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Geodetic brane gravity
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Within the framework of geodetic brane gravity, the universe is described as a four-dimensional extended
object evolving geodetically in a higher-dimensional flat background. In this paper, by introducing a new pair
of canonical fields$l,Pl%, we derive thequadraticHamiltonian for such a brane universe; the inclusion of
matter then resembles minimal coupling. Second class constraints enter the game, invoking the Dirac brackets
formalism. The algebra of the first class constraints is calculated, and the Becchi-Rouet-Stora transformation
~BRST! generator of the brane universe turns out to be rank 1. At the quantum level, the road is open for
canonical and/or functional integral quantization. The main advantages of geodetic brane gravity are~i! it
introduces an intrinsic, geometrically originated, ‘‘dark matter’’ component,~ii ! it offers, owing to the Lorent-
zian bulk time coordinate, a novel solution to the ‘‘problem of time,’’ and~iii ! it enables calculation of
meaningful probabilities within quantum cosmology without any auxiliary scalar field. Intriguingly, the general
relativity limit is associated withl being a vanishing~degenerate! eigenvalue.

DOI: 10.1103/PhysRevD.67.064012 PACS number~s!: 04.50.1h, 04.60.Ds, 04.60.Kz
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I. INTRODUCTION

Geodetic brane gravity~GBG! treats the universe as a
extended object~brane! evolving geodetically in some fla
background. This idea was proposed more than 20 years
by Regge and Teitelboim~‘‘general relativity in the manner
of string’’! @1#, with the motivation that the first principle
which govern the evolution of the entire universe cannot
too different from those which determine the world-line b
havior of a point particle or the world-sheet behavior of
string.

Geometrically speaking, the four-dimensional curv
space-time is a hypersurface embedded within a hig
dimensional flat manifold. Following the isometric embe
ding theorems@2#, at mostN5 1

2 n(n11) background flat
dimensions are required tolocally embed a generaln-metric.
In particular, forn54, one needs at most a ten-dimension
flat background. This number can be reduced, however, if
n-metric admits some Killing-vector fields.

In the Regge-Teitelboim~RT! model, the external mani
fold ~the bulk! is flat and empty, it contains neither a grav
tational field nor matter fields. Other models have been s
gested, where the external manifold is more complica
@3–7#; it may be curved and contain bulk fields which m
interact with the brane. The RT action, therefore, does
contain bulk integrals; it is only an integral over the bra
manifold, which may include the scalar curvature (R n), a
constant (L), and some matter Lagrangian (Lmatter):

1

S5E S 1

16pGn
R n1L1LmatterDA2gndn21xdt. ~1!

*Email address: karasik@bgumail.bgu.ac.il
†Email address: davidson@bgumail.bgu.ac.il
1Then51 brane is a particle, it hasR 150, andL is the mass of

the particle. Then52 brane is a string, its curvatureR 2 is just a
topological term, andL is the string tension. The brane univer
n54 includes both the scalar curvatureR 4 and the cosmologica
constantL.
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The geodetic brane has two parents:
~1! General relativity gave the Einstein-Hilbert actio

which makes the geodetic brane a gravitational theory;
~2! particle or string theory gave the embeddin

coordinates2 yA(x) as canonical fields, and this will lead t
geodetic evolution. The four-dimensional metric is not a c
nonical field, it is just being induced by the embeddi
gmn(x)5hABym

A(x)yn
B(x).

Because of the fact that the Lagrangian~1! does not de-
pend explicitly onyA, but solely on the derivatives throug
the metric, the geodetic brane equations of motion are a
ally a set of conservation laws:

F S R mn2
1

2
gmnR28pGTmnD y;m

A G
;n

50. ~2!

Equation~2! splits into two parts; the first is proportional t
y,m

A and the second toy;mn
A . Since the four-dimensional co

variant derivative of the metric vanishes,gmn;l50, one
faces the embedding identityhABy;l

A y;mn
B 50. Therefore, the

first and second covariant derivatives ofyA, viewed as vec-
tors in the external manifold, are orthogonal, and each par
Eq. ~2! should vanish separately. The part proportional toy,m

A

implies thatT;n
mn50. The second part is the geodetic bra

equation3

S R mn2
1

2
gmnR28pGTmnD y;mn

A 50. ~3!

The matter fields equations remain intact, since the ma
Lagrangian depends only on the metric.

2We denote the embedding space indices with upper-case
letters, space-time indices with greek letters, and space indices
lower-case latin letters.hAB is the Minkowski metric of the embed
ding space.

3The geodetic factory;mn
A 2GBC

A y,m
B y,n

C replacesy;mn
A in case the

embedding metric is not Minkowski.
©2003 The American Physical Society12-1
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Energy momentum is conserved. This is a crucial res
especially when the Einstein equations are not at our
posal.

Clearly, every solution of Einstein equations is automa
cally a solution of the corresponding geodetic brane eq
tions. But the geodetic brane equations allow for differe
solutions@8#. A general solution of Eq.~3! may look like

R mn2
1

2
gmnR28pGTmn5Dmn, ~4a!

Dmny;mn
A 50, Dmn5” 0. ~4b!

The nonvanishing right hand side of Eq.~4a! will be inter-
preted by an Einstein physicist as additional matter, a
since it is not the ordinaryTmn it may labeleddark matter
@9#.

It has been speculated, relying on the structural simila
to string or membrane theory, that quantum geodetic br
gravity may be a somewhat easier task to achieve than q
tum general relativity~GR!. The trouble is, however, that th
parent Regge-Teitelboim@1# Hamiltonian has never been de
rived.

In this paper, by adding a new nondynamical canoni
field l we derive the quadratic Hamiltonian density of
gravitating brane universe

H5Nkyuk•P2N
8pG

2Ah
F S Ah

8pGD 2

~l1R (3)!

1PQ~C2lI !21QPG . ~5!

The derivation of the geodetic brane Hamiltonian is do
here in a pedagogical way. In Sec. II we translate the relev
geometric objects to the language of embedding. Each ob
is characterized by its tensorial properties with respec
both the embedding manifold and the brane manifold.
embed the Arnowitt-Deser-Misner~ADM ! formalism@10# in
a higher-dimensional Minkowski background; the fou
dimensional spacetime manifold (V4) is artificially separated
into a three-dimensional spacelike manifold (V3) and a time
direction characterized by the timelike unit vector orthogo
to V3. For simplicity we restrict ourselves to three
dimensional spacelike manifolds with no boundary~either
compact or infinite!, while the appropriate surface term
should be added when boundaries are present@11#.

Section III is the main part of this paper, where we der
the Hamiltonian. We first look at an empty universe with
matter fields; we present the gravitational Lagrangian den
as a functional of the embedding vectoryA(x), and derive
the conjugate momentaPA(x). Reparametrization invarianc
causes the canonical Hamiltonian to vanish~in a similar way
to the ADM Hamiltonian and string theory!, and the total
Hamiltonian is a sum of constraints. We introduce a new p
of canonical fieldsl,Pl and make the Hamiltonian quadrat
in the momenta. Following Dirac’s procedure@12# we sepa-
rate the constraints into four first-class constraints~reflecting
reparametrization invariance!, and two second-class con
06401
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straints~caused by the two extra fields!. We define the Dirac
brackets and eliminate the second-class constraints. The
algebra of the constraints takes the familiar form of a re
tivistic theory, such as the relativistic particle, string,
membrane.

In Sec. IV we discuss the inclusion of arbitrary matt
fields confined to the four dimensional brane. The algebra
the constraints remains unchanged, while the Hamiltonia
simply the sum of the gravitational Hamiltonian and the m
ter Hamiltonian.

In Sec. V the necessary conditions for classical Einst
gravity are formulated, they are thatl must vanish and the
total ~bulk! momentum of the brane vanishes.

Section VI deals with quantization schemes. We can
canonical quantization by setting the Dirac brackets to
commutators$,%D→ i\@ ,#. The wave functional of a brane
like universe@13# is subject to a Virasoro-type momentu
constraint equation followed by a Wheeler-deWitt-like equ
tion ~first-class constraints!; the operators are not free, bu
are constrained by the second-class constraints as ope
identities. Another quantization scheme is the functional
tegral formalism, where we use the Batalin-Fradk
Vilkovisky ~BFV! @14# formulation. The Becchi-Rouet-Stor
transformation~BRST! generator@15# is calculated, and the
theory turns out to be rank 1. This resembles ordinary gr
ity and string theory as opposed to membrane theory, wh
the rank is the dimension of the underlying space manifo

In Sec. VII geodetic brane quantum cosmology~GBQC!
is demonstrated. We apply the path integral quantization
the homogeneous and isotropic geodetic brane, within
minisuperspace model. A possible solution to the problem
time arises when one notices that while in GR the only d
namical degree of freedom is the scale factor of the unive
GBQC offers one extra dynamical degree of freedom~the
bulk time! that may serve as time coordinate.

Definitions, notations, and some lengthy calculations w
removed from the main stream of this work and were put
the Appendixes.

II. THE GEOMETRY OF EMBEDDING

In this section we will formulate the relevant geometric
objects of theV4 and V3 manifolds in the language of em
bedding. Let our starting point be a flatm-dimensional mani-
fold M, with the corresponding line element being

ds25hABdyAdyB. ~6!

A. Hypersurfaces

An embedding functionyA(xm) (m50,1,2,3) defines the
four-dimensional hypersurfaceV4 parametrized by the fou
coordinatesxm. TheV4 tangent space is spanned by the ve
torsy,m

A . ~TheV3 hypersurface and tangent space are defi
in a similar way.! The induced four-dimensional metric is th
projection of hAB onto theV4 manifold: gmn5hABy,m

A y,n
B .

Choosing a time directiont and space coordinatesxi ( i
51,2,3), the induced four-dimensional line element tak
the form
2-2
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ds25hAB~y,i
Adxi1 ẏAdt!~y, j

Bdxj1 ẏBdt!. ~7!

The various projections of the metrichAB onto the space
and time directions are denoted as the three-metrichi j , the
shift vectorNi , and the lapse functionN:

hABy,i
Ay, j

B5hi j , ~8a!

hABy,i
AẏB5Ni , ~8b!

hABẏAẏB5NiN
i2N2. ~8c!

These are not independent fields~as in Einstein’s gravity!,
but are functions of the embedding vectoryA. Nevertheless,
it is a matter of convenience to write down the induced fo
dimensional line-element in the familiar Arnowitt-Dese
Misner @10# form

ds252N2dt21hi j ~dxi1Nidt!~dxj1Njdt!. ~9!

The vectors (ẏA,y,i
A) span the four-dimensional tangent spa

of the V4 space-time manifold, whiley,i
A span the three-

dimensional tangent space of theV3 manifold. Usinghi j as
the inverse of the three-metrichi j hjk5dk

i , one can introduce
projections orthogonal to theV3 manifold with the operator

QB
A5dB

A2y,a
A habyB,b , ~10a!

QC
AQB

C5QB
A . ~10b!

Now, any vectorvA can be separated into the projectio
tangent and orthogonal to theV3 space

vA5v i
A1v'

A5vByB,bhaby,a
A 1vB~dB

A2y,a
A habyB,b!.

~11!

An important role is played by the timelike unit vector o
thogonal toV3 space yet tangent toV4 space-time,

nA[
1

N
~ ẏA2Niy,i

A!5
1

N
ẏBQB

A , ~12a!

hABy,i
AnB50, ~12b!

hABnAnB521. ~12c!

The tangent space of the embedding manifoldM is
spanned by the vectorsy,i

A , nA, and Lp
A ( i 51,2,3, p

51, . . . ,m24). The vectorsLp
A are chosen to be orthogon

to y,i
A , nA, and each other.

B. Curvature

The connections on the underlyingV3 are G i j
k

5hABy,i j
A y,l

Bhkl, in this way, the covariant derivative of th
three-metric vanishes,hi j uk50 ~the bar denotes the three
dimensional covariant derivative!. As a result, one faces th
powerful embedding identity

hAByu i j
A y,k

B [0. ~13!
06401
-

The vectorsyu i j
A are orthogonal to theV3 tangent space

and may be written as a combination ofnA andLp
A @16#:

yu i j
A 5nAKi j 1Lp

AV i j
p . ~14!

The projection ofyu i j
A in the nA direction is the extrinsic

curvature of theV3 hypersurface embedded inV4,

Ki j [2
1

2N S Ni u j1Nj u i2
]hi j

]t D52hAByu i j
A nB. ~15!

The coefficientV i j
p is the extrinsic curvature ofV3 with re-

spect to the corresponding normal vectorLp
A .

The intrinsic curvature of theV3 manifold is also related
to the second derivative of the embedding functionsyu i j

A . The
three-dimensional Riemann tensor is

R i l jk
(3) [hAB~yu i j

A yukl
B 2yu ik

A yu j l
B !. ~16!

For convenience we define theẏA-independent symmetric
tensor

CAB[~hi j hab2hiahjb!yu i j
A yuab

B . ~17!

Checking the indices,CAB is a tensor in the embeddin
manifold, but a scalar inV3 space. The trace ofCB

A is simply
the three-dimensional Ricci scalarR (3)5hABCAB. Looking
at Eq.~13!, one can easily check that

CB
Ay,i

B50, ~18!

and C as an operator has at least three eigenvectors
vanishing eigenvalue. Using the definitions~17!,~15!, the
contraction ofC twice with nA is related to the extrinsic
curvature,

Ki
iK j

j2Ki j K
i j 5CABnAnB5

1

N2
CABẏAẏB. ~19!

III. DERIVING THE HAMILTONIAN

The gravitational Lagrangian density is the standard o

L5
1

16pG
A2gR (4). ~20!

Up to a surface term, it can be written in the form

L5
1

16pG
NAh@R (3)2~Ki

iK j
j2Ki j K

i j !#. ~21!

Here,R (3) denotes the three-dimensional Ricci scalar, co
structed by means of the three-metrichi j ~8a!, whereasKi j
~15! is the extrinsic curvature ofV3 embedded inV4. Using
the tensorCAB ~17! one can put the Lagrangian density~21!
in the form

L5
Ah

16pG FNR (3)2
1

N
CABẏAẏBG . ~22!
2-3
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As one can see, the Lagrangian~22! does not involve the
mixed derivativeẏ,i

A or the second time derivativeÿA. The

first derivative ẏA appears either explicitly or withinN.
Therefore the Lagrangian

L~y,ẏ,yu i ,yu i j ! ~23!

is ready for the Hamiltonian formalism.
The momentaPA conjugate toyA are simply

PA~x![
dL

d ẏA~x!

5
Ah

16pG H FR (3)1
1

N2
CBCẏBẏCG ]N

] ẏA
2

2

N
CABẏBJ .

~24!

Using Eqs.~8b!,~8c! to get ]N/] ẏA52nA , while Eq. ~18!

tells us that (1/N)CABẏB5CABnB, the momentum~24! be-
comes

PA52
Ah

16pG
$@R (3)1nBCBCnC#nA12CB

AnB%. ~25!

The next step should be to solve Eq.~25! for
ẏA(y,P,yu i ,yu i j ). But Eq. ~25! involves only nA, so one
would like to solve Eq.~25! for nA(P,y,yu i ,yu i j ) first, and
then solve Eq.~12a! for ẏA

ẏA5NnA1Niy,i
A . ~26!

This looks innocent but even if one is able to solve Eq.~25!
for nA, any attempt to solve Eq.~8b! for Ni(n,y,yu i) and Eq.
~8c! for N(n,y,yu i) will lead to a cyclic redefinition ofNi

and N. This situation is similar to other reparametrizatio
invariant theories~such as the relativistic free particle, strin
theory, etc.! and simply means that we have here 43V3 pri-
mary constraints

hABnAnB1150, ~27a!

hABy,i
AnB50. ~27b!

The constraints should be written in terms of canonical fie
(yA,PA). So one should solve Eq.~25! for nA(P), and then
substitute in the above constraints. Any naive attempt
solve Eq.~25! for nA(y,P) falls short. The cubic equation
involved rarely admits simple solutions. To ‘‘linearize’’ th
problem we define a new quantityl, such that

PA52
Ah

8pG
~C2lI !B

AnB. ~28!

Comparing Eq.~25! with Eq. ~28!, the definition ofl is
actually another constraint,

nACB
AnB1R (3)12l50. ~29!
06401
s

o

An independentl comes along with its conjugate mo
mentumPl . l is not a dynamical field; therefore one fac
another constraint

Pl50. ~30!

Assumingl is not an eigenvalue ofCB
A , we solve Eq.

~28! for nA(Ah,C,P,l) and find

nA52
8pG

Ah
@~C2lI !21#B

APB. ~31!

At this point we have 63V3 primary constraints
~27a!,~27b!,~29!,~30!. We will follow Dirac’s method@12# to
treat theconstrained field theorywe have in hand.

First we write down the various constraints in term of t
canonical fields„yA(x),PA(x),l(x),Pl(x)…:

f05
8pG

2Ah
F S Ah

8pGD 2

~l1R (3)!1PQ~C2lI !21QPG'0,

~32a!

fk5yuk•P'0, ~32b!

f45Pl'0, ~32c!

f55
8pG

2Ah
F S Ah

8pGD 2

1PQ~C2lI !22QPG'0. ~32d!

Notations

We use shorthand notation to simplify the detailed expr
sions;F•G[FAGA whereF and G are vectors in the em
bedding space, andP(C2lI )22P[PA@(C2lI )22#ABPB .

We adopt Dirac’s notationf'0 for weakly vanishing
terms.

The embedding functionsyA(x) and l(x) are scalars in
theV3 manifold. Their conjugate momentaPA(x),Pl(x) are
scalar densities of weight 1. For convenience we norma
all constraints to be scalars in the embedding space,
scalar or vector densities of weight 1 inV3. This way, the
Lagrange multipliers are of weight 0.

fk is based on the constraint~27b! but it takes into ac-
count the embedding identity~18!

fk5yuk•P52
Ah

8pG
yuk~C2lI !n5

lAh

8pG
yuk•n'0.

~33!

f5 is based on the constraint~27a!, but we added the
projection operatorQ @Eq. ~10b!# in front of P. This step
simplifies the final algebra of the constraints, and brings i
the familiar form of a relativistic theory. InsertingQ in front
of P is equivalent to adding terms proportional tofk @Eq.
~32b!#, since

QB
APB5~dB

A2y,a
A habyB,b!PB5PA2y,a

A habfb . ~34!
2-4
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f0 is also a combination of the constraints~29!, ~27b!,
and ~27a!, chosen such that

]f0

]l
5f5'0. ~35!

See Appendix A for the definitions of functional deriv
tives and Poisson brackets.

In a similar way as in other parametrized theories,
canonical Hamiltonian density vanishes

Hc5 ẏAPA2L'0. ~36!

This means that the total Hamiltonian is a sum of constrai

H5E d3xum~x!fm~x!. ~37!
06401
e

s:

The constraints~32! should vanish for all times; therefor
their Poisson brackets~PB! with the Hamiltonian should
vanish ~at least weakly!. This imposes a set of consistenc
conditions for the functionsum(x):

ḟn~x!5$fn~x!,H%

5 Hfn~x!,E d3zum~z!fm~z!J
'E d3zum~z!$fn~x!,fm~z!%'0. ~38!

The basic Poisson brackets between the constraints
calculated in Appendix B, and in general have the form
~39!
four

etri-
s-

the
elds
The exact expressions fora and Fi appear in Appendix B.
Now, insert the PB between the constraints~39! into the
consistency conditions~38! to determineum(x)

$f4~x!,H%'
]f5

]l
~x!u5~x!'0⇒u5~x!50, ~40!

$f0~x!,H%'0⇒u0~x!52N~x! arbitrary, ~41!

$fk~x!,H%'0⇒uk~x!5Nk~x! arbitrary, ~42!

$f5~x!,H%'E d3zF8pG

2Ah
a~z,x!N~z!2f5,ll ukd~x2z!

3Nk~z!1f5,ld~x2z!u4~z!G
⇒u4~x!5Nkl uk~x!2f5,l

21~x!

3E d3z
8pG

2Ah
a~z,x!N~z!. ~43!

The first-class Hamiltonian is then
H5E d3xH Nk@yuk•P1l ukPl#2N
8pG

2Ah
F S Ah

8pGD 2

3~l1R (3)!1PQ~C2lI !21QP

1E d3za~x,z!f5,l
21~z!Pl~z!G J . ~44!

As one can see, at this stage we have in the Hamiltonian
arbitrary functionsN,Nk ~Lagrange multipliers!. This means
we have four first-class constraints reflecting the reparam
zation invariance~four-dimensional general coordinate tran
formation!

w05
8pG

2Ah
F S Ah

8pGD 2

~l1R (3)!1PQ~C2lI !21QP

1E d3za~x,z!f5,l
21~z!Pl~z!G'0, ~45a!

wk5yukP1l ukPl'0. ~45b!

We are left with two second-class constraints, reflecting
fact that we expanded our phase space with two extra fi
l andPl ,
2-5
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u15f45Pl'0, ~46a!

u25f55
8pG

2Ah
F S Ah

8pGD 2

1PQ~C2lI !22QPG'0.

~46b!

Using the classical equation of motion foryA(x),

ẏA~x!5$yA~x!,H%'Nkyuk2N
8pG

Ah
~C2lI !21P,

~47!

one can identify the lapse function~8c! and the shift vector
~8b! with N and Nk, respectively. Thus, we recover the n
ture of the lapse function and the shift vector as Lagra
multipliers only at the stage of the solution to the equation
motion, not as ana priori definition.

We would like to continue along Dirac’s path@12#, and
use Dirac brackets~DB! instead of Poisson brackets. Th
d
nis

l

ilia

06401
e
f

DB are designed in a way such that the DB of a first-cla
constraint with anything are weakly the same as the co
sponding PB, while the DB of a second-class constraint w
anything vanish identically. Using DB, we actually elimina
the second-class constraints~the extra degrees of freedom!.
The DB are defined as

$A,B%D[$A,B%P2E d3xE d3z$A,um~x!%PCmn
21~x,z!

3$un~z!,B%P ~48!

whereCmn
21(x,z) is the inverse of the second-class constrai

PB matrix

Cmn~x,z![$um~x!,un~z!%.

In our case,Cmn(x,z) is simply the 232 bottom right corner
of Eq. ~39!:
less
arts can
Cmn~x,z!5S 0 2
]f5

]l
~x!d~x2z!

]f5

]l
~x!d~x2z! @Fi~x!1Fi~z!#d u i~x2z!

D , m,n51,2. ~49!

When dealing with field theory, the matrixCmn is generally a differential operator, and the inverse matrix is not unique un
one specifies the boundary conditions. We choose ‘‘no boundary’’ as our boundary condition; therefore integration by p
be done freely, and the inverse matrix is

Cmn
21~x,z!5S S S ]f5

]l D 22

Fi~x!1S ]f5

]l D 22

Fi~z! D d u i~x2z! S ]f5

]l D 21

~x!d~x2z!

2S ]f5

]l D 21

~x!d~x2z! 0
D . ~50!
of
nd-

ts is
The resulting DB are

$A,B%D5$A,B%P1E d3xS ]f5

]l D 22

Fi~x!F dA

dl~x! S dB

dl~x! D u i

2S dA

dl~x! D u i

dB

dl~x!G2E d3xS ]f5

]l D 21

~x!

3F dA

dl~x!
$f5~x!,B%1$A,f5~x!%

dB

dl~x!G . ~51!

In this way, from now on, one should work with DB instea
of PB and take the second-class constraints to va
strongly. This will omit the parts proportional toPl from the
first-class constraints~45a!,~45b! and recover the origina
form ~32a!,~32b!.

The algebra of the first-class constraints takes the fam
form @12# of a relativistic theory:
h

r

$f0~x!,f0~z!%D5@hi j f i~x!1hi j f i~z!#d u j~x2z!,
~52a!

$f0~x!,fk~z!%D5f0~z!d uk~x2z!, ~52b!

$fk~x!,f l~z!%D5f l~x!d uk~x2z!1fk~z!d u l~x2z!.

~52c!

The final first-class Hamiltonian of a bubble universe is

H5E d3xH Nkyuk•P2N
8pG

2Ah
F S Ah

8pGD 2

~l1R (3)!

1PQ~C2lI !21QPG J . ~53!

At this stage, we have a first-class Hamiltonian composed
four first-class constraints, and accompanied by two seco
class constraints. The algebra of the first-class constrain
2-6



re
d
i

e

o

om

b

te

th

he

to
p

re

of
bra
u-
es

ali-
a-

be

of

ted

g

nce

e
on

GEODETIC BRANE GRAVITY PHYSICAL REVIEW D67, 064012 ~2003!
the familiar algebra of other relativistic theories. Befo
moving on to quantization schemes we would like to stu
two more classical aspects: what happens if the action
cludes brane matter fields, and what is the relation betw
Einstein’s solutions and the geodetic brane solutions.

IV. INCLUSION OF MATTER

The inclusion of matter is done by adding the action
the matter fields to the gravitational action

S5E d4xFA2g
1

16pG
R (4)1LmG . ~54!

The matter Lagrangian density depends in general on s
matter fields, but also on the four-dimensional metricgmn .
The dynamics of the matter fields is actually not affected
the exchange of the canonical fields fromgmn to yA, and one
expects the same equations of motion or the same ‘‘mat
Hamiltonian density. On the other hand the momentaPA get
a contribution from the matter Lagrangian

DPA5
dL matter

d ẏA
5Ah@Tnnn

A2hi j Tniy,i
A#. ~55!

This contribution depends on the various projections of
energy-momentum tensor

Tmn[
2

A2g

dLmatter

dgmn
. ~56!

Tnn is the matter energy density, or the projection of t
energy-momentum tensor twice onto thenA direction Tnn

[(Tmny,m
A y,n

B )nAnB . While in Tni the energy-momentum
tensor is projected once onto thenA direction and once onto
the V3 tangent space.Tni[(Tmny,m

A y,n
B )nAyB,i . See Appen-

dix C for some examples of matter Lagrangians, Hamil
nians, and the corresponding energy-momentum tensor
jections.

The momentaPA ~25! are now changed to

PA52
Ah

16pG
$@R (3)1nBCBCnC216pGTnn#n

A12CB
AnB

116pGTnih
i j y,i

A%. ~57!

Following the same logic that led us from Eq.~25! to the
introduction ofl @Eq. ~29!#, we will definel as

nACB
AnB1R (3)216pGTnn12l50. ~58!

The effects of matter are thusl→l18pGTnn , PA→PA

2AhTnih
i j y,i

A , but QP is unchanged. The constraints a
modified as follows:

f0→f02AhTnn , ~59!

fk→fk1AhTnk . ~60!

Thus the Hamiltonian is changed to
06401
y
n-
en

f

e
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HG→HG1E d3xAh@NkTnk1NTnn#5HG1Hm , ~61!

whereHm is the matter Hamiltonian, calculated in terms
the matter fields alone as shown in Appendix C. The alge
of the constraints~52! remains unchanged under the incl
sion of matter, where the PB now include the derivativ
with respect to matter fields as well.

V. THE EINSTEIN LIMIT

In some manner Regge-Teitelboim gravity is a gener
zation of Einstein gravity. Any solution to the Einstein equ
tions is also a solution to the RT equations~3!. We will
derive here the necessary conditions for a RT solution to
an Einstein solution.

First, we use a purely geometric relation

2Gnn5R (3)1nBCBCnC, ~62!

whereGnn is the Einstein tensor twice projected onto thenA

direction. The constraint associated with the introduction
l @Eq. ~58!# is

22l5R (3)1nBCBCnC216pGTnn52~Gnn28pGTnn!.

~63!

The Einstein solution of the equation is therefore associa
with

l50. ~64!

As was shown in Eq.~18!, C has a degenerate vanishin
eigenvalue. Therefore the Einstein case withl50, will not
allow for the essential (C2lI )21. One cannot imposel
50 as an additional constraint~as was proposed by RT@1#!,
but only look at it as a limiting case.

Second, we use the projection of the Einstein tensor o
onto thenA direction and once onto theV3 tangent spaceGni

Gnih
i j y, j

A52C B
A nB2~y, j

A~Khi j 2Ki j !! u i , ~65!

in Eq. ~57! and put the momentumPA in the form

PA52
Ah

8pG
@~Gnn28pGTnn!n

A2~Gni28pGTni!h
i j y, j

A

1~y, j
A~Khi j 2Ki j !! u i #. ~66!

It is clear that, if the Einstein equationsGnn58pGTnn and
Gni58pGTni are both satisfied, the momentumPA makes a
total derivative such that

R d3xPA50. ~67!

The total momentumrd3xPA is a conserved Noether charg
since the original Lagrangian does not depend explicitly
yA:

mA[ R d3xPA5const. ~68!
2-7
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The universe, as an extended object, is characterized by
total momentummA. The necessary condition for an Einste
solution is a vanishingmA:

mA[ R d3xPA50. ~69!

The condition~69! simply tells us that the total ‘‘bulk’’
momentum of the universe vanishes. This motivates us to
a new coordinate system for the embedding, namely,
‘‘center of mass frame’’1 ‘‘relative coordinates.’’ As rela-
tive coordinates we will use the derivativesy,i

A . This has a
direct relation to the metric and therefore we expect
equation of motion to resemble Einstein’s equations. T
new system and the calculations appear in Appendix D.

VI. QUANTIZATION

The treatment so far was classical, but the derivation
the Hamiltonian and the construction of the various co
straints are the ingredients one needs for quantization. In
following sections we will describe two quantizatio
schemes, canonical quantization and functional integ
quantization.

A. Canonical quantization

Dirac’s procedure leads us toward the canonical quant
tion of our constrained system. The following recipe w
constructed by Dirac@12# for quantizing a constrained sys
tem within the Schro¨dinger picture: represent the syste
with a state vector~wave functional!; replace all observable
with operators; replace DB with commutators,$,%D
→ i\@ ,#; first-class constraints annihilate the state vec
second-class constraints represent operator identities; s
the commutator is ill defined for fields at the same sp
point, one must place all momenta to the right of the co
straint; first-class constraints must commute with each ot
This ensures consistency, and may call for operator orde
within the constraint.

In our case, we can use the coordinate representation.
state vector is represented by a wave functionalF@y#. The
DB ~commutator! betweenyA and PB are canonical; there
fore, these operators can be represented in a canonical

ŷA~x!⇒yA~x!,

P̂A~x!⇒2 i\
d

dyA~x!
.

The operatorP̂l vanishes identically. The DB ofl with
yA,PB are not canonical; therefore the operatorl̂ must be
expressed as a function ofŷA, P̂B . This can be done with
the aid of the second-class constraint~46b!.

The first-class constraints as operators must annihilate
wave functional. These constraints are recognized as follo

~1! The momentum constraint~45b!,
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2 i\yuk
A dF

dyA
50, ~70!

which simply means that the wave functional is aV3 scalar
and does not change its value under reparametrization o
space coordinates. This can be shown if one takes an in
tesimal coordinate transformation

xk→xk1ek,

yA~x!→yA~x!1ekyuk
A ~x!,

F@y#→F@y#1ekyuk
A dF@y#

dyA
.

The wave functional is unchanged if and only if the mome
tum constraint holds.

~2! The other constraint is the Hamiltonian constraint, a
up to order ambiguities the equation is the analogue to
Wheeler de-Witt equation

8pG

2Ah
F S Ah

8pGD 2

~ l̂1R (3)!~x!2\2~~C2l̂I !21!AB

3~x!
d2

dyA~x!dyB~x!
GF@y#50. ~71!

It is accompanied, however, by the operator identity

8pG

2Ah
F S Ah

8pGD 2

1 P̂Q~C2l̂I !22Q P̂G50. ~72!

B. Functional integral quantization

Calculating functional integrals for a constrained syst
is not new. This was done for first-class constraints by B
@14#, and was generalized for second-class constraints
Fradkin and Fradkina@17#.

The first step is actually a classical calculation, that
calculating the BRST generator@15#. For this calculation we
will adopt the following notations.

The set of canonical fields will include the Lagrange m
tipliers Nm5(N,Ni), that is,QA5(yA,l,Nm)T, and the cor-
responding conjugate momentaPA5(PA ,Pl ,pm). The
Lagrange multipliers are not dynamical; therefore the con
gate momenta must vanish. This doubles the number of fi
class constraintsGa5(pm ,fn).

For each constraint we introduce a pair of fermionic fie
ha5(rm,cm)T, and the conjugate momentaPa5( c̄n ,r̄n). ~In
our case, all constraints are bosonic and therefore the g
fields are fermions.!

Each index actually represent a discrete index and a c
tinuous index, for example,yA[yA(x). The summation con-
vention is then generalized to sum over the continuous in
as well
2-8
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Nmfm[E d3xNm~x!fm~x!. ~73!

We use the Dirac brackets as in Eq.~51!, but the Poisson
brackets are generalized to include bosonic and fermio
degrees of freedom

$L,R%5
] rL

]qA

] lR

]pA
2~21!nLnR

] rR

]qA

] lL

]pA
, ~74!

where (q,p) is the set of canonical fields including the fe
mionic fields.r ,l denote right and left derivatives:

dR5
] rR

]q
dq5dq

] lR

]q
. ~75!

The fermionic index is

nR5H 0 if R is a boson

1 if R is a fermion.
~76!

Let us now calculate the structure functions of the theo
The first-order structure functions are defined by the alge
of the constraints$Ga ,Gb%D5GcUab

c . It is only the original
constraints~not the multiplier momenta! that have nonvan-
ishing structure functions~52!:

H S pm~x!

fm~x!
D ,~pn~z!,fn~z!!J

D

5S 0 0

0 E d3wfl~w!Umn
l ~x,z,w!D , ~77!

and the relevant first-order structure functions are

Umn
l ~x,z,w!5$dm

0 dn
0hlk@d~w2x!1d~w2z!#

1dm
l dn

kd~w2z!1dm
k dn

ld~w2x!%d ,k~x2z!.

~78!

~Generally, one should also look at$H0 ,Ga%D5GbVa
b , but

here H050.! The second-order structure functions are d
fined by the Jacobi identityA($$Ga ,Gb%D ,Gc%D)50, where
A means antisymmetrization. Using the first-order functio
~78! one getsA(Gd@$Uab

d ,Gc%D1Uec
d Uab

e #)50. This equa-
tion is satisfied if and only if the expression in the squa
brackets is again a sum of constraints:

A~$Uab
d ,Gc%D1Uec

d Uab
e !5GfUabc

f d . ~79!

The second-order structure functionsUabc
f d are antisymmetric

on both sets of indices. In our case, the second-order s
ture functions vanish, and the theory is of rank 1. This
sembles ordinary gravity and string theory as opposed
membrane theory, where the rank is the dimension of
underlying space manifold. The BRST generator of a ran
theory is given byV5Gaha1 1

2 PcUab
c hbha. Here it is
06401
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V5E d3x@pmrm1fmcm1hklr̄kc,l
0c01 r̄mc,k

m ck#~x!.

~80!

The main theorem of BFV@14# is that the following func-
tional integral does not depend on the choice of the ga
fixing Fermi functionC:

ZC5E DQADPADhaDPaM

3expF i E dt~PAQ̇A1P aḣa2HC!G , ~81!

where M5d(u1)d(u2)(detCmn)
1/2 is taking care of the

second-class constraints, and, since the canonical Ha
tonian vanishes,HC52$C,V%D .

The determinant ofCmn for compact space manifolds i
calculated in a simple way in Appendix E.

VII. AN EXAMPLE: GEODETIC BRANE QUANTUM
COSMOLOGY

In the following example we would like to implemen
GBG for cosmology, and in particular for quantum cosm
ogy. Detailed examples and calculations can be found
@18,19#; here we will just focus on global characteristics
the Feynman propagator for a geodetic brane within
minisuperspace model. Attention will be given to the diffe
ences between ‘‘geodetic brane quantum cosmology’’ and
standard ‘‘quantum cosmology.’’

The standard and simple way to describe the cosmolog
evolution of the universe is to assume that on large scales
universe is homogeneous and isotropic. The geometry
such a universe is described by the Friedmann-Robert
Walker ~FRW! metric

ds252N2~ t !dt21a2~ t !dV3
2 , ~82!

whereN(t) is the lapse function,a(t) is the scale factor of
the universe, and

dV3
25dc21x2~c!dV2

2 ~83!

is the line element of the three-dimensional spacelike hyp
surface which is assumed to be homogeneous and isotro
dV2

2 is the usual line element on a two-sphere, andx(c)
5sinc, c, or sinhc if the three-space is closed, flat, or ope
respectively. In general relativity, the components of the m
ric are the dynamical fields, the lapse functionN(t) is actu-
ally a Lagrange multiplier, and the only dynamical variab
is the scale factora(t). This model is called minisuperspac
since the infinite number of degrees of freedom in the me
is reduced to a finite number. The remnant of general co
dinate transformation invariance is time reparameteriza
invariance, that is, the arbitrariness in choosingN(t). The
usual and most convenient gauge isN51.

In GBG the situation is quite different. First, one has
embed the FRW metric~82! in a flat manifold. The minimal
embedding of a FRW metric calls for one extra dimensio
2-9
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We will work here, for simplicity, with the closed univers
x5sinc. The embedding in a flat Minkowski spacetime wi
the signature (2,1,1,1,1), is given by@20#

yA5S T~ t !

a~ t !zI~x!
D , zI5S sinc sinu cosf

sinc sinu sinf

sinc cosu

cosc

D . ~84!

The lapse function is given byN(t)5AṪ22ȧ2; it is not a
Lagrange multiplier, but it depends on two dynamical va
ables, the scale factora(t) and the external timelike coordi
nateT(t). Time reparametrization invariance is, naturally,

intrinsic feature ofAṪ22ȧ2dt, but no gauge fixing is al-
lowed here, since bothT(t) and a(t) are dynamical. The
gravitational Lagrangian~22!, after integrating over the spa
tial manifold, is

L5sS 3Na2
3aȧ2

N
D . ~85!

s52p2/8pG is a scaling factor; for convenience we will s
s51. The key for quantization is of course the Hamiltonia
One can derive the Hamiltonian directly from the La
grangian~85!, or use the ready made Hamiltonian~53! and
just insert the ‘‘minimized’’ expressions for the embeddi
vector and the conjugate momenta.

Minisuperspace Hamiltonian

The first step is to introduce the coordinates and conjug
momenta. The general embedding vectoryA is replaced by
the dynamical degrees of freedoma(t) andT(t), while the
spatial dependence is forced by the expression~84!. It is
expected that the conjugate momenta will have two deg
of freedomPa(t),PT(t); the delicate issue is the spatial d
pendence of the momenta. Our choice is

PA5S PT~ t !

Pa~ t !zI~x!
D • sin2c sinu

8pG
, ~86!

the factor sin2c sinu being inserted in order to keep the m
mentum a three-dimensional vector density. The spatial
pendence is throughzI(x) such that the momentum con
straint ~32b! vanishes strongly. The normalization
*d3xẏApA5s(ȧPa1ṪPT). In addition, we setl5l(t) and
Pl5Pl(t)(sin2c sinu)/8pG.

Inserting these expressions into the constraints~32! and
integrating over spatial coordinates, one is left with one fir
class constraint

w5
1

2 S 6a1a3l1
PT

2

a3l
1

Pa
2

6a2a3l
1aPlD '0, ~87!

and two second-class constraints

u15Pl'0,
06401
-

.

te

es

e-
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u25
1

2 S a32
PT

2

a3l2
1

a3Pa
2

~6a2a3l!2D '0.

~88!

The Dirac brackets~51! are defined as

$A,B%D5$A,B%P2S PT
2

a6l3
1

a6Pa
2

~6a2a3l!3D 21

3F]A

]l
$u2 ,B%1$A,u2%

]B

]l G ~89!

and the minisuperspace Hamiltonian is

H5
2N

2 S 6a1a3l1
PT

2

a3l
1

Pa
2

6a2a3l
1aPlD . ~90!

We would like to focus on the Feynman propagator@21#
K(af ,Tf ,t f ;ai ,Ti ,t i) for the empty geodetic brane univers
Although the empty universe is a nonrealistic model for o
universe, the calculation of the propagator is simple an
demonstrates some of the main features and advantag
geodetic brane quantum cosmology over the standard q
tum cosmology models. This propagator is the probabi
amplitude that the universe is in (af ,Tf) at time t f , and it
was in (ai ,Ti) at time t i . We will use a modified version o
the BFV integral offered by Senjanovic@22#, where the
ghosts and multipliers were integrated out:

K~af ,Tf ,t f ;ai ,Ti ,t i !

5E dm expF2p i E
t i

t f
dt~ ȧPa1ṪPT1l̇Pl!G ,

dm5dadPadTdPTdldPld~w!

3d~x!u$x,w%ud~u1!d~u2!udet~$um ,un%!u1/2.

~91!

This propagator is calculated in phase space, where the m
sure is the Liouville measuredxdp. In addition, the measure
dm enforces the constraints~first and second class! by delta
functions; it includes an arbitrary gauge fixing functionx,
the determinants of the Poisson brackets between first-c
constraints and the gauge fixing function, and the deter
nants of the Poisson brackets between second-class
straints. Attention should be given to the following issues

The canonical Hamiltonian vanishes, therefore it is abs
in the action.

The boundary conditions for the propagator determine
values ofaf ,Tf ,ai ,Ti , but not the value ofl nor the values
of the momenta. Therefore, the momenta andl must be
integrated over at the initial point.

The gauge fixing functionx, although arbitrary, must be
chosen such that it does not violate the boundary conditi
nor the constraints. In addition, the Poisson brackets$x,w%
must not vanish.
2-10
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The determinant of the second-class constraints Pois
brackets is simply

udet~$um ,un%!u1/25U]u2

]l U5U PT
2

a3l3
1

a6Pa
2

~6a2a3l!3U .
~92!

Our convention here iss51 and Planck constanth
51 (\51/2p).

In cases where matter is included, the inclusion of ma
will affect the result in a few places. The action will includ
terms like ḟp, an integration over matter fields and m
menta will be added, and the first-class constraint will hav
contribution which is simply the matter Hamiltonianw→w
1Hm(a,f,p). All other constraints remain intact.
m
o

o
te
a

e

de
m
e
e
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The calculation of the propagator~91! is carried out in a
simple way following Halliwell@23#, and the final propaga
tor takes the form

K6~af ,Tf ;ai ,Ti !5E dv exp@2p iv~Tf2Ti !

72p iv2@F~xf !2F~xi !##. ~93!

The index ofK6 and the7 in the exponent refers to th
expanding or contracting scale factor.v is the conserved
bulk energy~the momentum conjugate to the bulk time c
ordinateT). Since the value ofv is not fixed at the initial
condition, one must integrate overv. One should notice ac
cording to Eq.~69! that the Einstein solution is assiciate
with v50. The functionF(x) is given by
F~x!5H 1

12
@3 arcsinx1A12x2~4x512x323x!#, uxu<1,

sgn~x!
p

8
2

i

12
@3 sgn~x!arccoshuxu2Ax221~4x512x323x!#, 1,uxu,

~94!
ogy
ale
no
c.

to
d to
one
ol-
an

om
wherex5(3a/v)1/3.
Let us now examine the properties of the propagator~93!.

Actually, the propagator is independent of the internal ti
parametert ~a common character of all parametrized the
ries!, and depends exclusively on the value ofa andT at the
boundaries.

The most basic characteristic of a propagator is the p
sibility of propagating from an initial state to a final sta
through an intermediate state. For example, the propag
for a nonrelativistic particle is K(x3 ,t3 ;x1 ,t1)
5*dx2K(x3 ,t3 ;x2 ,t2)K(x2 ,t2 ;x1 ,t1). At the intermediate
time t2, one must integrate overx2. It is clear that there is no
integration overt2 ; t is the evolution parameter, it must b
monotonic t3.t2.t1, and integration overt2 makes no
sense. Another characteristic of the propagator
limt2→t1

K(x2 ,t2 ;x1 ,t1)5d(x22x1). The situation with pa-

rametrized theories is quite different. The propagator is in
pendent of the internal time, and integration over all dyna
cal variables diverges. The solution is, usually, to use on
the dynamical variables as ‘‘time,’’ and integrate only ov
the other variables.

The question is, how does the propagator~93! behave at
the intermediate point? What is the relevant evolution para
eter and what integrations should be made? One can c
that, if a is taken to be the monotonic evolution parame
and integration overT at the intermediate point is done, the
the propagator~93! is well behaved:
e
-

s-

tor

is

-
i-
of
r

-
ck
r

K~a3 ,T3 ;a1 ,T1!5E dT2

3E dve2p i $v(T32T2)2v2[F(x3)2F(x2)] %

3E dv̄e2p i $v̄(T22T1)2v̄2[F( x̄2)2F( x̄1)] %

5E dve2p i $v(T32T1)2v2[F(x3)2F(x1)] %,

~95!

K~a1 ,T2 ;a1 ,T1!5E dve2p iv(T22T1)5d~T22T1!. ~96!

This cannot be done within the standard quantum cosmol
models, since there the only dynamical variable is the sc
factor a. Such a propagator of only one variable contains
information; it can tell only that the variable is monotoni
The common solution in standard quantum cosmology is
add another dynamical variable such as a scalar field an
use one of them as the evolution parameter. Here we see
of the main advantages of geodetic brane quantum cosm
ogy over the standard models. The problem of time has
intrinsic solution as we have one extra degree of freed
which serves as ‘‘time.’’
2-11
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The most general wave function that can be genera
using the propagator~93! is

C~a,T!5E dve2p ivT@A~v!e22p iv2F(x)1B~v!e2p iv2F(x)#.

~97!

One can verify that the wave function~97! @and the propa-
gator~93!# satisfies the corresponding Wheeler-deWitt eq
tion

\2F2j~x!
]

]a S 1

j~x!

]

]aD1j2~x!
]2

]T2GC~a,T!50,

~98!

where j(x)5(112x2)A12x2, and x5@3a(2 i\]/
]T)21#1/3. Putting 2 i\]/]T5v and neglecting the term
proportional to the first derivative]C/]a, Eq. ~98! looks
like a zero energy Schro¨dinger equation

F2\2
]2

]a2
1Vv~a!GCv~a!50, ~99!

with the potential

Vv~a!52v2F12S 3a

v D 2/3GF112S 3a

v D 2/3G2

536a223v4/3~3a!2/32v2, ~100!

see Fig. 1. The classical turning point isa5v/3, and the
empty brane universe cannot expand classically byeond
point. The empty universe model is nonrealistic; a more
alistic model may include some matter fields, or at leas
cosmological constant. Analysis of the cosmological cons
universe can be found in@18#.

In accordance with Sec. V, one of the necessary co
tions for an Einstein solution is Eq.~67!, *d3xPA50. Within
our minisuperspace model, integrating the momenta~86!

FIG. 1. The potentialVv(a).
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over the spatial manifold one gets*d3xPA5(PT,0,0,0,0)T;
thus the Einstein case is associated withv50, and the only
classical regime isa50.

The still open question is that of the boundary conditio
in particular,C(a50,T) andC(a→`,T). One possibility is
thatC vanishes at the big bang (a50) andC is bounded at
a→`. This will lead to v quantizationvn

258\(n11/4)
where n is a positive integer. Clearly, the Einstein casev
50 is excluded by such a quantization condition.

VIII. SUMMARY

~1! In the present model of geodetic brane gravity, t
four-dimensional universe floats as an extended object wi
a flat m-dimensional manifold. It can be generalized, ho
ever, to include fields in the surrounding manifold~bulk!;
this is done by adding the bulk action integral to the action
the brane. The brane will feel those bulk fields as forc
influencing its motion@6#. The bulk fields may include mat
ter fields or the bulk gravity@3–5,7#.

~2! In this paper we have derived the quadratic Ham
tonian of a brane universe. The Hamiltonian is a sum of fo
first-class constraints, while two additional second-class c
straints are present. We used Dirac brackets and found
algebra of first-class constraints to be the familiar one fr
other relativistic theories~such as string, membrane, or ge
eral relativity!. The BRST generator turns out to be of ran
1.

~3! Geodetic brane gravity modifies general relativity, a
introduces in a natural waydark mattercomponents. Dark
matter in inflationary models that accompanies ordinary m
ter to govern the evolution of the universe can be found
@9#.

~4! We have formulated the conditions for a solution to
that of general relativity, and shown that the Einstein ca
can be achieved only as a limiting case.

~5! Canonical quantization is possible with the aid
Dirac brackets. The resulting Wheeler-de Witt equation
cludes operators which are not free, but are constrained
the second-class constraints as operator identities.

~6! The ground is ready for functional integral quantiz
tion, the BRST generator is of rank 1, and the determinan
second-class constraints has been brought to a simple fo

~7! A simple application of geodetic brane gravity to co
mology is possible within the framework of a minisupe
space. Classical cosmological models appear in@24,25#. Ca-
nonical quantization appears in@18#, and the complementary
functional integral quantization in@19#.

~8! Another significant advantage of GBG over GR is t
solution to the problem of time. While a homogeneous a
isotropic metric is characterized by only one dynamical va
able~the scale factor of the universe!, the embedding vecto
contains two dynamical variables~the scale factor and the
bulk time!. Thus, taking the embedding vector to be the c
nonical variable will enhance the theory with one extra va
able that may be intepreted as a time coordinate.

APPENDIX A: FUNCTIONAL DERIVATIVES

Let F@y# be a functional of y(x) such that dF
5*d3x f(x)dy(x); then the functional derivative is
2-12
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dF/dy(x)[ f (x). The chain rule holds for functional deriva
tives dF(G@y#)/dy(x)5]F/]GdG@y#/dy(x).

The delta distribution is a scalar density of weight 1 su
that for a three-scalarf (x)

f ~x!5E d3z f~z!d3~x2z!. ~A1!

The covariant derivative of the delta functiond u i
3(x2z) is

defined for a three-vectorgi(x) as

E d3xgi~x!d u i
3~x2z!52gu i

i ~z!. ~A2!

The delta function is symmetric with its two arguments

d~x2z!5d~z2x!. ~A3!

The first covariant derivative of the delta function is antisy
metric with its arguments

d u i~x2z![¹xid~x2z!52¹zid~z2x![2d u i~z2x!,
~A4!

while the second covariant derivative is again symmetric
The basic functional derivatives are

dyA~x!

dyB~z!
5dB

Ad~x2z!, ~A5!

dyu i
A~x!

dyB~z!
5dB

Ad u i~x2z!, ~A6!

dyu i j
A ~x!

dyB~z!
5~dB

A2y ua
A habyBub!d u i j ~x2z!

2yBu i j yua
A hakd uk~x2z!. ~A7!

For a general expressionF(x,y,yu i ,yu i j ) the functional de-
rivative is

dF~x!

dyA~z!
5

]F

]yA
~x!d~x2z!1

]F

]yu i
A

~x!d u i~x2z!

1
]F

]yu i j
B

~x!@~dA
B2yub

B habyAua!d u i j ~x2z!

2yAu i j yub
B hbkd uk~x2z!#. ~A8!

Another nontrivial example is the three-dimensional Chr
offel symbolsGkl

i 5hi j y, j
AyA,kl ,

dGkl
i ~x!

dyA~z!
5hi j yAukl~x!d u j~x2z!1hi j yAu j~x!d ukl~x2z!.

~A9!

The Poisson brackets are defined in the usual way:
06401
h

-

-

$F,G%5E d3xS dF

dyA~x!

dG

dPA~x!
2

dF

dPA~x!

dG

dyA~x!
D .

~A10!

APPENDIX B: POISSON BRACKETS OF CONSTRAINTS

We will start with the constraints~32!:

f05
8pG

2Ah
F S Ah

8pGD 2

~l1R (3)!1PQ~C2lI !21QPG'0,

~B1a!

fk5yuk•P'0, ~B1b!

f45Pl'0, ~B1c!

f55
8pG

2Ah
F S Ah

8pGD 2

1PQ~C2lI !22QPG'0. ~B1d!

The PB of these constraints are listed below:

$f0~x!,f0~z!%5@Qi~x!1Qi~z!#d u i~x2z!'0, ~B2a!

$f0~x!,f l~z!%5f0~z!d u l~x2z!2f5l ,l~z!d~x2z!'0,
~B2b!

$f0~x!,f4~z!%5f5~z!d~x2z!'0, ~B2c!

$f0~x!,f5~z!%5@Bi~x!1Bi~z!#d u i~x2z!1M ~z!d~x2z!,

~B2d!

$fk~x!,f l~z!%5f l~x!d uk~x2z!1fk~z!d u l~x2z!'0,
~B2e!

$fk~x!,f4~z!%50, ~B2f!

$fk~x!,f5~z!%5f5~x!d uk~x2z!2
]f5

]l
l ukd~x2z!,

~B2g!

$f4~x!,f4~z!%50, ~B2h!

$f4~x!,f5~z!%52
]f5

]l
d~x2z!, ~B2i!

$f5~x!,f5~z!%5@Fi~x!1Fi~z!#d u i~x2z!, ~B2j!

where the shorthand expressions are

]f5

]l
5

8pG

Ah
@PQ~C2lI !23QP#, ~B3a!

Ki j 52
8pG

Ah
P~C2lI !21yu i j , ~B3b!

Qi5hi j f j12F ~Khi j 2Ki j ! u j2
8pG

Ah
hi j f j Gf5'0,

~B3c!
2-13
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Bi5F ~Khi j 2Ki j ! u j2
8pG

Ah
hi j f j G ]f5

]l

1F]~Khi j 2Ki j !

]l G
u j
f5

'@~Khi j 2Ki j ! u j #
]f5

]l
, ~B3d!

M'
Ah

8pG Fl ]K

]l
2K1~Ri j 22Kil K j

l !
]

]l
~Khi j 2Ki j !G

1~Khi j 2Ki j ! u jF S ]f5

]l D
u i
22

8pG

Ah
@P~C2lI !21# u i

3~C2lI !22PG2
8pG

Ah
P~C2lI !21

3@~C2lI !21P# u i j
]

]l
~Khi j 2Ki j !, ~B3e!

Fi'
1

3

]2f5

]l2
~Khi j 2Ki j ! u j2S ]f5

]l D 2F S ]f5

]l D 21

3
]

]l
~Khi j 2Ki j !G

u j
22

8pG

Ah
P~C2lI !22

3@~C2lI !21P# u j
]

]l
~Khi j 2Ki j !. ~B3f!

APPENDIX C: MATTER HAMILTONIANS

Consider here a few simple matter Lagrangians a
Hamiltonians.

For a cosmological constant,

Lmatter52A2g2L, ~C1a!

Tab522Lgab. ~C1b!

The corresponding energy-momentum projections are

Tnn52L, ~C2a!

Tni50. ~C2b!

The Hamiltonian is simply

Hmatter52Lmatter5NAh2L5NAhTnn . ~C3!

For a scalar fieldF(x),

Lmatter52A2gS 1

2
gmn]mF]nF1V~F! D , ~C4a!
06401
d

Tab5S gamgbn2
1

2
gabgmnD ]mF]nF

2gabV~F!. ~C4b!

The momentumP conjugate toF is given by

P5
dL
dḞ

5Ah
1

N
~Ḟ2NiF ,i !, ~C5!

and the corresponding energy-momentum projections ar

Tnn5
1

2 S 1

h
P21hi j F ,iF , j D1V, ~C6a!

Tni5
1

Ah
PF ,i . ~C6b!

The matter Hamiltonian is

Hmatter5NAhS 1

2h
P21

1

2
hi j F ,iF , j1VD1NiPF ,i

5NAhTnn1NiAhTni . ~C7!

For a vector fieldAm(x),

Lmatter52
1

16p
A2ggmlgnsFmnFls , ~C8a!

Tab5
1

4p S gamgbn2
1

4
gabgmnDglsFmlFns .

~C8b!

The momentumPm conjugate toAm is given by

P050, ~C9a!

P i5
Ah

4pN
hi j ~Ȧj2A0,j2NkFk j!, ~C9b!

and the corresponding energy-momentum projections ar

Tnn5
2p

h
hi j P iP j1

1

16p
hi j hklFikF jl , ~C10a!

Tni5
1

Ah
hklPkFil . ~C10b!

The Hamiltonian is

H5NAhS 2p

h
hi j P iP j1

1

16p
hi j hklFikF jl D

1NiP jFi j 2A0P ,i
i

5NAhTnn1NiAhTni2A0P ,i
i . ~C11!

In this case the Hamiltonian picks up another Lagrange m
tiplier A0, and an additional constraint
2-14
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2P ,i
i 5

1

4p
A2gF;n

0n50. ~C12!

APPENDIX D: THE CENTER OF MASS AND RELATIVE
COORDINATES

We will try to make a canonical transformation to the ne
system. We will use a global pairYA(t),PA(t) to describe the
total momentum and its conjugate coordinate, and as rela
coordinates we will use the directional derivativeszi

A(x)
5y,i

A(x) of the fieldyA(x). ~This is the analogue to a discre
system, where the relative coordinates are differences
tween the coordinates of the various particles involved.!

The variation of the action with respect toy,i
A(x) is going

to be very similar to the variation with respect tohi j , and
therefore will resemble Einstein’s equations. The new se
canonical ‘‘coordinates1 fields’’ YA,PA ,zi

A(x),pA
i (x) must

obey the canonical PB

$YA,PB%5dB
A , ~D1a!

$YA,pB
i ~x!%50, ~D1b!

$zi
A~x!,PB%50, ~D1c!

$zi
A~x!,pB

j ~ x̄!%5dB
Ad i

jd~x2 x̄!. ~D1d!

We will write the transformation from the old set of fields
the new set as

YA~ t !5E d3x f~x!yA~ t,x!, ~D2a!

PA~ t !5E d3xPA~ t,x!, ~D2b!

zi
A~ t,x!5y,i

A~ t,x!, ~D2c!

pA
i ~ t,x!5E d3x̄PA~ t,x̄!Ji~x,x̄!, ~D2d!

while the inverse transformation is

yA~ t,x!5YA~ t !1E d3x̄zi
A~ t,x̄!Ji~ x̄,x!, ~D3a!

PA~ t,x!5PA~ t ! f ~x!2pA,i
i ~ t,x!. ~D3b!

The functions f (x),Ji(x,x̄) are distributions over theV3
manifold; they do not depend on the canonical fields, and
particular are independent of the three-metric. The solu
to Eq. ~D1! put some restrictions onf (x),Ji(x,x̄), and they
must satisfy the following relations:

E d3x f~x!51, ~D4a!

E d3x̄ f ~ x̄!Ji~x,x̄!50, ~D4b!
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]Ji~x,x̄!

] x̄ j
5d j

i d~x2 x̄!, ~D4c!

]Ji~x,x̄!

]xi
5 f ~x!2d~x2 x̄!. ~D4d!

We assume one can find such distributions and we move
to the dynamics. We will start with the Hilbert action~1! and
do the variation with respect to the new variables:

dS5
21

16pGE d4xA2g~Gmn28pGTmn!dgmn

5
22

16pGE d4xA2g~Gmn28pGTmn!yA,mdy,n
A

5
2

16pGE d4xH @A2g~Gm028pGTm0!yA,m# ,0

3FdYA1E d3x̄dzi
A~ x̄!Ji~ x̄,x!G

2
2

16pGE d4xA2g~Gm i28pGTm i !yA,mdzi
A~x!.

~D5!

The variation with respect toYA will lead to the conservation
of the total momentum:

22

16pGE d3x@A2g~Gm028pGTm0!yA,m#5mA5const.

~D6!

The variation with respect tozi
A(x) will lead to an equation

similar to Einstein’s equations, but the right hand side do
not vanish:

A2gyA,a@Ga i28pGTa i #~x!

5E d3x̄Ji~x,x̄!@A2g~Ga028pGTa0!yA,a~ x̄!# ,0 .

~D7!

We multiply Eq.~D7! by (1/A2g)gmny,n
A to get

Gm i28pGTm i~x!5Dm i~x!

5
1

A2g
gmny,n

A ~x!E d3x̄Ji~x,x̄!

3@A2g~Ga028pGTa0!yA,a~ x̄!# ,0 .

~D8!

An Einstein physicist will interpret Eq.~D8! as if there is
some additional matter in the universe, and may call it d
matter.

It is easy to reveal Eq.~3! if one takes the derivative o
Eq. ~D7! with respect toxi and uses Eq.~D4d!.
2-15
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APPENDIX E: DETERMINANT OF SECOND CLASS
CONSTRAINTS PB

We would like to calculate the determinant ofCmn(x,z)
@Eq. ~49!#. First we will find the eigenvalues ofC. Takev(x)
to be a two-component scalar function

v~x!5S g~x!

f ~x!
D . ~E1!

The eigenvalue equation ofC is

E d3zC~x,z!v~z!5av~x!. ~E2!

Inserting Eq.~49! into Eq. ~E2! one can see that the comp
nents ofv(x) are proportional, and must obey a different
equation

g52
1

a

]f5

]l
f , ~E3a!

2Fi f u i1F u i
i f 2

1

a S ]f5

]l D 2

f 5a f . ~E3b!

Multiplying Eq. ~E3b! by f one gets

~Fi f 2! u i5Fa1
1

a S ]f5

]l D 2G f 2. ~E4!

Eigenvalues of a differential operator are determined by
boundary conditions. Our boundary conditions are actu
the fact that the three-manifold has no boundary. Thus, i
grating Eq.~E4! over V3 gives us

E d3xFa1
1

a S ]f5

]l D 2G f 2~x!50. ~E5!
l
i

B

ss
,
.
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Arranging Eq.~E5! one gets

a252

E d3x~]f5 /]l!2f 2~x!

E d3x f2~x!

. ~E6!

Cmn(x,z) is a PB matrix and therefore anti-Hermitian
this causes the eigenvalues ofC to be purely imaginary.

One can see that the eigenvalues ofC are affected only by
the off-diagonal terms]f5 /]l, not byFi .

The structure ofa2 is very simple. Define the probability
density

f̄ ~x![
f 2~x!

E d3x f2~x!

; ~E7!

one sees that any eigenvalue ofC is simply the expectation
value of (]f5 /]l)2 with respect to some probability distri
bution f̄ :

a f̄
2
52 K S ]f5

]l D 2L
f̄

. ~E8!

For eachf̄ one finds two complex conjugate purely imag
nary eigenvalues. The determinant ofC is therefore the mul-
tiplication of all eigenvalues

detC5)
f̄

K S ]f5

]l D 2L
f̄

. ~E9!

The probability density over a compact manifold can be
rametrized by the appropriate harmonics, and the produc
countable. See, for example,@26,27# for the compactS3 har-
monics.
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