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Double-trace operators and one-loop vacuum energy in AdSÕCFT

Steven S. Gubser and Indrajit Mitra
Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544

~Received 7 December 2002; published 27 March 2003!

We perform a one-loop calculation of the vacuum energy of a tachyon field in anti–de Sitter space with
boundary conditions corresponding to the presence of a double-trace operator in the dual field theory. Such an
operator can lead to a renormalization group flow between two different conformal field theories related to
each other by a Legendre transformation in the largeN limit. The calculation of the one-loop vacuum energy
enables us to verify the holographicc theorem one step beyond the classical supergravity approximation.
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I. INTRODUCTION

The AdS conformal field theory~CFT! correspondence
@1,2,3# ~for reviews see@4,5#! relates ad-dimensional quan-
tum field theory to a (d11)-dimensional gravitationa
theory, the most notable example beingN54, d54 super-
Yang-Mills theory and type IIB string theory on AdS53S5.
Most of the checks and predictions of this duality have be
at the level of classical supergravity. It is particularly difficu
to carry out meaningful loop computations in AdS, corr
sponding to 1/N corrections in the gauge theory, simply b
cause the supergravity theory is highly nonrenormaliza
and the Ramond-Ramond fields make computations in
string genus expansion unwieldy at best. The aim of this n
is to obtain a simple one-loop result in AdS that is finite
any dimension. The result is an expression for the differe
of the vacuum energies that arises from changing bound
conditions on a tachyonic scalar field with mass in a parti
lar range.

The inspiration for this computation came from Witten
treatment@6# of multitrace deformations of the gauge theo
Lagrangian and their dual descriptions in asymptotica
anti–de Sitter space. Such a dual description was also
cussed in@7#; however, our treatment will follow@6# more
closely. Earlier work describing the same gauge theory
formations in terms of nonlocal terms in the string worl
sheet action appeared in@8,9#. To be definite, suppose on
were to add to the gauge theory Lagrangian a term (f /2)O2

whereO is a single trace operator with dimension 3/2, du
to a scalar fieldf whose mass satisfiesm2L25215/4.1 The
coefficientf has dimensions of mass, so (f /2)O2 is a relevant
deformation, and there is a renormalization group~RG! flow
starting from a UV fixed point wheref 50. The end point of
this flow is, plausibly, an IR fixed point whose correlators a
related to those of the originalf 50 theory, in the largeN
limit, by a Legendre transformation in a manner explained
@11#.2 In particular, the scalar that was forf 50 related to the
operatorO of dimension 3/2 is at the IR fixed point related

1Such a situation could arise in the theory dual to D3-branes a
tip of a conifold @10#, where there are indeed dimension 3/2 co
singlet operators.

2We will discuss further in Sec. II the reasoning behind the cla
that the flow ends at an IR fixed point, as well as some caveat
0556-2821/2003/67~6!/064018~9!/$20.00 67 0640
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an operatorÕ of dimension 5/2.
How is all this reflected in AdS? According to@6#, the

addition of (f /2)O2 amounts to specifying particular linea
boundary conditions on the scalarf at the boundary of AdS.
At the classical level, these boundary conditions are con
tent with the original AdS5 solution withf50. Superficially,
this looks like a puzzle, since we were expecting a RG flo
In fact, conformal invariance is violated by theO2 deforma-
tion, but at leading order inN its effects are restricted to
certain correlators that we will describe in Sec. II. The cr
of the matter is that it is impossible to satisfy the bounda
conditions onf with a SO~4,2!-invariant bulk-to-bulk propa-
gator, except whenf 50 or `. This gives rise to one-loop
effects that cause deviations from AdS5.

Although we will not obtain the full one-loop correcte
solution corresponding to RG flow due to the (f /2)O2 defor-
mation, we will consider its end points and perform a on
loop supergravity check of thec theorem. This ‘‘theorem,’’
conjectured in four dimensions by Cardy@12# as a generali-
zation of Zamolodchikov’s celebrated two-dimensionalc
theorem@13#, has been shown to follow from AdS/CFT co
respondence at the level of classical supergravity provi
the null energy condition holds@14,15# ~see also@16# for
earlier work in this direction!. The magnitude of the vacuum
energy of AdS5 , measured in five-dimensional Planck uni
is proportional to an appropriate central charge raised to
22/3 power. So the vacuum energy should be more nega
in the infrared than in the ultraviolet, and at the classi
level, that is what is shown in@14,15# ~actually, the argu-
ments on the AdS are dimension independent, though
not entirely clear how to translate the ‘‘holographic’’ centr
charge into field theory language in the case of od
dimensional CFT’s!. At the quantum level, the arguments
@14,15# have no force because it is not clear that the n
energy condition is valid or even relevant. So an expli
loop calculation is appropriate. All that is needed is the o
loop contribution of the scalarf to the vacuum energy. This
quantity is divergent, but the difference between impos
the two simple boundary conditions~described above asf
→0 and f→`) gives a finite result. The contributions of a
other fields can be ignored because they do not change a
one-loop level as one changes the boundary conditions of.
Also, because we only desire a one-loop vacuum amplitu
we may entirely ignore interactions of the scalar with oth

e
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fields, and work simply with the free action

S5E d5zAgS 2
1

2
~]f!22

1

2
m2f2D , ~1!

where we work in mostly plus signature, so that the metric
AdS5 on the Poincare´ patch is

ds25
L2

z2 ~2dt21dxW21dz2!. ~2!

For definiteness, our discussion has focused on AdS5 and a
scalar with a particular mass; however, the results we
obtain can be presented with considerable generality
AdSd11 , as we will describe. For oddd, the formulas for the
vacuum energy are much more complicated, and for the s
of efficiency we check the sign via numerics.

The organization of the paper is as follows. In Sec. II
briefly review the prescription of@6# for treating multitrace
operators, and we demonstrate that general boundary co
tions are incompatible with SO~4, 2! invariance of the scala
propagator. In Sec. III we compute the finite change in
one-loop vacuum energy discussed above, and make s
remarks on the interpolating geometry connecting the
anti–de Sitter end points. We conclude in Sec. IV by extra
ing the prediction for the central charge, and observing t
the c theorem is obeyed.

II. MULTITRACE OPERATORS
AND SCALAR PROPAGATORS

The proposal of@6# is a natural generalization of the orig
nal prescription for computing correlators@2,3#, and it should
in principle be derivable from it: see@17# for a more precise
discussion. Suppose one starts with the complete setOa of
independent, local, color-singlet, normalized, single-tra
operators: forN54 super-Yang-Mills theory these would in
clude, for example, (1/N)trX1X2 and (1/N)trFmn¹rl1 . The
action can be written asI 5N2W(Oa) for some functionalW,
which for N54 super-Yang-Mills theory would be the inte
gral of a linear function of thoseOa which are Lorentz sca
lars. The general belief is that theOa can be put into one-to
one correspondence with the quantum states of type
string theory in AdS5.3 Restricting ourselves to scalars
AdS5, we have the standard relationDa(Da2d)5ma

2L2 re-

3There is considerable subtlety in this claim. It has been dem
strated that the Kaluza-Klein tower of supergravity modes
AdS53S5 is in correspondence with the chiral primaries ofN54
super-Yang-Mills theory and their descendants; and the dual
certain nonperturbative states have been found, such as diba
~see, for example,@18#! and giant gravitons@19#. Evidence is grow-
ing that the operator-state map extends faithfully to excited st
states~see, for example,@20,21#!. Since the states in question ca
sometimes be extended across most of AdS5 ~as in @21#!, it is not
entirely clear that a second quantized treatment in terms of l
fields is appropriate; but this is scarcely relevant to the situatio
hand, since extended states are very massive, and we are inte
only in tachyons.
06401
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lating the dimension ofOa to the mass of the fieldfa .
Writing the metric for the Poincare´ patch of AdS5 as

ds25
L2

r 2 S 2dt21 (
i 50

d22

dxi
21dr2D , ~3!

we have boundary asymptotics forfa as follows:

fa;aa~x!r d2Da1ba~x!r Da for r→0. ~4!

The prescription of@6# is to replaceW(Oa) by W(ba) and
impose the following boundary conditions:

aa~x!5
dW

dba~x!
. ~5!

The partition function of the gravitational theory in AdS
subject to the boundary conditions~5!, is then supposed to
equal the partition function of the gauge theory.

The simplest nontrivial example is double-trace operato
most simply,O2 where the scalar operatorO has dimension
D betweend/221 andd/2. Precisely in this range, unitarit
bounds are satisfied, and both power law behaviors in Eq~4!
are normalizable. ThenW includes a term (f /2)*ddx O2.
This brings us back to the discussion initiated in the Int
duction: Nonzerof plausibly drives the field theory from a
UV fixed point where the boundary conditions area50 to
an IR fixed point where the boundary conditions areb50.
Since these two fixed points will be the focus of Sec. III,
us introduce an additional convenient notation:D1 andD2

are the two solutions toD(D2d)5m2L2, with D2 being the
lesser of the two~and thus in the aforementioned range, fro
d/221 to d/2). ClearlyD15d2D2 .

When D2,d/2, the addition of a trace-squared opera
O2, whereO has dimensionD5D2 , is a relevant deforma-
tion, so conformal invariance must be broken in the gau
theory. The results of@6# for d54 andD252 suggest that
even whenD25d/2 there is a logarithmic RG flow. The
simplest indication of the breaking of conformal invarian
in supergravity is that the bulk-to-bulk propagator for t
scalarf dual toO cannot be SO~4, 2! invariant. We will now
demonstrate this claim.

The propagator in question can be defined as

iG~z,z8!5^0uT$f~z!f~z8!%u0&, ~6!

and it satisfies the equation of motion

~!2m2!G~z,z8!5dd11~z2z8!, ~7!

where!5gmn¹m¹n , and the delta function includes a 1/Ag
in its definition, so that

E dd11zAg f~z!d~z2z8!5 f ~z8! ~8!

for any continuous functionf (z). If the propagator is to re-
spect SO~4, 2! invariance, it must be a function only of th
geodesic distances(z,z8), which is known to be
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s~z,z8!5L logS 11A12z2

z D where

z5
2rr 8

r 21r 822~ t2t8!21~xW2xW8!2 , ~9!

whereL is the radius of AdS. The only solutions to Eq.~8!
which are functions only ofz are G(z,z8)5pGD2

1(1

2p)GD1
where for anyD ~cf. @22,23#!4

iGD5
G~D!

2Dpd/2Ld21~2D2d!G~D2d/2!

3zDFS D

2
,
D11

2
;D2

d

2
11;z2D . ~10!

By keeping z8 fixed while z approaches the boundary o
AdS, it is straightforward to verify that for no choice ofp
P(0,1) and f P(0,̀ ) does the propagatorG(z,z8)5pGD2

1(12p)GD1
satisfy the boundary conditions~5!, which in

our case amount toa5 f b. For p50 andf 50 the boundary
conditions are satisfied with SO~4, 2! invariance preserved
corresponding to a fixed point of the RG wheref is dual to
an operatorO with dimensionD2 . Let us call this theD2

theory. And forp51 andf 5` ~formally speaking! again the
boundary conditions are satisfied with SO~4, 2! invariance,
and nowf corresponds to an operatorÕ with dimension
D1 : this we will call theD1 theory.

It was already remarked in@6# that a renormalization
group flow should interpolate between theD2 theory in the
UV and theD1 theory in the IR. This is in fact a somewha
subtle claim: Why should we think that the RG flow initiate
by adding (f /2)O2 ends up at a nontrivial IR fixed point? W
can argue as follows:5 The Legendre transformation prescri
tion of @11# guarantees that the IR fixed point exists, at le
in the largeN limit. The existence of a fixed point of the RG
is a generic phenomenon, so 1/N corrections should not spo
the claim, nor should they greatly alter the location of t
fixed point in the space of possible couplings. Since a na
scaling argument~just looking at the dimension off ! tells us
that the RG flow should end up at the desired IR fixed po
if we ignore all 1/N corrections, it should be thatsomeRG
flow exists close to the approximate one we naively ide
fied, ending at the nontrivial IR fixed point. A significan
caveat to this reasoning is that AdS/CFT examples often~in
fact, nearly always in the literature so far! have exactly mar-
ginal deformations. Aline of fixed points of the RG isnot a
generic phenomenon, and 1/N effects in the absence of su
persymmetry generically could destroy such a line. Only o
point could be left after 1/N effects are included; or, wors
yet, only a point infinitely far out in coupling space could b

4The expression forG(z,z8) above differs by a sign from that in
@23,22# because the latter define the Green’s function
2 iG(z,z8)5^0uTf(z)f(z8)u0&.

5S.S.G. thanks E. Silverstein for a discussion in which the follo
ing line of reasoning arose.
06401
t

e

t

i-

e

left. Translated into supergravity terms, these remarks m
that the one-loop contribution to the potential could sou
the dilaton or other moduli, possibly leaving no extrema
finite values of the fields. If there are no such moduli in t
first place~as perhaps one would expect for a trulygeneric
nonsupersymmetric quantum field theory with an AdS du!,
then this caveat is not a problem. In practice, however, i
likely to interfere with constructing explicit string theory ex
amples of the RG flow discussed in this paper. For the
mainder of our discussion, we will ignore the caveat.

Since the renormalization group flow is nontrivial, it
natural to expect that the supergravity geometry devia
from AdS. The surprise is that this doesnot happen classi-
cally. Roughly, this can be understood in field theory ter
as a reflection of the fact thatn-point functions involving
only the stress-energy tensor do not receive correction
leading order inN.6 At subleading order inN, or at one loop
in supergravity, deviations from AdS must occur, simply b
cause a one-loop diagram where the SO~4, 2!-noninvariant
scalar propagator closes upon itself must give rise to an
fective potential that varies over spacetime. Entertaining
there is no classical scalar field which is varying; rather,
variation in the potential arises on account of proximity
the boundary. This is in contrast to previously studied e
amples of RG flow in AdS5 ~for instance,@14,15#!, where the
flow is described in terms of scalars in the five-dimensio
supermultiplet of the graviton with nontrivial dependence
the radius.

There should be a solution to the one-loop-corrected
pergravity Lagrangian interpolating between one asympt
cally AdS region near the boundary, corresponding to theD2

UV fixed point, and a different one in the interior, corr
sponding to theD1 IR fixed point. For instance, one coul
require that the symmetries ofR3,1 be preserved in the solu
tion, which must then have the form

ds25e2A~r !~2dt21dxW2!1dr2, ~11!

whereA(r )→r /L7 asr→6`. ~Another choice would be to
require the symmetries ofS33R, which should lead to a
solution with the conformal structure of global AdS.! We will
not find the full interpolating solution, but we will explor
some properties of its AdS end points. We will be partic
larly interested in the central charge of the CFT’s dual to
two end points. To the leading nontrivial order, these may
computed as a one-loop saddle-point approximation to
supergravity ‘‘path integral’’~supposing that such an obje
exists!, but without deforming the AdS background itself.

III. ONE-LOOP VACUUM ENERGY
FOR THE TACHYON FIELD

The full classical action that we wish to consider is

s

-

6Correlation functions whichdo receive corrections at leading or
der in N when (f /2)O2 is added to the Lagrangian are precise
those which pick up contributions from factorized forms^O¯&
^O¯&, where the dots indicate any arrangement of the opera
involved in the original correlator.
8-3
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S5
1

2k2 E dd11zAg~R2L0!

1E dd11zAgS 2
1

2
~]f!22

1

2
m2f2D . ~12!

HereL0 is a negative constant. The scalar is subject to
boundary conditions

f;ar d2D1br D where a5 f b. ~13!

As remarked previously, AdSd11 with f50 and 1/L25
2L0 /d(d21) is a classical solution to the equations of m
tion from Eq.~13!, but we expect that once one-loop effec
are accounted for, this solution is corrected to an interpo
tion between AdSd11 spaces in the UV and IR with slightly
different radii. The one-loop scalar bubble diagram corre
the gravitational Lagrangian by an amountdL, where

2Ag21dL5V52
i

2
tr log~2!1m2!. ~14!

Our main computation will be to evaluate this correction
the unperturbed background. In principle, one could go on
find the interpolating geometry perturbatively in the sm
parameterkL0

(d21)/2. This would require separatingdL into
contributions to the cosmological term and two- and fo
derivative expressions in the metric—a much more involv
computation than simply evaluating Eq.~14! in the unper-
turbed background. For brevity, we will use the notationV in
preference todL for the scalar self-energy~14!, despite the
fact that the full background-independent form involves d
rivative terms as well as finite nonlocal terms.V is diver-
gent, but we assume that the action~12! is part of a well-
defined theory of quantum gravity~presumably, a
compactification of string theory or M theory!, so that all
loop divergences are canceled in some physical way, lea
only finite renormalization effects. It may be that in the fu
theory L0 is just the extremal value of a classical potent
function of several scalars; if so, then we are operating on
understanding that the second derivative of this poten
function with respect tof vanishes atf50 @that is, we have
soaked up any such second derivative into what we callm2

in Eq. ~12!#.
In general, it is difficult to compute one-loop correctio

in an effective theory without knowing precisely how the fu
theory cancels divergences. Results obtained for a ch
anomaly in supergravity@24# for AdS53S5 can be used to
show that the central charge is corrected at one loop in
pergravity, leading toc}N221, as appropriate for SU(N)
super Yang-Mills theory, rather thanc}N2 ~the leading order
result!. Thus in this case, the difficulties were overcome. O
situation is more generic, in that we do not depend on su
symmetry or a special spectrum of operators. What we
nevertheless able to do is to determine the finite differe
betweenV in the case wheref 50 in Eq. ~13! and the case
wheref 5`. This we will then translate into a change in th
central charge as one flows from the UV~the D2 theory! to
the IR~theD1 theory!. What makes the computation clean
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that at one loop, we do not have to worry about interactio
of the scalar with other fields, and the only relevant diagr
is the one where a single scalar propagator closes on it
with no vertices.

A. Vacuum energy in limiting regions of AdS

The computation of the one-loop contribution to th
vacuum energy by a scalar in curved space, as in flat sp
amounts to summing the logarithm of the eigenvalues of
Klein-Gordon operator. A more easily computable express
is obtained by expressing the result in terms of an integra
the Green’s function with respect to some parameter suc
proper time or mass.7 All of this is quite standard, so we jus
write down the result, referring the reader to@@26#, pp. 156–
158# for a derivation: If the propagatorG(z,z8;m2, f ) is de-
fined by

~!z2m2!G~z,z8;m2, f !5dd11~z2z8! ~15!

@with the delta function including aAg factor as in Eq.~8!#
together with boundary conditions~13!, as discussed in Sec
II, then formally

V~z;m2, f !52
i

2
lim

z→z8
E

m2

`

dm̃2G~z,z8;m̃2, f !, ~16!

and for the casesf 50,̀ , the fact that we can make th
scalar propagator SO~4, 2! invariant means thatV will be
independent of the positionz.8 The formula~16! is problem-
atic because, for large masses,G(z,z8,m̃2,0) diverges at the
boundary of AdS. This is unusual: The typical situation f
quantum field theory in curved spacetime is that quanti
become well defined in the limit where masses are m
larger that the inverse radius of curvature. Thus, instead
using Eq.~16!, a well-defined procedure is to integrate dow
to the Breitenlohner-Freedman bound which is the smal
mass possible with normalizable modes in AdS. Thus
obtain

V~z;m2, f !5V~z;mBF
2 , f !1

i

2
lim

z→z8
E

mBF
2

m2

dm̃2G~z,z8;m̃2, f !,

~17!

where mBF
2 L252d2/4 is the Breitenlohner-Freedman~BF!

bound.~For a derivation, see the Appendix.! It is possible to
argue thatV(z;mBF

2 , f ) is the same forf 50 and f 5`. In-
deed, the eigenmodes for a tachyon of massm2 with bound-
ary conditions specified byf 50 are given byv5D21,
12n and that specified byf 5` is given by v5D11,

7For a different method of computing the effective potential bas
on the technique of Zeta-function regularization, see@25#.

8Actually, we have tucked an additional complication into o
notation:V is, more properly, minus the one-loop correction to t
full gravitational Lagrangian, and as such includes not just a sc
piece, but also terms depending on curvatures. For the ce
charge computation, as we shall explain, the relevant quantity is
sum of all these terms evaluated on AdS.
8-4
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12n @27#, where, is the orbital angular momentum quantu
number andn is the radial quantum number. But for a sca
with mass saturating the BF bound,D15D25d/2. So from
the viewpoint of canonical quantization it seems inevita
thatV(z;mBF

2 ,0)2V(z;mBF
2 ,`)50. We can argue further tha

for generalf the eigenfunctions would be a linear combin
tion of those withf 50 and f 5`. That would again imply
that for D5d/2, the eigenvalues are unchanged. So we c
clude that theV(z;mBF

2 , f )2V(z;mBF
2 ,0)50 for all values of

f.
Thus we are led to the formula that we will really use f

computation:

V12V25
i

2 EmBF
2

m2

dm̃2@GD̃1
~z,z!2GD̃2

~z,z!#

1V~z;mBF
2 ,`!2V~z;mBF

2 ,0!, ~18!

whereV15V(z,m2,`) andV25V(z,m2,0). We have used
the fact thatGD̃1

(z,z8), as defined in Eq.~10!, is precisely

G(z,z8;m̃2,`), while GD̃2
(z,z8)5G(z,z8;m̃2,0). In light of

the argument of the previous paragraph, the terms outside
integral cancel. The advantage of Eq.~18! is thatGD̃1

(z,z)

2GD̃2
(z,z) is finite, so that the final answer is also man

festly finite. We have confidence that no other finite ren
malization effects can slip in to the calculation, because
only thing that changes between theD2 andD1 vacua is the
boundary condition onf.

As a warm-up let us first carry out the computation f
AdS5 . To get the value ofGD̃1

(z,z)2GD̃2
(z,z) for coinci-

dent points one has to first express the Green’s function
terms of the geodesic distances. From Eq.~9! we see that in
terms of the variablez the geodesic separation is given b
cosh(s/L)51/z, so we rewrite the propagator~10! in terms of
s and then expandi @GD̃1

(z,z)2GD̃2
(z,z)# in a power se-

ries in powers ofs/L. The answer is finite and in the limi
s/L→0, for AdS5 we obtain the simple expression

i @GD̃1
~z,z!2GD̃2

~z,z!#52 i @GD̃~z,z!2G42D̃~z,z!#

52
~D̃21!~D̃22!~D̃23!

12p2L3 .

~19!

The difference in the vacuum energies using Eq.~18! is
therefore

V12V25
i

2 EmBF
2

m0
2

dm̃2@GD̃1
~z,z!2GD̃2

~z,z!#

52
1

2 E2

D2 dD̃

L2 F2~D̃22!
~D̃21!~D̃22!~D̃23!

12p2L3 G
52

1

12p2L5 E
0

D222

dñ@ ñ2~ ñ221!#
06401
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5
1

12p2L5 F ~D222!3

3
2

~D222!5

5 G , ~20!

where in the second equality we have usedm̃2L25D̃(D̃
24) and the fact thatDBF5d/252. SinceD2,2 we find
that V12V2,0, and thereforec2.c1 in agreement with
the field theory prediction.

It is straightforward to generalize this for any od
dimensional anti–de Sitter spacetime because ford even the
differencei @GD̃1

(z,z)2GD̃2
(z,z)# is quite simple in form.

Before writing this down, for convenience, let us defined
[2k so that the spacetime is AdS2k11 . In terms of k,
i @GD̃1

(z,z)2GD̃2
(z,z)# is

i @GD̃1
~z,z!2GD̃2

~z,z!#52 i @GD̃~z,z!2Gd2D̃~z,z!#

52
~21!k

nkp
kLd21 )

i 51

2k21

~D̃2 i !,

~21!

wherenk52k(2k21)!!
The difference in the vacuum energies is therefore

V12V25
i

2 EmBF
2

m0
2

dm̃2@GD̃1
~z,z!2GD̃2

~z,z!#

5
1

2 ED2

k dD̃

L2 F2~D̃2k!
~21!k

nkp
kLd21 )

i 51

2k21

~D̃2 i !G ,

~22!

where in the second equality we have usedm̃2L25D̃(D̃
2d) and the fact thatDBF5d/25k. Shifting the variable of
integration by introducing a new variableñ[D̃22k, the
integrand can be written down in a terms of the Pochham
symbol (a)n5G(a1n)/G(n):

2~D̃2k!
~21!k

nkp
kLd11 )

i 51

2k21

~D̃2 i !5
~21!k

nkp
kLd11 )

i 50

k21

~ ñ22 i 2!

5
1

nkp
kLd11 ~ ñ !k~2 ñ !k . ~23!

The factor (21)k was nullified by an extra factor of (21)k

from the product. Assembling all of this, we finally have

V12V25
1

2nkp
kLd11 E

n

0

dñ@~ ñ !k~2 ñ !k#, ~24!

where we recall thatnk52k(2k21)!! The lower limit of
integration n depends on the value ofD2 . Since k<D2

<k21, the range ofn is 21<n<0. The function (n)k
(2n)k,0 for all k and 21<n<0. So for any odd-
dimensional anti–de Sitter spacetimes we have shown
V12V2,0.

For even-dimensional spacetimes, an analytic proof se
cumbersome, so we resorted to numerics. As an explicit
8-5
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ample, Fig. 1 shows a plot ofi (Gd2D2GD) as a function of
D for several even-dimensional anti–de Sitter spacetimes
each dimension, we have plotted the integrand of Eq.~18!
for d/221,D,d/2. Since the integrand is always negati
on this range, we conclude thatV1,V2 in accordance with
the c-theorem intuition. This is also true ford53, and we
believe it is true generally.

B. Vacuum energy throughout AdS

The results of the previous section were stated in term
V12V25V(z;m2,`)2V(z;m2,0) ~both terms were in fac
independent of the positionz in AdS!. Here we would like to
investigateV(z;m2, f ) for finite f. This quantity diverges, bu
V(z;m2, f )2V2 is finite. We will be able to verify the for-
mulas

lim
z0→0

@V~z;m2, f !2V2#50,

lim
z0→`

@V~z;m2, f !2V2#5V12V2 , ~25!

which we consider intuitively obvious since (f /2)O2 is a
relevant operator in the CFT, and therefore unimportan
the UV but important in the IR.

As a first step, one needs the Green’s function for
scalar obeying mixed boundary conditions for all values of
~not just the ones forf 50 and f 5` that we wrote down
earlier!. This would be needed to compute the vacuum
ergy contribution due to the bubble diagram. The one-lo
corrected action would then induce corrections in the geo
etry which can be computed from the Einstein equations.
us work in Euclidean AdS to get the Green’s functi
GE(x,y; f ) which we shall Wick rotate to obtainG(x,y; f )
in the Minkowski signature. We shall follow the canonic
method of obtaining Green’s functions. In Poincare´ coordi-
nates the scalar wave equation is

@x0
2~]W21]0

2!2x0~d21!]02m2#f~x0 ,xW !50, ~26!

FIG. 1. i (Gd2D2GD) as a function ofD, for AdS6 , AdS8 , and
AdS10 ~corresponding tod55, 7, and 9!, in units whereL51.
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In

of

n

e

-
p
-

et

where from now on we shall denote the radial direction byx0
or y0 andxW is a vector with components along thed remain-
ing directions. The two linearly independent solutions to t

equation are: f15x0
2e2 ikW•xWI n(kx0) and f2

5x0
2e2 ikW•xWI 2n(kx0) wheren5Am2L21d2/4. In the notation

of our previous sections, the Green’s function obeys
equation

~!2m2!GE~x,y; f !5dd11~x2y!, ~27!

where we remind ourselves that the delta function include
1/Ag in its definition. The right hand side is zero forx0
Þy0 , so we have

GE~x,y!5H A1f1~x!1A2f2~x! for x0,y0 ,

B1f1~x!1B2f2~x! for x0.y0 .
~28!

The boundary behavior of the scalar we are interested i
f(x0 ,xW )5 f b(xW )x0

d/21n1b(xW )x0
d/22n . We choose ourf1

and f2 so that they have the right boundary behavior a
also require that the Green’s function not diverge in the b
~large values of the radial coordinatex0) for two noncoinci-
dent points. One convenient choice off1 andf2 is

f15x0
d/2e2 ikW•xWF I n~kx0!1 f S 2

kD 2n G~11n!

G~12n!
I n~kx0!G

and

f25x0
d/2e2 ikW•xWKn~kx0!, ~29!

so thatf1 satisfies the boundary condition for smallx0 and
f2 is finite in the bulk. From the asymptotics of Bessel fun
tions, we see thatf1 diverges asx0→` andf2 diverges as
x0→0. This forces us to setA25B150 in Eq. ~28!. The
remaining two constants are determined by integrating
~27! twice which gives us two conditions:~i! the Green’s
function is continuous atx05y0 and~ii ! its radial derivative
has a jump discontinuity of 1/x0

d21 at x05y0 . This yields

A15
f2~y0!

W @f1~y0!,f2~y0!#
, B25

f1~y0!

W @f1~y0!,f2~y0!#
,

~30!

whereW @f1(y0),f2(y0)# is the Wronskian. For our choice
of f1 andf2 the Wronskian is

W @f1~y0!,f2~y0!#

52
G~12n!1 f ~2/k!2nG~11n!

G~12n! S L

y0
D d21

,

~31!

so combining Eqs.~28!, ~30!, and~31! we obtain the Green’s
function
8-6
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GE~x,y; f !52E dkEdd21k

~2p!d

e2 ikW•~xW2yW !~x0y0!d/2Kn~ky0!

@11~2/k!2n f G~11n!/G~12n!#Ld21 F I 2n~kx0!1 f
G~11n!

G~12n! S 2

kD 2n

I n~kx0!G ~32!

for x0,y0 and a similar expression forx0.y0 . In the above equation,kE is the temporal component of momentum. Final
we Wick rotate this componentkE5 ik to get the Green’s function in the Minkowski signature:

iG~x,y; f !5E ddk

~2p!d

e2 ikW•~xW2yW !~x0y0!d/2Kn~ky0!

@11~2/k!2n f G~11n!/G~12n!#Ld21 F I 2n~kx0!1 f
G~11n!

G~12n! S 2

kD 2n

I n~kx0!G . ~33!

The integral for general values off, d, andn is hard. Forf 50 andf 5` it can be evaluated and the result is an express
which is related to Eq.~10! by a quadratic hyper-geometric transformation@28#. A little bit more can be said about the radi
dependence of the one-loop vacuum energy. This latter quantity depends on the Green’s function for coinciden
G(x,x; f ). We saw before that this divergent quantity was best handled by subtracting outG(x,x;0). Theresult is then finite:

i @G~x,x; f !2G~x,x;0!#52
1

2d22pd/2Ld21G~n!G~12n!G~d/2!
E

0

`

dk̃ k̃d21
f̃

k̃ 2n1 f̃
@Kn~ k̃!#2, ~34!
or

v
ha

-

o
s-

g

e

ual

hi-
e,

the

the
ide
the

of
al
nt in
nt.
rge
op-
an,
op
rge

v-
not

the
where f̃ 522n@G(11n)/G(12n)# f x0
2n and k̃5kx0 . Note

that the excess vacuum energy depends on the radial co
natex0 in the particular combinationf x0

2n .
In order to make any further progress, one would need

first compute the momentum integral and then integrate o
n to obtain the vacuum energy. We argued earlier t
V(x;mBF

2 , f )2V(x;mBF
2 ,0)50 for all values off, so using

Eqs.~18! and ~34! we have

V~x;m2, f !2V~x;m2,0!5
i

2
E

mBF
2

m0
2

dm̃2@G~x,x; f !

2G~x,x;0!#5
i

2
E

0

n dñ2

L2
@G~x,x; f !2G~x,x;0!#

52
1

2d22pd/2G~d/2!Ld11 E0

n

dñ
ñ

G~ ñ !G~12 ñ !

3E
0

`

dk̃
k̃d21 f̃

k̃2n1 f̃
@Kn~ k̃!#2, ~35!

where we remind ourselves thatf̃ 522n@G(11n)/G(1
2n)# f x0

2n . The double integral is difficult to perform explic
itly. However, it is not hard to show from Eq.~35! that
V(x;m2, f ) decreases monotonically asf increases from 0 to
`. To see this we note that the integrand depends onx0 only
through f̃ and since the integrand is a monotonic function
f̃ , clearlyV(x;m2, f ) decreases monotonically with increa
ing f.

IV. CONCLUSIONS

The upshot of Sec. III A was an evaluation of the chan
in the one-loop self-energy,V12V2 , between the IR and
UV end points of a holographic RG flow. We would now lik
06401
di-

to
er
t

f

e

to convert this into a change in the central charge of the d
field theory.

In @29#, the central charge was obtained by holograp
cally computing the Weyl anomaly: on the field theory sid

dW@gmn#5
1

2 E d4xAgv^Tm
m& ~36!

upon a conformal variationgmn→e2vgmn , whereW is the
generating functional for connected Green’s functions. At
one-loop level, the prescription of@2,3# asserts thatW is the
classical supergravity action. The exact statement is that
partition functions of string theory and gauge theory coinc
~subjected to boundary conditions and source terms in
usual way!. In the calculation of@29#, the supergravity action
integral is evaluated with a radial cutoff, where the choice
radius amounts to a choice of metric within a conform
class. The supergravity Lagrangian evaluates to a consta
AdS, and the central charge is proportional to this consta9

All that we need to do in order to correct the central cha
computation at one loop is to ask by how much the one-lo
corrected Lagrangian differs from the tree-level Lagrangi
when evaluated in AdS. The tree level and one-lo
Lagrangians will stand in the same ratio as the leading la
N central charge and its 1/N-corrected counterpart.

The tree level Lagrangian is

Ag21Ltree5
1

kd11
2 ~R2L0!52

2d

kd11
2 L2 . ~37!

9A priori, one might worry that boundary terms in the supergra
ity action also contribute to the central charge. That this does
happen depends on the circumstance, noted in@29#, that the only
log-divergent terms in the supergravity calculation arise from
integral of the bulk action.
8-7
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The calculation indicated by the discussion in the previo
paragraph is

ccorrected

ctree
5

Ltree1dL
Ltree

, ~38!

where dL52AgV is the one-loop correction to the La
grangian that we computed in Sec. III. Because we are o
able to computeV up to an additive constant that is indepe
dent of boundary conditions, the only meaningful ratio th
we can form is

c1

c2
5

Ltree2AgV1

Ltree2AgV2

511
V22V1

Ag21Ltree

, ~39!

so that

c12c2

c2
5~V12V2!S kd11

2 L2

2d D . ~40!

To check ifc2 is indeed greater thanc1 , all that we have to
show is thatV1,V2 . But that is exactly what we saw
above.

As an example, in AdS5 , we obtain from Eqs.~22! and
~40! the result

c12c2

c2
5

k5
2

192p2L3 F ~D222!3

3
2

~D222!5

5 G . ~41!

One can go further and translate the functionV(z;m2, f )
2V2 into a correction to the central charge whose sc
dependence is monotonic. It is not clear how well defin
such a function can be on the supergravity side: because
bulk theory includes gravity, it has no local observables.
etically, we would like to relate this to the fact that renorm
ization group effects in field theory are scheme dependen
but it is difficult to make this precise.

It would be interesting to see how the construction d
cussed in this paper might be realized as part of a com
tification of string theory to four dimensions, along the lin
of @30,31#. One of the most interesting questions in that co
text is one that we glossed over here: before considering
loop effects in supergravity, one generally expects a mo
space of vacua, and this statement probably translates
field theory terms as the existence of a line of fixed poin
Mapping the lifting of moduli into field theory terms migh
at least gain us a restatement of the moduli problem in te
of the existence of isolated fixed points of the renormali
tion group.
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APPENDIX

In this appendix we shall sketch the derivation of E
~17!. Our starting point is the familiar field theory result th
the one-loop effective potential is

V~z;m2, f !52
i

2
tr log~2!1m2!. ~A1!

We shall denote the Klein-Gordon operator (2!1m2) by
K̂(m2, f ) and as an operator, it is related to our definition
the Green’s function~15! by Ĝ(m2, f )52@K̂(m2, f )#21.
The representations of operators such asĜ(m2, f ) in an or-
thonormal basis will be denoted by the obvious notat

^zuĜ(m2, f )uz&5G(z,z8;m2, f ). In terms of the Green’s
function, the effective potential is then

V~z;m2, f !5
i

2
lim

z8→z

log@2G~z,z8;m2, f !#. ~A2!

We shall use the Schwinger proper-time formalism to eva
ate this. One needs two simple operator relations both
which follow from the relation betweenĜ(m2, f ) and
K̂(m2, f ):

Ĝ~m2, f !52 i E
0

`

e2 isK̃~m2, f !ds,

log@2Ĝ~m2, f !#5E
0

` e2 isK̂~m2, f !

is
i ds1g,

~A3!

whereg is Euler’s constant. For the effective potential, w
see from Eq.~A2! that we need log@2Ĝ(m2,f )# which differs
by a factor ofis from the integral representation ofĜ(m2, f )
above.

To proceed any further we need the DeWitt-Schwing
representation of the Green’s function~the reader is referred
to @26#, p. 75 for a derivation!

G~z,z8;m2, f !52 i
AM ~z,z8!

~4p is!~d11!/2

3E
0

`

idse2 im2s1h~z,z8!/2isF~z,z8; is!,

~A4!

whereh(z,z8) is one-half the proper distance between t
points z and z8, and M (z,z8)52det@]m]nh(z,z8)#. For our
purposes we shall just need to use the fact that the only p
where the mass appears is in the exponent and integra
with respect tom2 will bring down an extra factor ofis that
we need. So integrating both sides of Eq.~A4! between two
arbitrary massesm1

2 andm2
2 and using Eq.~A3! we obtain
8-8
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E
m1

2

m2
2

dm̃2@2G~z,z8;m̃2, f !#52 log@2G~z,z8;m2
2, f !#

1 log@2G~z,z8;m1
2, f !#.

~A5!

In the usual treatment one chooses one of the masses
infinite, but as we explained in the main text, this cannot
tt

Y

ge
5
d

ys

gy

h

d

S

06401
be
e

done here. Instead of integrating toward heavier masses
integrate in the opposite direction down to the Breitenlohn
Freedman bound. Therefore, we setm1

25mBF
2 andm2

25m2 in
Eq. ~A5! and use Eq.~A2! to get

V~z;m2, f !5
i

2
lim

z→z8
E

mBF
2

m2

dm̃2G~z,z8;m2, f !1V~z;mBF
2 , f !.

~A6!
rgy

En-

ys.
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