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Geodesics in spacetimes with expanding impulsive gravitational waves
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We study geodesic motion in expanding spherical impulsive gravitational waves propagating in a Minkowski
background. Employing the continuous form of the metric we find and examine a large family of geometrically
preferred geodesics. For the special class of axially symmetric spacetimes with the spherical impulse generated
by a snapping cosmic string we give a detailed physical interpretation of the motion of test particles.
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[. INTRODUCTION general and realistic situations.
This work is organized as follows. In Sec. Il we review
In his classical wor1] Penrose constructed impulsive the class of spacetimes under consideration and describe the
spherical gravitational waves in a Minkowski backgroundgeometry of the expanding impulses. By employing the con-
using his vivid “cut and paste” method. It is based on cutting tinuous form of the metric in Sec. Ill we find a large class of
the spacetime along a null cone and then reattaching the tw@rivileged and simple geodesics which can be related to ex-
pieces with a suitable warp. An exp"cit solution using COOI’-pIiCit geodesics in the distributional form of the metric “in
dinates in which the metric is continuous was later on giverfront” and “behind” the spherical impulse. This may allow
by Nutku and Penrosf2] and Hogan[3,4], but was only one to lay the foundations for a rigorousistributiona)
recently related explicitly to the impulsive limit of Robinson- treatment of impulsive Robinson-Trautman solutions of type
Trautman typeN solutions[5,6]. However, the latter has to N as well as the transformation relating the latter to the con-
be considered as only formal since the metric tensor containéiuous form of the metric. Moreover, assuming the geode-
terms proportional to the square of the Dirac and the Sics to beC' across the impulséin the continuous system
transformation relating this coordinate system to the continuwe completely solve the problem of geodesic motion in
ous one mentioned above is necessarily discontinuous. Negpacetimes with expanding impulsive gravitational waves. In
ertheless, this transformation is analogous to the one relatingec. IV we focus on impulsive waves generated by a snap-
the distributional and the continuous form of the metric ten-Ping cosmic string. This interesting solution of Einstein's
sor for impulsive pp-waves (plane-fronted gravitational €quations was previously constructed by Gleiser and Pullin
waves with parallel ray§7]) which was also introduced in [12] and Nutku and Penrog@] using the “cut and paste”
[1] and has recently been analyzeédorously [8,9] using ~Mmethod. An independent approach was used byalBic
nonlinear theories of generalized functid@olombeau alge- [13,14 (with recent generalizations ifiL5]) who obtained
brag [10,11. It is thus a natural open question whether athe same spacetime by considering a null limit of particular
similar mathematically sound treatment can also be found fogolutions with boost-rotational symmetry representing a pair
expanding spherical impulses. This indeed is one main moef particles uniformly accelerating due to semi-infinite
tivation for the present work in which we study the motion of strings attached to them. We discuss in detail the physical
test particles in spacetimes with spherical impulsive wavesinterpretation of the motion of test particles influenced by
On the other hand, this work is motivated by the quest ofsuch an impulse.

a physical interpretation of radiative Robinson-Trautman
spacetimes, one of the most interesting nonstatic exact solu-
tions of Einstein’s equations which admit a geodesic, shear-!l- EXPANDING IMPULSIVE WAVES IN A MINKOWSKI
free and twist-free null congruence of diverging rdys. BACKGROUND
This Iarge farr_]ily invplves not only spgc_eti_mes of Petrov  Ag mentioned above, Penro§g] has described a “cut
type N (investigated in the impulsive limit in the present 504 paste” method for constructing expanding spherical
papej but also type Il solutions describing bodies which g5yitational waves in a Minkowski background. The proce-

radiate away their asymmetries and approach a Schwargyre can be performed explicitly as follows. One starts with
schild black hole, or th€-metric of typeD which represents o Minkowski line element

gravitational radiation generated by uniformly accelerated
black holes. By studying these explicit exact solutions one
may acquire an intuition necessary for investigation of more ds§=2 dy d;—z did dv=— dt?+ dx2+ dy?-+ dz2

(2.9
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"Electronic address: roland.steinbauer@univie.ac.at where the relation between the coordinates is given by
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We may now perform the transformation

\%
V=——¢€U,
p

where

p=1+ eZZ €=

(The parametee is related to the Gaussian curvature of the
2-surfaces given by =const, V=-const, cf[5].) Using Eq.
(2.3), the metric(2.1) takes the form

2
ds3=

—1,0+1.

Vv
2—dz dZ+2 dudV—2e du?.
p?

(2.2

(2.3

(2.9

(2.9
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Here h=h(Z) is an arbitrary function, and the derivative
with respect to its argumer is denoted by a prime. With
this, the Minkowski metriq2.1) becomes

v o 2
dsg:25d2+UpH dﬁ +2dU dv—2edU?, (2.9

whereH is the Schwarzian derivative ¢f, i.e.,

(2.9

In the coordinates used in E(R.5), as well as in the ones
used in Eq.(2.8), the null hypersurfacé) =0 represents a
null cone pn—UV=0, i.e., an expanding sphepe+y?
+22=1? in the Minkowski background. Moreover, the re-
duced 2-metrics on this cone are identical. Following the
Penrose “cut and paste” method, we attach the line element
(2.5 for U<O to the line element Eq2.8) for U>0. The
resulting metric takes the form

\Vj o 2
ds?=2 BdZ+U®(U)pH df‘ +2 dUudV—2e dU?,
(2.10

On the other hand, we consider the alternative, more InWhere®(U) is the Heaviside step function. This combined

volved transformation given by

V=AV-DU,
U=BV—-EU,
n=CV—-FU,
where
1 |h|? h
A ’ = 7’ = )’
plh| plh’| plh'|
5 _
D 1 p " + 1+Z h!l Z h!l
= —{ —|— € —_—— e ,
|h'| 4 2 2 h’
E_|h|2 p h” 2hr 2 L Z /[ h h’
G R AT
+Z h ZF'
2ln h/])’
B h p h!/ h/)h// 1+Z hH 2h/
Ih'| 4\ h h 2 h

(2.6

—

(2.7

metric, which was first presented 2,4, is explicitly con-
tinuous everywhere, including the null hypersurfad¢e-0.
However, the discontinuity in the derivatives of the metric
acrossU=0 yields an impulsive gravitational wave term
proportional to the Dira@ function. More precisely, the only
non-vanishing component of the Weyl tensor in the
Newman-Penrose formalisfv,16] is V,= (p2H/V) o(U),
which is the componen¥ ,=C_;,.d amP|emd with respect to
the null tetrad k=dy, |=—edy—dy, m=p?(V?

U20p*HH) Y[ (V/p)dz—UBpHdH,]. The spacetime is
thus flat everywhere except on the wave surfdee0. Also,
as shown irf17], the only nonvanishing tetrad component of
the Ricci tensor is®,,=3R,pl%P=(p*HH/V?)US(U).
This demonstrates that the spacetime is vacuum everywhere
(except on the impulse a&t=0 and at possible singularities
of the functionp?H).

For later use we also remark that the inverse relation to
Eq. (2.3 is given by

nn
U= 7 U,
V=Y, (2.11
_
Z= v

whene=0, and by
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for U<0) as being “behind the wave.” The “background”

U=—eV— 27 , metric on both sides of the impulse is given by E.14).
(V— eL{)I\/(V— e)2+4enny For arbitrary u#0, this metric can be put into explicit
Minkowski form (2.1) by the transformationg2.2) and
467); (2.1 [or (2.12] and the(trivial) identificationu=U, w
V=—(V—eld)— , =V, &=Z. Using these relations, we can easily analyze the
(V—el) = \/(V— Eu)2+4€7]; geometry of the null hypersurfacesi=ug=const in
Minkowski coordinates, which are geometrically privileged
c and thus allow for a clear physical interpretation.
Z=——[(V-elh)F \/(V— )2 +4enn], (2.12 We start with the subclass of solutions for whiek-0.
27 Substituting Eq(2.2) into Eqg.(2.11) and settingd =ug, we
get the relation
for e#0. 5 5
We may define the function®;,,, Vin,, and Z;,, of 2iv2s| g 1 s 1 01
(U,V,Z,Z) as the composition of Eq2.11) [or Egs.(2.12 Xy Tz \/Euo B \/EUO (216

for e# 0] with Egs.(2.6), (2.7), which transforms the metric
(2.8 to (2.5). Consequently, a discontinuous transformation (if t+z, i.e., forx#0, y#0). For various values aij this
represents a family ofnull cones with vertices at

u=U+0(U)[U;,,(U,V,Z,Z)—U], (— (1/\2)uy,0,0,~ (1/y/2)u,) localized along a singular null
. linet=2z,x=0,y=0. Also,V=wy=const is a set of parallel
w=V+0U)[V;,,(U,V,Z,2)-V], hyperplanest=z+ 2w, in the Minkowski background.

(2.13  This reveals the geometrical meaning of the coordinates
o used in the metri¢2.14) with e=0. Note thatw=0 repre-
&=z2+0U)[Z,,(U,V,Z2,2)-Z], sents a physical singularity in the Robinson-Trautman space-
_ _ ~ times[20] which can be interpreted as the source of the wave
relates Eq(2.10 for all U#0 to Minkowski spacetime in  surfacesu=u,. At any timet, these surfaces are spheres of
the form the radiusR=[t+ (1/y2)ug|. In particular, the impulse local-
ized onu=0 is a null cone with the vertex in the origin
which, at any time, is a sphere of radifs= X2+ y?+ 72
=|t|.

Analogous results can similarly be obtained for the re-
wherey=1+ e££. Interestingly, by considering the transfor- Maining two subclasses=*1. In this case, using Eq&2.2)
mation (2.13 of the metric(2.10 for arbitraryU, i.e., keep- and(2.12, the hypersurfaces,= const are given by
ing also the distributional terms, orfformally) obtains the
metric X2+ y2+ 7%= (t+2up)?, (2.1

w?
o|s(2,:2E dé dé+2dudw— 2e du?, (2.14

for e=+1 and

W2
2__ 2 2
ds 2¢2|d§ f S(u)du|*+2dudw—2e€ du X2 y2+ (242U =12, (2.18
2 — _ ) for e=—1, respectively. Again, these are families of null
tw) (fetfo)— E(ffﬂcg) S(u)du, (219 cones in Minkowski space with vertices shifted in thei-
rection fore=+1, and in thez direction fore=—1. Note
in which f(¢) is related toh(Z) through the identification that these vertices form a singular timelike line=0
f=Z;,,—Z evaluated orlU=0. Although this form of the =y, z=0if e=+1, and a spacelike line=0=y, t=0 if
metric is only formal since it contains the square of the deltae= —1. These lines are given by=0, V— /=0, and cor-
function, it explicitly shows that expanding impulsive gravi- respond to the physical singularity of the Robinson-Trautman
tational waves(2.10 arise as the impulsive limits of the spacetime aw=0.
Robinson-Trautman typl spacetimes, expressed in the co- It is obvious that for the above spacetimes witlsiagle
ordinates introduced ifl8] (see[5,19] for the details. expanding impulsive wave localized atuy,=0, i.e., atU
Let us now conclude this review section by a brief de-=0, the null cones of the three classes of wave surfaces
scription of the geometry of the above expanding impulsivegiven by Eqs.(2.16), (2.17), and(2.18 coincide In fact, in
waves localized along the wave surfad¢s-0, i.e.,u=0. the impulsive limit the three(generically different sub-
This will also elucidate the meaning of the parameter classes=0,+1,—1 of the Robinson-Trautman class of so-
From the Robinson-Trautman form of the metfZc15 it  lutions arelocally equivalent5].
is obvious that the impulse splits the spacetime into two flat It can also be observed that fer=0 the physical singu-
regions,u>0 andu<O0. In the following we shall call the larity atV=0 is asingular null lineon the wavefront surface
Minkowski half-spacai>0 as being “in front of the wave,” U=0. For a physical interpretation, it would be better to
and the other Minkowski half-spaag<0 (note thatu=U remove this singularity from the spacetime. This can be
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achieved by considering solutions wigt0: In these cases,
the singularity aV=0 appear®nly at the vertex ofhe null
cone,x=y=z=t=0, which may be considered as the “ori-
gin” of the spherical wave.

Ill. GEODESIC MOTION IN SPACETIMES
WITH EXPANDING IMPULSIVE WAVES

The purpose of this paper is to investigate the effect of
expanding impulsive waves of Robinson-Trautman type on

the motion of freely moving test particles. It is natural to
start with geodesics iflocal, see beloyvMinkowski space
U>0 in front of the wave, i.e., “outside” the null con®
=0 corresponding ta®+y?+z>=t2. (Note that at=0 the
spherical impulse is just “created” at the origirObviously,
general geodesics are given by

tt= YT,
X+=5(O(T—Ti)+x()u
(3.1

T=yo(r— 1)+ Yo,

y
L
4 —Zo(T_Ti)+Zo,

with y=\x3+y3+2z3—e, i.e., 7 is a normalized affine pa-
rameter of timelike €= —1) or spacelike é=+1) geode-
sics. For null geodesiceE0) it is always possible to scale

the factory to unity. The constantg,,y,,2o and xo,yo,zo

PHYSICAL REVIEW D67, 064013 (2003

corresponding “refraction” and “shift.” In the regiot <0
behind the impulse the particles again move in Minkowski
space(2.1) so that the trajectories also have to be straight
lines of the form

V=V, (r—m)+ Vg,

U =Uy (1—7)+Uy , (3.9

n = (=) + g

It remains to express the constants appearing in B99.in
terms of the initial data introduced in Eg&3.1), and the
structural functionh(Z), which characterizes specific ex-
panding impulsive waves.

The key idea is toemploy the continuous forrof the
solution(2.10. It can easily be observed that in this coordi-
nate system the Christoffel symbadlg;j,, I'{jy, andI'{,,
vanish identically. Therefore, the geodesic equatiamsays
admit privileged global solutionsf the form

Z=17Z,=const,
U=Uq(7— 1), (3.6
V:vO(T_ Ti)+V0.

Here we have sdtl;=0, so that each geodesic reaches the
impulse localized a =0 at parameter time= 7, .

characterize the position and velocity, respectively, of each Using Eqgs.(2.6), it is possible to express the geodesics

test particle at the instant

Ti=\Xo+ Yo+ 25l v,

when the geodesic intersects the null cone.rAeach par-

(3.2

ticle is hit by the impulse and its trajectory is refracted and

(possibly shifted. The geodesig8.1) in front of the impulse
can also be written as

Vi=Vy(r—m)+Vg,

Z/{+=Z-/lg(T—Ti)+Ug, (3.3
7t =nd(r— 1)+ 14,
where
- . L1
Vo :E(Y_Zo)a Vo :E(Yﬂ_zo),
o1 : . 1
Z/{O :E(’)""ZO): Z/{0 :E(’)’Ti'i‘Zo), (34)

;73 \/5(5(0“&/0), 7 \/E(Xoﬂyo)-

Now, we wish to investigate the influence of the impulse

on the geodesics, and to determine explicitly formulas for

(3.6) in front of the impulse in the Minkowski forn(3.3)
where the coefficient€3.4) are

Vi=AVy,—DU,, V§=AV,,
U =BVy—EUy, UZ=BV,, (3.7
e =CVo—FUy, 75=CV,.

The constanté, B, C, D, E, andF are given by the values of
the functions(2.7) at Z=Z,. The relations(3.4) and (3.7

enable us to relate the paramet&gs Uy, Vo, andVj to the
natural initial data introduced in Eq3.1) by

Xo= 2V, Re C,

Yo=12V, Im C,

1
Vo(B—A),

V2

Xo=2[Vo ReC—U, ReF],

20:

(3.9
Yo=\2[Vo Im C—U, Im F],

. 1 . .
Zo:—z[Vo(B_A)_Uo(E—D)]-

%
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The three position parametexg,yq,zo are thus related to Xo+ 1Yo
the three independent constaltg,Z,,Vy. The normaliza- 0~ yTi—2p'
tion condition implies the constraintVg—eUy)U,=3e

(which can be obtained using the identitia8—CC=0, 1
DE—FF=¢, andAE+BD—CF—CF=1) on the param- Vo:\—E[(“E)Wi—(l—E)Zo]’
etersVo and Uo. However, in general it is possible to set at (3.11)
Ieha§t oniL_ij the velocities,, Yyq, Or Zo to zero by a suitable y 1 ey (Lt ](1+ )y —(1— )2,
choice ofUj,. =—[(1-¢€)y— €)Z ,

0 ° 2 7 Y(1-e)yri—(1+e)z

Finally, we transform the geodesi€3.6) behindthe im-
pulse using Egs. (2.3, which gives the uniform
Minkowskian motion(3.5) with the coefficients _ V2y9(z0— 7120)

Oz(l—e)yri—(l-f—e)zo'

-0 -_10
Vo= p €Uo, Vo p’ with the constraint
 ZoZo. .  ZoZo [(1-€)y7—(1+€)Z)] (Xo+iYo)
0= No—Uy, Uy ="22V,, (3.9 _ '
P =[(1-€)y—(1+e)z](xo+iyo). (3.12
,:é\-/ ,:év In Eq. (3.11) we assumed that (1e)yr,#(1+€)z,. The
o =Ty Yor o =y Vo case (I e€)yri=(1+¢€)z, requiresxo=yo=2,=0. Such

geodesics reach the singular vertexy=z=0 of the im-

Substituting forZy, Vo, Vo, andU, from the inverse of the Pulsive null cone at=7=0, and it is thus unphysical to
relations(3.8), we obtain an explicit result which can be used investigate their continuation acros¢=0. On the other
for discussion of the effect of expanding impulsive waves orhand, if (1—¢€)y=(1+¢€)zy then Xo=y,=0, andVy,=0.
the privileged family of geodesids.6). These geodesics anelll for e=0 (with Uy=—y22,), time-
However, it should be emphasized that in the above CONjye for e=1 (with v=1. z.=0. U.=—1/J2). andspace-
struction we started with the initial dat®.1) outsidethe i q for i:—(l. YT L Ho V2), P

impulse in the regiorU>0, which is a Minkowski space — note that the relation3.11) simplify for each particular

OU'V locally. Because of the complicated f?"“ of the gener-qpice of the parameter. In particular, in the case=0 we
ating complex functiorh, there are topological defects such obtain

as cosmic stringgcorresponding to the presence of deficit
angles outside the null cone, see, e.plL7] for more details.

Therefore, for better physical interpretation it may be useful 5 XoFtlVo =i(77,_z )
to set the initial data for the geodesics in the regidr 0 O yni—zet O 2T R
inside the cone, which is considered to be a “complete” (3.13
Minkowski space without topological defects. Evolving
these data, iV :i(y_'z) U :i e. )
° V2 o ° V2 Y~ 2o
t =y,
Let us finally recall that the above class of geodesics is
X~ =Xo(T— T, privileged and very special sincé=Z,=const(cf. (3.6)).
ol 7= 7)) +Xg, o . ) . .
However, it is possible to findeneralgeodesicassuming
) (3.10 them to be & across the impulsé the continuous coordi-
Y =Yo(7— 7))+ Yo, nate systeng2.10. With this assumption, the constants
z =2zo(1— 7)) +20, Zi=Z(7), Vi=V(7), U;=U(71)=0,
(3.19
“packward” in time (i.e., for decreasing affine parametgr zi=7(7), Vi=V(7), U,=U(mn),

it is possible to prolong the geodesics across the spherical

impulse to the “incomplete” Minkowski regiold >0 with  describing positions and velocities at, the instant of inter-

cosmic strings outside the impulse. action with the impulsive wave, have tlsamevalues when
In this case, theexplicit geodesics outsidthe impulse  eyaluated in the limitdJ—0 both from the region in front

have the form(3.3), (3.7), in which the constant&, Vo,  (U>0) and behind the impulsd}<0). Starting now with

V,, andUq have to be expressed in terms of the d&40.  the general initial dat43.10 in the regionU <0, in which

Using (2.11) for e=0, and Egs(2.12 for e#0 we obtain Egs.(2.11), (2.12 apply, it is straightforward to derive
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Xo+iYo which is generated by E@2.9) with h(Z)=2"°. Hered is
= a real positive constand<<1, which characterizes the deficit

=
YTt angle 276 of the snapped string localized outside the im-
1 pulse along the axig=0 (see, e.g.[2,17)). It is straightfor-
Vi=—[(1+€)yr—(1—€)7,], ward to calculate the coefficienf®.7) and their derivatives
V2 for such a functiorh, i.e.,
_XoTiy  Xot+iYo A |z|° _z]Ee 7z
YT 20 (yri—12p)? (1-9p’ (1-9)p’ (1-9)p’
L= y= (14 20)(y7i~ 20) +2€(XoXo* YoYo) Lz i
(1+e)yr—(1—e€)zg J D= 1_5[(5 0)°+(1—-39) 6|Z| 1,
(3.195
V= (- ey (1+ Oll(1- € yr— (1+ 2 1 524 (1 52212
NS [(1-e)y—(1+e)zp][(1~€)yri—(1+€)Zo] E=T—5[(1-20%+(;9) €z|?],
+4e(XoXo+ YoYo) ([(1+€) yri—(1—€)zo] Z'7°(Z|°725 5(1— 3 9)p
. - . F_ 1_ 5 '
U_:\/EXOXO+yOyO+ZOZO_727i 4.2
' (1+e)yri—(1-€)zp ° A 1Z°[3 6-(1- 3 8)€lZ)?]
z=
Then, using Egs(2.6) the geodesics outside the impulse in (1-96)p*Z
the (local) Minkowski spaceU>0 are given by the expres-
sions(3.3) with 5 1ZI?7°[(1- 3 )~ 3 6¢€|Z|*]
z=
VE=AV, (1-8)p’Z
U =BV, . (z %2(1- 1 6)— 1 5€[Z|?
==
7E=CV,, z (1-8)p?
. . : . - (3.16
Vi =AV,—DU+(A,Z;+AZZ)V;, . (z M1l 5 (1- L 8)€lzZ)?
Z7\ 7
o L. z (1-9)p?
U =BV,—EU;+ (B ;Z;+B 7Z)V,,
%73=CVi— FUi+(C,zZi+C,2Z)Vi ' A. Privileged geodesics withz=2Z

) ) . ) o . We first consider the family of geometrically preferred
in which the coefficients and their derivatives are given bygeodesics{3.6) for which Z=2Z,=const. It is convenient to

the functions(2.7), evaluated a; . . use the global axial symmetry of the solutiéh10), (4.1)

Of course, with the constrain{3.12 we obtain Z;  corresponding to a coordinate freedd@w- Z exp(i¢), where
=0, Z;=2Z,, Vi=V,, Vi=V,, U,=U, and the above ¢ is a constant. Therefore, without loss of generality we can
geodesics reduce to the privileged family presented in EqassumeZ, to be areal positive constant, in which case the

(3.1D. coefficients(4.2) reduce to
z8 zi° z
IV. GEODESICS IN SPACETIMES WITH A SNAPPING A= 0 B 0 c= 0
COSMIC STRING (1-9)p’ (1-9)p’ (1-98)p’

In this section we apply the above general results to an

interesting particular class of spacetimes in which the ex- — Zg 2[<55 2+ 1— E5)2€ZZ
panding spherical impulsive wave is generated by a snapping 1-6[\2 2 op
cosmic string(identified outside the impulse by a deficit
angle. This solution was previously introduced and dis- 255 1 \2 /1 \2
cussed in a number of work®,12,13,15%. It can be written E=1"5 (1— 50| + 55) €z5|, 4.3
as the metrig2.10 with
15(1-149) 30(1-39)p
H(Z)—T, 4.1 F= 1-0Z,
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U<0 X

FIG. 1. The anglex identifies the point where the particle in-

teracts with the impulsdindicated by a circle generated by a
snapped string localized on tkexis. The angl¢8 characterizes the
inclination of its trajectory. The superscriptst” and “—" corre-
spond to the respective values in ttiecal) Minkowskian coordi-
nate system outsiddJ(>0) and the(differeny Minkowskian sys-
tem inside U< 0) the impulse.

wherep=1+ €Z3. Substituting Eqs(4.3) into Eqs.(3.8), we
obtain the relations between the paramef&gysU,, V,, and
V,, characterizing the family of geodesi¢3.6) and the ini-
tial dataoutsidethe spherical impulsécf. Egs.(3.1)). Obvi-
ously, these geodesics all hayé=0, sincey,=0=Yy, due
to vanishing imaginary parts & andF. The remaining re-
lations (3.8) yield

1+—,
Xo X5

Zo)'(o_xo'zo
(E=D)xg—2Fz,’

L.Jo=\/§

(4.4)
Zy

1
(1—9)Xo,

2

Zo. (E—D)xg—2Fz,

oV [(1 X0 E - D)xy—2Fz,"

(Note that “initially static” observersx,=0=z, are ex-
cluded from the family(3.6) as this would giver=0

=V,, i.e., the geodesic is constarfinally, substituting Eqgs.
(4.4) into Egs.(3.9 we obtain

Xg =(1—8)Xo,
Yo =0,

-1 -1
2y =5 (1= 0)Xo(Zo—Zy ),

to =3 (1= OXo(Zo+Zyh),

(4.5
(E— D)Xo

2Fz,

—-2Fzy’
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Yo =0,
_ Z5[(E—D)Xo—2F 2] — (1~ €)(ZoXo— XoZo)
%= (E—D)xo—2Fzg '
to [(E—D)Xo—2F o]~ (1+ €)(ZoXo—XoZo)

0~ (E—D)xo—2F 7, ’
where the coefficientE—D andF are
(1-8)(E-D)=(1- } 9)%(Z,°— €Z{)

—(3 9725~ ez57"),
(4.6
(1—8)2F=6(1— % 6)(Zy '+ €Zy),
andZ, is given by Eqs(4.4).

The above relations explicitly express the effect of an
expanding impulsive wave generated by a snapping cosmic
string on geodesia8.1) of the privileged family(3.6). These
start outside the impulséJ>0) with the initial data enter-
ing the right-hand side of Eq$4.5), and continue inside the
spherical impulse in the Minkowski space without the string
(U<0), where the positions and velocities7at 7; are now
given by the left-hand side of Eqgl.5). For =0 we obtain
E-D=1-¢, F=0, Zy—Zy'=2z5/%y, Zo+Zy"
=2y71,/X9, SO thatx™=x", y"=0=y*, z7=z", t,
=yri, andt, =y (to derive the last relation we have used
the constraint{3.12). Obviously, these arglobal geodesics
in completeMinkowski space without the strings and the
impulse.

Let us now investigate in some more detail the effect of
the spherical gravitational impulse on free test particles. To
describe the “refraction” and the “shift” of geodesic trajec-
tories it is convenient to introduce anglasand B8, whose
geometrical meaning is indicated in Fig. 1. Recall that for the
special family of geodesic€3.6) we havey =0=y™", so
that the motion is confinded to thz plane which contains
the string(located along the axis). Hencea and g represent
the positionof the particle at the instant of interaction with
the impulse and the direction of itgelocity (inclination of
the trajectory in the (x,z)-plane, respectively.

In the regionU >0 outside the impulsive wave these pa-
rameters are defined as

(4.7)

Similarly, behind the impulse in the regidh<<O we have

COta+=20/XO, COt,8+=-20/5(0.

cota™ =z, /%y, COtB =2z4/X, . (4.9
Straightforward calculations using Edg.4) give

Z5 °=cot(3 a), 4.9

which implies the relation} (2§ °—25 *)=cota™. From

Egs. (4.5 and (4.9 we immediately obtain
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cota” =3(Zo—Z, )= 3 [cotd(3 a’)—cot %3 a™)], B2 p=2 p'-%
(4.10 / |
where q=1/(1— ). This expression gives the relation
a” (a™) which identifies the pointsn both sides of the im- U
pulse in the natural Minkowskian coordinate systems.
Analogously we derive the following relation for the ve- €=0 e=—1 e=+1
locities: plox -1 =3
cotB™ —cota =AMcotB" —cotat), (4.11
where
Lo l1—¢ €=0 e=-1 e=+1
N:M a ) = . + + +
A (1-8)(E—D)—(1—8)2F cotg* =0 =0 =0
C N
This is therefraction formulafor trajectories of free test U
particles which cross the spherical impulse.
Notice that the above considerations also apply to geode €=0 =1 c=+1

sics propagating in the privileged directiogs =0 andg*
=m/2. For geodesicparallel to the string i.e., in the case FIG. 2. Typical behavior of geodesic trajectories, which are re-
B+=0 (implying x,=0) the right-hand side of Eq4.11) fracted and shifted by the expanding spherical impulse, for various
has to be replaced by the simple expressien-1)/[(1  values ofa™, B* and the parameter. Here 5=0.3.

— 8)2F]. For trajectories with3* = 7r/2, which areperpen-

dicular to the string £,=0), the right-hand side simplifies C&!€- To shed some .Iighz.on the d?tgils of this dependence we
to [(e—1)cota* J[(1— 8)(E-D)]. introduce two special “incoming” inclination angles, de-

Several interesting observations can immediately be don&0ted by (a™) andT ("), that are defined by the prop-
For 5=0 representing a complete Minkowski space without€®y that the corresponding geodesiehind the impulse is
the impulse and topological defects, one obtains  Parallel (8~ =0) andperpendicular(g" == m/2), respec-
—a*, N=1, and consequentlg~= 8. There is thus no tively, to the strings localized along theaxis. It follows

“shift” and “refraction,” as expected. immediately from Eq(4.11) that
For a generald, it follows from Eq. (4.11) that if o™ E-D
=B" thena™ =pB~. This means physically that th@adial COt,B\TZ—,
geodesicg“perpendicular” to the spherical impul$eemain 2F
radial also behind the impulse. (4.13
Moreover, it can be observed from E@.12) that the Cotﬂ+:(1—€)00ta+—(1—5)(E—D)00'wf
coefficient \ identically vanishes for spacetimesith the L (1—€)—(1— 8)2F cota™

parametere=+1. Consequentlya™ =B, which means
that the geodesicS.6) are refracted by the impulse in such where the function®,E,F are given by Eq(4.6), Z, by Eq.
a way that theirtrajectories become radialThese are thus (4.9), anda~ by Eq.(4.10. The functions(4.13 are drawn
either exactly focused towards the origir-0=z, or defo-  in Fig. 3 for the three types of spacetimes given &y0,
cused directly from it. —1,+1, and for a “typical” value of the deficit-angle pa-

The typical behavior of geodesics affected by the impul-rameters=0.3. Both '3H+ and B8] vanish ata™=0. Fore
sive gravitational wav¢Egs. (2.10, (4.1)] as described by —( the functions B (a*)<a™<p/(a*) monotonically
the refraction formulg4.11), is shown in Fig. 2 for various increase to the values th:(l_ H[S1-18)], B =ml2 at

. + + . . ) a8

choices ofa™, B, ande. Each test particle follows in the at=m/2. Fore=—1 the relation iSG\T>BI>a+, and the

regionU>0 a trajectory with the inclination angje* until . . i v
it reaches the spherical impulse at the point represented bcorrespondlng values at "= 77./2 arefsy =m, B, = m/2. In
e casee=1 these two functionsoincidefor all values of

4 . . S .
a™. The impulse influences the particle in such a way that |a+’ which directly follows from Eqs(4.13. The functions

emerges in the regiokd <0 at the point given byr~ and . T
continues to move uniformly along the straight trajectory9"0W 0 @ maximum value and then decreasesfo=;
=7/2 ata™ = m/2. The graphs presented in Fig. 3 provide a

with inclination 8~ . Note that the lines in Fig. 2 represent o , , X
just the inclination of the geodesic trajectories, not the SIOeegualltatlve picture of the character of the trajectories depend-
fng on the choice of the initial angles”, B*. Trajectories

and orientation of the motion—these will be investgated late i i X -
on. close top| (a™) become “nearly horizontal” behind the im-

From Fig. 2 it becomes obvious that the dependence dpulse, whereas those close/id () become “nearly ver-
B~ onthe datax™, B, and the parameteris rather deli- tical.” Since for ,8”+ we havex, =0 whereasp; implies
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€=0 €=—1 €=+1 Whenv =1 itis null (e=0), and forv ~>1 it is spacelike
/ : o (e=+1). Moreover, we can express the condition for the
spag€like spacelike timelike . O A . X
g v<o null geodesics explicitly. Substituting frofd.15 we obtain
spacelike 6 B a quadratic equation for cgt” which can be solved. In the
PR e rangea” e (0,7/2] there are always two real roots, namely
o Bn=Br
t £ B z _ (1) Baun=a",
timelike
rim;like :{i Z
n ‘ ecota’ — 3 (Zy '+ €Zy)(1— 6)(E—D)
B £ B, (2) COt:BrTuII = P — .
o Brun e €— E(ZO +€ZO)(1_5)2F
. . o (4.19
Brmai=Py_spacelike spacelike spacelike  /timelike
0 ot g 0 o g[ 0 oF a«: T

2 The first equation in4.16 implies thatall geodesics of the
FIG. 3. Plots ofg]" , B, and B, introduced in the text, as family (3.6) which move radially “outside” the impulse are

functions of the angler” (again5=0.3). The causal character of Null. In fact, it follows from Eqgs.(4.4) and (4.7) that U,

the geodesics with specific initial data is indicated by the shading of=0, i.e., U=0. These are exactly those null geodesics

the respective regions: gray and white correspond to timelike an@vhich generate the spherical impulse itseMontrivial null

spacelike geodesics, respectively. geodesics which cross the impulsive wave are thus given by
the second root in Eq$4.16). Figure 3 shows the functions

75 =0, it follows that the particles actualistopbehind the ~ Bnun(a”) for the three spacetimes characterized esy0,

. . b — pt(— at . v e=—1, ande=+1, respectively.

:mgﬁ:zig ;\;)eaggtci)%z(ﬁwith@ﬂglﬁl) for a givena ™ in the For e=0 it follows immediately from Eqs(4.16 and
Note, however, that the reffaction formuld.11), while (4.13 that ﬁfTU”:'Blr.' Therefore, theselull_geodesips are

relating theinclination of the trajectories behind the wave to refracted to rays which arearallel to the strings behind the

its initial values, does not provide any information on the!MPulse @f_:ofz_:l)' AII+geo$iesic+s with trajectories
specificspeedand orientation of the motion. Of course, the 9iven bya™, B such thaig <p" <a" aretimelikewith

velocity is proportional to the parametexs,yo,z,, which ~ Ux = 0:vz >0. All other geodesics are spacelike.

are the derivatives of space coordinates with respect to the +'” the case=—1 it can be shown that thf ”OT”V'a' root
affine parameterr, see Eqgs(3.1). However, for physical fgnull+ in Egs. (4.16 satisfies the relation, >ﬁnull,>lgi+
interpretation of the motion we need thelocity with respect > @ . as shown in Fig. 3. Again, in the regiog

to the Minkowski frame behind the impulsehich is given € (a”,Baui(a™)) all the geodesics are timelike with,

by >0. At 8, the velocityv, changes sign: fog™<g, we
S havev, >0, and for8*> B, we obtainv, <0.
- Xo Yo Zo Finally, the most interesting case ¢s= + 1. In this case
(vy Uy v, )= t_’t_’tT . (4.14  the graph shown in Fig. 3 is even more delicate. For a par-
0 o o ticular value @; given by the condition cole])=(A
From Egs.(4.5) using Eqs.(4.7) we obtain +yAZ-1)"% whereA"2=25(1-34), the denominator
on the right-hand side of Eg&t.16 vanishes. Therefore, the
B G value of 8., jumps at a; from B.,(al_)=m to
Ux =7 BTN T o Bru(ae,)=0. (Note thate, monotonically increases from
2 (ZoF 2o )G~ (1+e)(cota” —cotp™) 0 to 7/2 as the string parametérgrows from the value 0 to
L . . . (4.19 1.) Consequently, there aravo disconnected regions of
_ 2(Zo=Z57) G—(1—e)(Cota” —cotB™) timelike geodesics In the “upper” region (@"<pB"
21 (Zo+ 23 )G~ (1+ €)(cota” —cotB") <Bnu) lies the line g =g : particles moving along

timelike geodesics with the *“incoming position"a*

and U;:O, where G:(l— 5)[(E_ D)_ZF Cotﬁ+]. The and a suitable “inCIin.atiO?“,[)’i=_/3H+(a+)=_,BI(a+)_ will
above expressions determine the velocity of the partioke ~ €xactly stopat the pointx, , z, in the region behind the
cluding its orientatiopin the region behind the impulse as a impulse ¢, =0=v,), see Eqs(4.15. Particles below this
function of the initial parameters*, 3" : The particle moves boundary *< g/ =B/) move radially outwardsincev,
from the point a (a%) in the refracted direction >0,v,>0. On the other hand, timelike particles wig

B (at,B") given by Eqs.(4.10,(4.11) in terms of the pa- >,3H+:ﬁf for a givena™ havev, <0,v, <0 so that these
rametersa™, B" and its velocity is given by Eqg4.15. radially approach the originThus there is aexact focusing

Each geodesic belonging to the fam{B.6) following the  effect of the impulsen these timelike geodesics. The same is

trajectory determined by, 8" has a specific causal char- true for all timelike geodesics in the “lower region” corre-
acter. If the magnitude of the velocity is such that  sponding to initial valuesx™ close to#/2 and smallg*
=(vy)?+(v,)°<1, the geodesic igimelike (e=—1). (see Fig. 3 The time t; =2xq(cota™—cot8")/(E-D
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The motion of the particles in front of the wave is thus given
by (3.7) with the parameters substituted from EGs17) and
(4.3). We obtain

Xy +iyg=27C, xj+iyg=F,

zg=7(B—A), zi=3%(E-D), (4.18

tg=7(B+A), tj=3(E+D).

e=+1

As expectedy; =0=y; since the coefficient€ andF are
real. From the remaining relations we easily der{using

FIG. 4. In the regiorJ <0 behind the expanding spherical im- .
g P g sp the definitions(4.13 and the fact that=+1)

pulse withe= +1, the motion of test particles is always radial, i.e.,
exactly (defocusing. Incoming trajectories for varioy"” anda*

in the regionU>0, with the deficit angle paramet&=0.3, are 2 B_A 1

indicated by dashed lines. The velocity vectors behind the wave are cotat = 0 _ _ _(Z(l)— 5_ Zg— 1)’

indicated by arrows of the corresponding length and orientation xg 2C 2

(tachyons are denoted by double arrpws (4.19
o+

—2F cotB"), when each individual particle in the spacetime cotg* = % E-D — cot B =cotB

e=+1 reaches the origin, depends on the particular initial Cxg 2F I~ L

data. These geodesics are explicitly drawn in Fig. 4 with
arrows indicating the precise value of the particle velocity
behind the impulsive wave. Double arrows correspond td2f course, these results are identical to those obtained previ-
tachyons moving along spacelike geodesics. Notice that fopusly using the “direct” approach. However, now we know
large values of3* and smalle™ some of the incoming tra- €xplicitly how to choose the initial data™, 8™ to put the
jectories (dashed linesare drawn inside the circle which particle at rest behind the impulse at timein the specific
indicates the impulse. However, this is not a contradiction a0int Xo, Zo. For this, one simply substituteZ,=Xq/(7;
the figure represents just a snapshot at a given time. In fact; Zo) into Egs.(4.19.
the corresponding timelike particles move in the outer region
U>0 until they are hit by the expanding impuléghich at
previous instants of time is a smaller circl&he tachyons
move “acausally” and thus their motion is neither intuitive  Let us recall again that all the geodesics in the spacetime
nor represents the motion of a test particle; this case is in2.10 with the impulsive gravitational wave generated by a
cluded for the sake of completeness. snapping cosmic string#.1) which we have investigated so
All the above results can equivalently be obtained also byar, are very special, i.eZ=Z,=const(cf. Egs.(3.6)). They
the “inverse approach,” i.e., starting with the initial data are geometrically preferred since they asstricted to a
(3.10 behind the impulséin the regionU<0) and evolving  single plane(taken above ag=0) which also contains the
these “backward” in time intoJ>0. The solution is given shapping string localized along tlzeaxis. This fact immedi-
by Egs.(3.11) which has to be substituted into Eq3.7). Let ately follows from the constraint3.12). Therefore, the cor-
us demonstrate this method by considering a simple yet imresponding particles move—although not necessarily
portant particular example. Consider a geodesic motion oparallel—"along” the strings. To investigate more general
timelike particles which aret rest behindthe impulse gen- geodesics which “bypass” the strings, we have to relax the
erated by a snapping cosmic string,=Yy,=2z,=0 (so that (;ondition Z=Z,. However, these general geodesics with
v=1). In other words, we investigate the motion of thoseZo=0 cannot be found easily in the continuous form of the
particles which are exactly stopped by the impulse. Againmetric (2.10. Nevertheless, in Eq$3.14—(3.16 we pre-
we can without loss of generality assume thg=0. Then  sented arexplicit form of general geodesieghich was de-
the constrain(3.12 implies e= + 1 so that such a situation rived under the assumption that these @fein the continu-
may occur only in the spacetime with this value of the pa-ous coordinate syster2.10).
rametere. Relations(3.11) then immediately yield As an interesting particular example, which can be inves-
tigated using these expressions, let us now consider geode-
sics in thez=0 plane only. This is the plane of symmetry
Zo= %o . Vo= \/Eri, Vo=0, Uoz_i_ perpendicular to the stringsWe assume that,=0=2z, in
Ti— 2o J2 the regionU<0 behind the wave. With this, the relations
(4.17  (3.195 simplify to

B. General C!-geodesics
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Xot+ 1Yo
= Vizﬁ(l"'f)?’ﬂa
+iYo (1 €)y*7i+2e(XoXoHYoYo)
Zi=—————(Xo*i Yo) 3 :
YT (1+e)(ym)
_ _ (4.20
\-/:(1—6)27’27i+4€(X0X0+YOYO)
I V2(1+€) y;
_ XoXot YoYo— Y27
Ui_\/z (1+e€)yT '

from which follows that|Z;|=1. Therefore the coefficients
(4.2) entering(3.16 take the following form:

1 z=?
_p— _ i
A=B (1-6)(1+e)’ (1-6)(1+¢€)’
(30)°+e(1-36)? (1-20)°+¢e(36)?
B 1-6 ' 1-6 ’
Z17°38(1— 3 6)(1+¢)
B 1-6 :
4.21)
36— €(1-390) (1-368)—€36
A,z= z=

(1-8)(1+e€)%z; (1-8)(1+e)%Z;

=

82— 1 % S5—
Cz=

Substituting Egs(4.20), (4.2]) into Egs.(3.16 we obtain an
explicit solution which describes the behavior in the region
U >0 outside the impulse. In particular, we easily derive tha

(1-%8)—eis
(1-8)(1+¢€)? "’

C;=

Z;

e(1-39)
(1-68)(1+¢€)?

Z;

:

Z;

-

(Uo Vg)=0,

(4.22

o
Zy

—= (U5 —V§)=0.

J‘

Therefore, the geodesiosmain in the plane z 0 also in the

spacetime. Straightforward but somewhat lengthy calcul

tions for 75 = (1/12) (X +iyg), 75=(1/\/2) (X5 +iys)
yield
)
Xg +iyg = (f I)5(Xo+iyo)l_5, (4.23

PHYSICAL REVIEW B7, 064013 (2003

X3+ 1Ys = | Tiye) [t iYo)—Plxotiyo)]
(4.29
where
3 8 [ 36(XXotYoYo) 1—36
P=- -5 NI - , (4.2H
0™ Yo i

and =\ (2+y2)/(x3+y2—e). Equations (4.23 and
(4.24) describe the identification of points on the impulse,
and the refraction formula in the transverse plane0,
respectively. These admit a natural geometrical interpreta-
tion. If we introduce a “polar” representatlon of

positions and velocities byy+iyo=pgexp(ido), x0+|yo

=po exp(ipy), we can conclude from Eq4.23 that ¢,
=(1-6)¢g. As the range ofp, inside (behind the spheri-

cal impulse spans the whole Minkowski spacey
€[0,27), the range of the angular parametgf outside is
[0,2r(1— 6)). Therefore, there is aeficit angle27 4§ in
front of the impulse corresponding to the presence of the
(snapped cosmic string. This is in full agreement with the
geometrical construction of the spacetime presented, e.g.,
[17]. The relation(4.24) is therefraction formulafor geode-
sics in the symmetry plane=0 perpendicular to the strings.
Interestingly, here the effect is totalipdependentof the
parametere, i.e., the differences between the spacetimes
characterized bye=0,—1,+1 disappear in this plane of
symmetry Of course, fo6=0 we obtain a trivial solution

in

yO Yo, xo —xo in the complete Minkowski space without
string and impulse. Note also that the factor
7
Xo—1Wo| " .
(Xo+ Vo =exp—id¢pg) (4.26

in Eq. (4.24) is just an appropriate “rectifying”complex unit
factor which ensures the one-to-one correspondence between
the identified points on both sides of the impukamnalo-
gously to the functiore ™ (a™) given by Eq.(4.10 for lon-

lgltudmal motion. This can be seen easily if we consider two

infinitesimally close parallel null geodesigg=0= yo in the
Minkowski region U<0 without topological defects. The
first geodesic is given by,=0, the second one by an angle
¢ near 2r. However, from the formul&4.24), which reads

pe exp(ipad)=F exp(—idpy), where F is a real factor, it
follows thatépg: — d¢o. Therefore, outside the impulse the
two geodesics whicliemain parallelare described by/)g

=0 and ¢¢ near to—2m4, respectively. The difference
2 S exactly corresponds to the deficit angle in thecally)

Rlat space with the string outside the spherical impulse.
aTherefore the “pure” physical refraction effect of the im-

pulse on geodesics is described just by the expression in the
square bracket on the right-hand side of the @R4).

The above relations can easily be applied to investigate
the effect of the impulsive wave onring of free test par-
ticles. Let us consider a ring in the=0 plane, centered
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aroundx=0=Yy, consisting of particles which am restin  reduce to the privileged family3.6) for which Z,=Z2,
front of the wave, x;=0=y_, in the (locally) flat ~=const, which we investigated in detail above. However,
Minkowski regionU >0. All the particles are simultaneously these special geodesiexcludeobservers which are static in
hit by the impulse at the instant and the ring starts to the Minkowski region outside the impulse. Indeed, from the
deform according to Eq$4.23), (4.24. Obviously, it follows  conditionsxj =0=2z7 we obtain using(3.16 the relation
from Eq. (4.24) that the velocities of the particles,, y, (A—B)F=(D—E)C. Substituting from(4.3) this reduces to

behind the impulsel<0) are given by Z5 (3 6p—e€zZ3)=25 °(38p—1), which has no solution
: ) except for observers in the plaze-0 in spacetime withe
Xo="PXo, Yo="PYo, (427 — 41, which we investigated in Eq¢4.27), (4.28.

. . _ =T Therefore, to obtain a nontrivial family of geodesics cor-
W't.h P given by Eq.(4_1.25) and Ti P _+(X0+y0) : responding to initially static test particles, one has to con-
This yields a self-consistent solution only if . . L JE .

sider the more complicated situation in whigh+0. It is

S(1- 1% 6) difficult to obtain the description of these geodesics in an
P=— s 2 (4.28 explicit form. Nevertheless one can immediately argue that
(1-9) \/Xé+y§ the motion cannot be spherically symmetric. For example,

Thus, all the particles of the ring movadially towards the for the casee= 1 we observe from Eq(4.29 that ZoXo
origin in the z=0 plane, with the same velocityo #XgZo Which, in terms of Egs(4.8), can be expressed as

E\/m: 5(1—15)/(1— 5). The ring is deformed by the a~ # B~. Obviously, the trajectories of such geodesics be-

. e . q c circlef hind the impulseare not radial i.e., these do not “point”
Impulse intocontracting and concentric Circlet course, 4 ya1ds the origin. A sphere of free test particles which are at
this is in accordance with the axial symmetry of the space

. rest in the Minkowski region outside the expanding impul-
time. - . - -
o . . sive wave is thus not deformed into spherical shapes, but to
A more general situation in which the impulse deforms

a. . . .
. R _ a more complicatedaxially symmetri¢ surface.

sphereof test particlegaround the origininitially at rest is, P daially sy ¢

however, more difficult to investigate explicitly. We can

again employ the coordinate freedd®n-Z exp(ip) related V. CONCLUDING REMARKS

to the axial symmetry of the spacetime which corresponds to \ye presented a complete solution of geodesic motion—
a simple rotation of thex,y)-plane around t{‘&aXiS- Using  ajthough not always in closed explicit form—which de-
Egs. (42 and (3.16 we conclude 75 —75exfi(1  scribes the effect on free particles of expanding spherical
—8) ¢, mg— mgexdi(1l—8)¢]. Therefore, without loss impulsive gravitational waves propagating in a flat back-
of generality we can always set for eaiddividual test par-  ground. In particular, we discussed in detail the geodesics in
ticle 5y to be real, i.e.yg =0. Moreover, we are consider- the axially symmetric spacetimes with the impulse generated
ing the motion of test particles which aat rest outsidehe by a snapping cosmic string. The above results can be used
expanding impulsive wave,}7§=0, 25'=0. From Egs. hot only for physical interpretation of the behavior of free

. : test particles but also as a starting point for a mathematically
(3.18, (4.2), ang(3.15) it then follows thaiZ, z.andZi.are real rigorous distributional treatment of impulsive Robinson-
so thatyo=0=yo. The sphere of test particles is thus de-Trautman spacetimes. To be more specific, the geodesics of
formed into anaxially symmetricsurface which is fully de-  the special family(3.6) provide the key to understanding the

scribed by the sectiop=0. ~ discontinuous transformation relating the distributional and
Settingyy=0=Y, in Egs.(3.15 we can now simplifyZ; the continuous form or the metri@nalogous to the case of
to impulsive pp-waves; cf.[9]). These interesting questions

) ) will, however, be investigated elsewhere.
[(1-e)yri—(1+€)zo]Xo—[(1—€)y—(L+€)Zp]Xg
(y1i—2o)[(1+ €)yri—(1—€)Z0]
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