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Reconcile Planck-scale discreteness and the Lorentz-Fitzgerald contraction
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A Planck-scale minimal observable length appears in many approaches to quantum gravity. It is sometimes
argued that this minimal length might conflict with Lorentz invariance, because a boosted observer can see the
minimal length further Lorentz contracted. We show that this is not the case within loop quantum gravity. In
loop quantum gravity the minimal length~more precisely, minimal area! does not appear as a fixed property of
geometry, but rather as the minimal~nonzero! eigenvalue of a quantum observable. The boosted observer can
see the same observable spectrum, with the same minimal area. What changes continuously in the boost
transformation is not the value of the minimal length: it is the probability distribution of seeing one or the other
of the discrete eigenvalues of the area. We discuss several difficulties associated with boosts and area mea-
surement in quantum gravity. We compute the transformation of the area operator under a local boost, propose
an explicit expression for the generator of local boosts, and give the conditions under which its action is
unitary.
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I. INTRODUCTION

A large number of convincing semiclassical consid
ations indicate that in a quantum theory of gravity, t
Planck lengthLP should play the role of the minimal observ
able length@1#. Indeed, this happens, in different manners,
most, if not all, current tentative quantum gravity theories
is often argued that the existence of this minimal len
might signal a problem with Lorentz invariance~for instance,
see@2#!. A Lorentz-invariant quantum theory can easily a
commodate a basic observable length~in a free quantum
field theory of a massive scalar field, for instance, there is
Compton wavelength of the particle!, but is aminimal ob-
servable length compatible with some form of Lorentz
variance? One might argue that length transforms cont
ously under a Lorentz transformation, and a minimal len
LP is going to get Lorentz contracted in a boost. Thus
boosted observer should see a Lorentz contractedLP , i.e., a
length shorter than the length claimed to be minimal, lead
to a contradiction.

This argument is certainly simple minded, but it has h
large resonance on quantum gravity research. The appa
conflict between Lorentz transformations and Planck-sc
discreteness, for instance, is often quoted as one of the
tivations for quantum deformations of the Lorentz symme
and the use of quantum groups orq-deformed Lorentz alge
bras, in this context. Within canonical quantum gravity, sim
lar arguments have been used to suggest that no state o
theory can be locally Lorentz invariant, and so on.

In any case, it is clear that an approach to quantum gra
predicting that an observerO observes a minimal lengthLP
must answer the question of whether or not a boosted
serverO8 can observe this length Lorentz contracted. A
whether or not, in this sense, Planck-scale discreteness
be compatible with some form of local Lorentz invariance
0556-2821/2003/67~6!/064019~11!/$20.00 67 0640
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Here, we show how the apparent conflict between Lore
contraction and Planck-scale discreteness is resolved in
quantum gravity@3# ~for a review and extended reference
see @4,5#!. Within loop quantum gravity, a minimal lengt
appears characteristically in the form of a minimal~nonzero!
valueA0 of the area of a surface@6,7#. Here we show that in
loop quantum gravity a boosted observerO8 does not ob-
serve a Lorentz contractedA0. The minimal~nonzero! area
that the boosted observerO8 can observe is stillA0. We
show that Planck-scale discreteness is compatible with a
tain implementation of local Lorentz invariance, and w
study the transformation properties of the area operator un
an infinitesimal local boost.

A. The basic idea

The key to understand how this may happen is the f
that in loop quantum gravity, a minimal length does not a
pear as a fixed structural property of space geometry. Sp
geometry, indeed, has no fixed structural property at al
this approach. The geometry of space comes from a quan
field, the quantum gravitational field. Therefore the obse
able properties of the geometry, such as, in particula
length or an area, are observable properties of a quan
physical system. A measurement of a length is therefor
measurement in the quantum mechanical sense. Generic
quantum theory does not predict an observable value: it
dicts a probability distribution of possible values. Given
surface moving in spacetime, the two measurements o
area performed by two observersO and O8 boosted with
respect to each other are two distinct quantum meas
ments. Correspondingly, in the theory there are two disti
operatorsA and A8, associated with these two measur
ments. Now, our main point is the technical observation t
A andA8 do not commute:
©2003 The American Physical Society19-1
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C. ROVELLI AND S. SPEZIALE PHYSICAL REVIEW D67, 064019 ~2003!
@A,A8#Þ0. ~1!

This is becauseA andA8 depend on the gravitational field o
two distinct 2D surfaces in spacetime~see Fig. 1! and a field
operator does not commute with itself at different times.
this paper, we prove Eq.~1!.

It follows that a generic eigenstate ofA is not an eigen-
state ofA8. If the observerO measures the area and obtai
the minimal valueA0, the state of the gravitational field wil
be projected on an eigenstate ofA. This, in turn, is not going
to be an eigenstate ofA8. If then the observerO8 measures
the area, he will therefore find the state in a superposition
eigenstates ofA8. That is to say, the theory predicts that, f
him, the surface does not have a sharp area. If the experim
is repeated several times,O8 will observe a probability dis-
tribution of area values. The mean value of the area can
Lorentz contracted, while the minimal nonzero value of t
area can remainA0.

The situation is analogous to what happens with ang
momentum in the ordinary quantum mechanics of a rotati
ally invariant system with given~say half-integer! spin. Con-
sider a certain direction, say thez direction. If we measure
the componentLz of the angular momentum, we have a d
crete spectrum with a minimal nonzero valueL0. One might
argue that this prediction conflicts with rotation invariance
classical angular momentum components change con
ously under a rotation—how can then an angular momen
component have a minimal value? But of course this conc
is ill founded. If an observerO8 rotated with respect toO
observes his own angular momentum componentLz8 , he will
still observe the same minimal~nonzero! value L0. In par-
ticular, if the observation follows the observation of th
value L0 by O, and if the experiment is repeated,O will
observe a distribution of eigenvalues which is uniquely
termined by the well known representation theory of the
tation group in the Hilbert space of the theory. The same,
argue here, happens with the area in loop quantum grav

Although this analogy is very illuminating, the quantu
gravity situation is far more complicated, for a number
reasons.

FIG. 1. Two observers in relative motion~arrows! see two dif-
ferent tables’ 2D surfaces~ovals! in spacetime, because their simu
taneity surfaces are different and have thus a different intersec
with the table worldsheet~cylinder!.
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~i! The theory as a whole is not Lorentz invariant, and
form of Lorentz invariance can only be recovered loca
and/or in certain~‘‘sufficiently flat’’ ! regimes.

~ii ! The areaA is a far more complicated function of th
basic variables of the theory thanLz .

~iii ! Lorentz transformations, unlike rotational symmet
do not happen at fixed time. Therefore the generators of
~local! Lorentz transformations have to know about the d
namics of the theory, which is highly nontrivial in quantu
gravity.

~iv! The very construction of the ‘‘Lorentz rotated’’ quan
tity A8 is delicate, since it involves a careful analysis in
generalrelativistic context of what it means to measure t
area of a surface for a boosted observer.

~v! The theory is invariant under diffeomorphisms; th
area of a surface defined by coordinate values is not ga
invariant and we need a physical dynamical quantity to
the surface whose area we want to consider@8#.

For all these reasons, it is not obvious that the quant
area can behaveas the Lz component of the angular momen
tum. In this paper, we analyze all these problems with ca
and we show that in spite of all these complications, a
under certain reasonable assumptions, what happens to
area under a Lorentz boost in loop quantum gravity is ind
precisely what is described above and illustrated by the a
ogy with the angular momentum.

Our strategy is the following. First, we address point~v!
by considering a physical system formed by general rela
ity coupled to a minimal and realistic amount of matter, s
ficient to have a well defined and diffeomorphism invaria
notion of area. Notice that this is precisely the context
which the claim that the discretization of the area is a phy
cally observable prediction of the theory was put forward@9#.
Second, we address point~iv! by carefully discussing the
meaning of the measurement of the areaA8 ‘‘seen’’ by a
boosted observer in classical general relativity~Sec. II!.
Then, we solve point~ii ! by explicitly computingA andA8
as functions of the canonical variables of the theory~Sec.
III !. This is done in a power expansion in the boost para
eter, which allows us to address point~iii ! by expressing
quantities att.0 in terms of quantities att50, using the
equations of motion. In turn, this result allows us to deri
Eq. ~1! and compute explicitly the first terms of this comm
tator in an expansion in the boost parameter~Sec. IV!. Then
~Sec. V!, we construct a quantity that we suggest could g
erate the boost. This generator depends on the Hamilto
constraints, thus addressing point~iii !. Finally in Sec. V A
we derive the conditions under which this transformation
unitary, and thus the spectrum preserved.

Finally, point ~i! is addressed by means of a delicate
terplay between the full dynamical structure of the theo
and the request of local flatness needed to have Lorentz
variance over a small spacetime region. We are intereste
small scale quantum discreteness and small scale qua
fluctuations of the gravitational field in quantum states
which the metric is macroscopically flat; that is, in which th
macroscopic expectation value of the metric operator, is
To describe this regime, we first analyze the problem in
classical theory: we expand for small boost parameter

on
9-2



m
si

m
we
un
le
a
a
o

fla
uld

ve
ith

a
th

ca

-
e
ve
a
v

t
ca

ri
on

ic
r

ow
ve
d

a

nd

e

mics
and
For
ten-
ot

gu-
to

nd
at

the
nd

the
ts

of

t

RECONCILE PLANCK-SCALE DISCRETENESS AND THE . . . PHYSICAL REVIEW D 67, 064019 ~2003!
small surface, and keep only the lowest order relevant ter
We then assume that in the quantum theory the expan
remains valid in the regimes where the expectation value
the macroscopic curvature is small. This is not different fro
what we usually do in conventional quantum field theory:
take the field to be zero in the vacuum and expand aro
this value—even if the field fluctuates widely on small sca
and its value is moved far away from zero by a field me
surement at small scale. Of course, in nonperturbative qu
tum gravity we have far less control on the quantum state
the gravitational field that corresponds to macroscopical
space, and therefore the viability of this approach sho
strictly speaking, be regarded as an hypothesis.

In addition, in Sec. IV A we briefly discuss an alternati
point of view, which we have learned in conversations w
Amelino-Camelia, on the noncommutativity betweenA and
A8. The idea is to view the noncommutativity ofA andA8 as
a consequence of the noncommutativity between the are
the surface and the relative velocity of the observer and
surface. We refer to@10# for a more extensive discussion.

II. GEOMETRY

A. The system

We consider the physical system formed by four physi
elements:~i! the gravitational field,~ii ! two particles,~iii ! a
two-dimensional surface~the ‘‘table’’!. These are the dy
namical quantities of the system we consider. They provid
minimal setting in which we can compare the area obser
by two observers boosted with respect to each other. We
interested in the area of the table, as seen by two obser
(O andO8), moving with the two particles.

Besides these dynamical quantities, we assume tha
sort of other physical objects exist in the universe. These
be used to perform measurements~for instance, light pulses
traveling along geodesics, apparatus that detects the ar
of these light pulses, clocks that measure proper time al
world lines, recording devices, and so on!. We do not con-
sider these other physical objects as a part of the dynam
system observed: we consider them as part of the measu
apparatus. To be precise, we assume that the well kn
freedom of choosing the boundary between the obser
quantum system and the classical apparatus—emphasize
Von Neumann—allows us to do so in this context.

We describe the system in a general relativistic setting
follows. We consider a 4D manifoldM, with coordinates
xm, on which the following quantities are defined.

~i! The gravitational fieldg is described by the metric
tensorgmn(x).

~ii ! The world linesX and X8 of the two observers are
given by the functions

X:R→M

:t°xm~t! ~2!

and

X8:R→M
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:t8°xm~t8! ~3!

@we indicate functions with the name of the independent a
dependent variable:xm(t8) is given by adifferent function
thanxm(t), of course#.

~iii ! The worldsheetT of the table is described by th
three-dimensional hypersurface

T:@21,11#3@21,11#3R→M

:~t1,t2,t3!°xm~t1,t2,t3!. ~4!

The functionsgmn(x),xm(t),xm(t8),xm(t1,t2,t3) are the
Lagrangian variables of the system. We assume the dyna
of this system to be governed by the Einstein equations
the dynamical equations of the table and the particles.
simplicity, we assume that the matter energy-momentum
sor is negligible in the Einstein equations, but this is n
essential in what follows.

We are interested in a specific subset of physical confi
rations. First, we want the world lines of the two observers
cross at a pointP situated on the table worldsheet. Seco
~in the classical analysis!, we assume that the curvature
and aroundP and the acceleration of the particles atP are
negligible at the scale of the surface. That is, we take
surface to be small enough, so that we can expand arouP
and keep the lowest terms only.

What is the areaA of the table seen byO when atP? The
answer is the following.A is the area of the 2D surfaceS
formed by the intersection of the 3D table’s worldsheetT
with the 3D simultaneity surfaceS of O at P.

The simultaneity surfaceS is the set of points inM
whose light cone intersectsX in two points at the same
proper time distance~alongX) from P. Physically, these are
the events where a mirror reflects a light pulse emitted by
observer at proper time2t such that the reflected pulse ge
back to the observer at proper time1t (t50 being atP).
This is Einstein’s definition of~relative! simultaneity.~See
Fig. 2.!

The intersection between the surface of simultaneity
the observerS and the table world historyT is a two-
dimensional surfaceS5SùT. It represents the ‘‘table a
fixed time’’ in the frame of the observerO at P. The areaA
is the integral overSof the determinant of the restriction2g

FIG. 2. The definition of the simultaneity surface.
9-3
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C. ROVELLI AND S. SPEZIALE PHYSICAL REVIEW D67, 064019 ~2003!
of the metricg to S. The areaA is therefore a complicated
function A@g,X,X8,T# of—but is completely determined
by—the metricg, the world lineX, the hypersurfaceT, and
the crossing pointP. We calculate this function explicitly in
Sec. II B. Similarly, A8 is the area of the intersection be
tweenT and the simultaneity surface ofO8 at P. ~See Fig. 3.!

We call vm (v8m) the unnormalized four-velocity ofX
(X8) at P:

vm5
dxm~t!

dt U
P

. ~5!

@v8m is defined in the same manner byxm(t8).# The angle
between the two tangents gives the relative speedV of the
two observersO andO8:

g5
1

A12V2
5

v•v8

uvuuv8u
, ~6!

where the scalar product and the norm are taken here
the metric atP. For simplicity, we also assume that the re
tive three-velocity of the two observers is tangent to
table.~We are not interested in transversal motion, becaus
does not give rise to Lorentz contraction.! We say that the
table is at rest with respect toX if the worldsheet of the
boundary of the table is normal toS. ~If the surface is suf-
ficiently small, this implies thatA maximizes the area with
respect tov.!

The quantitiesA and A8 are diffeomorphism invarian
functions of g, X, X8, and T. They are invariant under a
smooth displacement of these dynamical quantities onM.
They do not depend on the coordinates chosen onM, nor on
any structure onM besides the dynamical fields. They a
fully gauge invariant observables in this dynamical syste
They are physical quantities that are in principle observa
by using appropriate measuring devices~formed by light
pulses, detectors, clocks, etc.!. The specific technical con
struction of these devices is not relevant here.

In this paper we consider the quantum theory correspo
ing to this dynamical system. In particular, we consider

FIG. 3. The definition ofS andS8.
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quantum operators corresponding to the physically obs
able quantitiesA andA8, we show that Eq.~1! is true, and
that the operatorA8 can be obtained~under certain assump
tions! from a unitary transformation that implements a loc
Lorentz transformation in the Hilbert space of the theory.

B. Area in general relativity

What is the areaA(S) of the ~small! 2D surfaceS given
by the intersection of two 3D hypersurfacesS andT? Here
we show thatA(S) can be written in terms of the one-form
nm

S and nm
T normal to the two hypersurfaces. We shall th

use this fact to directly connect the area to the motion of
observers. The table worldsheetT is parametrized by
xm(t1,t2,t3). Its normal one-form is

nm
T5enrsm

]xn

]t1

]xr

]t2

]xs

]t3
. ~7!

It does not depend on the metric. Similarly, the normal of
hypersurfaceS, parametrized asxm(r1,r2,r3), is

nm
S5enrsm

]xn

]r1

]xr

]r2

]xs

]r3
. ~8!

The normal two-form of the intersectionS5SùT, param-
etrized asxm(u,v), is

nmn5
1

2
emnrs

]xr

]u

]xs

]v
. ~9!

It is convenient to choose parametrizations such that

u5t15r1,

v5t25r2, ~10!

and

emnrs

]xm

]u

]xn

]v
]xr

]t3

]xs

]r3
51. ~11!

Then we have easily

nmn5n[m
S nn]

T . ~12!

The area of a 2D surface is

A5A~S!5E
S
dudvAdet2g

5E
S
dudvAdetS ]xm

]ui

]xn

]uj
gmnD , ~13!

whereui5(u,v) and the determinant is on thei , j 51,2 in-
dices.

Consider now the equality
9-4
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2gnmnnabgmagnb5
g

2
emnrseabgd

]xr

]u

]xs

]v
]xg

]u

]xd

]v
gmagnb

52
1

2
emnrsemnzu

]xr

]u

]xs

]v
]xz

]u

]xu

]v

5
]xr

]u

]xr

]u

]xs

]v
]xs

]v
2S ]xr

]u

]xr

]v D 2

5detS ]xm

]ui

]xn

]uj
gmnD , ~14!

obtained using

eabgd52gemnrsgmagnbggrgds,

emnrsemnzu52~ds
z dr

u2dr
zds

u !. ~15!

Using this, the area ofS can be written as (g5detgmn)

A5E
S
dudvA2gnmnnabgmagnb

5E
S
dudvAg~nm

Tnn
Sna

Tnb
S2nm

Tnn
Sna

Snb
T!gmagnb

[E
S
dudvAgunTu2unSu22~nT

•nS!2. ~16!

This expression gives us the area directly as a function
surfaceS, the metric and the normals to the table worldshe
and the observer’s simultaneity surface.

III. DYNAMICS

A. Coordinate choice

Without important loss of generality, we chose coor
natesxm5(t,x1,x2,x3), which are particularly convenien
for the above setting. In these preferred coordinates,~i! P is
the origin; ~ii ! the three-surfaceT is defined by21,x1,
11, 21,x2,11 andx350; ~iii ! the world lineX is de-
fined byx15x25x350; ~iv! the world lineX8 is defined by
x25x350 andx15bx0. Furthermore, we choose the param
eters parametrizing the world lines and the worldsheet at
5t85t35t, u5t15x1, andv5t25x2.

We also further fix the coordinates by choosing the ga
in which at t50 we have g00521 and ga050 for a
51,2,3. This simplifies the canonical analysis.

A very important observation follows. With these coord
nates, namely in this gauge, the only remaining degree
freedom are those in the metric tensorgmn(x). However, this
does not mean that the physical degrees of freedom of
matter ~the two particles and the table! are being killed or
frozen. Indeed, it is well known that the coordinate positi
of matter and the value of the metric tensor are both ga
dependent quantities, due to diffeomorphism invariance.
physical, measurable position of an object~relative to a ref-
erence object! is determined by a combination of the two.
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Let us illustrate this key point in a simple one
dimensional universe with a metric fieldg(x), an objectA in
the coordinate positionsx5X, and a reference object in th
coordinate positionx50. The position ofA is determined by
the distance from the reference

d@g,X#5E
0

X

dxAg~x!. ~17!

d is a diffeomorphism invariant quantity. It represents p
cisely what we actually measure: pick a meter to get
position ofA in meters from the reference—this measuresd.
Now, we can gauge fix the coordinatex so thatg51. In this
gauge, the observable quantityd is given by the coordinate
position of the object:

d5X. ~18!

This is what we generally do in flat space: coordinates g
observable positions. Alternatively, we can choose coo
nates in which the position of the object has a fixed pre
termined coordinate valueX51. In this gauge

d5E
0

1

dxAg~x!. ~19!

With this gauge choice, the physical location of the obje
namely, its distanced from the reference is determined b
the sole metric field.

These two possibilities are familiar, for instance, in t
context of gravitational wave detectors: We can equivalen
say thatthe two mass probes do not move and the grav
tional field varies in the in-between region, or that the two
mass probes oscillate in space~where ‘‘move’’ and ‘‘oscil-
late’’ refer to the coordinates!. These are two equivalent de
scriptions of the same physics.

In the present context, we have chosen to attach coo
nates to the matter~particles and table!. Therefore the dy-
namics is entirely captured by the value of the gravitatio
field.

To further illustrate how the physical degrees of freedo
of the table and the particle are still present, as well as
later purposes, consider, for instance, the following value
the metric, in the given coordinates:

ds25gmn~x!dxmdxn

52dt21~114ax1t !~dx1!21~dx2!21~dx3!2.

~20!

Let xW (t) be the trajectory of the central point of this tabl
that is, the point at the same distance from its boundar
Easily, to first order int,

xW~ t !5~at,0,0!. ~21!

Therefore the relative velocity of the particleX with respect
to the center of the table isa. In other words, the particleX
and the tableT are moving with respect to each other ev
though their coordinate positions have been fixed. The r
9-5
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C. ROVELLI AND S. SPEZIALE PHYSICAL REVIEW D67, 064019 ~2003!
tive velocity of table and particle is given by the time deriv
tive of the metric field.@gmn(x) does not depend ona at t
50, while its time derivative does.# The example illustrates
how the physical motion of the particles and table is d
scribed by components of the metric tensor in this gauge

Now, since we have partially fixed the gauge by fixing t
coordinate position of the matter, it follows that the inva
ance under general coordinate transformations is reduce
the invariance under the change of coordinates that pres
the coordinate condition chosen. Equivalently, the diffeom
phisms group Diff, which is the gauge group, is reduced
this gauge to the subgroup Diff0 formed by the diffeomor-
phisms that send the table’s and particles’ world lines i
themselves.

As a consequence, certain components of the gravitati
field that are gauge dependent quantities in pure general
tivity become gauge invariant physical quantities, precis
as the right hand side~rhs! of Eq. ~19!. In particular, in this
gauge the areasA andA8, which are gauge invariant observ
ables, are expressed solely in terms ofg, but still remain, of
course, gauge invariant.

We can clarify this point with an analogy from Maxwell
theory: in the gauge in which scalar potential is set to ze
A050, the electric field~a gauge invariant quantity! is given
by the sole time derivative of the Maxwell vector potenti
EW 5dAW /dt. In this gauge,dAW /dt represents a gauge invaria
quantity, because the gauge transformations are reduce
those that preserveA050. Similarly, in the coordinates we
have chosen, the area is given by a function ofg alone, and
is gauge invariant because it is invariant under coordin
transformations that preserve the coordinate choice mad

We have discussed these issues in great detail in this
tion, because they are sources of frequent confusion. Le
now writeA explicitly as a function of the metric field in th
coordinates we have chosen.

B. Area as function of canonical coordinates

In the coordinates we have chosen, the table worldsheT
is given by

T:H x350

21,x1,11

21,x2,11

~22!

and the simultaneity surfaceS of the first observer is given
by

S:t50. ~23!

Therefore

nm
S5~21,0,0,0!,

nm
T5~0,0,0,1!. ~24!

Also, the proper time of the observer coincides witht. Equa-
tion ~16! becomes the well known formula
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A5A~S!5E
S
dudvAg̃̃33, ~25!

where we have definedg̃̃335(2detg)g33. Explicitly, sinceS
is the intersection of the surfaceS and the table worldshee
T, we have, from Eqs.~22! and ~23!,

A5E
21

1

duE
21

1

dvAg̃̃33~0,u,v,0!. ~26!

Consider now the observerO8. His simultaneity surface
S8 is determined by the world lineX8. The four-velocity of
this world lineX8 at P is

v8m5~1,b,0,0!. ~27!

If gmn is constant,S8 is just normal to the four-velocity~27!:
in the parametrizationrW 5(r1,r2,r3) that we have chosen, i
is given by

xm~rW !5~bg1ara,rW !, ~28!

wherea51,2,3. Using Eq.~8!, we have, in the coordinate
and parametrization chosen,

nm
S85~21,bg1a!, ~29!

Sincegmn(x) is in general not constant, the detailed calcu
tion of the position ofS8 is more cumbersome. We ca
shorten it, to linear order aroundP, by simply taking the
value of gmn(x) in Eq. ~28! at a point x̂m5 1

2 xm, halfway
betweenP and the point of the surface.~This is in the middle
of the path of the light that definesS8. A more detailed
calculation—which we do not report here—obtained by
tegrating explicitly the light paths in a metric that grow
linearly in time confirms the result.! That is, to next order we
replace Eq.~28! by

xm~rW !5~bg1a„x̂~rW !…ra,rW !. ~30!

This equation definesx(rW ) intrinsically, sincex(rW ) appears
in the rhs as well. Explicitly, to second order inb we have

x0~rW !5bg1a~0,rW /2!ra1 1
2 b2ġ1b~0,rW /2!rbg1a~0,rW /2!ra,

xa~rW !5ra. ~31!

O8’s simultaneity hypersurface defines the surfaceSb

5S8ùT as the table seen byO8 at his fixed time.~See Fig.
3.! Combining Eqs.~31! and~22!, we have, in the parametri
zation chosen, again to orderb2,

x0~u,v !5bg1i~u/2,v/2!ui

1
b2

2
ġ1i~u/2,v/2!uig1 j~u/2,v/2!uj ,

x1~u,v !5u15u,
9-6
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x2~u,v !5u25v,

x3~u,v !50. ~32!

Here and from now on,gmn(u,v)5gmn(0,u,v,0) andgmn

5gmn(0,0,0,0).
From Eq.~16! we have, for the second observer,

A85A~S8!5E
S8

dudvAg̃̃33@12b2g11#. ~33!

Explicitly,

A85E
21

1

duE
21

1

dvAg̃̃33
„x~u,v !…@12b2g11„x~u,v !…#.

~34!

Using Eq.~32!, we have, to orderb,

A85A1
b

2E21

1

duE
21

1

dvg1i~u,v !ui@ g̃̃33~u,v !#21/2ġ̃̃33~u,v !.

~35!

To orderb2, we have

A85E
21

1

duE
21

1

dvAg̃̃33
„x~u,v !…

1
b

2E21

1

duE
21

1

dvg1i„x~u,v !…ui~ g̃̃33~u,v !!21/2ġ̃̃33

3~u,v !1
b2

4 E
21

1

duE
21

1

dvg1i~u,v !uig1 j~u,v !

3uj
„g̃̃33~u,v !…21/2g̈̃̃33~u,v !

2
b2

8 E
21

1

duE
21

1

dv„g̃̃33~u,v !…23/2
„g1i~u,v !ui

…

2

3„ġ̃̃33~u,v !…22
b2

2 E
21

1

duE
21

1

dvg11~u,v !

3„g̃̃33~u,v !…1/2, ~36!

and so on. The second, third, and fourth line of this equa

come from the time derivatives ofg̃̃33, which depend onb.
The last line comes from theb2 in Eq. ~34!. Notice that there
is still a b dependence in the first two lines, becausex(u,v),
given in Eq.~32!, containsb.

Let us now make the additional assumption that the m
ric is spatially constant att50. This simplifies the expres
sions above and allows us to perform the integrals explic
but is not essential: it is easy to generalize our result t
nonspatially constant metric. Under this condition we c
write
06401
n

t-

,
a
n

gmn„x~u,v !…5gmn1bg1iu
i ġmn1

b2

2
g1 ju

j ġ1iu
i ġmn

1
b2

2
g1 ju

jg1iu
i g̈mn . ~37!

Inserting this in the first two lines of Eq.~36!, we can do all
the integrals explicitly. Those linear inu vanish, leaving, to
second order inb, with a straightforward calculation,

A5Ag̃̃33, ~38!

A85A22b2g11A1b2~g11
2 1g22

2 !S ] t
2g̃̃33

3A
2

~] tg̃̃
33!2

6A3 D
1b2~g11ġ111g12ġ12!

] tg̃̃
33

3A
. ~39!

IV. NONCOMMUTATIVITY

So far, we have simply studied the form of the areasA and
A8 seen by two accelerated observers in a given metric.
us now recall that the metric is the gravitational fiel
namely, a dynamical physical field. We want to writeA and
A8 as functions on the phase space of our dynamical the
and compute the Poisson bracket

$A,A8%. ~40!

To this aim, we take the simultaneity surfaceS, that is, t
50 in the coordinates chosen, as ourADM surface, on
which we base the canonical formalism. As usual in quant
gravity, we chose as canonical variables the Ashtekar fi
Ei

a(x), namely, the densitized tetrad field, which satisfies

Ei
a~x!Ei

b~x!5 g̃̃ab~x!. ~41!

We consider the metric field~which we leave indicated when
convenient! as a function of the tetrad field. The explic
form of the brackets~40! depends on the dynamics of th
matter field, which in the coordinates we have chosen affe
the dynamics of the gravitational field by partially constra
ing the evolution of lapse and shift. However, one can ea
see that even if we assume that in these coordinates the
namics of the gravitational field is unaffected by the matt
the brackets~40! do not vanish. In this case, indeed, we c
take the evolution in the coordinatet to be generated simply
by the pure gravity Hamiltonian constraint~we are in the
lapse51, shift50 gauge!, namely,

Ėi
a5$Ei

a ,H%,

Ȧa
i 5$Aa

i ,H%, ~42!

where
9-7
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H5E d3xEi
aEj

bFab
k ek

i j

5E d3xEi
aEj

b~]aAb
kek

i j 1A[a
i Ab]

j !. ~43!

Recalling that the nonvanishing Poisson brackets are g
by

$Ej
a~x!,Ab

k~y!%5db
ad j

kd3~x,y!, ~44!

we can compute the Poisson brackets explicitly.
Surprisingly,

$ g̃̃33, ġ̃̃33%50 ~45!

and

$ g̃̃33, g̈̃̃33%50. ~46!

The first equality follows from

$ g̃̃33, ġ̃̃33%52Ei
3Ej

3$Ei
3 ,Ėj

3%

52Ei
3Ej

3$Ei
3 ,E[ j

3 Ek]
a Aa

k%

52Ei
3Ej

3E[ j
3 Ei ]

3

50. ~47!

The second equality can be derived from

$ g̃̃33, g̈̃̃33%5Ei
3$Ei

3 ,~2Ėj
3Ėj

31Ej
3Ëj

3!%. ~48!

Of the two terms on the rhs, the first is proportional

$Ei
3 ,Ėj

3%, which, as we have just seen, vanishes. The sec
can be written as

Ei
3Ej

3$Ei
3 ,Ëj

3%5Ei
3Ej

3~] t$Ei
3 ,Ėj

3%2$Ėi
3 ,Ėj

3%!; ~49!

again, the first term in the parentheses vanishes as we
seen, while the second term is antisymmetric ini andj. Thus,
only the last term of Eq.~38! does not commute with Eq
~38!. A long but straightforward calculation gives indeed

$A,A8%5 8
3 b2~g11

2 1g12
2 !AȦ. ~50!

Since the Poisson brackets betweenA andA8 do not vanish,
the commutator of the corresponding quantum operator c
not vanish either. Otherwise in the\→0 limit the commuta-
tor could not reproduce the classical Poisson brackets.
confirms our main claim, Eq.~1!.

For later purposes we write also the expression forA8 to
first order inb without the assumption of a spatially consta
metric: inserting Eq.~41! in Eq. ~35! we get

A85A1bE
21

1

duE
21

1

dvg1i~u,v !uiAEi
3~u,v !Ei

3~u,v !

3Ei
3~u,v !Ėi

3~u,v !. ~51!
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A. The velocity of the surface

We close the section with an observation that we lear
in discussions with Amelino-Camelia. In flat space, the a
A8 observed byO8 is related to the areaA seen by an ob-
serverO at rest with respect to the surface by

A85A12V2A, ~52!

whereV is the relative velocity of the two observers. If th
surface is sufficiently small, the same should be true in g
eral relativity. But this seems in contradiction with Eq.~1!,
which we claim to be the key to understand the problem
hand. Indeed, ifA is an operator, Eq.~52! seems to expres
A8 as a simple function ofA: but a function of an operato
commutes with the operator itself, thereforeA8 should com-
mute withA, against Eq.~1!. The answer to this objection i
illuminating. In general relativity,A becomes a quantum op
erator because it is a function of the metric, namely, a fu
tion of the quantum field. But the velocityV that appears in
Eq. ~52! depends on the metric as well. Indeed theV that
appears in Eq.~52! is not a coordinate velocity, it is a phys
cal velocity, and it depends ongmn as well. ThusV as well is
an operator in quantum gravity. Therefore the operatorA8 is
not a simple function of the operatorA. The noncommuta-
tivity ~1! of A andA8 can thus be equivalently viewed as
consequence of the noncommutativity ofA andV. Therefore
one can also say that the apparent incompatibility betw
discreteness and Lorentz contraction is resolved by obs
ing that the measurements of area and velocity of a sur
are incompatible.

To be more precise, since the relative velocity betwe
observer and surface does not commute with the area, it d
not make sense to start by assuming that the first observO
is at rest with respect to the surface. Dropping this, we m
replace Eq.~52! by

A85
A12v82

A12v2
A, ~53!

wherev andv8 are the relative velocities of the two obser
ersO andO8 with respect to the surface. In general relativi
this becomes complicated because the notion of the
frame of a nonlocal object—such as the surface—is far m
complicated than in special relativity. Since the location
the surface we consider is only defined by its boundary,
rest frame as well depends only on its boundary. The d
tance of the boundary from the observer is determined by
value of the gravitational field on the surface itself; the v
locity of the boundary with respect to the observer~that is,
the rate of change of this distance in the observer’s pro
time! depends, therefore, on thetime derivativeof the gravi-
tational field. This is shown above in a concrete example
Sec. III A. Since the gravitational field operator does n
commute with its own time derivative, this velocity does n
commute with the area. Asv andv8 do not commute withA,
A8 does not commute withA either. This point is discusse
in detail by Amelino-Camelia in@10#.

Physically, all this means that by measuring the area,
observer destroys information on the velocity of t
9-8
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surface—as measuring the position of a quantum part
destroys information on its momentum.

In fact, one might have considered another possible s
tion for the apparent conflict between Lorentz contract
and discreteness. Recall that one can say that the rest e
E0 of a massive particle is a non-Lorentz-invariant quan
~it is the fourth component of a four-vector!, but it is also a
fixed fundamental observable quantity in a Lorentz-invari
theory. There is no contradiction, becauseE0 is measured in
a special frame determined by the state itself. Similarly,
might imagine thatA0 always appears as the minimal area
a material object in its own rest frame. The explicit comp
tation of this paper shows that this is not the case. But
observation above clarifies why a measurement of the
erases information on the velocity of the surface. Presu
ably, a quantum measurement of the areaA projects the sys-
tem into a state in whichv is maximally spread: then th
mean value of this velocity is in any case zeroafter the
measurement.

V. BOOSTS GENERATORS

We now want to study the transformation that maps
operatorsA andA8, corresponding to the classical quantiti
A andA8, into each other. In particular, we are interested
understanding if this transformation can be seen, in an
propriate sense, as a Lorentz transformation. The subtle
the interplay between the assumption of approximate lo
flatness of the mean values of the quantum fields and the
dynamical structure of the theory. We place ourselves in
frame of the full theory, but study it in the vicinity of th
states which are macroscopically flat aroundP. We suggest
here that in this context one can define a unitary transfor
tion in the Hilbert space of the theory, which sendsA into
A8. If this is correct, the spectrum of the two operators is
same, a result which is to be expected on physical groun

To this aim, we explicitly consider quantitiesM n
m that

behave as generators of Lorentz transformations. For a
theory on flat space, the construction of these quantitie
well known ~see, for instance,@11#!. We briefly recall it here.
Define

Mm
n5E d3xFx[mT0ur]hrn2 i

]L
]ḟn

~L n
m !m

n fmG , ~54!

where we have indicated byfm(x) the fields;m is a generic
Lorentz index,Tmn is the energy-momentum tensor,L is the
Lagrangian density~and, therefore,]L/]ḟn are the momenta
conjugate to the fields!, (L n

m )m
n are the generators of th

Lorentz representation to which the fields belong, andhmn is
the Minkowski metric. In a Lorentz invariant theory, Eq
~54! are constant. Let us indicate byqn(x) the canonical
fields, by pn(x) their conjugate momenta. Other fields w
be the auxiliary ones—those with vanishing conjugate m
mentum. We can write

M b
a 5E d3xpn~x!@x[c]a]qn~x!hcb2 i ~L b

a !m
n qm~x!#

~55!
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and it is easy to verify that these are indeed generator
spatial rotations. More care is required for the boosts,
cause in general they mix canonical and auxiliary fields:

M a
0 5E d3x@2x0pn~x!]aqn~x!2hacx

cT00~x!2 ipn~x!

3~L a
0 !m

n fm~x!#. ~56!

@Notice that these quantities are constants in time, but t
do not commute with the Hamiltonian—in fact, they Loren
transform the HamiltonianH into the total momentumPa ,
as is to be expected geometrically. This is because of they
explicitly time dependent:

05Ṁ a
0 5$H,M a

0 %1
]M a

0

]t
~57!

from which

$H,M a
0 %52E d3xpn~x!]aqn~x!5Pa . ~58!

This is why they do not give good quantum numbers in sp
of being constant.#

Let us now come to gravity. In gravity, we can still writ
the quantities~54!. These are formal objects. They are n
tensorial, not defined for all values of the fields, not defin
on the entire spacelike surface. Nevertheless, they can
play a role. Indeed, let us consider the transformation t
generate over a function of the fields, which has support
region small with respect to the local curvature, or in a
gime in which spacetime is close to flatness. In this regim
we can take thexm as Cartesian coordinates, and we can ta
these objects as the generators of Lorentz transformatio

Consider, in particular, the componentT00(x). This is the
Hamiltonian constraint density, since

T00~x!5H~x!5( m

]L
]ḟm

~x!ḟm~x!2L~x!. ~59!

If we can fix the gaugeN(x)51, Na(x)5A0
i (x)50, Ȧ

5$A,H%, the Hamiltonian density~59! coincides with the
Hamiltonian constraintH(x) @12#. The momentum

Ta
0~x!52

]L
]ḟm

~x!]afm~x! ~60!

generates spatial translations. Spatial translations are ge
ated by the momentum constraintHa(x) in general relativity.
In the light of these considerations, we tentatively consi
the possibility that the boost generator that sends the are
the boosted area is given by

M a
0 5E d3x@x0Ha~x!1x0Aa

i ~x!G i~x!2gam~x!xmH~x!

2 iEi
b~x!~L a

0 !b
mAm

i ~x!#. ~61!
9-9
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Notice the replacement of the Minkowski metric bygmn(x).
More precisely, we consider the possibility that an infinite
mal Lorentz boostl 0

a acting at the pointx is generated by

M ~l!5l 0
a M a

0 . ~62!

In our case,x050 and

ln
m5ben23

m ; ~63!

therefore the generator turns out to be

M ~b!5bM 1
0 . ~64!

Taking into account that we are atx05t50 and in the gauge
A0

i 50, we have

M ~b!52bE d3xg1a~x!xaH~x!. ~65!

In order to check this hypothesis, we compute the infi
tesimal transformation ofA generated by this generato
Since

$M ~b!,AEj
3~x!Ej

3~x!%

5E d3z
dM ~b!

dAb
i ~z!

dAEj
3~x!Ej

3~x!

dEi
b~z!

5
dM ~b!

dA3
i ~x!

@Ej
3~x!Ej

3~x!#21/2E3i~x!

52bE d3yg1a~y!ya
dH~y!

dA3
i ~x!

@Ej
3~x!Ej

3~x!#21/2E3i~x!

5bg1a~x!xaĖi
3~x!@Ej

3~x!Ej
3~x!#21/2E3i~x!, ~66!

it follows that

$M ~b!,A%5bE
21

1

duE
21

1

dvg1i~u,v !

3uiAEi
3~u,v !Ei

3~u,v !Ei
3~u,v !Ėi

3~u,v !.

~67!

But this is precisely the second term on the rhs of Eq.~51!,
which is the infinitesimal transformation ofA we had previ-
ously worked out geometrically. This result supports the
pothesis that Eq.~64! is the correct generator of the loc
Lorentz boost.

A. Unitarity

Let us now return to the quantum theory. Consider
quantum operatorM (l) corresponding to the classical ob
servable~62!. We assume that this operator is well defined
the theory. The corresponding finite transformation is gen
ated by

U~l!5e2 iM (l). ~68!
06401
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e
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This operator is unitary ifM (l) is Hermitian. This is the
condition under which the Lorentz transformation is unita
in the quantum theory. Assuming it is satisfied, the spectr
of the areasA and A8 is the same. Conversely, since o
physical grounds nothing distinguishesA from A8, we think
it is reasonable to require that the operatorM (l) be Hermit-
ian.

Let us study this condition. Consider the infinitesimal a
tion of the operator~68! on the states of the theory. We tak
x050 andl given by Eq.~63!, so that Eq.~61! reduces to
Eq. ~65!,

ucb&5uc&1 ibE d3xg1a~x!xaH~x!uc&, ~69!

and is determined by the Hamiltonian operator. Recall tha
basis of area eigenstates is given by spin network st
@13,14#. We denote a spin network state asuG, j &, whereG is
a graph, andj is the coloring associated with the links an
nodesn in G. We can expand

uc&5(
G, j

cG, j uG, j &. ~70!

We recall that the action of the Hamiltonian constra
smeared with a lapseN is a sum of terms acting on the node
of the form @15,16#

Ĥ@N#uG, j &5 (
nPG

AnN~xn!DnuG, j &, ~71!

wherexn is the coordinate location of thenth node,An are
numerical coefficients, andDn is an operator that acts on th
graph, changing it around thenth node. See@4# and espe-
cially @5# and references therein on the actual construction
the Hamiltonian constraint operator. Here the lapse is 1.
ing all this we obtain

ucb&.uc&1 ib(
G, j

cG, j (
nPG

An~g1axn
a!DnuG, j &. ~72!

In particular, if we consider a spin networkuG, j &, eigenstate
of A, the probability amplitude thatO8 sees it in a different
spin network eigenstateuG8, j 8& is

P5b (
nPG

An^G8, j 8ug1axn
aDnuG, j &. ~73!

We leave the problem of the actual definition of the no
operatorg1axn

aDn in the quantum theory to future investiga
tions.

VI. DISCUSSION AND CONCLUSIONS

In loop quantum gravity, the metric is an operator. T
area of a surface is a quantum observable. At the Plan
scale, this area is quantized and there is a finite nonz
minimal value. Under a Lorentz transformation, we exp
this minimal value not to change. That is, we expect that t
observers boosted with respect to each other see the s
9-10
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spectrum. We have studied here the transformation tha
lates the observables of the two observers.

We have analyzed in detail the situation in classical g
eral relativity, and written the form of the two observabl
explicitly. We have shown that these two observables h
nonvanishing Poisson brackets, which implies that the co
sponding quantum operators cannot commute. Therefo
the value of the area is sharp for one observer, it canno
sharp, in general, for the second observer. This implies
the minimal area measured by one observer cannot be
Lorentz contracted for the boosted observer. This is our m
result.

We have also studied the conditions under which
transformation between the two observables is unitary
quantum theory. These conditions can be seen as a req
ment for the precise definition of certain operators in qu
tum theory. We have suggested the explicit form of the g
erator of local Lorentz transformations in the theory, in
particular gauge.

We close with a discussion of the relation between diffe
morphism invariance and Lorentz transformations, in t
context. The theory is invariant under diffeomorphisms t
act simultaneously on the gravitational field and on the m
ter. However, it is not invariant under a diffeomorphism th
acts on the matter leaving the gravitational field untouch
Nor under a diffeomorphism that acts on the gravitatio
field leaving the matter untouched. Of course, diffeom
phism invariance implies that to move the matter with
spect to the gravitational field is equivalent to moving t
m

in
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gravitational field with respect to the matter. The Loren
transformations we have considered act on the matter at fi
field, or, equivalently, on the field leaving the matter fixe
This is why they are not part of the gauge. Concretely,
have gauge fixed the coordinate position of the matter,
considered an active Lorentz transformation rotating~in
spacetime! the gravitational field. While this would be
gauge transformation in the absence of matter and in a
trary coordinates, it is, instead, a change of physical stat
the presence of matter, or, equivalently, in the gauge fi
coordinates we have chosen. This is why, in spite of bein
linear function of the Hamiltonian constraint, the genera
of Lorentz transformations that we have introduced define
genuine transformation in the physical Hilbert of the theo
Technically, since we have gauge fixed the coordinates,
physical states are not defined by the vanishing of the
constraints, but only by the vanishing of the constrai
smeared by generators of diffeomorphisms that send the
ter world histories into themselves.

At the light of these considerations, the reason for
explicit form of the generator we have considered@see, in
particular, Eq.~65!# is transparent: it changes the value of t
metric field from that on thet50 surface to that of the sur
face t5bg1axa, namely, to the Lorentz rotated surfac
Therefore it transforms the gravitational field that determin
the area of the table on the simultaneity surface of the fi
observer into the field that determines the area of the table
the simultaneity surface of the boosted observer.
s,’’
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