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Reconcile Planck-scale discreteness and the Lorentz-Fitzgerald contraction
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A Planck-scale minimal observable length appears in many approaches to quantum gravity. It is sometimes
argued that this minimal length might conflict with Lorentz invariance, because a boosted observer can see the
minimal length further Lorentz contracted. We show that this is not the case within loop quantum gravity. In
loop quantum gravity the minimal lengtimore precisely, minimal ar¢aoes not appear as a fixed property of
geometry, but rather as the minimalonzerg eigenvalue of a quantum observable. The boosted observer can
see the same observable spectrum, with the same minimal area. What changes continuously in the boost
transformation is not the value of the minimal length: it is the probability distribution of seeing one or the other
of the discrete eigenvalues of the area. We discuss several difficulties associated with boosts and area mea-
surement in quantum gravity. We compute the transformation of the area operator under a local boost, propose
an explicit expression for the generator of local boosts, and give the conditions under which its action is
unitary.
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[. INTRODUCTION Here, we show how the apparent conflict between Lorentz
contraction and Planck-scale discreteness is resolved in loop
A large number of convincing semiclassical consider-quantum gravity[3] (for a review and extended references,
ations indicate that in a quantum theory of gravity, thesee[4,5]). Within loop quantum gravity, a minimal length
Planck length_p should play the role of the minimal observ- appears characteristically in the form of a minin@nzero
able lengt 1]. Indeed, this happens, in different manners, invalueA, of the area of a surfadé,7]. Here we show that in
most, if not all, current tentative quantum gravity theories. It/00p quantum gravity a boosted obsen@f does not ob-
is often argued that the existence of this minimal lengthserve a Lorentz contracted,. The minimal(nonzerg area
might signal a problem with Lorentz invarian@fer instance, that the boosted observ&?’ can observe is stilA,. We
see[2]). A Lorentz-invariant quantum theory can easily ac-show that Planck-scale discreteness is compatible with a cer-
commodate a basic observable lengih a free quantum tain implementation of local Lorentz invariance, and we
field theory of a massive scalar field, for instance, there is thétudy the transformation properties of the area operator under
Compton wavelength of the partigebut is aminimal ob-  an infinitesimal local boost.
servable length compatible with some form of Lorentz in-
variance? One might argue that length transforms continu-
ously under a Lorentz transformation, and a minimal length
Lp is going to get Lorentz contracted in a boost. Thus, a The key to understand how this may happen is the fact
boosted observer should see a Lorentz contractgdi.e., a  that in loop quantum gravity, a minimal length does not ap-
length shorter than the length claimed to be minimal, leadingpear as a fixed structural property of space geometry. Space
to a contradiction. geometry, indeed, has no fixed structural property at all in
This argument is certainly simple minded, but it has hadthis approach. The geometry of space comes from a quantum
large resonance on quantum gravity research. The appareifield, the quantum gravitational field. Therefore the observ-
conflict between Lorentz transformations and Planck-scal@ble properties of the geometry, such as, in particular, a
discreteness, for instance, is often quoted as one of the méength or an area, are observable properties of a quantum
tivations for quantum deformations of the Lorentz symmetry,physical system. A measurement of a length is therefore a
and the use of quantum groups@deformed Lorentz alge- measurement in the quantum mechanical sense. Generically,
bras, in this context. Within canonical quantum gravity, simi-quantum theory does not predict an observable value: it pre-
lar arguments have been used to suggest that no state of tHists a probability distribution of possible values. Given a
theory can be locally Lorentz invariant, and so on. surface moving in spacetime, the two measurements of its
In any case, it is clear that an approach to quantum gravitgrea performed by two observet3 and O’ boosted with
predicting that an observeé? observes a minimal length, ~ respect to each other are two distinct quantum measure-
must answer the question of whether or not a boosted obments. Correspondingly, in the theory there are two distinct
server®’ can observe this length Lorentz contracted. AndoperatorsA and A’, associated with these two measure-
whether or not, in this sense, Planck-scale discreteness caments. Now, our main point is the technical observation that
be compatible with some form of local Lorentz invariance. A andA’ do not commute:

A. The basic idea
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© (i) The theory as a whole is not Lorentz invariant, and a
form of Lorentz invariance can only be recovered locally
and/or in certain“sufficiently flat” ) regimes.

(ii) The areaA is a far more complicated function of the
basic variables of the theory than .

(iii) Lorentz transformations, unlike rotational symmetry,
do not happen at fixed time. Therefore the generators of the
(local) Lorentz transformations have to know about the dy-
namics of the theory, which is highly nontrivial in quantum
gravity.
© (iv) The very construction of the “Lorentz rotated” quan-

tity A’ is delicate, since it involves a careful analysis in a

FIG. 1. Two observers in relative motidarrows see two dif- 9eneralrelativistic context of what it means to measure the
ferent tables’ 2D surface@vals in spacetime, because their simul- area of a surface for a boosted observer.
taneity surfaces are different and have thus a different intersection (V) The theory is invariant under diffeomorphisms; the
with the table worldsheetylinden. area of a surface defined by coordinate values is not gauge
invariant and we need a physical dynamical quantity to fix
the surface whose area we want to cons|@gr

For all these reasons, it is not obvious that the quantum
area can behawas the L, component of the angular momen-
o ) tum In this paper, we analyze all these problems with care,
This is becausé andA’ depend on the gravitational field on ang we show that in spite of all these complications, and
two distinct 2D surfaces in spacetingee Fig. 1and afield ynder certain reasonable assumptions, what happens to the
operator does not commute with itself at different times. Ingrea under a Lorentz boost in loop quantum gravity is indeed

this paper, we prove Eql). _ . precisely what is described above and illustrated by the anal-
It follows that a generic eigenstate Afis not an eigen-  ogy with the angular momentum.

state ofA’. If the observelO measures the area and obtains Oyr strategy is the following. First, we address pdit

the minimal ValueAO, the state of the graVitational field will by Considering a physica| System formed by genera| relativ-
be projected on an eigenstateAfThis, in turn, is not going jty coupled to a minimal and realistic amount of matter, suf-
to be an eigenstate @f’. If then the observe®’ measures ficient to have a well defined and diffeomorphism invariant
the area, he will therefore find the state in a superposition ofotion of area. Notice that this is precisely the context in
eigenstates of’. That is to say, the theory predicts that, for which the claim that the discretization of the area is a physi-
him, the surface does not have a sharp area. If the experimegélly observable prediction of the theory was put forwi@H

is repeated several time®, will observe a probability dis-  Second, we address poifiv) by carefully discussing the
tribution of area values. The mean value of the area can bgeaning of the measurement of the a®a “seen” by a

Lorentz contracted, while the minimal nonzero value of thEboosted observer in classical genera| re|atiwgec_ |D
area can remaif,. Then, we solve pointii) by explicitly computingA and A’

The situation is analogous to what happens with angulags functions of the canonical variables of the thetBgc.
momentum in the ordinary quantum mechanics of a rotationm ) This is done in a power expansion in the boost param-
ally invariant system with givefsay half-integerspin. Con-  eter, which allows us to address poifiii) by expressing
sider a certain direction, say tiedirection. If we measure quantities att>0 in terms of quantities at=0, using the
the component , of the angular momentum, we have a dis- equations of motion. In turn, this result allows us to derive
crete spectrum with a minimal nonzero valug One might  Eq. (1) and compute explicitly the first terms of this commu-
argue that this prediction conflicts with rotation invariance: if tator in an expansion in the boost paramé@c_ IV). Then
classical angular momentum components change continySec. \}, we construct a quantity that we suggest could gen-
ously under a rotation—how can then an angular momenturgrate the boost. This generator depends on the Hamiltonian
component have a minimal value? But of course this concergonstraints, thus addressing poiiit). Finally in Sec. V A
is ill founded. If an observe©’ rotated with respect t®  we derive the conditions under which this transformation is

[A,A"]#0. (1)

observes his own angular momentum compomgnthe will  unitary, and thus the spectrum preserved.

still observe the same minim&honzerg valueL,. In par- Finally, point (i) is addressed by means of a delicate in-
ticular, if the observation follows the observation of theterplay between the full dynamical structure of the theory
value Ly by O, and if the experiment is repeate@, will and the request of local flatness needed to have Lorentz in-

observe a distribution of eigenvalues which is uniquely dewvariance over a small spacetime region. We are interested in
termined by the well known representation theory of the rosmall scale quantum discreteness and small scale quantum
tation group in the Hilbert space of the theory. The same, wéluctuations of the gravitational field in quantum states in
argue here, happens with the area in loop quantum gravitywhich the metric is macroscopically flat; that is, in which the
Although this analogy is very illuminating, the quantum macroscopic expectation value of the metric operator, is flat.
gravity situation is far more complicated, for a number of To describe this regime, we first analyze the problem in the
reasons. classical theory: we expand for small boost parameter and
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small surface, and keep only the lowest order relevant terms.
We then assume that in the quantum theory the expansion
remains valid in the regimes where the expectation value of
the macroscopic curvature is small. This is not different from
what we usually do in conventional quantum field theory: we *
take the field to be zero in the vacuum and expand around >
this value—even if the field fluctuates widely on small scale, =
and its value is moved far away from zero by a field mea-
surement at small scale. Of course, in nonperturbative quan-

tum gravity we have far less control on the quantum state of -t
the gravitational field that corresponds to macroscopical flat
space, and therefore the viability of this approach should,
strictly speaking, be regarded as an hypothesis.

In addition, in Sec. IV A we briefly discuss an alternative
point of view, which we have learned in conversations with
Amelino-Camelia, on the noncommutativity betwe&rand LX) 3)

A’. The idea is to view the noncommutativity AfandA’ as '

a consequence of the noncommutativity between the area pfye indicate functions with the name of the independent and
the surface and the relative velocity of the observer and thgependent variablex”(+') is given by adifferent function
surface. We refer 1910] for a more extensive discussion.  {han xA(7), of coursé.

(i) The worldsheefT of the table is described by the

FIG. 2. The definition of the simultaneity surface.

Il. GEOMETRY three-dimensional hypersurface
A. The system T[-1,+1]X[-1,+1]XR—-M
We consider the physical system formed by four physical
elements{(i) the gravitational field(ii) two particles,(iii) a (7L 72, ) xH( 7 P2, 7). (4)

two-dimensional surfacéthe “table”). These are the dy-
namical quantities of the system we consider. They provide a The functionsg,,,(x),x“(7),x*(7"),x*(7*,7%,7°) are the
minimal setting in which we can compare the area observetiagrangian variables of the system. We assume the dynamics
by two observers boosted with respect to each other. We a@f this system to be governed by the Einstein equations and
interested in the area of the table, as seen by two observeifde dynamical equations of the table and the particles. For
(O and©®’), moving with the two particles. simplicity, we assume that the matter energy-momentum ten-

Besides these dynamical quantities, we assume that &#or is negligible in the Einstein equations, but this is not
sort of other physical objects exist in the universe. These ca@ssential in what follows.
be used to perform measuremefftsr instance, light pulses We are interested in a specific subset of physical configu-
traveling along geodesics, apparatus that detects the arriveations. First, we want the world lines of the two observers to
of these light pulses, clocks that measure proper time alongross at a poinP situated on the table worldsheet. Second
world lines, recording devices, and so)olVe do not con- (in the classical analysiswe assume that the curvature at
sider these other physical objects as a part of the dynamic&ind aroundP and the acceleration of the particlesRaare
system observed: we consider them as part of the measurimggligible at the scale of the surface. That is, we take the
apparatus. To be precise, we assume that the well knowgurface to be small enough, so that we can expand arBund
freedom of choosing the boundary between the observednd keep the lowest terms only.
guantum system and the classical apparatus—emphasized byWhat is the are@ of the table seen bg) when atP? The
Von Neumann—allows us to do so in this context. answer is the followingA is the area of the 2D surface

We describe the system in a general relativistic setting aformed by the intersection of the 3D table’s worldsh&et
follows. We consider a 4D manifold, with coordinates ~with the 3D simultaneity surfack of O atP.

x*, on which the following quantities are defined. The simultaneity surfac& is the set of points inM
(i) The gravitational fieldg is described by the metric whose light cone intersectx in two points at the same
tensorg,,,(X). proper time distancélongX) from P. Physically, these are
(i) The world linesX and X’ of the two observers are the events where a mirror reflects a light pulse emitted by the
given by the functions observer at proper time t such that the reflected pulse gets
back to the observer at proper timet (t=0 being atP).
X:R—M This is Einstein’s definition ofrelative) simultaneity.(See
Fig. 2)
i XH(T) (2 The intersection between the surface of simultaneity of
the observers and the table world historyl is a two-
and dimensional surfac&s=3NT. It represents the “table at
fixed time” in the frame of the observe? at P. The areaA
X""R—-M is the integral oves of the determinant of the restrictiofy
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X X’ quantum operators corresponding to the physically observ-

able quantitiesA andA’, we show that Eq(l) is true, and

that the operatoA’ can be obtainedunder certain assump-
tions) from a unitary transformation that implements a local
A Lorentz transformation in the Hilbert space of the theory.

B. Area in general relativity

What is the ared\(S) of the (smal) 2D surfaceS given

by the intersection of two 3D hypersurfacEsand T? Here

we show thatA(S) can be written in terms of the one-forms
s T

n, andn

o

observers. The table worldsheét is parametrized by
x(rt,72,7%). Its normal one-form is

n' = aiv ‘9_XP K (7)
FIG. 3. The definition ofSandS'. w= Evpou ol 92 93
of the metricg to S The areaA is therefore a complicated
function A[g,X,X’,T] of—but is completely determined
by—the metricg, the world lineX, the hypersurfacd, and
the crossing poinP. We calculate this function explicitly in
Sec. Il B. Similarly, A" is the area of the intersection be- =
tweenT and the simultaneity surface 6F atP. (See Fig. 3. wooTreoR
We call v#* (v'#) the unnormalized four-velocity oK
(X" atP: The normal two-form of the intersecticB=>NT, param-
etrized as<*(u,v), is

hypersurfaces,, parametrized as*(p*,p?,p3), is

IxX” IxP gx”

— = ®
&pl z9p2 &p3

L dx(7)

VT | ) 1 IxXP 9X“
" Mur =3 o g gy ®

[v'# is defined in the same manner k¥(7').] The angle
between the two tangents gives the relative spéeaaf the It is convenient to choose parametrizations such that
two observersD andO':

u = Tl: pl’
1 v-v' ®
Y= = ) .22
1—V2 lv||v’] v=T1°=Dp*, (10
where the scalar product and the norm are taken here witAnd
the metric atP. For simplicity, we also assume that the rela-
tive three-velocity of the two observers is tangent to the [ 11
table.(We are not interested in transversal motion, because it €uvpo” 51" o0 a3 9p3 - (1)

does not give rise to Lorentz contractipiVe say that the
table is at rest with respect ¥ if the worldsheet of the  1hen we have easily
boundary of the table is normal . (If the surface is suf-
ficiently small, this implies thaA maximizes the area with n =n>n. (12)
respect ta.) v el
The quantitiesA and A" are diffeomorphism invariant The area of a 2D surface is
functions ofg, X, X', and T. They are invariant under a
smooth displacement of these dynamical quantities\dn

They do not depend on the coordinates chosepimor on A=A(S)= f dudv \/defg

any structure oM besides the dynamical fields. They are s

fully gauge invariant observables in this dynamical system. Ixt ox”

They are physical quantities that are in principle observable :f dudy \/de{—_ —g V) ' (13
by using appropriate measuring devicdermed by light S ou' gul ~*

pulses, detectors, clocks, etcThe specific technical con- A

struction of these devices is not relevant here. whereu'=(u,v) and the determinant is on thg=1,2 in-
In this paper we consider the quantum theory corresponddices.

ing to this dynamical system. In particular, we consider the Consider now the equality
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g IXP 9XZ Ix” ox° Let us illustrate this key point in a simple one-
2gn,,n,pg"°g"P= > €urpor€aBys 0 G0 a0 %g’wgvﬁ dimensional universe with a metric fieff{x), an objectA in
the coordinate positions=X, and a reference object in the
1 o IXP X7 X IXg coordinate positiox=0. The position ofA is determined by

== S e o o o the distance from the reference

2

T U AU duv v

IXP X, IXT X, (axp X,

X
drgX1= [ ax/ato. a”

IX* 9x” d is a diffeomorphism invariant quantity. It represents pre-
=def ——0,, |, (14 cisely what we actually measure: pick a meter to get the
Ju’ ou position ofA in meters from the reference—this meastuaes
Now, we can gauge fix the coordinateso thatg=1. In this
gauge, the observable quantiyis given by the coordinate
position of the object:

obtained using

€*F7°=—ge,,,,9"*9"?9""g"",

d=X. (18

€uvpo€” " 1=2(5580— 5,5). (15)

mvpo

This is what we generally do in flat space: coordinates give
Using this, the area d can be written asg=detg,,,) observable positions. Alternatively, we can choose coordi-
nates in which the position of the object has a fixed prede-

termined coordinate valug=1. In this gauge

1
d= fo dxvg(x). (19

A= f dudvy \/ZQanaBg““g”ﬁ
S

=Ldudv \/g(n;nfnln%—n;nfning)g““g”ﬁ
With this gauge choice, the physical location of the object,
namely, its distancel from the reference is determined b

- jstdv\/ng'Z'nE'Z_(nT' n*)?. 16 the so?/e metric field. g

These two possibilities are familiar, for instance, in the

ofontext of gravitational wave detectors: We can equivalently

say thatthe two mass probes do not move and the gravita-

tional field varies in the in-between regioor thatthe two

mass probes oscillate in spa¢@here “move” and “oscil-

late” refer to the coordinatesThese are two equivalent de-

lll. DYNAMICS scriptions of the same physics.
A. Coordinate choice In the present context, we have chosen to attach coordi-
nates to the mattefparticles and tab)e Therefore the dy-

Without |m|i)or2tan3t loss of generality, we chose coordi-,ics is entirely captured by the value of the gravitational
nates x*=(t,x-,x=,x%), which are particularly convenient field

for the above setting. In these preferred coordindie® is
the origin; (i) the three-surfacd is defined by—1<x'<
+1, —1<x?<+1 andx®=0; (iii) the world lineX is de-
fined byx*=x?=x3=0; (iv) the world lineX' is defined by
x?=x3=0 andx= Bx°. Furthermore, we choose the param-

This expression gives us the area directly as a function
surfaceS, the metric and the normals to the table worldsheet
and the observer’s simultaneity surface.

To further illustrate how the physical degrees of freedom
of the table and the particle are still present, as well as for
later purposes, consider, for instance, the following value of
the metric, in the given coordinates:

eters parametrizing the world lines and the worldsheet as ds?=g,, ,(x)dx“dx”
=7 =r=t, u=r'=x%, andv=r>=x2 5 L 1o - 32
We also further fix the coordinates by choosing the gauge =—dt+ (1+4ax7t)(dx7) "+ (dx7)*+ (dx7)%.
in which att=0 we havegg=—1 and g,,=0 for a (20)

=1,2,3. This simplifies the canonical analysis.

A very important observation follows. With these coordi- Let x(t) be the trajectory of the central point of this table,
nates, namely in this gauge, the only remaining degrees ahat is, the point at the same distance from its boundaries.
freedom are those in the metric tengy,(x). However, this  Easily, to first order irt,
does not mean that the physical degrees of freedom of the
matter (the two particles and the tablare being killed or X(t)=(at,0,0). (21)
frozen. Indeed, it is well known that the coordinate position
of matter and the value of the metric tensor are both gaug&herefore the relative velocity of the partickewith respect
dependent quantities, due to diffeomorphism invariance. Theo the center of the table is. In other words, the particlX
physical, measurable position of an objédlative to a ref- and the tablel are moving with respect to each other even
erence objegtis determined by a combination of the two. though their coordinate positions have been fixed. The rela-

064019-5



C. ROVELLI AND S. SPEZIALE PHYSICAL REVIEW D67, 064019 (2003

tive of the metric field[g,,(x) does not depend oa att (25
=0, while its time derivative doesThe example illustrates

how the physical motion of the particles and table is de- . mos 3 . .
scribed by components of the metric tensor in this gauge. Where we have definegf®= (—detg)g*. Explicitly, sinceS
Now, since we have partially fixed the gauge by fixing thelS the intersection of the surfade and the table worldsheet

coordinate position of the matter, it follows that the invari- 1- We have, from Eqsi22) and (23),

ance under general coordinate transformations is reduced to 1 1 -

the invarignce unde_r.the change of c_oordinates thqt preserve A:f duf dv \/533(0“,0’0)_ (26)
the coordinate condition chosen. Equivalently, the diffeomor- -1 -1

phisms group Diff, which is the gauge group, is reduced in

tive velocity of table and particle is given by the time deriva- =
A=A(S)= J dudv Vg,
S

this gauge to the subgroup Djfformed by the diffeomor- Qonsider now the observ@’: His simultaneity sgrface
phisms that send the table’s and particles’ world lines into> " is determined by the world linX’. The four-velocity of
themselves. this world lineX" atP is

As a consequence, certain components of the gravitational o
field that are gauge dependent quantities in pure general rela- v'#=(1,8,0,0). (27)

tivity become gauge invariant physical quantities, precisely, , P . )
as the right hand sidéehs) of Eq. (19). In particular, in this _If Yur 15 constar_nz. |§Justpogmasl to the four-velociti27): }

gauge the area& andA’, which are gauge invariant observ- N the parametrizatiop=(p~,p*,p”) that we have chosen, it
ables, are expressed solely in termsgyobut still remain, of 1S given by

course, gauge invariant. - -

We can clarify this point with an analogy from Maxwell’s x*(p)=(BY1ap®p), (28)
theory: in the gauge in which scalar potential is set to zero, _ ) )
A,=0, the electric fielda gauge invariant quantitys given ~ Wherea=1,2,3. Using Eq(8), we have, in the coordinates
by the sole time derivative of the Maxwell vector potential; @"d Parametrization chosen,

E=dA/dt. In this gaugedA/dt represents a gauge invariant
guantity, because the gauge transformations are reduced to
those that preservBy=0. Similarly, in the coordinates we
have chosen, the area is given by a functiom@flone, and

s =(-1,891a), (29

Sinceg,,,(x) is in general not constant, the detailed calcula-

) i . o : . tion of the position ofY’ is more cumbersome. We can
is gauge invariant because it is invariant under coordinatg, o Tl e L by simply taking the
transformations that preserve the coordinate choice made. ' ) T

We have discussed these issues in great detail in this se¥@lue of g,,,(x) in Eq. (28) at a pointx*=3x*, halfway
tion, because they are sources of frequent confusion. Let JietweerP and the point of the surfac€This is inthe middle

now write A explicitly as a function of the metric field in the ©Of the path of the light that defines’. A more detailed
coordinates we have chosen. calculation—which we do not report here—obtained by in-
tegrating explicitly the light paths in a metric that grows
) ) ) linearly in time confirms the resultThat is, to next order we
B. Area as function of canonical coordinates replace Eq(28) by

In the coordinates we have chosen, the table worldsheet

is given by X(p)=(Bg1a(X(p))p%,p). (30
3_ - -
x*=0 This equation defineg(p) intrinsically, sincex(p) appears
T4 —1<xi<+1 (22) in the rhs as well. Explicitly, to second order ghwe have
—1<x2<+1

X°(p) = BY1a(0,0/2)p*+ 3 B°015(0,0/2) p°1a(0,p/2) p,
and the simultaneity surface of the first observer is given .
by x3(p)=p*. (39

S:t=0. (23 O''s simultaneity hypersurface c_iefi_nes _the surfas_é
=3'NT as the table seen kY’ at his fixed time(See Fig.
3.) Combining Eqs(31) and(22), we have, in the parametri-

Therefore ; )
zation chosen, again to ordg?,
S__ .
"= (71000, X°(U,0) = Bgy (W20 /2)U
T_ 2- . .
nM—(O,O,O,:D. (24) + %gli(U/Z,U/Z)Ulglj(U/Z,v/Z)UJ,

Also, the proper time of the observer coincides witkqua-
tion (16) becomes the well known formula x}(u,v)=ul=u,
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x2(u,v)=u’=v,
x3(u,v)=0. (32

Here and from now ong,,(u,v)=g9,,(0,u,v,0) andg,,
=0,,(0,0,0,0).
From Eq.(16) we have, for the second observer,

A=A - [ duw VT goul. (@3

Explicitly,

1 1 -
A= auf o V(U0 ) 1~ B2gua(x(u,0))].
-1 J-1
(34

Using Eq.(32), we have, to ordep,

A=At §jl dufl dogy(uw)U'[g%(u,0)] YU .0).
-1 -1
(35

To order3?, we have
A/:Jl del do EsS(X(u’U))
-1 Jaa

21 1 _
><(u,v)+%fﬁlduJildvgli(u,v)u'glj(u,v)
XUl (@%3(u,0))” g¥(u,0)

B (1 ! = -3/ i
o BT I R e G I Y
= 2 M 1
><(g33(u,v))2—%fﬁldUlevgu(u,v)

X (9%%(u,v))*2 (36)

and so on. The second, third, and fourth line of this equatio

come from the time derivatives @33, which depend org.

r'Ehe bracketg40) do not vanish. In this case, indeed, we can

take the evolution in the coordinatéo be generated simply

PHYSICAL REVIEW D 67, 064019 (2003

.
g,uV(X(uvv)): g,uv+ﬁgliulgﬂv+7glju]gliulgﬂv
2

B S
+ 5 03W9LU'g (37)

Inserting this in the first two lines of E¢36), we can do all
the integrals explicitly. Those linear n vanish, leaving, to
second order irB, with a straightforward calculation,

A=Vg%, (38)

&@33 B (at§33)2
3A 6A3

A'=A—-2p8%g.A+ BA9%1+9%)

, _ (9533
+B(911911+ 912912)3—A . (39

IV. NONCOMMUTATIVITY

So far, we have simply studied the form of the ardasd
A’ seen by two accelerated observers in a given metric. Let
us now recall that the metric is the gravitational field,
namely, a dynamical physical field. We want to writeand
A’ as functions on the phase space of our dynamical theory,
and compute the Poisson bracket

{AA'}. (40)

To this aim, we take the simultaneity surfaBe that is,t

=0 in the coordinates chosen, as oADM surface, on
which we base the canonical formalism. As usual in quantum
gravity, we chose as canonical variables the Ashtekar field
E2(x), namely, the densitized tetrad field, which satisfies

EA(X)EP(x) =g2%(x). (41)

We consider the metric fielwhich we leave indicated when
convenient as a function of the tetrad field. The explicit
form of the bracketg40) depends on the dynamics of the
matter field, which in the coordinates we have chosen affects

the dynamics of the gravitational field by partially constrain-

ing the evolution of lapse and shift. However, one can easily
see that even if we assume that in these coordinates the dy-
namics of the gravitational field is unaffected by the matter,

The last line comes from thg” in Eq. (34). Notice that there by the pure gravity Hamiltonian constraifive are in the

is still a 8 dependence in the first two lines, becaxée,v),
given in Eq.(32), containsp.

Let us now make the additional assumption that the met-

lapse=1, shift=0 gauge, namely,

- : | ASSHID Ef={E? H},

ric is spatially constant at=0. This simplifies the expres-

sions above and allows us to perform the integrals explicitly, . i

but is not essential: it is easy to generalize our result to a Aa={Ag . H}, (42

nonspatially constant metric. Under this condition we can
write where
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B A. The velocity of the surface
H= f d3xEAEPFK €] o .

J We close the section with an observation that we learned
in discussions with Amelino-Camelia. In flat space, the area
:f d3XEiaE?((9aAlt()6kij +Ai[aAJB])- (43) A’ observed by’ is related to the areA seen by an ob-

serverQ at rest with respect to the surface by

Recalling that the nonvanishing Poisson brackets are given A= 1-V2A (52)

by ’

whereV is the relative velocity of the two observers. If the
surface is sufficiently small, the same should be true in gen-
eral relativity. But this seems in contradiction with H@),
which we claim to be the key to understand the problem at

{EF(x),A5(Y)}= 8381 8%(x.y), (44)

we can compute the Poisson brackets explicitly.

Surprisingly, hand. Indeed, ifA is an operator, Eq52) seems to express
g A’ as a simple function oA: but a function of an operator

{g®,g%}=0 (45 commutes with the operator itself, therefaxé should com-
and mute withA, against Eq(1). The answer to this objection is

illuminating. In general relativityA becomes a quantum op-

~ A erator because it is a function of the metric, namely, a func-
{g%,g%}=0. (46)  tion of the quantum field. But the velocity that appears in
Eqg. (52) depends on the metric as well. Indeed Widhat
appears in Eq52) is not a coordinate velocity, it is a physi-
~ ) cal velocity, and it depends ay),, as well. ThusV as well is
{9®0%}=2E7E}{E} E’ an operator in quantum gravity. Therefore the operators

—JEPEYED ERER AN not a simple function of the operatét. The noncommuta-

it By AL Sl B ¥ o VR tivity (1) of A andA’ can thus be equivalently viewed as a

The first equality follows from

— JE3E3E3E3 consequence of the noncommutativityoindV. Therefore
P one can also say that the apparent incompatibility between
=0. (47) discreteness and Lorentz contraction is resolved by observ-
ing that the measurements of area and velocity of a surface
The second equality can be derived from are incompatible.
. To be more precise, since the relative velocity between
{g*0%=EYE, 2E’E’+ EJED)}. (48)  observer and surface does not commute with the area, it does

not make sense to start by assuming that the first obsélrver
Of the two terms on the rhs, the first is proportional tois at rest with respect to the surface. Dropping this, we must

{E7,E7}, which, as we have just seen, vanishes. The seconigplace Eq(52) by
can be written as
ESESED EF) ~EPES(A(ED ES) —{ED.E3D): (49 SN °9
again, the first term in the parentheses vanishes as we hawtherev andv’ are the relative velocities of the two observ-
seen, while the second term is antisymmetricamdj. Thus,  ers® and®’ with respect to the surface. In general relativity
only the last term of Eq(38) does not commute with Eq. this becomes complicated because the notion of the rest
(38). A long but straightforward calculation gives indeed  frame of a nonlocal object—such as the surface—is far more
. complicated than in special relativity. Since the location of
{AA}=5B%(gl, T 95D AA. (50)  the surface we consider is only defined by its boundary, its
) . ) rest frame as well depends only on its boundary. The dis-
Since the Poisson brackets betwegeandA’ do not vanish,  tance of the boundary from the observer is determined by the
the commutator of the corresponding quantum operator caRza|ye of the gravitational field on the surface itself; the ve-
not vanish either. Otherwise in tite—0 limit the commuta- locity of the boundary with respect to the obseryérat is,
tor c_ould not rep_roduc_:e the classical Poisson brackets. Thige rate of change of this distance in the observer’s proper
confirms our main claim, E¢1). _ time) depends, therefore, on ttiene derivativeof the gravi-
For later purposes we write also the expressionXbito  tational field. This is shown above in a concrete example in
first order ing without the assumption of a spatially constant sec. |1l A. Since the gravitational field operator does not

metric: inserting Eq(41) in Eq. (35 we get commute with its own time derivative, this velocity does not
1 1 commute with the area. Asandv’ do not commute witt#,
Af:AJrBJ duf dvgqi(u,v)uVE3(u,0)E3(u,v) A’ does not commute witiA either. This point is discussed
-1 -1 in detail by Amelino-Camelia if10].

3 - Physically, all this means that by measuring the area, an
XEf(u,v)Ef(u,v). (51) observer destroys information on the velocity of the
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surface—as measuring the position of a quantum particland it is easy to verify that these are indeed generators of

destroys information on its momentum. spatial rotations. More care is required for the boosts, be-
In fact, one might have considered another possible solueause in general they mix canonical and auxiliary fields:

tion for the apparent conflict between Lorentz contraction

and discreteness. Recall that one can say that the rest energ .

E, of a massive particle is a non-Lorentz-invariant quantity va'oa:f d3X[ = X%Pp(X) 72" (X) = 17X TOUX) —ipn(X)

(it is the fourth component of a four-vecjobut it is also a 0 n am

fixed fundamental observable quantity in a Lorentz-invariant X(L )m@"(x)]. (56)

theory. There is no contradiction, becalsgis measured in ] - o

a special frame determined by the state itself. Similarly, weNotice that these quantities are constants in time, but they

might imagine that\, always appears as the minimal area ofdo not commute Wlt.h thg Ha_mlltonlan—m fact, they Lorentz

a material object in its own rest frame. The explicit compu-transform the Hamiltonia into the total momentuni,,

tation of this paper shows that this is not the case. But th@S iS to be expected geometrically. This is because of they are

observation above clarifies why a measurement of the are@Plicitly time dependent:

erases information on the velocity of the surface. Presum- 0

ably, a quantum measurement of the afearojects the sys- 0=MP° =[H M%)+ M7, (57)

tem into a state in whicly is maximally spread: then the a e at

mean value of this velocity is in any case zefier the

measurement. from which

V. BOOSTS GENERATORS (H,M%} = _f 43X Py(X) 32q"(X) = P, (58)
We now want to study the transformation that maps the

operatorsA andA’, corresponding to the classical quantities This is why they do not give good quantum numbers in spite
AandA’, into each other. In particular, we are interested inof being constant.

understanding if this transformation can be seen, in an ap- | et us now come to gravity. In gravity, we can still write
propriate sense, as a Lorentz transformation. The subtlety e quantities’54). These are formal objects. They are not
the interplay between the assumption of approximate localensorial, not defined for all values of the fields, not defined
flatness of the mean values of the quantum fields and the fuin the entire spacelike surface. Nevertheless, they can still
dynamical structure of the theory. We place ourselves in thglay a role. Indeed, let us consider the transformation they
frame of the full theory, but study it in the vicinity of the generate over a function of the fields, which has support in a
states which are macroscopically flat arouhdWe suggest region small with respect to the local curvature, or in a re-
here that in this context one can define a unitary transformagime in which spacetime is close to flatness. In this regime,
tion in the Hilbert space of the theory, which sendisnto e can take the* as Cartesian coordinates, and we can take
A’. If this is correct, the spectrum of the two operators is thethese objects as the generators of Lorentz transformations.

same, a result which is to be expected on physical grounds. Consider, in particular, the componeft’(x). This is the
To this aim, we explicitly consider quantitidd”, that  Hamiltonian constraint density, since

behave as generators of Lorentz transformations. For a field

theory on flat space, the construction of these quantities is oL _
well known (see, for instancg 11]). We briefly recall it here. TOO(x):H(X):E " m(X)¢>m(X)—£(x). (59)
Define d¢
3| [uT0lp] oL N o If we can fix the gaugeN(x)=1, Na(x):AB(X):O’ A
MM”:J T g, ag'b”(L#V)md) , (54 ={A M}, the Hamiltonian density59) coincides with the

Hamiltonian constraint{(x) [12]. The momentum

where we have indicated by™(x) the fields;mis a generic
Lorentz index,T#” is the energy-momentum tensdr,is the
Lagrangian densityand, thereforeg£/d¢" are the momenta
conjugate to the fields (L*,);, are the generators of the
Lorentz representation to which the fields belong, andis ~ generates spatial translations. Spatial translations are gener-
the Minkowski metric. In a Lorentz invariant theory, Egs. ated by the momentum constrait}(x) in general relativity.

(54) are constant. Let us indicate y'(x) the canonical In the light of these considerations, we tentatively consider
fields, by p,(x) their conjugate momenta. Other fields will the possibility that the boost generator that sends the area in
be the auxiliary ones—those with vanishing conjugate mothe boosted area is given by

mentum. We can write

0 9L m
Ta’00 == 2250092870 (60

MO,= f ABXXOHo(X) + XPAL(X) G (X) = Ga e (X)XHH(X)
M?,= f d*xpn () [XL°G7G"(X) 765 =1 (L%) 3@ ™(x)] _
(55) —IEP()(LO)EAL(X)]. (61)
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Notice the replacement of the Minkowski metric gy, (x). This operator is unitary iM(\) is Hermitian. This is the

More precisely, we consider the possibility that an infinitesi-condition under which the Lorentz transformation is unitary

mal Lorentz boosh?; acting at the poink is generated by in the quantum theory. Assuming it is satisfied, the spectrum
of the areasA and A’ is the same. Conversely, since on

M(N)=\%M,. (62)  physical grounds nothing distinguishasrom A’, we think
0 it is reasonable to require that the operaibf\) be Hermit-
In our casex”=0 and ian.

Let us study this condition. Consider the infinitesimal ac-

A= Bepdt; (63) tion of the operatof68) on the states of the theory. We take
therefore the generator turns out to be éo:(%;)md?\ given by Eq.(63), so that Eq(61) reduces to
qg. )
M(B)=pM’;. (64)

_ ; 3 a
Taking into account that we are et=t=0 and in the gauge [6) |(/,>+I'Bf IXG1a(XXHO)|¥), (69

A;=0, we have . . o
0 and is determined by the Hamiltonian operator. Recall that a

basis of area eigenstates is given by spin network states
M(B)= —Bf d®Xg1a(X)XEH(X). (65  [13,14. We denote a spin network state|&sj), wherel is
a graph, ang is the coloring associated with the links and
In order to check this hypothesis, we compute the infini-nodesn in I'. We can expand
tesimal transformation ofA generated by this generator.

Since |¢>:F2j drIT.0). (70
{M(B) VE;(X)E ()} . . .
We recall that the action of the Hamiltonian constraint

J d325M (B) 5‘/E?(X)E]3(X) S?tiar?d Wiﬁlsallaps& is a sum of terms acting on the nodes
= - of the form[15,
SAL(z)  SEl(2)

SM _ AN]IT,j)= >, AN(Xn)D,|T,j), (72)
— 5AI((IB;[E?(X)E?(X)]1/2E3|(X) | J> =t n n n| J>
3 X
wherex, is the coordinate location of theth node,A,, are
SH(Y) N ) numerical coefficients, and,, is an operator that acts on the
— d3 a, 3 3 1/2=3i
=—B| d°yguly)y 5Ai3(x)[Ej(X)Ei(X)] E¥(X) graph, changing it around theth node. Sed4] and espe-

cially [5] and references therein on the actual construction of
=Bgla(x)xaE?(x)[Ef(x)Ej?’(x)]*l’ZEe"(x), (66) f[he Ham!ltonlan constraint operator. Here the lapse is 1. Us-
ing all this we obtain
it follows that

T W) =10 +1B2 v 2 An(@1Xq)DAlT j). (72)
{M(ﬁ),A}=ﬁfﬁlduffldvglxu,v) b
In particular, if we consider a spin netwoK,j), eigenstate

XUi‘/E? (u,v)E? (u,0)E3(u,0)E(u,v). of A, the probability amplitude thaD’ sees it in a different
67 spin network eigenstatd™’,j’) is

But this is precisely the second term on the rhs of &4), P=8> Al".j’|g1ax2D,|T,j). (73
which is the infinitesimal transformation & we had previ- nel

ously worked out geometrically. This result supports the hy- —
pothesis that Eq(64) is the correct generator of the local We leave the problem of the actual definition of the node

Lorentz boost operatorg,,x3D,, in the quantum theory to future investiga-
' tions.

A. Unitarit
y VI. DISCUSSION AND CONCLUSIONS

Let us now return to the quantum theory. Consider the _ o
quantum operatoM (\) corresponding to the classical ob- ~ In loop quantum gravity, the metric is an operator. The
servablg(62). We assume that this operator is well defined inarea of a surface is a quantum observable. At the Planck-

the theory. The corresponding finite transformation is generscale, this area is quantized and there is a finite nonzero
ated by minimal value. Under a Lorentz transformation, we expect

_ this minimal value not to change. That is, we expect that two
U\)=e MO, (689 observers boosted with respect to each other see the same
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spectrum. We have studied here the transformation that regravitational field with respect to the matter. The Lorentz
lates the observables of the two observers. transformations we have considered act on the matter at fixed
We have analyzed in detail the situation in classical genfield, or, equivalently, on the field leaving the matter fixed.
eral relativity, and written the form of the two observablesThis is why they are not part of the gauge. Concretely, we
explicitly. We have shown that these two observables hav@ave gauge fixed the coordinate position of the matter, and
nonvanishing Poisson brackets, which implies that the correconsidered an active Lorentz transformation rotatiiny
sponding quantum operators cannot commute. Therefore §pacetimg the gravitational field. While this would be a
the value of the area is sharp for one observer, it cannot bg,,ge transformation in the absence of matter and in arbi-
sr?arp,. n g?neral, for the second observer. This implies thatary coordinates, it is, instead, a change of physical state in
the minimal area measured by one observer cannot be jugte ™y esence of matter, or, equivalently, in the gauge fixed
Lorentz contracted for the boosted observer. This is our mail o dinates we have chosen. This is why, in spite of being a

result. . . . . .
We have also studied the conditions under which theImear function of the Hamlltonlan constramt, the gengrator
of Lorentz transformations that we have introduced defines a

transformation between the two observables is unitary in : N . .
quantum theory. These conditions can be seen as a requir%gnu'ne transformation in the physical Hilbert of the theory.

ment for the precise definition of certain operators in quan- echnically, since we have gauge fixed the coordinates, the

tum theory. We have suggested the explicit form of the genphysicql states are not defined by the vanishing of the.full
erator of local Lorentz transformations in the theory, in aconstraints, but only by the vanishing of the constraints
particular gauge. smeared by generators of diffeomorphisms that send the mat-
We close with a discussion of the relation between diffeo{er world histories into themselves.
morphism invariance and Lorentz transformations, in this At the light of these considerations, the reason for the
context. The theory is invariant under diffeomorphisms thagxplicit form of the generator we have considefede, in
act simultaneously on the gravitational field and on the matparticular, Eq(65)] is transparent: it changes the value of the
ter. However, it is not invariant under a diffeomorphism thatmetric field from that on thé=0 surface to that of the sur-
acts on the matter leaving the gravitational field untouchedface t=£g,,x%, namely, to the Lorentz rotated surface.
Nor under a diffeomorphism that acts on the gravitationalTherefore it transforms the gravitational field that determines
field leaving the matter untouched. Of course, diffeomor-the area of the table on the simultaneity surface of the first
phism invariance implies that to move the matter with re-observer into the field that determines the area of the table on
spect to the gravitational field is equivalent to moving thethe simultaneity surface of the boosted observer.
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