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Double-trace operators and one-loop vacuum energy in AAEFT
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We perform a one-loop calculation of the vacuum energy of a tachyon field in anti—de Sitter space with
boundary conditions corresponding to the presence of a double-trace operator in the dual field theory. Such an
operator can lead to a renormalization group flow between two different conformal field theories related to
each other by a Legendre transformation in the Iafdenit. The calculation of the one-loop vacuum energy
enables us to verify the holograptidheorem one step beyond the classical supergravity approximation.
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I INTRODUCTION an operato® of dimension 5/2.

. How is all this reflected in AdS? According {&], the

The AdS conformal field theoryCFT) correspondence qqgition of (f/2)(0? amounts to specifying particular linear
[1,2,3 (for reviews seg4,5]) relates ad-dimensional quan- boundary conditions on the scal@rat the boundary of AdS.
tum field theory to a ¢+ 1)-dimensional g_ravnatlonal At the classical level, these boundary conditions are consis-
theory, the most notable example being=4, d=4 SUPEI™  tent with the original Adg solution with¢ = 0. Superficially,
Yang-Mills theory and type ”.B string the_ory on Ag8S”. this looks like a puzzle, since we were expecting a RG flow.
Most of the checks and predictions of this duality have beer?n fact, conformal invariance is violated by th# deforma-
at the level of classical supergravity. It is particularly difficult tion b’ut at leading order il its effects are restricted to
to carry out meaningful loop computations in AdS, COI"e" certain correlators that we will describe in Sec. II. The crux

sponding to IN corrections in the gauge theory, simply be- . N ) .
cguse tk?e supergravity theory is %igr?ly nonrgnormgl?/zabl 9f the matter is that it is impossible to satisfy the boundary

and the Ramond-Ramond fields make computations in thonditions ong with a SQ4,2)-invariant bulk-to-bulk propa-
string genus expansion unwieldy at best. The aim of this notg&tor, except wheri=0 or «. This gives rise to one-loop
is to obtain a simple one-loop result in AdS that is finite in €ffects that cause deviations from AdS
any dimension. The result is an expression for the difference Although we will not obtain the full one-loop corrected
of the vacuum energies that arises from changing boundargolution corresponding to RG flow due to thé#2)O* defor-
conditions on a tachyonic scalar field with mass in a particumation, we will consider its end points and perform a one-
lar range. loop supergravity check of the theorem. This “theorem,”
The inspiration for this computation came from Witten’s conjectured in four dimensions by Carfli2] as a generali-
treatmen{ 6] of multitrace deformations of the gauge theory zation of Zamolodchikov's celebrated two-dimensioral
Lagrangian and their dual descriptions in asymptoticallytheorem[13], has been shown to follow from AdS/CFT cor-
anti—de Sitter space. Such a dual description was also disespondence at the level of classical supergravity provided
cussed in7]; however, our treatment will follow6] more  the null energy condition holdgl4,15 (see alsdq16] for
closely. Earlier work describing the same gauge theory deearlier work in this direction The magnitude of the vacuum
formations in terms of nonlocal terms in the string world- energy of Adg, measured in five-dimensional Planck units,
sheet action appeared |8,9]. To be definite, suppose one is proportional to an appropriate central charge raised to the
were to add to the gauge theory Lagrangian a teff@)(0>  —2/3 power. So the vacuum energy should be more negative
whereQ is a single trace operator with dimension 3/2, dualin the infrared than in the ultraviolet, and at the classical
to a scalar fieldp whose mass satisfies’L>= —15/41 The  level, that is what is shown if14,15 (actually, the argu-
coefficientf has dimensions of mass, st/Z)©? is a relevant ments on the AdS are dimension independent, though it is
deformation, and there is a renormalization gréR®) flow  not entirely clear how to translate the “holographic” central
starting from a UV fixed point wheré=0. The end point of charge into field theory language in the case of odd-
this flow is, plausibly, an IR fixed point whose correlators aredimensional CFT’s At the quantum level, the arguments of
related to those of the origindl=0 theory, in the larg\  [14,15 have no force because it is not clear that the null
limit, by a Legendre transformation in a manner explained irenergy condition is valid or even relevant. So an explicit
[11].2 In particular, the scalar that was fo=0 related to the loop calculation is appropriate. All that is needed is the one-

operator© of dimension 3/2 is at the IR fixed point related to loop contribution of the scalap to the vacuum energy. This
quantity is divergent, but the difference between imposing

the two simple boundary conditiorislescribed above af
1Such a situation could arise in the theory dual to D3-branes at the> 0 andf—) gives a finite result. The contributions of all
tip of a conifold[10], where there are indeed dimension 3/2 color Other fields can be ignored because they do not change at the
singlet operators. one-loop level as one changes the boundary conditions. on
2We will discuss further in Sec. Il the reasoning behind the claimAlso, because we only desire a one-loop vacuum amplitude,
that the flow ends at an IR fixed point, as well as some caveats. we may entirely ignore interactions of the scalar with other
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fields, and work simply with the free action lating the dimension of0, to the mass of the fieldp, .
. 1 Writing the metric for the Poincarpatch of Adg as
S=j d52\/§(—§((9¢)2—§m2¢2 : (N L2 d-2
ds’=— —dt?+ D, dx@+dr?|, ©)
=0

where we work in mostly plus signature, so that the metric of

AdS; on the Poincargatch is .
S I ® I we have boundary asymptotics fer, as follows:

2
dsZZ;Z(_dtz"'diz"'de)- #) Ba~ a(X)r9 2+ By(x)ria for r—0. @

The prescription of6] is to replaceW(0,) by W(B,) and

For definiteness, our discussion has focused onsAaifel a . . roa
jmpose the following boundary conditions:

scalar with a particular mass; however, the results we wil

obtain can be presented with considerable generality for SW
AdS;. 1, as we will describe. For odd, the formulas for the a(X)=——. (5)
vacuum energy are much more complicated, and for the sake OBa(X)

of efficiency we check the sign via numerics.
The organization of the paper is as follows. In Sec. Il we

briefly review the prescription df6] for treating multitrace

operators, and we demonstrate that general boundary con

tions are incompatible with S@, 2) invariance of the scalar t simolv.O2 wh h | 161 has di .
propagator. In Sec. Ill we compute the finite change in thdnost simply,C= where the scalar opéra as dimension

one-loop vacuum energy discussed above, and make Soﬁebetweemllz—_l_anddlz. Precisely in this range, ur_1itarity
remarks on the interpolating geometry connecting the tw ounds are satisfied, and both power law behaviors ir4ig.

anti—de Sitter end points. We conclude in Sec. IV by extract?'® normallzable. Thei mc!udes a tgrrp f(/2)f.d X0
his brings us back to the discussion initiated in the Intro-

ing th diction for th tIh,db'thT_ ) i :
It?]gc t(ra]epc::aerlriz ilsr(])bcérye; central charge, and obsenving aductlon: Nonzerd plausibly drives the field theory from a

UV fixed point where the boundary conditions are=0 to
an IR fixed point where the boundary conditions @e0.
Since these two fixed points will be the focus of Sec. Il let
us introduce an additional convenient notatidn: and A

The proposal of6] is a natural generalization of the origi- are the two solutions ta (A —d)=m?L?, with A _ being the
nal prescription for computing correlatdi®,3], and it should ~ lesser of the twdand thus in the aforementioned range, from
in principle be derivable from it: sdd 7] for a more precise d/2—1 tod/2). ClearlyA ,=d—A_.
discussion. Suppose one starts with the completedgeof WhenA_<d/2, the addition of a trace-squared operator
independent, local, color-singlet, normalized, single-trace?®, whereO has dimensiom =A _, is a relevant deforma-
operators: fo'N=4 super-Yang-Mills theory these would in- tion, so conformal invariance must be broken in the gauge
clude, for example, (N)trX;X, and (IN)trF,,V.x;. The  theory. The results of6] for d=4 andA_=2 suggest that
action can be written ds= N>W(0,) for some functionalt, ~ even whenA_=d/2 there is a logarithmic RG flow. The
which for A’=4 super-Yang-Mills theory would be the inte- simplest indication of the breaking of conformal invariance
gral of a linear function of thosé&, which are Lorentz sca- N supergravity is that the bulk-to-bulk propagator for the
lars. The general belief is that ti, can be put into one-to- Scalarg dual toO cannot be SC4, 2) invariant. We will now
one correspondence with the quantum states of type IIBlemonstrate this claim.
string theory in Ad$.° Restricting ourselves to scalars in ~ The propagator in question can be defined as

: Y =2l 2 ra
AdS;, we have the standard relatidn,(A,—d)=m3L“ re G (2,2)) = (0| T{b(2) (2 )}[0), ©)

3There is considerable subtlety in this claim. It has been demon‘?md it satisfies the equation of motion

strated that the Kaluza-Klein tower of supergravity modes in 2 N od+1 ,

AdS;x S° is in correspondence with the chiral primaries/gt 4 (B-m*)G(z.2')=8""H(z=2), @)
super-Yang-Mills theory and their descendants; and the duals of
certain nonperturbative states have been found, such as dibaryo
(see, for exampld,18]) and giant gravitong19]. Evidence is grow-
ing that the operator-state map extends faithfully to excited string

states(see, for exampl€,20,21]). Since the statgs in quggtlon can f dd+12\/§f(z) S(z—z2')=1(z') ®)
sometimes be extended across most of A¢S in[21]), it is not

entirely clear that a second quantized treatment in terms of local

fields is appropriate; but this is scarcely relevant to the situation afor any continuous functior(z). If the propagator is to re-
hand, since extended states are very massive, and we are interes&@ect S@4, 2) invariance, it must be a function only of the
only in tachyons. geodesic distance(z,z’), which is known to be

The partition function of the gravitational theory in AdS,
subject to the boundary conditioris), is then supposed to
(ﬁ_qual the partition function of the gauge theory.

The simplest nontrivial example is double-trace operators:

Il. MULTITRACE OPERATORS
AND SCALAR PROPAGATORS

ered0=g*"V,V,, and the delta function includes aJty
In its definition, so that
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4

2rr’
= (t—t')2+ (X—x")?’

o(z,2')=L Iog( ) where

' 9

wherelL is the radius of AdS. The only solutions to E®)
which are functions only of¢ are G(z,z')=pG, +(1

—p)Ga, where for anyA (cf. [22,23)*

. r(A)
1A= SR @2 T A — AT (A—d/2)

(A ATl d o iy

x{ 5T _§+ IR (10

By keepingz’ fixed while z approaches the boundary of

AdS, it is straightforward to verify that for no choice pf
€(0,1) andf e (0c<) does the propagatdd(z,z')=pG,
Jr(l—p)GA+ satisfy the boundary conditior{§), which in
our case amount ta=f 8. Forp=0 andf=0 the boundary

conditions are satisfied with @ 2) invariance preserved,

corresponding to a fixed point of the RG whefds dual to
an operatoi© with dimensionA _ . Let us call this theA _
theory. And forp=1 andf =0 (formally speakingagain the
boundary conditions are satisfied with @Q2) invariance,
and now ¢ corresponds to an operat@! with dimension
A | : this we will call theA , theory.

It was already remarked ifi6] that a renormalization
group flow should interpolate between the theory in the
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left. Translated into supergravity terms, these remarks mean
that the one-loop contribution to the potential could source
the dilaton or other moduli, possibly leaving no extrema at
finite values of the fields. If there are no such moduli in the
first place(as perhaps one would expect for a trglgneric
nonsupersymmetric quantum field theory with an AdS gual
then this caveat is not a problem. In practice, however, it is
likely to interfere with constructing explicit string theory ex-
amples of the RG flow discussed in this paper. For the re-
mainder of our discussion, we will ignore the caveat.

Since the renormalization group flow is nontrivial, it is
natural to expect that the supergravity geometry deviates
from AdS. The surprise is that this doast happen classi-
cally. Roughly, this can be understood in field theory terms
as a reflection of the fact that-point functions involving
only the stress-energy tensor do not receive corrections at
leading order irN.® At subleading order i, or at one loop
in supergravity, deviations from AdS must occur, simply be-
cause a one-loop diagram where the($®)-noninvariant
scalar propagator closes upon itself must give rise to an ef-
fective potential that varies over spacetime. Entertainingly,
there is no classical scalar field which is varying; rather, the
variation in the potential arises on account of proximity to
the boundary. This is in contrast to previously studied ex-
amples of RG flow in Ad§ (for instance[14,15), where the
flow is described in terms of scalars in the five-dimensional
supermultiplet of the graviton with nontrivial dependence on
the radius.

There should be a solution to the one-loop-corrected su-
pergravity Lagrangian interpolating between one asymptoti-
cally AdS region near the boundary, corresponding taXhe

UV and theA , theory in the IR. This is in fact a somewhat YV fixed point, and a different one in the interior, corre-
subtle claim: Why should we think that the RG flow initiated SPONding to thed, IR fixed point. For instance, one could
by adding /2)© ends up at a nontrivial IR fixed point? We équire t.hat the symmetries 8! be preserved in the solu-
can argue as follow&The Legendre transformation prescrip- 10N, Which must then have the form

tion of [11] guarantees that the IR fixed point exists, at least
in the largeN limit. The existence of a fixed point of the RG

is a generic phenomenon, siNl¢orrections should not spoil whereA(r)—r/L ; asr— *=o. (Another choice would be to
the claim, nor should they greatly alter the location of therequire the symmetries d°X R, which should lead to a
fixed point in the space of possible couplings. Since a naiveo|ytion with the conformal structure of global AdSve will
scaling argumen(just looking at the dimension df tells us ot find the full interpolating solution, but we will explore
that the RG flow should end up at the desired IR fixed poinsome properties of its AdS end points. We will be particu-
if we ignore all 1N corrections, it should be thadbmeRG  |arly interested in the central charge of the CFT's dual to the
flow exists close to the approximate one we naively identivyg end points. To the leading nontrivial order, these may be
fied, ending at the nontrivial IR fixed point. A significant computed as a one-loop saddle-point approximation to the
caveat to this reasoning is that AAS/CFT examples dfiten supergravity “path integral’(supposing that such an object

fact, nearly always in the literature so fdrave exactly mar-  existg, but without deforming the AdS background itself.
ginal deformations. Aine of fixed points of the RG isiota

generic phenomenon, andNLeffects in the absence of su-
persymmetry generically could destroy such a line. Only one
point could be left after N effects are included; or, worse
yet, only a point infinitely far out in coupling space could be

ds?=e?A0(—dt?+dx?) +dr?, (11

Ill. ONE-LOOP VACUUM ENERGY
FOR THE TACHYON FIELD

The full classical action that we wish to consider is

“The expression fo(z,z') above differs by a sign from that in  ®Correlation functions whicllo receive corrections at leading or-
[23,22 because the latter define the Green's function asder in N when (f/2)0? is added to the Lagrangian are precisely
—iG(z,2")=(0|T¢(2) $(z')|0). those which pick up contributions from factorized forf@:--)

53.S.G. thanks E. Silverstein for a discussion in which the follow-(©---), where the dots indicate any arrangement of the operators
ing line of reasoning arose. involved in the original correlator.
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1 o1 that at one loop, we do not have to worry about interactions
S= ﬁf d9*1z\g(R—Ao) of the scalar with other fields, and the only relevant diagram
is the one where a single scalar propagator closes on itself,
1 1 with no vertices.
+f dd“z\/g(—i(&qs)z—zmz(bz . (12
A. Vacuum energy in limiting regions of AdS
Here A is a negative constant. The scalar is subject to the 114 computation of the one-loop contribution to the

boundary conditions vacuum energy by a scalar in curved space, as in flat space,
amounts to summing the logarithm of the eigenvalues of the
Klein-Gordon operator. A more easily computable expression

As remarked previously, AdS; with =0 and 1L2= is obtained by expressing the result in terms of an integral of
— Ay/d(d—1) is a classical solution to the equations of mo_the Green'’s function with respect to some parameter such as

tion from Eq.(13), but we expect that once one-loop effects proper time or masSAll of th.is is quite standard, so we just
are accounted for, this solution is corrected to an interpola\—Nrlte down the result, referring the reade'fE%]é pp. 156
158] for a derivation: If the propagatds(z,z’';m*,f) is de-

tion between Adg,, spaces in the UV and IR with slightly . db
different radii. The one-loop scalar bubble diagram correctsI:Ine y
the gravitational Lagrangian by an amowif, where (O0,—m?)G(z,2';m2 f )= 69+ (z—2") (15)

d~ard2+Br% where a=f8. (13

Sl p_\/— _i_ _ 2 [with the delta function including &g factor as in Eq(8)]
\/a oL=V 2tr log(—01+m?). (14) together with boundary conditiori43), as discussed in Sec.

I, then formally
Our main computation will be to evaluate this correction in

the unperturbed background. In principle, one could go on to
find the interpolating geometry perturbatively in the small
parameteA Y12, This would require separating( into

contributions to the cosmological term and two- and four-gnd for the case¢=00, the fact that we can make the

derivative expressions in the metric—a much more involvedscalar propagator S@, 2) invariant means tha¥ will be
computation than simply evaluating EL4) in the unper-  independent of the positian® The formula(16) is problem-
turbed background. For brevity, we will use the notatibm atic because, for large mass€¥z,z’,M?,0) diverges at the
preference taSL for the scalar self-energld), despite the boundary of AdS. This is unusual: The typical situation for
fact that the full background-independent form involves deqquantum field theory in curved spacetime is that quantities
rivative terms as well as finite nonlocal termsV is diver-  pecome well defined in the limit where masses are much
gent, but we assume that the actic@®) is part of a well-  |arger that the inverse radius of curvature. Thus, instead of
defined theory of quantum gravity(presumably, a using Eq.(16), a well-defined procedure is to integrate down
compactification of string theory or M thegryso that all  to the Breitenlohner-Freedman bound which is the smallest

loop divergences are canceled in some physical way, leavingiass possible with normalizable modes in AdS. Thus we
only finite renormalization effects. It may be that in the full gptain

theory A is just the extremal value of a classical potential
function of several scalars; if so, then we are operatingonthe ., = i m? - R
understanding that the second derivative of this potentialV(ZM~f)=V(zmge )+ 1lim | | dM°G(z,2" ;Mm% ),

i oo
V(z;mz,f):—zlim f 2d'r“nzG(z,z’;‘rﬁz,f), (16)
’ m

function with respect te vanishes aty=0 [that is, we have 22’ TeF (17
soaked up any such second derivative into what werall
in Eq. (12)]. where m3.L?=—d%4 is the Breitenlohner-FreedmaiF)

~Ingeneral, it is difficult to compute one-loop corrections hoynd.(For a derivation, see the Appendixt is possible to
in an effective theory without knowing precisely how the full argue that\/(z;méF,f) is the same fof=0 andf=«. In-

theory cancels divergences. Results obtained for a chirgjeeq the eigenmodes for a tachyon of ma&swith bound-
anomaly in supergravity24] for AdS;x S° can be used to ary conditions specified bj=0 are given byo=A_+¢
show that the central charge is corrected at one 100p in SUt 54 and that specified by = is given by o=A , +¢

pergravity, leading tccxN?—1, as appropriate for SB)

super Yang-Mills theory, rather thancN? (the leading order

rgsul!)_. Thus in this casc_a, the difficulties were overcome. Our "For a different method of computing the effective potential based
situation is more generic, in that we do not depend on supers,, the technique of Zeta-function regularization, 2.

symmetry or a special spectrum of operators. What we aresacya|ly, we have tucked an additional complication into our
nevertheless able to do is to determine the finite differenc@otation:Vv is, more properly, minus the one-loop correction to the
betweenV in the case wheré=0 in Eq.(13) and the case fy|| gravitational Lagrangian, and as such includes not just a scalar
wheref=co. This we will then translate into a change in the piece, but also terms depending on curvatures. For the central
central charge as one flows from the WNie A _ theory) to  charge computation, as we shall explain, the relevant quantity is the
the IR (the A . theory). What makes the computation clean is sum of all these terms evaluated on AdS.
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+2n[27], where( is the orbital angular momentum quantum 3 5
number anch is the radial quantum number. But for a scalar _ 1 (A-—-2) _ (A-—-2)
with mass saturating the BF boundl, =A _=d/2. So from 1272L° 3 5 ’
the viewpoint of canonical quantization it seems inevitable o
thatV(z;m2.,0)— V(z;még ) =0. We can argue further that where in the second equality we have us®dl’=A(A
for generalf the eigenfunctions would be a linear combina- —4) and the fact that\gp=d/2=2. SinceA <2 we find
tion of those withf=0 andf=c. That would again imply thatV,—V_<0, and therefor&e_>c, in agreement with
that for A=d/2, the eigenvalues are unchanged. So we conthe field theory prediction.

(20

clude that theV/(z;m2c, f ) —V(z;m3:,0)=0 for all values of It is straightforward to generalize this for any odd-

f. dimensional anti—de Sitter spacetime becauselfeven the
Thus we are led to the formula that we will really use for differencei[Gx (z,2) — G} (z,2)] is quite simple in form.

computation: Before writing this down, for convenience, let us defihe

=2k so that the spacetime is AgS . In terms of k,
i (m2 i[G:,(z.2)—-Gi (z2)] s
V+—V_=§f , di°[G} (2,2~ G} (2,2)]
Mer i[GZ+(Z,Z)—G17(Z,Z)]:—i[GZ(Z,Z)_Gd,Z(Z,Z)]

+V(z;m3g,°) —V(z;m3g,0), (19 k-1

- U G
=T K d1 =,
whereV, =V(z,m?,©) andV_=V(z,m?0). We have used e L4t
the fact thatG} (z,z'), as defined in Eq(10), is precisely (21)
G(z,z';M?,), while G (z,2')=G(z,z';?,0). In light of ’
the argument of the previous paragraph, the terms outside tw&he;ené?fZ (Zk__l)!:] ies is theref
integral cancel. The advantage of E@8) is that G} (z,2) The difference in the vacuum energies is therefore

—G3 (z,2) is finite, so that the final answer is also mani- i f

festly finite. We have confidence that no other finite renor- V+_V—:2
malization effects can slip in to the calculation, because the
only thing that changes between the andA , vacua is the 1k dAl _ (—1k 2t
boundary condition orb. = EJ 2 {Z(A—k)—kl_—d_—l H (A=1i)|,

As a warm-up let us first carry out the computation for e =1
AdS;. To get the value o653 (z,2)~ G} (z,2) for coinci- (22)
dent points one has to first express the Green’s functions in -
terms of the geodesic distaneeFrom Eq.(9) we see thatin Where in the second equality we have us@dl’=A(A
terms of the variable the geodesic separation is given by —d) and the fact that\ ge=d/2=k. Shifting the variable of
cosh@/L)=1/{, so we rewrite the propagat(t0) in terms of  integration by introducing a new variabe=A_—k, the
o and then expani{GL(z,z) —G3 (z,2)] in a power se- integrand can be written down in a terms of the Pochhammer

ries in powers ofs/L. The answer is finite and in the limit symbol @),=I'(a+n)/T'(n):
o/L—0, for AdS; we obtain the simple expression K 2k-1

2Bk 11 (Z—i>=—m—(_1)k 1 %-i?
nym L +1 i=1 nym L +li:0

rzsdﬁF[Gg+(z,z)—Gg_(z,z)]

Mg

k-1
i[G},(2.2)—G3 _(2.2)]=~i[Gi(z,2) ~ G4-}(2,2)]

_ <1—1>£ ‘2?3(5‘3)_ = m—wa—mﬁz)k(—Nv)k. (23
ar

(19)  The factor (- 1)* was nullified by an extra factor of{1)*
from the product. Assembling all of this, we finally have

The difference in the vacuum energies using ELp) is

1 0
therefore ViVo=g e J AT, (2

i (2
V+—V,=§JnloanZ[GL(z,z)—Gg_(z,z)] where we recall thah,=2%(2k—1)!! The lower limit of
Mgr integration v depends on the value & . Sincek=A_

<k—1, the range ofv is —1=<p=<0. The function ¢),

A (A-1)(a-2)(A-3) (—v) <0 for all k and —1<p=<0. So for any odd-

B 1jAd52A
“T2), F[AA

2 127°L3 dimensional anti—de Sitter spacetimes we have shown that
V,—-V_<0.
1 A_-2 . . . .
__ J (72— 1)] For even-dimensional spacetimes, an analytic proof_s_eems
127°L> Jo cumbersome, so we resorted to numerics. As an explicit ex-
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i(Gg-a - Ga) where from now on we shall denote the radial directiorxpy
- A or yo andx is a vector with components along tdegemain-
:‘rg 4.3 ing directions. The two linearly independent solutions to this

equation  are: ¢ =xze “ ¥ (kx) and ¢,

=x2e %I _ (kxo) wherev=Jm?LZ+d?/4. In the notation
of our previous sections, the Green’s function obeys the
equation

(O-m?)Ge(x,y;f)=8""1(x—y), (27)

where we remind ourselves that the delta function includes a
1/\/g in its definition. The right hand side is zero fag
#VYo, SO we have

FIG. 1.i(G4_a—G,) as a function ofp, for AdS;, AdSg, and

AdS;, (corresponding t@=5, 7, and 9, in units whereL=1. ALdi(X)+Asdo(X)  fOr Xo<Yo,
Ge(x,y)= (28)

ample, Fig. 1 shows a plot {G4_,—G,) as a function of B1¢1(X)+Baa(X) for Xo>Yo.
A for several even-dimensional anti—de Sitter spacetimes. |
each dimension, we have plotted the integrand of @&8)
for d/2—1<A<d/2. Since the integrand is always negative
on this range, we conclude thédt <V _ in accordance with
the c-theorem intuition. This is also true fat=3, and we
believe it is true generally.

the boundary behavior of the scalar we are interested in is
B(X0, %) =FBR)XIZ "+ B(X)xY?"¥. We choose ourg,

and ¢, so that they have the right boundary behavior and
also require that the Green’s function not diverge in the bulk
(large values of the radial coordinatg) for two noncoinci-
dent points. One convenient choice of and ¢, is

B. Vacuum energy throughout AdS

. . . 2~ ik-X 2\2"T(1+)
The results of the previous section were stated in terms of ¢1=Xgp € L (kxo) + 1| T(1=2) I,(kXo)
V., —V_=V(z;m?»)—V(z;m?0) (both terms were in fact
independent of the positianin AdS). Here we would like to and
investigateV(z;m?,f ) for finite f. This quantity diverges, but
V(z;m?,f)—V_ is finite. We will be able to verify the for- L
mulas Br=x3%e K XK (kXo), (29)
lim [V(z;m?%,f)—V_]=0, so that¢, satisfies the boundary condition for smejl and
200 ¢, is finite in the bulk. From the asymptotics of Bessel func-

tions, we see thap, diverges axy—> and ¢, diverges as
Xo— 0. This forces us to seA,=B;=0 in Eq. (28). The
remaining two constants are determined by integrating Eq.
(27) twice which gives us two conditiongi) the Green's

. . N . . . function is continuous aty=Yy, and(ii) its radial derivative
which we consider intuitively obvious sincd/R)0? is a . . S ) _ o
relevant operator in the CFT, and therefore unimportant j1as a jump discontinuity of 2" atxo=yo. This yields

the UV but important in the IR.
As a first step, one needs the Green’s function for the B b2(Yo) B $1(Yo)
scalar obeying mixed boundary conditions for all value$ of 1_W[¢1(y0),¢2(y0)]v BZ_W[¢1(Y0),¢z(yo)]'
(30)

lim [V(z;m%,f)-V_]=V,—V_, (25)

Zp— >

(not just the ones fof =0 andf=o that we wrote down
earliep. This would be needed to compute the vacuum en-
ergy contribution due to the bubble diagram. The one-loopvhere W[ ¢1(Yo), P2(Yo)] is the Wronskian. For our choice
corrected action would then induce corrections in the geomef ¢, and ¢, the Wronskian is

etry which can be computed from the Einstein equations. Let

us work in Euclidean AdS to get the Green's function W[ d1(Yo), d2(Yo) ]

Ge(x,y;f) which we shall Wick rotate to obtai®(x,y;f)

_ 2v d—1
in the Minkowski signature. We shall follow the canonical __FA-»+f2K)7T(1+v) L)
method of obtaining Green’s functions. In Poincaordi- I'(1-v) Yo/ '
nates the scalar wave equation is (31)

- . so combining Eqs(28), (30), and(31) we obtain the Green'’s
[X3(3%+ 95) —xo(d— 1) do—m?] (%0, X)=0, (26)  function
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dred? 1k 67iiz'(iig)(XOYO)d/zKu(kYO)

GE(X’y;f):_f (2m9  [1+(2K)ZFT(1+ »)/T(1—»)]Lo T (32

r(1+y)<2

2v
|—V(kXo)+fm E) I, (KXo)

for Xo<yo and a similar expression foi>y,. In the above equatiorng is the temporal component of momentum. Finally,
we Wick rotate this componemiz=ik to get the Green’s function in the Minkowski signature:

Ak e O (xoy0)dK  (kyp)

| N '1+v)
GOy )_j (2m)7 [1+ (M) P FT(L+»)/T(1=p)JLT?

{|,,(kx0)+f—

T . (33)

2 2v
E) I u(kXO)

The integral for general values §fd, andv is hard. Forf =0 andf =00 it can be evaluated and the result is an expression
which is related to Eq(10) by a quadratic hyper-geometric transformatj@s). A little bit more can be said about the radial
dependence of the one-loop vacuum energy. This latter quantity depends on the Green’s function for coincident points
G(x,x;f). We saw before that this divergent quantity was best handled by subtracti@(xut0). Theresult is then finite:

i[G(x,x;f )= G(x,x;0)]= ! f ki1 [K, (k)12 (34)

 28-2,020 d-1P ()T (1— 1) T(d/2) Jo K2, T

where T=22"[T'(1+v)/T'(1—v)]fx3" and k=kx,. Note to convertthisinto a change in the central charge of the dual

that the excess vacuum energy depends on the radial coordield theory. _ _
natex, in the particular combinatiofix3” . In [29], the central charge was obtained by holographi-

In order to make any further progress, one would need t&@lly computing the Weyl anomaly: on the field theory side,

first compute the momentum integral and then integrate over

v to obtain the vacuum energy. We argued earlier that 1

V(x;m3g, f)—V(x;m3:,0)=0 for all values off, so using 5W[g,w]=§J’ d*xvgw(T%) (36)
Egs.(18) and(34) we have

i upon a conformal variationgw—>e2“’gw, whereW is the
VOx;m? f ) = V(x;m?,0)= —j diP[G(x,x; ) generating functional for connected Green’s functions. At the
2 Jmge one-loop level, the prescription §2,3] asserts thatV is the
i vdi? classical supergravity action. The exact statement is that the
—G(x,x;0)]=— f —[G(x,x;f)—G(x,x;0)] partition functions of string theory and gauge theory coincide
2Jo L? (subjected to boundary conditions and source terms in the
_ usual way. In the calculation of29], the supergravity action
_ 1 f v a3 v integral is evaluated with a radial cutoff, where the choice of
14 . . . Crs
20-2592p(g/2)L9*t Jo - T(H)I(1-7) radius amounts to a choice of metric within a conformal
class. The supergravity Lagrangian evaluates to a constant in
f@o Kd-IF AdS, and the central charge is proportional to this constant.
X

2
Mo
2

T(~ — [KV(~k)]2, (35 All that we need to do in order to correct the central charge

k2 +1 computation at one loop is to ask by how much the one-loop-
corrected Lagrangian differs from the tree-level Lagrangian,

where we remind ourselves that=22"[I'(1+v)/['(1  when evaluated in AdS. The tree level and one-loop

—v)]fx5". The double integral is difficult to perform explic- Lagrangians will stand in the same ratio as the leading large

itly. However, it is not hard to show from Eq35) that N central charge and its M/corrected counterpart.

V(x;m?,f) decreases monotonically gcreases from 0 to The tree level Lagrangian is

o, To see this we note that the integrand dependsoonly

0

throughf and since the integrand is a monotonic function of 1 2d

< 2 ; . VO Yyee=—— (R—Ag)=— . (37)
f, clearlyV(x;m<,f) decreases monotonically with increas- 9 "Liree K§+1 0 K§+1L2

ing f.

IV. CONCLUSIONS %A priori, one might worry that boundary terms in the supergrav-

ity action also contribute to the central charge. That this does not
The upshot of Sec. Il A was an evaluation of the changenappen depends on the circumstance, notef®®, that the only
in the one-loop self-energy/ ; —V_, between the IR and log-divergent terms in the supergravity calculation arise from the
UV end points of a holographic RG flow. We would now like integral of the bulk action.
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The calculation indicated by the discussion in the previous APPENDIX

paragraph is In this appendix we shall sketch the derivation of Eg.

(17). Our starting point is the familiar field theory result that

Ccorrected: Lieet 6L (39) the one-loop effective potential is
Ctree Etree ,
i
o2 Fy— — _ 2
where 6£=—\/gV is the one-loop correction to the La- Vzm=T) 2tr log(—= B+ m"). (AL)

grangian that we computed in Sec. Illl. Because we are only

able to comput&/ up to an additive constant that is indepen-\ye shall denote the Klein-Gordon operator [+ m?) by
dent of boundary conditions, the only meaningful ratio thatR(mz,f) and as an operator, it is related to our definition of

e can form i A ~
W mis the Green's function(15) by G(m?,f)=—[K(m? )] ™.
The representations of operators suchGgs?,f) in an or-

C_+: Luee— \/§V+ —14 V-V, (39) thonormal basis will be denoted by the obvious notation
Co Lyes VOV- VO  Lee (z|G(m?,f)|2)=G(z,z";m?f). In terms of the Green's
function, the effective potential is then
so that
.
e 2.2 V(z;m?,f)= > [lm logl —G(z,z";m?f)]. (A2
— — _ 72/ —z
(V. V)< >d ) (40)

We shall use the Schwinger proper-time formalism to evalu-
To check ifc_ is indeed greater tham, , all that we have to  at€ this. One needs two simple operatorAreIations both of
show is thatV,<V_. But that is exactly what we saw which follow from the relation betweerG(m?f) and
above. K(m?,f):
As an example, in AdS we obtain from Eqs(22) and
(40) the result R v~
G(mz,f)=—iJ e 1sK(Mfgg,
2 3 5 0
Ci—C_ K5 (A_—=2)° (A_—-2)
c.  1927°L° 3 5

(41) A
o a—isK(m2,f)

|og[—é(m2,f)]:f ——————ids+y,

One can go further and translate the functiéfz;m?,f ) 0 'S

—V_ into a correction to the central charge whose scale

dependence is monotonic. It is not clear how well defined . ) . .

such a function can be on the supergravity side: because tif§'€ré v is Euler's constant. For the effective potential, we

bulk theory includes gravity, it has no local observables. Posee from Eq(A2) that we need Idg-G(n,f)] which differs

etically, we would like to relate this to the fact that renormal- by a factor ofis from the integral representation G{(m?f )

ization group effects in field theory are scheme dependent—-above.

but it is difficult to make this precise. To proceed any further we need the DeWitt-Schwinger
It would be interesting to see how the construction dis-representation of the Green’s functi¢the reader is referred

cussed in this paper might be realized as part of a compade [26], p. 75 for a derivation

tification of string theory to four dimensions, along the lines

of [30,31]. One of the most interesting questions in that con- M(z,z")

text is one that we glossed over here: before considering the G(z,z';m?,f)=—i @R

loop effects in supergravity, one generally expects a moduli (4mis)

space of vacua, and this statement probably translates into oc

field theory terms as the existence of a line of fixed points. XJ

Mapping the lifting of moduli into field theory terms might

(A3)

idse—im25+ n(z,z’)/ZisF(Z'Z/;iS),
0

at least gain us a restatement of the moduli problem in terms (A4)
of the existence of isolated fixed points of the renormaliza-
tion group. where 7(z,z") is one-half the proper distance between the

points z and z’, and M(z,z")= —det{d,d,7(z2')]. For our
purposes we shall just need to use the fact that the only place
where the mass appears is in the exponent and integrating
This work was supported in part by DOE grant DE-FG02-with respect tan® will bring down an extra factor ofs that
91ER40671. We thank E. Silverstein and E. Witten for usefulve need. So integrating both sides of EA44) between two
discussions. arbitrary massem? andma and using Eq(A3) we obtain
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m o, s . done here. Instead of integrating toward heavier masses, we
fmz dm—G(z,z";m%f)]=—log[ - G(z,z";m3,f )] integrate in the opposite direction down to the Breitenlohner-
L Freedman bound. Therefore, we 8&t=m3: andm3=m? in
+|og[_G(z,zf;m§,f )] Eqg. (A5) and use Eq(A2) to get
(A5) 2 P m* 5 2 2
V(zzm5,f)=Zlim |  di G(z,2";m,f)+V(z;mgg T ).
In the usual treatment one chooses one of the masses to be 22_,2/ Mgr
infinite, but as we explained in the main text, this cannot be (AB)
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