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Geodesics in spacetimes with expanding impulsive gravitational waves
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We study geodesic motion in expanding spherical impulsive gravitational waves propagating in a Minkowski
background. Employing the continuous form of the metric we find and examine a large family of geometrically
preferred geodesics. For the special class of axially symmetric spacetimes with the spherical impulse generated
by a snapping cosmic string we give a detailed physical interpretation of the motion of test particles.
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I. INTRODUCTION

In his classical work@1# Penrose constructed impulsiv
spherical gravitational waves in a Minkowski backgrou
using his vivid ‘‘cut and paste’’ method. It is based on cutti
the spacetime along a null cone and then reattaching the
pieces with a suitable warp. An explicit solution using co
dinates in which the metric is continuous was later on giv
by Nutku and Penrose@2# and Hogan@3,4#, but was only
recently related explicitly to the impulsive limit of Robinson
Trautman typeN solutions@5,6#. However, the latter has to
be considered as only formal since the metric tensor cont
terms proportional to the square of the Diracd, and the
transformation relating this coordinate system to the conti
ous one mentioned above is necessarily discontinuous. N
ertheless, this transformation is analogous to the one rela
the distributional and the continuous form of the metric te
sor for impulsive pp-waves ~plane-fronted gravitationa
waves with parallel rays@7#! which was also introduced in
@1# and has recently been analyzedrigorously @8,9# using
nonlinear theories of generalized functions~Colombeau alge-
bras! @10,11#. It is thus a natural open question whether
similar mathematically sound treatment can also be found
expanding spherical impulses. This indeed is one main
tivation for the present work in which we study the motion
test particles in spacetimes with spherical impulsive wav

On the other hand, this work is motivated by the ques
a physical interpretation of radiative Robinson-Trautm
spacetimes, one of the most interesting nonstatic exact s
tions of Einstein’s equations which admit a geodesic, sh
free and twist-free null congruence of diverging rays@7#.
This large family involves not only spacetimes of Petr
type N ~investigated in the impulsive limit in the prese
paper! but also type II solutions describing bodies whi
radiate away their asymmetries and approach a Schw
schild black hole, or theC-metric of typeD which represents
gravitational radiation generated by uniformly accelera
black holes. By studying these explicit exact solutions o
may acquire an intuition necessary for investigation of m
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general and realistic situations.
This work is organized as follows. In Sec. II we revie

the class of spacetimes under consideration and describ
geometry of the expanding impulses. By employing the c
tinuous form of the metric in Sec. III we find a large class
privileged and simple geodesics which can be related to
plicit geodesics in the distributional form of the metric ‘‘i
front’’ and ‘‘behind’’ the spherical impulse. This may allow
one to lay the foundations for a rigorous~distributional!
treatment of impulsive Robinson-Trautman solutions of ty
N as well as the transformation relating the latter to the c
tinuous form of the metric. Moreover, assuming the geo
sics to beC1 across the impulse~in the continuous system!
we completely solve the problem of geodesic motion
spacetimes with expanding impulsive gravitational waves
Sec. IV we focus on impulsive waves generated by a sn
ping cosmic string. This interesting solution of Einstein
equations was previously constructed by Gleiser and Pu
@12# and Nutku and Penrose@2# using the ‘‘cut and paste’’
method. An independent approach was used by Biˇák
@13,14# ~with recent generalizations in@15#! who obtained
the same spacetime by considering a null limit of particu
solutions with boost-rotational symmetry representing a p
of particles uniformly accelerating due to semi-infini
strings attached to them. We discuss in detail the phys
interpretation of the motion of test particles influenced
such an impulse.

II. EXPANDING IMPULSIVE WAVES IN A MINKOWSKI
BACKGROUND

As mentioned above, Penrose@1# has described a ‘‘cut
and paste’’ method for constructing expanding spheri
gravitational waves in a Minkowski background. The proc
dure can be performed explicitly as follows. One starts w
the Minkowski line element

ds0
252 dh dh̄22 dU dV52dt21dx21dy21dz2,

~2.1!

where the relation between the coordinates is given by
©2003 The American Physical Society13-1
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U5
1

A2
~ t1z!, V5

1

A2
~ t2z!, h5

1

A2
~x1 iy!.

~2.2!

We may now perform the transformation

V5
V

p
2eU,

U5
ZZ̄

p
V2U, ~2.3!

h5
Z

p
V,

where

p511eZZ̄, e521,0,11. ~2.4!

~The parametere is related to the Gaussian curvature of t
2-surfaces given byU5const, V5const, cf.@5#.! Using Eq.
~2.3!, the metric~2.1! takes the form

ds0
252

V2

p2
dZ dZ̄12 dUdV22e dU2. ~2.5!

On the other hand, we consider the alternative, more
volved transformation given by

V5AV2DU,

U5BV2EU, ~2.6!

h5CV2FU,

where

A5
1

puh8u
, B5

uhu2

puh8u
, C5

h

puh8u
,

D5
1

uh8u
H p

4 Uh9

h8
U2

1eF11
Z

2

h9

h8
1

Z̄

2

h̄9

h̄8
G J ,

E5
uhu2

uh8u
H p

4 Uh9

h8
22

h8

h U
2

1eF11
Z

2 S h9

h8
22

h8

h D
1

Z̄

2 S h̄9

h̄8
22

h̄8

h̄
D G J ,

F5
h

uh8u
H p

4 S h9

h8
22

h8

h D h̄9

h̄8
1eF11

Z

2 S h9

h8
22

h8

h D
1

Z̄

2

h̄9

h̄8
G J . ~2.7!
06401
-

Here h[h(Z) is an arbitrary function, and the derivativ
with respect to its argumentZ is denoted by a prime. With
this, the Minkowski metric~2.1! becomes

ds0
252UVp dZ1UpH̄ dZ̄U2

12 dU dV22e dU2, ~2.8!

whereH is the Schwarzian derivative ofh, i.e.,

H~Z!5
1

2 Fh-

h8
2

3

2 S h9

h8
D 2G . ~2.9!

In the coordinates used in Eq.~2.5!, as well as in the ones
used in Eq.~2.8!, the null hypersurfaceU50 represents a
null cone hh̄2UV50, i.e., an expanding spherex21y2

1z25t2 in the Minkowski background. Moreover, the re
duced 2-metrics on this cone are identical. Following t
Penrose ‘‘cut and paste’’ method, we attach the line elem
~2.5! for U,0 to the line element Eq.~2.8! for U.0. The
resulting metric takes the form

ds252UVp dZ1UQ~U !pH̄ dZ̄U2

12 dUdV22e dU2,

~2.10!

whereQ(U) is the Heaviside step function. This combine
metric, which was first presented in@2,4#, is explicitly con-
tinuous everywhere, including the null hypersurfaceU50.
However, the discontinuity in the derivatives of the met
acrossU50 yields an impulsive gravitational wave term
proportional to the Diracd function. More precisely, the only
non-vanishing component of the Weyl tensor in t
Newman-Penrose formalism@7,16# is C45(p2H/V)d(U),
which is the componentC4[Cabcdl

am̄bl cm̄d with respect to
the null tetrad k5]V , l52e]V2]U , m5p2(V2

2U2Qp4HH̄)21@(V/p)] Z̄2UQpH̄]Z#. The spacetime is
thus flat everywhere except on the wave surfaceU50. Also,
as shown in@17#, the only nonvanishing tetrad component
the Ricci tensor isF22[

1
2 Rabl

al b5(p4HH̄/V2)Ud(U).
This demonstrates that the spacetime is vacuum everyw
~except on the impulse atV50 and at possible singularitie
of the functionp2H).

For later use we also remark that the inverse relation
Eq. ~2.3! is given by

U5
hh̄

V 2U,

V5V, ~2.11!

Z5
h

V ,

whene50, and by
3-2
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U52eV2
2hh̄

~V2eU!7A~V2eU!214ehh̄
,

V52~V2eU!2
4ehh̄

~V2eU!7A~V2eU!214ehh̄
,

Z52
e

2h̄
@~V2eU!7A~V2eU!214ehh̄#, ~2.12!

for e5” 0.
We may define the functionsUinv , Vinv , and Zinv of

(U,V,Z,Z̄) as the composition of Eq.~2.11! @or Eqs.~2.12!
for e5” 0] with Eqs.~2.6!, ~2.7!, which transforms the metric
~2.8! to ~2.5!. Consequently, a discontinuous transformati

u5U1Q~U !@Uinv~U,V,Z,Z̄!2U#,

w5V1Q~U !@Vinv~U,V,Z,Z̄!2V#,
~2.13!

j5Z1Q~U !@Zinv~U,V,Z,Z̄!2Z#,

relates Eq.~2.10! for all U5” 0 to Minkowski spacetime in
the form

ds0
252

w2

c2
dj dj̄12dudw22e du2, ~2.14!

wherec511ejj̄. Interestingly, by considering the transfo
mation~2.13! of the metric~2.10! for arbitraryU, i.e., keep-
ing also the distributional terms, one~formally! obtains the
metric

ds252
w2

c2
udj2 f d~u!duu212dudw22e du2

1wF ~ f j1 f̄ j̄ !2
2e

c
~ f j̄1 f̄ j!Gd~u!du2, ~2.15!

in which f (j) is related toh(Z) through the identification
f [Zinv2Z evaluated onU50. Although this form of the
metric is only formal since it contains the square of the de
function, it explicitly shows that expanding impulsive grav
tational waves~2.10! arise as the impulsive limits of th
Robinson-Trautman typeN spacetimes, expressed in the c
ordinates introduced in@18# ~see@5,19# for the details!.

Let us now conclude this review section by a brief d
scription of the geometry of the above expanding impuls
waves localized along the wave surfacesU50, i.e., u50.
This will also elucidate the meaning of the parametere.

From the Robinson-Trautman form of the metric~2.15! it
is obvious that the impulse splits the spacetime into two
regions,u.0 andu,0. In the following we shall call the
Minkowski half-spaceu.0 as being ‘‘in front of the wave,’’
and the other Minkowski half-spaceu,0 ~note thatu[U
06401
a

-

-
e
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for U,0) as being ‘‘behind the wave.’’ The ‘‘background
metric on both sides of the impulse is given by Eq.~2.14!.
For arbitrary u5” 0, this metric can be put into explici
Minkowski form ~2.1! by the transformations~2.2! and
~2.11! @or ~2.12!# and the~trivial! identification u5U, w
5V, j5Z. Using these relations, we can easily analyze
geometry of the null hypersurfacesu5u05const in
Minkowski coordinates, which are geometrically privilege
and thus allow for a clear physical interpretation.

We start with the subclass of solutions for whiche50.
Substituting Eq.~2.2! into Eq. ~2.11! and settingU5u0, we
get the relation

x21y21S z1
1

A2
u0D 2

5S t1
1

A2
u0D 2

~2.16!

~if t5” z, i.e., for x5” 0, y5” 0). For various values ofu0 this
represents a family ofnull cones with vertices at
„2(1/A2)u0 ,0,0,2(1/A2)u0… localized along a singular nul
line t5z, x50,y50. Also,V5w05const is a set of paralle
hyperplanest5z1A2w0 in the Minkowski background.
This reveals the geometrical meaning of the coordinatesu,w
used in the metric~2.14! with e50. Note thatw50 repre-
sents a physical singularity in the Robinson-Trautman spa
times@20# which can be interpreted as the source of the wa
surfacesu5u0. At any time t, these surfaces are spheres
the radiusR5ut1(1/A2)u0u. In particular, the impulse local
ized on u50 is a null cone with the vertex in the origi
which, at any time, is a sphere of radiusR5Ax21y21z2

5utu.
Analogous results can similarly be obtained for the

maining two subclassese561. In this case, using Eqs.~2.2!
and ~2.12!, the hypersurfacesu05const are given by

x21y21z25~ t1A2u0!2, ~2.17!

for e511 and

x21y21~z1A2u0!25t2, ~2.18!

for e521, respectively. Again, these are families of nu
cones in Minkowski space with vertices shifted in thet di-
rection for e511, and in thez direction for e521. Note
that these vertices form a singular timelike linex50
5y, z50 if e511, and a spacelike linex505y, t50 if
e521. These lines are given byh50, V2eU50, and cor-
respond to the physical singularity of the Robinson-Trautm
spacetime atw50.

It is obvious that for the above spacetimes with asingle
expanding impulsive wave localized atu5u050, i.e., atU
50, the null cones of the three classes of wave surfa
given by Eqs.~2.16!, ~2.17!, and~2.18! coincide. In fact, in
the impulsive limit the three~generically different! sub-
classese50,11,21 of the Robinson-Trautman class of s
lutions arelocally equivalent@5#.

It can also be observed that fore50 the physical singu-
larity at V50 is asingular null lineon the wavefront surface
U50. For a physical interpretation, it would be better
remove this singularity from the spacetime. This can
3-3



,

i-

o
o
to

-

e

ac

nd

se
fo

ski
ght

-

i-

the

cs

f
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achieved by considering solutions withe5” 0: In these cases
the singularity atV50 appearsonly at the vertex ofthe null
cone,x5y5z5t50, which may be considered as the ‘‘or
gin’’ of the spherical wave.

III. GEODESIC MOTION IN SPACETIMES
WITH EXPANDING IMPULSIVE WAVES

The purpose of this paper is to investigate the effect
expanding impulsive waves of Robinson-Trautman type
the motion of freely moving test particles. It is natural
start with geodesics in~local, see below! Minkowski space
U.0 in front of the wave, i.e., ‘‘outside’’ the null coneU
50 corresponding tox21y21z25t2. ~Note that att50 the
spherical impulse is just ‘‘created’’ at the origin.! Obviously,
general geodesics are given by

t15gt,

x15 ẋ0~t2t i !1x0 ,
~3.1!

y15 ẏ0~t2t i !1y0 ,

z15 ż0~t2t i !1z0 ,

with g5Aẋ0
21 ẏ0

21 ż0
22e, i.e., t is a normalized affine pa

rameter of timelike (e521) or spacelike (e511) geode-
sics. For null geodesics (e50) it is always possible to scal
the factorg to unity. The constantsx0 ,y0 ,z0 and ẋ0 ,ẏ0 ,ż0
characterize the position and velocity, respectively, of e
test particle at the instant

t i5Ax0
21y0

21z0
2/g, ~3.2!

when the geodesic intersects the null cone. Att i each par-
ticle is hit by the impulse and its trajectory is refracted a
~possibly! shifted. The geodesics~3.1! in front of the impulse
can also be written as

V 15V̇0
1~t2t i !1V 0

1 ,

U 15U̇0
1~t2t i !1U 0

1 , ~3.3!

h15ḣ0
1~t2t i !1h0

1 ,

where

V̇0
15

1

A2
~g2 ż0!, V 0

15
1

A2
~gt i2z0!,

U̇0
15

1

A2
~g1 ż0!, U 0

15
1

A2
~gt i1z0!, ~3.4!

ḣ0
15

1

A2
~ ẋ01 iẏ0!, h0

15
1

A2
~x01 iy0!.

Now, we wish to investigate the influence of the impul
on the geodesics, and to determine explicitly formulas
06401
f
n

h

r

corresponding ‘‘refraction’’ and ‘‘shift.’’ In the regionU,0
behind the impulse the particles again move in Minkow
space~2.1! so that the trajectories also have to be strai
lines of the form

V 25V̇0
2~t2t i !1V 0

2 ,

U 25U̇0
2~t2t i !1U 0

2 , ~3.5!

h25ḣ0
2~t2t i !1h0

2 .

It remains to express the constants appearing in Eqs.~3.5! in
terms of the initial data introduced in Eqs.~3.1!, and the
structural functionh(Z), which characterizes specific ex
panding impulsive waves.

The key idea is toemploy the continuous formof the
solution~2.10!. It can easily be observed that in this coord
nate system the Christoffel symbolsGUU

m , GUV
m , and GVV

m

vanish identically. Therefore, the geodesic equationsalways
admit privileged global solutionsof the form

Z5Z05const,

U5U̇0~t2t i !, ~3.6!

V5V̇0~t2t i !1V0 .

Here we have setU050, so that each geodesic reaches
impulse localized atU50 at parameter timet5t i .

Using Eqs.~2.6!, it is possible to express the geodesi
~3.6! in front of the impulse in the Minkowski form~3.3!
where the coefficients~3.4! are

V̇0
15AV̇02DU̇0 , V 0

15AV0 ,

U̇0
15BV̇02EU̇0 , U 0

15BV0 , ~3.7!

ḣ0
15CV̇02FU̇0 , h0

15CV0 .

The constantsA, B, C, D, E, andF are given by the values o
the functions~2.7! at Z5Z0. The relations~3.4! and ~3.7!
enable us to relate the parametersZ0 , U̇0 , V̇0, andV0 to the
natural initial data introduced in Eqs.~3.1! by

x05A2V0 Re C,

y05A2V0 Im C,

z05
1

A2
V0~B2A!,

~3.8!
ẋ05A2@V̇0 Re C2U̇0 ReF#,

ẏ05A2@V̇0 Im C2U̇0 Im F#,

ż05
1

A2
@V̇0~B2A!2U̇0~E2D !#.
3-4
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The three position parametersx0 ,y0 ,z0 are thus related to
the three independent constantsZ0 ,Z̄0 ,V0. The normaliza-
tion condition implies the constraint (V̇02eU̇0)U̇05 1

2 e

~which can be obtained using the identitiesAB2CC̄50,
DE2FF̄5e, and AE1BD2CF̄2C̄F51) on the param-
etersV̇0 andU̇0. However, in general it is possible to set
least one of the velocitiesẋ0 , ẏ0, or ż0 to zero by a suitable
choice ofU̇0.

Finally, we transform the geodesics~3.6! behind the im-
pulse using Eqs. ~2.3!, which gives the uniform
Minkowskian motion~3.5! with the coefficients

V̇0
25

V̇0

p
2eU̇0 , V 0

25
V0

p
,

U̇0
25

Z0Z̄0

p
V̇02U̇0 , U 0

25
Z0Z̄0

p
V0 , ~3.9!

ḣ0
25

Z0

p
V̇0 , h0

25
Z0

p
V0 .

Substituting forZ0 , V0 , V̇0, andU̇0 from the inverse of the
relations~3.8!, we obtain an explicit result which can be us
for discussion of the effect of expanding impulsive waves
the privileged family of geodesics~3.6!.

However, it should be emphasized that in the above c
struction we started with the initial data~3.1! outside the
impulse in the regionU.0, which is a Minkowski space
only locally. Because of the complicated form of the gen
ating complex functionh, there are topological defects suc
as cosmic strings~corresponding to the presence of defi
angles! outside the null cone, see, e.g.,@17# for more details.
Therefore, for better physical interpretation it may be use
to set the initial data for the geodesics in the regionU,0
inside the cone, which is considered to be a ‘‘complet
Minkowski space without topological defects. Evolvin
these data,

t25gt,

x25 ẋ0~t2t i !1x0 ,
~3.10!

y25 ẏ0~t2t i !1y0 ,

z25 ż0~t2t i !1z0 ,

‘‘backward’’ in time ~i.e., for decreasing affine parametert),
it is possible to prolong the geodesics across the sphe
impulse to the ‘‘incomplete’’ Minkowski regionU.0 with
cosmic strings outside the impulse.

In this case, theexplicit geodesics outsidethe impulse
have the form~3.3!, ~3.7!, in which the constantsZ0 , V0 ,
V̇0, andU̇0 have to be expressed in terms of the data~3.10!.
Using ~2.11! for e50, and Eqs.~2.12! for e5” 0 we obtain
06401
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Z05
x01 iy0

gt i2z0
,

V05
1

A2
@~11e!gt i2~12e!z0#,

~3.11!

V̇05
1

A2
@~12e!g2~11e!ż0#

~11e!gt i2~12e!z0

~12e!gt i2~11e!z0
,

U̇05
A2g~z02t i ż0!

~12e!gt i2~11e!z0
,

with the constraint

@~12e!gt i2~11e!z0!] ~ ẋ01 iẏ0!

5@~12e!g2~11e!ż0#~x01 iy0!. ~3.12!

In Eq. ~3.11! we assumed that (12e)gt i5” (11e)z0. The
case (12e)gt i5(11e)z0 requires x05y05z050. Such
geodesics reach the singular vertexx5y5z50 of the im-
pulsive null cone att5t50, and it is thus unphysical to
investigate their continuation acrossU50. On the other
hand, if (12e)g5(11e) ż0 then ẋ05 ẏ050, and V̇050.
These geodesics arenull for e50 ~with U̇052A2ż0), time-

like for e51 ~with g51, ż050, U̇0521/A2), andspace-
like for e521.

Note that the relations~3.11! simplify for each particular
choice of the parametere. In particular, in the casee50 we
obtain

Z05
x01 iy0

gt i2z0
, V05

1

A2
~gt i2z0!,

~3.13!

V̇05
1

A2
~g2 ż0!, U̇05

1

A2

e

g2 ż0

.

Let us finally recall that the above class of geodesics
privileged and very special sinceZ5Z05const „cf. ~3.6!….
However, it is possible to findgeneralgeodesicsassuming
them to be C1 across the impulsein the continuous coordi-
nate system~2.10!. With this assumption, the constants

Zi[Z~t i !, Vi[V~t i !, Ui[U~t i !50,
~3.14!

Żi[Ż~t i !, V̇i[V̇~t i !, U̇ i[U̇~t i !,

describing positions and velocities att i , the instant of inter-
action with the impulsive wave, have thesamevalues when
evaluated in the limitsU→0 both from the region in front
(U.0) and behind the impulse (U,0). Starting now with
the general initial data~3.10! in the regionU,0, in which
Eqs.~2.11!, ~2.12! apply, it is straightforward to derive
3-5
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Zi5
x01 iy0

gt i2z0
,

Vi5
1

A2
@~11e!gt i2~12e!z0#,

Żi5
ẋ01 iẏ0

gt i2z0
2

x01 iy0

~gt i2z0!2

3
@~12e!g2~11e!ż0#~gt i2z0!12e~x0ẋ01y0ẏ0!

~11e!gt i2~12e!z0
,

~3.15!

V̇i5
1

A2
H @~12e!g2~11e!ż0#@~12e!gt i2~11e!z0#

14e~x0ẋ01y0ẏ0!J @~11e!gt i2~12e!z0#21,

U̇ i5A2
x0ẋ01y0ẏ01z0ż02g2t i

~11e!gt i2~12e!z0
.

Then, using Eqs.~2.6! the geodesics outside the impulse
the ~local! Minkowski spaceU.0 are given by the expres
sions~3.3! with

V 0
15AVi ,

U 0
15BVi ,

h0
15CVi ,

~3.16!
V̇0

15AV̇i2DU̇i1~A,ZŻi1A,Z̄Ż̄i !Vi ,

U̇0
15BV̇i2EU̇i1~B,ZŻi1B,Z̄Ż̄i !Vi ,

ḣ0
15CV̇i2FU̇i1~C,ZŻi1C,Z̄Ż̄i !Vi ,

in which the coefficients and their derivatives are given
the functions~2.7!, evaluated atZi .

Of course, with the constraint~3.12! we obtain Żi

50, Zi5Z0 , Vi5V0 , V̇i5V̇0 , U̇ i5U̇0, and the above
geodesics reduce to the privileged family presented in
~3.11!.

IV. GEODESICS IN SPACETIMES WITH A SNAPPING
COSMIC STRING

In this section we apply the above general results to
interesting particular class of spacetimes in which the
panding spherical impulsive wave is generated by a snap
cosmic string~identified outside the impulse by a defic
angle!. This solution was previously introduced and d
cussed in a number of works@2,12,13,15#. It can be written
as the metric~2.10! with

H~Z!5

1
2 d~ 12 1

2 d!
Z2

, ~4.1!
06401
y

q.

n
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ng

which is generated by Eq.~2.9! with h(Z)5Z12d. Hered is
a real positive constant,d,1, which characterizes the defic
angle 2pd of the snapped string localized outside the im
pulse along the axish50 ~see, e.g.,@2,17#!. It is straightfor-
ward to calculate the coefficients~2.7! and their derivatives
for such a functionh, i.e.,

A5
uZud

~12d!p
, B5

uZu22d

~12d!p
, C5

Z12duZud

~12d!p
,

D5
uZud22

12d
@~ 1

2 d!21~12 1
2 d!2euZu2#,

E5
uZu2d

12d
@~12 1

2 d!21~ 1
2 d!2euZu2#,

F5
Z12d uZud22 1

2 d~12 1
2 d!p

12d
,

~4.2!

A,Z5
uZud @ 1

2 d2~12 1
2 d!euZu2#

~12d!p2Z
,

B,Z5
uZu22d @~12 1

2 d!2 1
2 deuZu2#

~12d!p2Z
,

C,Z5S Z̄

Z
D d/2

~12 1
2 d!2 1

2 deuZu2

~12d!p2
,

C,Z̄5S Z̄

Z
D d/221 1

2 d2~12 1
2 d!euZu2

~12d!p2
.

A. Privileged geodesics withZÄZ0

We first consider the family of geometrically preferre
geodesics~3.6! for which Z5Z05const. It is convenient to
use the global axial symmetry of the solution~2.10!, ~4.1!
corresponding to a coordinate freedomZ→Z exp(if), where
f is a constant. Therefore, without loss of generality we c
assumeZ0 to be areal positive constant, in which case th
coefficients~4.2! reduce to

A5
Z0

d

~12d!p
, B5

Z0
22d

~12d!p
, C5

Z0

~12d!p
,

D5
Z0

d22

12d F S 1

2
d D 2

1S 12
1

2
d D 2

eZ0
2G ,

E5
Z0

2d

12d F S 12
1

2
d D 2

1S 1

2
d D 2

eZ0
2G , ~4.3!

F5

1
2 d~12 1

2 d!p

~12d!Z0
,

3-6
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wherep511eZ0
2. Substituting Eqs.~4.3! into Eqs.~3.8!, we

obtain the relations between the parametersZ0 , U̇0 , V̇0, and
V0, characterizing the family of geodesics~3.6! and the ini-
tial dataoutsidethe spherical impulse„cf. Eqs.~3.1!…. Obvi-
ously, these geodesics all havey1[0, sinceẏ0505y0 due
to vanishing imaginary parts ofC andF. The remaining re-
lations ~3.8! yield

Z0
12d 5

z0

x0
1A11

z0
2

x0
2
,

U̇05A2
z0ẋ02x0ż0

~E2D !x022Fz0
,

~4.4!
Z0

p
V05

1

A2
~12d!x0 ,

Z0

p
V̇05

1

A2
~12d!x0

~E2D !ẋ022Fż0

~E2D !x022Fz0
.

~Note that ‘‘initially static’’ observersẋ0505 ż0 are ex-
cluded from the family~3.6! as this would giveU̇050
5V̇0, i.e., the geodesic is constant.! Finally, substituting Eqs.
~4.4! into Eqs.~3.9! we obtain

x0
25~12d!x0 ,

y0
250,

z0
25 1

2 ~12d!x0~Z02Z0
21!,

t0
25 1

2 ~12d!x0~Z01Z0
21!,

~4.5!

ẋ0
25~12d!x0

~E2D !ẋ022Fż0

~E2D !x022Fz0
,

FIG. 1. The anglea identifies the point where the particle in
teracts with the impulse~indicated by a circle! generated by a
snapped string localized on thez axis. The angleb characterizes the
inclination of its trajectory. The superscripts ‘‘1’’ and ‘‘–’’ corre-
spond to the respective values in the~local! Minkowskian coordi-
nate system outside (U.0) and the~different! Minkowskian sys-
tem inside (U,0) the impulse.
06401
ẏ0
250,

ż0
25

z0
2@~E2D !ẋ022Fż0#2~12e!~z0ẋ02x0ż0!

~E2D !x022Fz0
,

ṫ0
25

t0
2@~E2D !ẋ022Fż0#2~11e!~z0ẋ02x0ż0!

~E2D !x022Fz0
,

where the coefficientsE2D andF are

~12d!~E2D !5~12 1
2 d!2~Z0

2d2eZ0
d!

2~ 1
2 d!2~Z0

d222eZ0
22d!,

~4.6!
~12d!2F5d~12 1

2 d!~Z0
211eZ0!,

andZ0 is given by Eqs.~4.4!.
The above relations explicitly express the effect of

expanding impulsive wave generated by a snapping cos
string on geodesics~3.1! of the privileged family~3.6!. These
start outside the impulse (U.0) with the initial data enter-
ing the right-hand side of Eqs.~4.5!, and continue inside the
spherical impulse in the Minkowski space without the stri
(U,0), where the positions and velocities att5t i are now
given by the left-hand side of Eqs.~4.5!. Ford50 we obtain
E2D512e, F50, Z02Z0

2152z0 /x0 , Z01Z0
21

52gt i /x0, so that x25x1, y2505y1, z25z1, t0
2

5gt i , and ṫ0
25g „to derive the last relation we have use

the constraint~3.12!…. Obviously, these areglobal geodesics
in completeMinkowski space without the strings and th
impulse.

Let us now investigate in some more detail the effect
the spherical gravitational impulse on free test particles.
describe the ‘‘refraction’’ and the ‘‘shift’’ of geodesic trajec
tories it is convenient to introduce anglesa and b, whose
geometrical meaning is indicated in Fig. 1. Recall that for
special family of geodesics~3.6! we havey2505y1, so
that the motion is confinded to thx,z plane which contains
the string~located along thez axis!. Hencea andb represent
thepositionof the particle at the instantt i of interaction with
the impulse and the direction of itsvelocity ~inclination of
the trajectory! in the (x,z)-plane, respectively.

In the regionU.0 outside the impulsive wave these p
rameters are defined as

cota15z0 /x0 , cotb15 ż0 / ẋ0 . ~4.7!

Similarly, behind the impulse in the regionU,0 we have

cota25z0
2/x0

2 , cotb25 ż0
2/ ẋ0

2 . ~4.8!

Straightforward calculations using Eqs.~4.4! give

Z0
12d5cot~ 1

2 a1!, ~4.9!

which implies the relation1
2 (Z0

12d2Z0
d21)5cota1. From

Eqs.~4.5! and ~4.9! we immediately obtain
3-7
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cota25 1
2 ~Z02Z0

21!5 1
2 @cotq~ 1

2 a1!2cot2q~ 1
2 a1!#,

~4.10!

where q51/(12d). This expression gives the relatio
a2(a1) which identifies the pointson both sides of the im-
pulse in the natural Minkowskian coordinate systems.

Analogously we derive the following relation for the ve
locities:

cotb22cota25N~cotb12cota1!, ~4.11!

where

N5N~a1,b1!5
12e

~12d!~E2D !2~12d!2F cotb1
.

~4.12!

This is the refraction formula for trajectories of free tes
particles which cross the spherical impulse.

Notice that the above considerations also apply to geo
sics propagating in the privileged directionsb150 andb1

5p/2. For geodesicsparallel to the string, i.e., in the case
b150 ~implying ẋ050) the right-hand side of Eq.~4.11!
has to be replaced by the simple expression (e21)/@(1
2d)2F#. For trajectories withb15p/2, which areperpen-

dicular to the string (ż050), the right-hand side simplifie
to @(e21)cota1#/@(12d)(E2D)#.

Several interesting observations can immediately be do
For d50 representing a complete Minkowski space witho
the impulse and topological defects, one obtainsa2

5a1, N51, and consequentlyb25b1. There is thus no
‘‘shift’’ and ‘‘refraction,’’ as expected.

For a generald, it follows from Eq. ~4.11! that if a1

5b1 then a25b2. This means physically that theradial
geodesics~‘‘perpendicular’’ to the spherical impulse! remain
radial also behind the impulse.

Moreover, it can be observed from Eq.~4.12! that the
coefficient N identically vanishes for spacetimeswith the
parametere511. Consequently,a25b2, which means
that the geodesics~3.6! are refracted by the impulse in suc
a way that theirtrajectories become radial. These are thus
either exactly focused towards the originx505z, or defo-
cused directly from it.

The typical behavior of geodesics affected by the imp
sive gravitational wave@Eqs. ~2.10!, ~4.1!# as described by
the refraction formula~4.11!, is shown in Fig. 2 for various
choices ofa1, b1, ande. Each test particle follows in the
regionU.0 a trajectory with the inclination angleb1 until
it reaches the spherical impulse at the point represente
a1. The impulse influences the particle in such a way tha
emerges in the regionU,0 at the point given bya2 and
continues to move uniformly along the straight trajecto
with inclination b2. Note that the lines in Fig. 2 represe
just the inclination of the geodesic trajectories, not the sp
and orientation of the motion—these will be investgated la
on.

From Fig. 2 it becomes obvious that the dependence
b2 on the dataa1, b1, and the parametere is rather deli-
06401
e-

e.
t

-

by
it

d
r

of

cate. To shed some light on the details of this dependence
introduce two special ‘‘incoming’’ inclination angles, de
noted byb i

1(a1) andb'
1(a1), that are defined by the prop

erty that the corresponding geodesicbehind the impulse is
parallel (b250) andperpendicular(b256p/2), respec-
tively, to the strings localized along thez axis. It follows
immediately from Eq.~4.11! that

cotb i
15

E2D

2F
,

~4.13!

cotb'
15

~12e!cota12~12d!~E2D !cota2

~12e!2~12d!2F cota2
,

where the functionsD,E,F are given by Eq.~4.6!, Z0 by Eq.
~4.9!, anda2 by Eq. ~4.10!. The functions~4.13! are drawn
in Fig. 3 for the three types of spacetimes given bye50,
21,11, and for a ‘‘typical’’ value of the deficit-angle pa
rameterd50.3. Bothb i

1 and b'
1 vanish ata150. For e

50 the functionsb i
1(a1),a1,b'

1(a1) monotonically
increase to the values cotbi

15(12d)/@d(121
2d)#, b'

15p/2 at
a15p/2. Fore521 the relation isb i

1.b'
1.a1, and the

corresponding values ata15p/2 areb i
15p, b'

15p/2. In
the casee51 these two functionscoincidefor all values of
a1, which directly follows from Eqs.~4.13!. The functions
grow to a maximum value and then decrease tob i

15b'
1

5p/2 ata15p/2. The graphs presented in Fig. 3 provide
qualitative picture of the character of the trajectories depe
ing on the choice of the initial anglesa1, b1. Trajectories
close tob i

1(a1) become ‘‘nearly horizontal’’ behind the im
pulse, whereas those close tob'

1(a1) become ‘‘nearly ver-

tical.’’ Since for b i
1 we haveẋ0

250 whereasb'
1 implies

FIG. 2. Typical behavior of geodesic trajectories, which are
fracted and shifted by the expanding spherical impulse, for vari
values ofa1, b1 and the parametere. Hered50.3.
3-8
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ż0
250, it follows that the particles actuallystopbehind the

impulse if we chooseb15b i
1(5b'

1) for a givena1 in the
impulsive spacetime withe511.

Note, however, that the refraction formula~4.11!, while
relating theinclination of the trajectories behind the wave
its initial values, does not provide any information on t
specificspeedandorientationof the motion. Of course, the
velocity is proportional to the parametersẋ0 ,ẏ0 ,ż0, which
are the derivatives of space coordinates with respect to
affine parametert, see Eqs.~3.1!. However, for physical
interpretation of the motion we need thevelocity with respect
to the Minkowski frame behind the impulse, which is given
by

~vx
2 ,vy

2 ,vz
2!5S ẋ0

2

ṫ0
2

,
ẏ0

2

ṫ0
2

,
ż0

2

ṫ0
2 D . ~4.14!

From Eqs.~4.5! using Eqs.~4.7! we obtain

vx
25

G
1
2 ~Z01Z0

21!G2~11e!~cota12cotb1!
,

~4.15!

vz
25

1
2 ~Z02Z0

21! G2~12e!~cota12cotb1!

1
2 ~Z01Z0

21!G2~11e!~cota12cotb1!
,

and vy
250, where G5(12d)@(E2D)22F cotb1#. The

above expressions determine the velocity of the particle~in-
cluding its orientation! in the region behind the impulse as
function of the initial parametersa1,b1: The particle moves
from the point a2(a1) in the refracted direction
b2(a1,b1) given by Eqs.~4.10!,~4.11! in terms of the pa-
rametersa1, b1 and its velocity is given by Eqs.~4.15!.

Each geodesic belonging to the family~3.6! following the
trajectory determined bya1,b1 has a specific causal cha
acter. If the magnitude of the velocity is such thatv2

[A(vx
2)21(vz

2)2,1, the geodesic istimelike (e521).

FIG. 3. Plots ofb i
1 , b'

1 , andbnull
1 , introduced in the text, as

functions of the anglea1 ~againd50.3). The causal character o
the geodesics with specific initial data is indicated by the shadin
the respective regions: gray and white correspond to timelike
spacelike geodesics, respectively.
06401
he

Whenv251 it is null (e50), and forv2.1 it is spacelike
(e511). Moreover, we can express the condition for t
null geodesics explicitly. Substituting from~4.15! we obtain
a quadratic equation for cotb1 which can be solved. In the
rangea1P(0,p/2# there are always two real roots, name

~1! bnull
1 5a1,

~2! cotbnull
1 5

e cota12 1
2 ~Z0

211eZ0!~12d!~E2D !

e2 1
2 ~Z0

211eZ0!~12d!2F
.

~4.16!

The first equation in~4.16! implies thatall geodesics of the
family ~3.6! which move radially ‘‘outside’’ the impulse are

null. In fact, it follows from Eqs.~4.4! and ~4.7! that U̇0
50, i.e., U[0. These are exactly those null geodes
which generate the spherical impulse itself. Nontrivial null
geodesics which cross the impulsive wave are thus given
the second root in Eqs.~4.16!. Figure 3 shows the function
bnull

1 (a1) for the three spacetimes characterized bye50,
e521, ande511, respectively.

For e50 it follows immediately from Eqs.~4.16! and
~4.13! that bnull

1 5b i
1 . Therefore, thesenull geodesics are

refracted to rays which areparallel to the strings behind the
impulse (vx

250,vz
251). All geodesics with trajectories

given bya1, b1 such thatb i
1,b1,a1 aretimelikewith

vx
2.0,vz

2.0. All other geodesics are spacelike.
In the casee521 it can be shown that the nontrivial roo

bnull
1 in Eqs. ~4.16! satisfies the relationb i

1.bnull
1 .b'

1

.a1, as shown in Fig. 3. Again, in the regionb1

P„a1,bnull
1 (a1)… all the geodesics are timelike withvx

2

.0. At b'
1 the velocityvz

2 changes sign: forb1,b'
1 we

havevz
2.0, and forb1.b'

1 we obtainvz
2,0.

Finally, the most interesting case ise511. In this case
the graph shown in Fig. 3 is even more delicate. For a p

ticular value ac
1 given by the condition cot(1

2ac
1)5(D

1AD221)12d, where D2252d(12 1
2 d), the denominator

on the right-hand side of Eqs.~4.16! vanishes. Therefore, th
value of bnull

1 jumps at ac
1 from bnull

1 (ac2
1 )5p to

bnull
1 (ac1

1 )50. ~Note thatac
1 monotonically increases from

0 to p/2 as the string parameterd grows from the value 0 to
1.! Consequently, there aretwo disconnected regions o
timelike geodesics. In the ‘‘upper’’ region (a1,b1

,bnull
1 ) lies the line b i

15b'
1 : particles moving along

timelike geodesics with the ‘‘incoming position’’a1

and a suitable ‘‘inclination’’b15b i
1(a1)5b'

1(a1) will
exactly stopat the pointx0

2 , z0
2 in the region behind the

impulse (vx
2505vz

2), see Eqs.~4.15!. Particles below this
boundary (b1,b i

15b'
1) move radially outwardsincevx

2

.0,vz
2.0. On the other hand, timelike particles withb1

.b i
15b'

1 for a givena1 havevx
2,0,vz

2,0 so that these
radially approach the origin. Thus there is anexact focusing
effect of the impulseon these timelike geodesics. The same
true for all timelike geodesics in the ‘‘lower region’’ corre
sponding to initial valuesa1 close top/2 and smallb1

~see Fig. 3!. The time t f
252x0(cota12cotb1)/(E2D

of
d

3-9
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metric ~2.10!. Nevertheless, in Eqs.~3.14!–~3.16! we pre-
sented anexplicit form of general geodesicswhich was de-
rived under the assumption that these areC1 in the continu-
ous coordinate system~2.10!.

As an interesting particular example, which can be inves-
tigated using these expressions, let us now consider geode-
sics in thez50 plane only. This is the plane of symmetry
perpendicular to the strings. We assume thatz0505 ż0 in
the regionU,0 behind the wave. With this, the relations
~3.15! simplify to

-
.,

a
tio

J. PODOLSKÝAND R. STEINBAUER PHYSICAL REVIEW D67, 064013 ~2003!
22F cotb1), when each individual particle in the spacetim
e511 reaches the origin, depends on the particular ini
data. These geodesics are explicitly drawn in Fig. 4 w
arrows indicating the precise value of the particle veloc
behind the impulsive wave. Double arrows correspond
tachyons moving along spacelike geodesics. Notice that
large values ofb1 and smalla1 some of the incoming tra
jectories ~dashed lines! are drawn inside the circle whic
indicates the impulse. However, this is not a contradiction
the figure represents just a snapshot at a given time. In
the corresponding timelike particles move in the outer reg
U.0 until they are hit by the expanding impulse~which at
previous instants of time is a smaller circle!. The tachyons
move ‘‘acausally’’ and thus their motion is neither intuitiv
nor represents the motion of a test particle; this case is
cluded for the sake of completeness.

All the above results can equivalently be obtained also
the ‘‘inverse approach,’’ i.e., starting with the initial da
~3.10! behind the impulse~in the regionU,0) and evolving
these ‘‘backward’’ in time intoU.0. The solution is given
by Eqs.~3.11! which has to be substituted into Eqs.~3.7!. Let
us demonstrate this method by considering a simple yet
portant particular example. Consider a geodesic motion
timelikeparticles which areat rest behindthe impulse gen-
erated by a snapping cosmic string,ẋ05 ẏ05 ż050 ~so that
g51). In other words, we investigate the motion of tho
particles which are exactly stopped by the impulse. Aga
we can without loss of generality assume thaty050. Then
the constraint~3.12! implies e511 so that such a situatio
may occur only in the spacetime with this value of the p
rametere. Relations~3.11! then immediately yield

Z05
x0

t i2z0
, V05A2t i , V̇050, U̇052

1

A2
.

~4.17!

FIG. 4. In the regionU,0 behind the expanding spherical im
pulse withe511, the motion of test particles is always radial, i.e
exactly ~de!focusing. Incoming trajectories for variousb1 anda1

in the regionU.0, with the deficit angle parameterd50.3, are
indicated by dashed lines. The velocity vectors behind the wave
indicated by arrows of the corresponding length and orienta
~tachyons are denoted by double arrows!.
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The motion of the particles in front of the wave is thus giv
by ~3.7! with the parameters substituted from Eqs.~4.17! and
~4.3!. We obtain

x0
11 iy0

152t iC, ẋ0
11 i ẏ0

15F,

z0
15t i~B2A!, ż0

15 1
2 ~E2D !, ~4.18!

t0
15t i~B1A!, ṫ0

15 1
2 ~E1D !.

As expected,y0
1505 ẏ0

1 since the coefficientsC andF are
real. From the remaining relations we easily derive„using
the definitions~4.13! and the fact thate511…

cota1[
z0

1

x0
1

5
B2A

2C
5

1

2
~Z0

12d2Z0
d21!,

~4.19!

cotb1[
ż0

1

ẋ0
1

5
E2D

2F
[cotb i[cotb' .

Of course, these results are identical to those obtained pr
ously using the ‘‘direct’’ approach. However, now we kno
explicitly how to choose the initial dataa1, b1 to put the
particle at rest behind the impulse at timet i in the specific
point x0 , z0. For this, one simply substitutesZ05x0 /(t i
2z0) into Eqs.~4.19!.

B. General C1-geodesics

Let us recall again that all the geodesics in the spacet
~2.10! with the impulsive gravitational wave generated by
snapping cosmic string~4.1! which we have investigated s
far, are very special, i.e.,Z5Z05const„cf. Eqs.~3.6!…. They
are geometrically preferred since they arerestricted to a
single plane~taken above asy50) which also contains the
snapping string localized along thez-axis. This fact immedi-
ately follows from the constraint~3.12!. Therefore, the cor-
responding particles move—although not necessa
parallel—‘‘along’’ the strings. To investigate more gener
geodesics which ‘‘bypass’’ the strings, we have to relax
condition Z5Z0. However, these general geodesics w
Ż050 cannot be found easily in the continuous form of t

re
n
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Zi5
x01 iy0

gt i
, Vi5

1

A2
~11e!gt i ,

Żi5
ẋ01 iẏ0

gt i
2~x01 i y0!

~12e!g2t i12e~x0ẋ01y0ẏ0!

~11e!~gt i !
3

,

~4.20!

V̇i5
~12e!2g2t i14e~x0ẋ01y0ẏ0!

A2~11e!gt i

,

U̇ i5A2
x0ẋ01y0ẏ02g2t i

~11e!gt i
,

from which follows thatuZi u51. Therefore the coefficient
~4.2! entering~3.16! take the following form:

A5B5
1

~12d!~11e!
, C5

Zi
12d

~12d!~11e!
,

D5
~ 1

2 d!21e~12 1
2 d!2

12d
, E5

~12 1
2 d!21e~ 1

2 d!2

12d
,

F5
Zi

12d 1
2 d~12 1

2 d!~11e!

12d
,

~4.21!

A,Z5

1
2 d2e~12 1

2 d!

~12d!~11e!2Zi

, B,Z5
~12 1

2 d!2e 1
2 d

~12d!~11e!2Zi

,

C,Z5S Z̄i

Zi
D d/2

~12 1
2 d!2e 1

2 d

~12d!~11e!2
,

C,Z̄5S Z̄i

Zi
D d/221 1

2 d2e~12 1
2 d!

~12d!~11e!2
.

Substituting Eqs.~4.20!, ~4.21! into Eqs.~3.16! we obtain an
explicit solution which describes the behavior in the reg
U.0 outside the impulse. In particular, we easily derive t

z0
1[

1

A2
~U 0

12V 0
1!50,

~4.22!

ż0
1[

1

A2
~ U̇0

12V̇0
1!50.

Therefore, the geodesicsremain in the plane z50 also in the
outside region, as is expected from the symmetry of
spacetime. Straightforward but somewhat lengthy calcu
tions for h0

1[ (1/A2) (x0
11 iy0

1), ḣ0
1[ (1/A2) (ẋ0

11 iẏ0
1)

yield

x0
11 iy0

15
~gt i !

d

12d
~x01 iy0!12d, ~4.23!
06401
t

e
-

ẋ0
11 iẏ0

15S x02 iy0

x01 iy0
D d/2

@~ ẋ01 iẏ0!2P~x01 iy0!#,

~4.24!

where

P52
d

12d S 1
2 d~x0ẋ01y0ẏ0!

x0
21y0

2
1

12 1
2 d

t i
D , ~4.25!

and t i5A(x0
21y0

2)/( ẋ0
21 ẏ0

22e). Equations ~4.23! and
~4.24! describe the identification of points on the impuls
and the refraction formula in the transverse planez50,
respectively. These admit a natural geometrical interpre
tion. If we introduce a ‘‘polar’’ representation o
positions and velocities byx01 iy0[r0 exp(if0), ẋ01 iẏ0

[ṙ0 exp(iḟ0), we can conclude from Eq.~4.23! that f0
1

5(12d)f0. As the range off0 inside ~behind! the spheri-
cal impulse spans the whole Minkowski space,f0

P@0,2p), the range of the angular parameterf0
1 outside is

@0,2p(12d)). Therefore, there is adeficit angle2pd in
front of the impulse corresponding to the presence of
~snapped! cosmic string. This is in full agreement with th
geometrical construction of the spacetime presented, e.g
@17#. The relation~4.24! is therefraction formulafor geode-
sics in the symmetry planez50 perpendicular to the strings
Interestingly, here the effect is totallyindependentof the
parametere, i.e., the differences between the spacetim
characterized bye50,21,11 disappear in this plane o
symmetry. Of course, ford50 we obtain a trivial solution
ẏ0

15 ẏ0 , ẋ0
15 ẋ0 in the complete Minkowski space withou

string and impulse. Note also that the factor

S x02 iy0

x01 iy0
D d/2

[exp~2 idf0! ~4.26!

in Eq. ~4.24! is just an appropriate ‘‘rectifying’’complex uni
factor which ensures the one-to-one correspondence betw
the identified points on both sides of the impulse„analo-
gously to the functiona2(a1) given by Eq.~4.10! for lon-
gitudinal motion…. This can be seen easily if we consider tw
infinitesimally close parallel null geodesicsy0505 ẏ0 in the
Minkowski region U,0 without topological defects. The
first geodesic is given byf050, the second one by an ang
f0 near 2p. However, from the formula~4.24!, which reads
ṙ0

1 exp(iḟ0
1)5F exp(2idf0), whereF is a real factor, it

follows thatḟ0
152df0. Therefore, outside the impulse th

two geodesics whichremain parallel are described byḟ0
1

50 and ḟ0
1 near to 22pd, respectively. The difference

2pd exactly corresponds to the deficit angle in the~locally!
flat space with the string outside the spherical impul
Therefore, the ‘‘pure’’ physical refraction effect of the im
pulse on geodesics is described just by the expression in
square bracket on the right-hand side of the Eq.~4.24!.

The above relations can easily be applied to investig
the effect of the impulsive wave on aring of free test par-
ticles. Let us consider a ring in thez50 plane, centered
3-11
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aroundx505y, consisting of particles which areat rest in

front of the wave, ẋ0
1505 ẏ0

1 , in the ~locally! flat
Minkowski regionU.0. All the particles are simultaneousl
hit by the impulse at the instantt i and the ring starts to
deform according to Eqs.~4.23!, ~4.24!. Obviously, it follows
from Eq. ~4.24! that the velocities of the particlesẋ0 , ẏ0
behind the impulse (U,0) are given by

ẋ05Px0 , ẏ05Py0 , ~4.27!

with P given by Eq. ~4.25! and t i
215AP 21(x0

21y0
2)21.

This yields a self-consistent solution only if

P52
d~12 1

2 d!

~12d!Ax0
21y0

2
. ~4.28!

Thus, all the particles of the ring moveradially towards the
origin in the z50 plane, with the same velocity v
[Aẋ0

21 ẏ0
25d(12 1

2 d)/(12d). The ring is deformed by the
impulse intocontracting and concentric circles. Of course,
this is in accordance with the axial symmetry of the spa
time.

A more general situation in which the impulse deforms
sphereof test particles~around the origin! initially at rest is,
however, more difficult to investigate explicitly. We ca
again employ the coordinate freedomZ→Z exp(if) related
to the axial symmetry of the spacetime which correspond
a simple rotation of the (x,y)-plane around thez-axis. Using
Eqs. ~4.2! and ~3.16! we conclude h0

1→h0
1exp@i(1

2d)f#, ḣ0
1→ḣ0

1exp@i(12d)f#. Therefore, without loss
of generality we can always set for eachindividual test par-
ticle h0

1 to be real, i.e.,y0
150. Moreover, we are consider

ing the motion of test particles which areat rest outsidethe
expanding impulsive wave,ḣ0

150, ż0
150. From Eqs.

~3.16!, ~4.2!, and~3.15! it then follows thatZi andŻi are real
so thaty0505 ẏ0. The sphere of test particles is thus d
formed into anaxially symmetricsurface which is fully de-
scribed by the sectiony50.

Settingy0505 ẏ0 in Eqs.~3.15! we can now simplifyŻi
to

Żi5
@~12e!gt i2~11e!z0# ẋ02@~12e!g2~11e!ż0#x0

~gt i2z0!@~11e!gt i2~12e!z0#
.

~4.29!

Consequently, for these geodesicsŻi50 if and only if the
constraint~3.12! is satisfied. In such a case, the geodes
ay

06401
-

to

-

s

reduce to the privileged family~3.6! for which Zi5Z0
5const, which we investigated in detail above. Howev
these special geodesicsexcludeobservers which are static i
the Minkowski region outside the impulse. Indeed, from t
conditions ẋ0

1505 ż0
1 we obtain using~3.16! the relation

(A2B)F5(D2E)C. Substituting from~4.3! this reduces to

Z0
d21( 1

2 dp2eZ0
2)5Z0

12d( 1
2 dp21), which has no solution

except for observers in the planez50 in spacetime withe
511, which we investigated in Eqs.~4.27!, ~4.28!.

Therefore, to obtain a nontrivial family of geodesics co
responding to initially static test particles, one has to co
sider the more complicated situation in whichŻi5” 0. It is
difficult to obtain the description of these geodesics in
explicit form. Nevertheless one can immediately argue t
the motion cannot be spherically symmetric. For examp
for the casee511 we observe from Eq.~4.29! that z0ẋ0

Þx0ż0 which, in terms of Eqs.~4.8!, can be expressed a
a25” b2. Obviously, the trajectories of such geodesics b
hind the impulseare not radial, i.e., these do not ‘‘point’’
towards the origin. A sphere of free test particles which are
rest in the Minkowski region outside the expanding imp
sive wave is thus not deformed into spherical shapes, bu
a more complicated~axially symmetric! surface.

V. CONCLUDING REMARKS

We presented a complete solution of geodesic motio
although not always in closed explicit form—which d
scribes the effect on free particles of expanding spher
impulsive gravitational waves propagating in a flat bac
ground. In particular, we discussed in detail the geodesic
the axially symmetric spacetimes with the impulse genera
by a snapping cosmic string. The above results can be u
not only for physical interpretation of the behavior of fre
test particles but also as a starting point for a mathematic
rigorous distributional treatment of impulsive Robinso
Trautman spacetimes. To be more specific, the geodesic
the special family~3.6! provide the key to understanding th
discontinuous transformation relating the distributional a
the continuous form or the metric~analogous to the case o
impulsive pp-waves; cf. @9#!. These interesting question
will, however, be investigated elsewhere.
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