!, and with functionsf 1(r ), f 2(r )
being regular atr 5r 1,2. Now, concerning exact solutions o
Eq. ~3! for Za

(2) , it is expected that normally infinite powe
series inr and/or r 21 are necessary for representingZa

(2) ,
and that equally the functionsf 1(r ), f 2(r ) in Eq. ~5! will be
infinite power series.~It is known from quantum mechanic
that only for a few special potential functions and then o
for discrete energy values there exist solutions of the tim
independent radial Schro¨dinger equation which are
essentially—besides factors likee2lr or e2kr 2

—given by
finite power series.!

However, we will now show that for Eq.~3! for Za
(2) , and

for s50, the potentialVa
(2)(r ) has such a special form, an

such a special relation to the functionF(r ) that there exists
one fundamental solutionZ̄a

(2) as a finite power series inr
and r 21, and that the second fundamental solution has
form

Z̄̄a
(2)~r !5MZ̄a

(2)~r !S~r ;M ,q!1Ẑa
(2)~r !, ~6!

with another finite power seriesẐa
(2) in r andr 21. The struc-

ture of the first term on the right-hand side~RHS! of Eq. ~6!
is also suggested by d’Alembert’s reduction procedure, g

ing Z̄̄a
(2) from Z̄a

(2) :

Z̄̄a
(2)~r !5Z̄a

(2)~r !E r dr8

F~r 8!@ Z̄a
(2)~r 8!#2

.

The Ansätze for the solutionsZ̄a
(2) and Z̄̄a

(2) are of course
also suggested by the results@12,15–17# for special cases.~It
is quite obvious that the same ‘‘miracle’’ cannot happen
general values ofs, and we have not checked whether the
exist discrete valuessnÞ0 with similar power series solu
tions.!

So we start with theAnsatz

Z̄a
(2)~r !5(

k
ak

( l ,a)S 2r

2M D k

, ~7!

for one of the fundamental solutions of Eq.~3!. The range of
the k values will be determined in the following. Insertin
this Ansatzinto Eq. ~3! with s50 leads to the 3-term recur
sion relation

~ l 1k!~ l 112k!ak
( l ,a)2ck

( l ,a)ak11
( l ,a)2

q2

4M2
~k13!

3~k22!ak12
( l ,a)50 ~8!

with

ck
( l ,a)5k22

5

2
6A9

4
1

q2

M2
~ l 21!~ l 12!.
06402
-

e

-

r

@For the Schwarzschild caseq250, Eq. ~8! reduces to a
simpler 2-term recursion relation.# In the following we will
omit the upper indices (l ,a) in the coefficientsak and in the
expressionsck . They should be re-introduced in the fin
results. In order that a solution of Eq.~8! is also valid for
q250, it is advisable to start with the highest coefficie
ak12, and to calculate from Eq.~8! the lower coefficients.
Due to the factor (l 112k) in the first term, there obviously
exists a solution witha l 11Þ0 but with a l 125a l 135•••

50. Then the recursion relation is trivially satisfied fork
5 l 11,l 12, . . . . For k5 l we get a l5(cl /2l )a l 11, and
similarly we can successively calculate all lower coefficie
as multiples ofa l 11. If we arrive atk52, the last term of
Eq. ~8! vanishes~for all q values!, with the result~for l
.1) a25@c2 /( l 21)(l 12)#a3. Because of this relation
and due toc1c25(q2/M2)( l 21)(l 12), in the recursion re-
lation for k51 the last two terms cancel, with the resulta1

50. From k50 we geta052@3q2/2M2l ( l 11)#a2, and
from k521: a215@c21 /( l 21)(l 12)#a0 ~for l .1).
Because of this relation, and due toc21c225(q2/M2)( l
21)(l 12), in the recursion relation fork522 again the
last two terms cancel, with the resulta2250 ~compulsory
for lÞ2, but valid also forl 52). Fork523 the last term in
Eq. ~8! vanishes, with the resulta2350, and consequently
alsoa245a255 . . . 50. In summary, we have proven tha
for l .1 one fundamental solution of Eq.~3! with s50 has
the form

Z̄a
(2)~r !5 (

k521

l 11

ak
( l ,a)S 2r

2M D k

, ~9!

with a1
( l ,a)50. The casel 51 obviously has to be considere

separately. It turns out that fora51 the resulting Eq.~9!
remains valid but the arguments are somewhat different:
recursion relation fork521 leaves the coefficienta21 un-
determined, buta21 is ‘‘later’’ determined by the demand
that the relations fork522, k523, . . . result in a22
5a235 . . . 50. For a52 the recursion relations fork
51, k50, andk521 are in contradiction to each other~for
a2Þ0 and q2Þ2M2), i.e., no solution as a finite powe
series inr and r 21 exists. There does not even exist a
gauge-invariant solutionZ̄a52

(2) for l 51, because, as was a
ready stressed by Bicˇák @22#, there exist only electromag
netic but no gravitational gauge-invariant dipole degrees
freedom.@For l 51, we haveq250 in Eqs.~2a!, ~2b!, i.e., no
coupling between gravitational and electromagnetic per
bations.#

Coming now to the second fundamental solution of E
~3! for Z̄a

(2) and s50, we have the task to show that th

form of Eq.~6! really solves Eq.~3! for s50, and thatẐa
(2)

is again a finite power series inr and r 21. If we insert the
Ansatzof Eq. ~6! with Ẑa

(2)(r )5(kbk
( l ,a)(2r /2M )k into Eq.

~3! with s50, we get, again omitting the upper indice
( l ,a), the recursion relation
1-3
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~ l 1k!~ l 112k!bk2ckbk112
q2

4M2
~k13!~k22!bk12

5kak11 . ~10!

The LHS of Eq.~10! is of course equivalent to the LHS o

Eq. ~8! @becauseZ̄a
(2) and Z̄̄a

(2) have to satisfy the sam
differential equation~3!#, however, Eq.~10! has a nontrivial
RHS ~an ‘‘inhomogeneity’’!, resulting from the derivatives
of the functionS(r ;M ,q) @see Eq.~6!#. We will now analyze
the recursion relation~10! in a similar way as we did with
Eq. ~8!, and we try to prove that there exists again a solut
with a finite number of termsbk . @Since the solutionZ̄a

(2)

behaves asymptotically liker l 11, and we know from the
analysis of the asymptotic behavior of Eq.~3! that the second

fundamental solutionZ̄̄a
(2) behaves liker 2 l , we could also

determine the highest 2l coefficientsbk through the condi-
tion that they cancel the terms coming from a power se
expansion ofMZ̄a

(2)(r )S(r ;M ,q).# Due toa l 1250, the re-
cursion relation fork5 l 11 can be satisfied withb l 11
5b l 125•••50. Fork5 l we getb l5

1
2 a l 11Þ0, and simi-

larly we can successively calculate all lower coefficientsbk
as multiples ofa l 11. If we arrive atk52, the last term of
the LHS of Eq.~10! vanishes, with the result~for l .1) b2
5(c2b312a3)/( l 21)(l 12). Due to this relation, and du
to c1c25(q2/M2)( l 21)(l 12), in the recursion relation fo
k51 the contributions proportional tob3 cancel, with the
resultb15(c212c1)a3 /( l 21)l ( l 11)(l 12), generally be-
ing nonzero, in contrast toa150. From k50 we getb0
5@c0b12(3q2/2M2)b2#/ l ( l 11), and from k521: b21
5@c21b02(3q2/2M2)b12a0#/( l 21)(l 12) ~for l .1).
From k522 we get in the first place (l 22)(l 13)b22
06402
n

s

5c22b212(q2/M2)b022a21. Inserting here the results fo
b21 andb1, all thebk-terms cancel, and also the remainin
ak-terms cancel, due to the relations betweena21 ,a0 ,a2,
anda3. So we getb2250. Fork523 the last term of the
LHS of Eq.~10! cancels, and, together witha2250, we get
a2350, and consequently alsoa245a255 . . . 50. In
summary, we have proven that forl .1

Ẑa
(2)~r !5 (

k521

l

bk
( l ,a)S 2r

2M D k

. ~11!

For l 51 anda51, this formula is still valid, although due to
somewhat different arguments. Forl 51 anda52, again the
argument counts that no gauge-invariant gravitational dip
degrees of freedom exist.

III. EXPLICIT CALCULATION OF THE FINITE POWER
SERIES SOLUTIONS

According to Sec. II, in the seriesAnsatzof Eq. ~7! for
Z̄a

(2) the coefficienta l 11Þ0 is arbitrary@because Eq.~3! is
homogeneous#. The lower coefficientsa l ,a l 21 , . . . can be
calculated recursively from Eq.~8!. Performing this for a few
steps, it is seen that a useful abbreviation is

h j
( l ,a)5

j ~2l 112 j !~ l 132 j !~ l 222 j !

cl 112 j
( l ,a) cl 2 j

( l ,a)
. ~12!

The valuesh l 215h l 12524M2/q2 are especially simple
all otherh j contain the square root appearing inck . With the
abbreviation~12! it can then be seen and proven that t
general formula for the coefficientsak reads
a l 2k5

~2l 2k21!!)
i 50

k

cl 2 i

~2l !! ~k11!! (
n50

[(k11)/2] H F q2

4M2G n

(
j 151

k22(n21)

h j 1F (
j 25 j 112

k22(n22)

h j 2S . . . F (
j n215 j n2212

k22

h j n21

3S (
j n5 j n2112

k

h j nD G . . . D G J a l 11 . ~13!

Here, as usual,@(k11)/2# denotes the largest integer being smaller or equal to (k11)/2, and forn50 the expression
$•••% should have the value 1. In formula~13! one does not see explicitly thata150, anda225a235•••50, and the
formula may be formally inapplicable for some of the highest~relevant! k-values, especially for lowl values. But these
coefficients have already been considered explicitly in Sec. II.

For the Schwarzschild caseq250 formula~13! of course simplifies considerably: We get, fora51 ~andk< l 22), i.e., for
electromagnetic test fields on the Schwarzschild geometry,

a l 2k
( l ,1)5

~2l 2k21!! ~ l 11!! ~ l 21!!

~k11!! ~ l 2k!! ~ l 2k22!! ~2l !!
a l 11

( l ,1) , ~14!

and, fora52 ~andk< l 23, andl .1),

a l 2k
( l ,2)5

~2l 2k21!! ~ l 12!! ~ l 22!!

~k11!! ~ l 2k11!! ~ l 2k23!! ~2l !!
a l 11

( l ,2) . ~15!

Furthermore one gets in this casea0
( l ,1)5a21

( l ,1)50, i.e., the series~9! begins with a terma2
( l ,1)Þ0. Similarly a2

( l ,2)5a0
( l ,2)

5a21
( l ,2)50, i.e., this series begins with a terma3

( l ,2)Þ0.
1-4
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The coefficientsbk , appearing in Eq.~11! for Ẑa
(2) have, withb l5

1
2 a l 11Þ0, similarly been calculated recursively from E

~10!. Here it is advantageous to introduce, besidesh j
( l ,a) from Eq. ~12!, the abbreviation

f j
( l ,a)5

l 2 j

cl 2 j
( l ,a)

. ~16!

Then one conjectures from the first few recursion steps, and can prove generally that the coefficientsbk have the form

b l 2k5

~2l 2k21!!)
i 50

k

cl 2 i

~2l !! ~k11!! (
n50

[k/2] H F q2

4M2G n

(
j 151

k22(n21)

h j 1F (
j 25 j 112

k22(n22)

h j 2

3S . . .F (
j n215 j n2212

k22

h j n21S (
j n5 j n2112

k

h j n (
j 50

j Þ j 1 , j 121
A

j Þ j n , j n21

k

f jD G . . . D G J a l 11 , ~17!
-

u-
e

bu
on
a-

d
s,
rba-
.,
where forn50 the expression$•••% should have the value
( j 50

k f j . For the Schwarzschild caseq250 formula~17! sim-
plifies to

b l 2k5S (
j 50

k

f j Da l 2k , ~18!

with a l 2k from Eqs.~14! and~15!. In contrast to the vanish
ing of the lowest coefficientsak , all coefficientsbk until
b21 stay nonzero.

As indicated in the Introduction, the positive-parity sol
tions Za

(1) can be explicitly constructed from the abov
negative-parity solutionsZa

(2) . In detail the formula reads
~@10,11#! for s50, andl .1, and withK5( l 21)l ( l 11)(l
12)

Za
(1)5H 11

2F~r !qb
2

Kr @~L22!r 1qb#J Za
(2)

1
2F~r !qb

K

d

dr
Za

(2) , aÞb51,2. ~19!

The casel 51 has again to be considered separately,
only the subcasea51 is relevant. In this case our expressi
for V1

(1)(r ) formally diverges. A consistent differential equ
tion for Z1

(1) for l 51 can, however, be found in@3# and@22#:

d

dr FF~r !
d

drGZ1
(1)1

s2

F~r !
Z1

(1)

5
2

~3Mr 22q2!2 S 9M22
18M2q2

r 2
1

16Mq4

r 3

2
4q6

r 4 D Z1
(1) . ~20!
06402
t

According to@13# one fundamental solution of Eq.~20! for
s50 reads

Z̄1
(1)~r !5

3M2r 326Mq2r 21~4q22M2!q2r

3Mr 22q2
, ~21!

simplifying to Z̄1
(1)(r )5Mr 2 for q250. The other funda-

mental solution results in analogy to Eq.~6!, or by integrat-
ing the corresponding d’Alembert formula, as

Z̄̄1
(1)~r !5Z̄1

(1)~r !S~r ;M ,q!2
3Mr ~Mr 1M222q2!

3Mr 22q2
,

~22!

and it simplifies to Z̄̄1
(1)(r )52Mr @11(r /2M )log(1

22M/r)# for q250.
If one is interested in the explicit form of all~gauge-

dependent! componentshmn of the metric perturbations, an
the componentsf mn of the electromagnetic perturbation
these can be calculated from the gauge invariant pertu
tionsZa

(6) by formulas which can be found in all detail, e.g
in @22#.
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