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Geodetic brane gravity
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Within the framework of geodetic brane gravity, the universe is described as a four-dimensional extended
object evolving geodetically in a higher-dimensional flat background. In this paper, by introducing a new pair
of canonical field{\,P,}, we derive thequadratic Hamiltonian for such a brane universe; the inclusion of
matter then resembles minimal coupling. Second class constraints enter the game, invoking the Dirac brackets
formalism. The algebra of the first class constraints is calculated, and the Becchi-Rouet-Stora transformation
(BRST) generator of the brane universe turns out to be rank 1. At the quantum level, the road is open for
canonical and/or functional integral quantization. The main advantages of geodetic brane gravijyitare
introduces an intrinsic, geometrically originated, “dark matter” compong@ntit offers, owing to the Lorent-
zian bulk time coordinate, a novel solution to the “problem of time,” afiid) it enables calculation of
meaningful probabilities within quantum cosmology without any auxiliary scalar field. Intriguingly, the general
relativity limit is associated with. being a vanishingdegenerateeigenvalue.
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[. INTRODUCTION The geodetic brane has two parents:
(1) General relativity gave the Einstein-Hilbert action,
Geodetic brane gravityGBG) treats the universe as an which makes the geodetic brane a gravitational theory;
extended objectbrang evolving geodetically in some flat (2) particle or string theory gave the embedding
background. This idea was proposed more than 20 years agoordinate$ y”(x) as canonical fields, and this will lead to
by Regge and Teitelboirtfgeneral relativity in the manner geodetic evolution. The four-dimensional metric is not a ca-

of string”) [1], with the motivation that the first principles nonical field, it is just being induced by the embedding
which govern the evolution of the entire universe cannot beg (X) = 74y (X)YB(X)
724 M v '

too different from those which determine the world-line be- Because of the fact that the Lagrangid does not de-

havior of a point particle or the world-sheet behavior of apend explicitly ony?, but solely on the derivatives through

string. i . . ;
Geometrically speaking, the four-dimensional curvedthe metric, the geodetic brane equations of motion are actu

space-time is a hypersurface embedded within a highenglly a set of conservation laws:
dimensional flat manifold. Following the isometric embed- 1

ding theoremg2], at mostN=32n(n+1) background flat [(RW— —g””R—SwGT”“”)y.A
dimensions are required tocally embed a general-metric. 2 i
In particular, forn=4, one needs at most a ten-dimensional . e o .
flat background. This number can be reduced, however, if thgguatlon(Z) splits into wo parts; the first is proportional to
n-metric admits some Killing-vector fields. y’,. and the second ty:,, . Since the four-dimensional co-

In the Regge-TeitelboinfRT) model, the external mani- Vvariant derivative of the metric vanisheg,,,.,=0, one
fold (the bulk is flat and empty, it contains neither a gravi- faces the embedding identiWAByﬁy?Myzo. Therefore, the
tational field nor matter fields. Other models have been sugfirst and second covariant derivativesydf, viewed as vec-
gested, where the external manifold is more complicatedors in the external manifold, are orthogonal, and each part of

interact with the brane. The RT action, therefore, does no plies thatT#"=0. The second part is the geodetic brane

contain bulk integrals; it is only an integral over the braneequatioﬁ
manifold, which may include the scalar curvaturg), a
constant {\), and some matter Lagrangiaf,{ ey :*

=0. 2

v

1
R“'—Sg""R—87GT* |y, =0. 3

S= f ! R" A+ Loatter| V—09"d" " Ixdr. (1)
167G" mater The matter fields equations remain intact, since the matter

Lagrangian depends only on the metric.

*Email address: karasik@bgumail.bgu.ac.il

"Email address: davidson@bgumail.bgu.ac.il 2We denote the embedding space indices with upper-case latin

Then=1 brane is a patrticle, it ha& 1= 0, andA is the mass of letters, space-time indices with greek letters, and space indices with
the particle. Then=2 brane is a string, its curvatuf@? is just a  lower-case latin lettersy,g is the Minkowski metric of the embed-
topological term, and\ is the string tension. The brane universe ding space.
n=4 includes both the scalar curvatuRe* and the cosmological ~ *The geodetic factoy?,,—T'8cy%yS, replacesy’,, in case the
constantA. embedding metric is not Minkowski.
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Energy momentum is conserved. This is a crucial resultstraints(caused by the two extra fiel[ddVe define the Dirac
especially when the Einstein equations are not at our disbrackets and eliminate the second-class constraints. The final
posal. algebra of the constraints takes the familiar form of a rela-

Clearly, every solution of Einstein equations is automati-tivistic theory, such as the relativistic particle, string, or
cally a solution of the corresponding geodetic brane equamembrane.
tions. But the geodetic brane equations allow for different In Sec. IV we discuss the inclusion of arbitrary matter
solutions[8]. A general solution of Eq(3) may look like fields confined to the four dimensional brane. The algebra of

the constraints remains unchanged, while the Hamiltonian is

, 1 v ~uv simply the sum of the gravitational Hamiltonian and the mat-
RE= 59" R-8nGTH =D, 43 ter Hamiltonian.
In Sec. V the necessary conditions for classical Einstein
Df”y;AW=0, D#"#0. (4b) gravity are formulated, they are thatmust vanish and the
total (bulk) momentum of the brane vanishes.
The nonvanishing right hand side of Ed@a) will be inter- Section VI deals with quantization schemes. We can use

preted by an Einstein physicist as additional matter, an@anonical quantization by setting the Dirac brackets to be
since it is not the ordinary*” it may labeleddark matter  commutators,}p—i%[,]. The wave functional of a brane-
[9]. like universe[13] is subject to a Virasoro-type momentum

It has been speculated, relying on the structural similarityconstraint equation followed by a Wheeler-deWitt-like equa-
to string or membrane theory, that quantum geodetic brangon (first-class constraintsthe operators are not free, but
gravity may be a somewhat easier task to achieve than quaare constrained by the second-class constraints as operator
tum general relativityGR). The trouble is, however, that the identities. Another quantization scheme is the functional in-
parent Regge-Teitelboifri] Hamiltonian has never been de- tegral formalism, where we use the Batalin-Fradkin-
rived. Vilkovisky (BFV) [14] formulation. The Becchi-Rouet-Stora

In this paper, by adding a new nondynamical canonicatransformation(BRST) generatof15] is calculated, and the
field A we derive the quadratic Hamiltonian density of atheory turns out to be rank 1. This resembles ordinary grav-
gravitating brane universe ity and string theory as opposed to membrane theory, where

the rank is the dimension of the underlying space manifold.
8776{( Jh \?

(AR ®)

In Sec. VII geodetic brane quantum cosmol C
H=NXy) .- P—N—— g | quantu d$BQO)
Ik 87G

2\h is demonstrated. We apply the path integral quantization to
the homogeneous and isotropic geodetic brane, within the
minisuperspace model. A possible solution to the problem of

+PO(¥-A)"'O P] (5 time arises when one notices that while in GR the only dy-

namical degree of freedom is the scale factor of the universe,
The derivation of the geodetic brane Hamiltonian is doneGBQC offers one extra dynamical degree of freedahe

here in a pedagogical way. In Sec. Il we translate the relevarRulk time) that may serve as time coordinate.
geometric objects to the |anguage of embedding_ Each Object Definitions, notations, and some Iengthy calculations were
is characterized by its tensorial properties with respect téemoved from the main stream of this work and were put in
both the embedding manifold and the brane manifold. Wehe Appendixes.
embed the Arnowitt-Deser-MisnéADM ) formalism[10] in

a higher-dimensional Minkowski background; the four- Il. THE GEOMETRY OF EMBEDDING
dimensional spacetime manifol¥y) is artificially separated ] ) . ]
into a three-dimensional spacelike manifold} and a time In this section we will formulate the relevant geometrical

direction characterized by the timelike unit vector orthogonalobjects of thev, andV; manifolds in the language of em-
to Vi. For simplicity we restrict ourselves to three- bedding. Letour starting point be a flatdimensional mani-
dimensional spacelike manifolds with no bound4ejther ~ fold M, with the corresponding line element being
compact or infinitg while the appropriate surface terms
should be added when boundaries are prefkit ds’= nagdy’dy®. (6)
Section Il is the main part of this paper, where we derive
the Hamiltonian. We first look at an empty universe with no
matter fields; we present the gravitational Lagrangian density
as a functional of the embedding vecigf(x), and derive An embedding functiory®(x*) (x=0,1,2,3) defines the
the conjugate momenfa,(x). Reparametrization invariance four-dimensional hypersurfacé, parametrized by the four
causes the canonical Hamiltonian to vanisha similar way ~ coordinatesc”. TheV, tangent space is spanned by the vec-
to the ADM Hamiltonian and string theoryand the total torsy”, . (TheV; hypersurface and tangent space are defined
Hamiltonian is a sum of constraints. We introduce a new paiin a similar way) The induced four-dimensional metric is the
of canonical fields\,P, and make the Hamiltonian quadratic projection of 7,g onto theV, manifold: g,,= ﬂABYﬁLY,,BV-
in the momenta. Following Dirac’s procedur®?] we sepa- Choosing a time directiont and space coordinates (i
rate the constraints into four first-class constraimflecting =1,2,3), the induced four-dimensional line element takes
reparametrization invariangeand two second-class con- the form

A. Hypersurfaces

064012-2



GEODETIC BRANE GRAVITY

()

The various projections of the metrig,g onto the space
and time directions are denoted as the three-méyic the
shift vectorN;, and the lapse functioN:

ds’= pag(YidX +yAdt) (y§dxi +yBdt).

nasY Y5 =hij (8d)
nasY yE=N (8b)
7asy Y2=N;N' — N2, (89

These are not independent fiel@ss in Einstein’s gravity
but are functions of the embedding vectd:. Nevertheless,

PHYSICAL REVIEW D67, 064012 (2003

The vectorsy‘ are orthogonal to th&/; tangent space
and may be written as a combinationrf and LA [16]:
Y =n"K;; + Lok . (14)
The projection ofy"?j in the n® direction is the extrinsic
curvature of theV; hypersurface embedded Yy,

1
Ki==3N (15)

Nij;+Njji = ot ):_WABYﬁjnB

The coefficientﬂﬁ is the extrinsic curvature o¥; with re-
spect to the corresponding normal ve
The intrinsic curvature of th¥5; manifold is also related

it is a matter of convenience to write down the induced four-to the second derivative of the embedding functiy)ﬁs The

dimensional line-element in the familiar Arnowitt-Deser-
Misner[10] form

ds?=—N2dt®>+h;;(dx+N'dt)(dx +Nidt).  (9)

three-dimensional Riemann tensor is

R W= mas(Yii Y~ YiYh)- (16)

For convenience we define thé*-independent symmetric

The vectors y*, A) span the four-dimensional tangent spacetensor

of the V, space-time manifold, WhlleyI span the three-
dimensional tangent space of thig mamfold Usingh'l as

the inverse of the three-metri h jk=Jx, one can introduce
projections orthogonal to thes manifold with the operator

(109

(10b)

@é: 5§_Y,AahabYB,b,
0cO5=075.

Now, any vectorv”® can be separated into the projections
tangent and orthogonal to thg; space

A= vf-k = UByB,bhaby,AEl+vB( %‘yghaby&b)' (11)
11

An important role is played by the timelike unit vector or-
thogonal toV; space yet tangent td, space-time,

1
(y —Nly)= —yB@A,

A= (1239
7asyiN®=0, (12D
nagn’nB=—1. (120

The tangent space of the embedding manifald is
spanned by the vectorfyl, n?, and LA(|—123 p
=1,. m 4). The vectors’..A are chosen to be orthogonal
to yy,, n”, and each other.

B. Curvature

The connections on the underlying/; are Fk

= nagY’jyTh*!, in this way, the covariant derivative of the
three-metric vanishedy;; =0 (the bar denotes the three-
dimensional covariant derivatiyeAs a result, one faces the
powerful embedding identity

7YY %=0. (13

\PABE(hijhab_hiahjb)ylAijy‘Bab_ (17)
Checking the indices¥”B is a tensor in the embedding
manifold, but a scalar iV space. The trace oF g is simply
the three-dimensional Ricci scal®(®)= 7,5 ¥"E. Looking
at Eqg.(13), one can easily check that
Wayi= (18)
and ¥ as an operator has at least three eigenvectors with
vanishing eigenvalue. Using the definitio%7),(15), the
contraction of ¥ twice with n* is related to the extrinsic
curvature,

KiK! = KiK' =W 4gn”nf= (19)

1 .
@‘I’ABYAYB-

Ill. DERIVING THE HAMILTONIAN

The gravitational Lagrangian density is the standard one,

(4),
16776\/ gR (20
Up to a surface term, it can be written in the form
L= N\/—[R(3)—(K K] —K;;K']. (21)

167G

Here, R ®) denotes the three-dimensional Ricci scalar, con-
structed by means of the three-methi¢ (8a), whereasK;

(15) is the extrinsic curvature of ; embedded inV,. Using

the tenso”B (17) one can put the Lagrangian densigi)

in the form

Jh

L= 167G

NR ) —‘I’A yry® (22

064012-3
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As one can see, the Lagrangié??) does not involve the
mixed derivativey’ or the second time derivativg®. The

first derivative y* appears either explicitly or withirN.
Therefore the Lagrangian

LOY.Y.Y) i) (23)
is ready for the Hamiltonian formalism.
The moment&, conjugate toy” are simply
P (%) SL
AX)= —
SyA(x)
vh 1 e o|ON 2
vy @By — B,c|2Y < B
167G R + NZlI’BCy y 07yA N‘I’ABy .
(24)

Using Egs.(8b),(8¢) to get IN/dy”=—n,, while Eq. (18
tells us that (IN) W ogy®= W ,5n®, the momentun(24) be-
comes

vh
Ao~ (3) BC A A.B
P 167TG{[R +ng¥P=*neIn+2W¥gn®. (25
The next step should be to solve Eqg25 for

yA(y,P.yji.y};). But Eq. (25) involves only n®, so one
would like to solve Eq.25) for n*(P,y,y;;,yy;;) first, and
then solve Eq(12a for y»
yA=NnA+Niy;. (26)
This looks innocent but even if one is able to solve EXf)
for n?, any attempt to solve E¢8b) for N'(n,y,y;i) and Eq.
(8c) for N(n,y,y;;) will lead to a cyclic redefinition ofN'

and N. This situation is similar to other reparametrization
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An independenf\ comes along with its conjugate mo-
mentumP, . \ is not a dynamical field; therefore one faces
another constraint

P,=0. (30

AssumingA\ is not an eigenvalue oﬂf@, we solve Eq.

(28) for nA(+/h,¥,P,\) and find

—%[(\If—)\l)”]QPB.

7

At this point we have &V3 primary constraints
(27a,(270),(29),(30). We will follow Dirac’s method[12] to
treat theconstrained field theorwe have in hand.

First we write down the various constraints in term of the
canonical fieldy”(x),Pa(x),A(X),P,(X)):

A

n*= (31

8wG[[ Vh\?

_omo [ N ® —AD) ~
bo " (BWG AN+RE)+PO(¥—\I) 1®P} 0,

(323

=Y P~0, (320
$4=P\~0, (329

8wG[[ vh |2 .
¢5:ﬁ (% +PO(V—\I) 2®P}%O. (320)

Notations

We use shorthand notation to simplify the detailed expres-
sions;F-G=FAG, whereF and G are vectors in the em-
bedding space, and(¥ —\1) 2P=P,[(¥ —\I) 2]*BPg.

We adopt Dirac’s notationp~0 for weakly vanishing

invariant theoriegsuch as the relativistic free particle, string ©€MS.

theory, etc. and simply means that we have herg Y5 pri-
mary constraints
nABnAI’IB-i- 1= O,

(273

nasY N®=0. (27b

The embedding functiong”(x) and \(x) are scalars in
the V5 manifold. Their conjugate momenk,(x), P, (x) are
scalar densities of weight 1. For convenience we normalize
all constraints to be scalars in the embedding space, and
scalar or vector densities of weight 1 \y. This way, the
Lagrange multipliers are of weight 0.

¢\ is based on the constraif27b) but it takes into ac-

The constraints should be written in terms of canonical fieldsount the embedding identity18)

(yA,P,). So one should solve E¢5) for nA(P), and then

substitute in the above constraints. Any naive attempt to
solve Eq.(25) for n”(y,P) falls short. The cubic equation
involved rarely admits simple solutions. To “linearize” the

problem we define a new quantity, such that

Jh

A _ '
P 87G

(¥ —\1)5nB. (28
Comparing Eq(25) with Eq. (28), the definition of\ is
actually another constraint,

naPEnB+ R )+ 2\ =0. (29

Vh AVh
o=y P=— %y\k(‘[’—)\l)nz %ylk.nmo_
(33

¢s is based on the constrait27a, but we added the
projection operato® [Eq. (10b)] in front of P. This step
simplifies the final algebra of the constraints, and brings it to
the familiar form of a relativistic theory. Insertir@ in front
of P is equivalent to adding terms proportional ¢g [Eq.
(32b)], since

OAPE= (55— yAhyg ,)PE=PA-yANPg, . (34)

064012-4
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¢o is also a combination of the constrair(®9), (27b), The constraintg32) should vanish for all times; therefore

and(27a, chosen such that their Poisson bracket$PB) with the Hamiltonian should
vanish (at least weakly This imposes a set of consistency
do conditions for the functions™(x):
on = $s~0. (39 )
See Appendix A for the definitions of functional deriva- ¢n(x)={¢n(x),H}
tives and Poisson brackets.
In a similar way as in other parametrized theories, the _ f 35, m ]
canonical Hamiltonian density vanishes [‘f’n(x), d°zu™(2) pm(2)
He=y"Pa=L~0. (36 ~ f d*2U™(2){$n(X),b(2)}~0.  (38)

This means that the total Hamiltonian is a sum of constraints:

The basic Poisson brackets between the constraints are
—_ 3 m
H_J d*XU(X) bm(X). (37) calculated in Appendix B, and in general have the form

{, 1=  ¢o2) éu(2) a(2) 5(2)
do(z) 0 0 0 816 o(, 2)
$i(z) 0 0 0 Ps5 Akd(z — 2) (39
da(z) 0 0 0 —sAb(z — 2)
(z)

=512 a2, 2) | —Ps Akb(z — 2) |@s,06(z — 2) |[F¥(2) + F'(2)]6)i(x — 2)

The exact expressions far and F' appear in Appendix B. 87G
Now, insert the PB between the constraii@9) into the H=f dx{ N [y PHA P -N—=
consistency conditioné38) to determineu™(x) 2.h

X(N+RE)+PO(¥-N)'OP

87G

el

J
{¢4(X),H}QE(X)US(X)~0=>US(X)=0, (40) _
I\ + f d®za(x,2) s, (2)Py(2) | | - (44)
~ 0( y) — i
{$o(x),H}~0=u"(x)==N(x) arbitrary, 4D As one can see, at this stage we have in the Hamiltonian four
arbitrary functionsN,N¥ (Lagrange multipliers This means
{dr(x),H}=0=uX(x)=NX(x) arbitrary, (420 we have four first-class constraints reflecting the reparametri-
zation invariancéfour-dimensional general coordinate trans-
formation

3 871G
{¢5(x),H}~f d°z ma(Z,X)N(Z)—¢5,x?\\k5(X—Z)

2

87G
A+REHY+PO(T-NI)"1OP

@0:2\/ﬁ

o

87G

XNK(2) + s ) S(x— z)u4(z)]

+ f d3za(x,2) ¢5r(2)P\(2) | ~0, (453
= U0 =N (%) — 51 (%)
87G ek=Y kP +APy~0. (45b)
xf d>z——a(z,x)N(z2). (43
2h We are left with two second-class constraints, reflecting the
fact that we expanded our phase space with two extra fields
The first-class Hamiltonian is then \ andP,,
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01=¢s=P\~0, (463

2
+PO(V¥—\I)"?0P|~0.

(46b)

_ 87G

92=¢5—m

( vh

87G
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DB are designed in a way such that the DB of a first-class
constraint with anything are weakly the same as the corre-
sponding PB, while the DB of a second-class constraint with
anything vanish identically. Using DB, we actually eliminate
the second-class constrairithe extra degrees of freedpm
The DB are defined as

Using the classical equation of motion fgf(x),

871G {A'B}DE{A'B}P_f d3Xf d3Z{Av0m(X)}PC;’1ﬁ(X!Z)

YA ={y (%), H} =Ny = N—= (¥ =x1) P,
vh ) X{0n(2),B}p (48)

one can identify the lapse functidBc) and the shift vector
(8b) with N and N¥, respectively. Thus, we recover the na-
ture of the lapse function and the shift vector as Lagrange
multipliers only at the stage of the solution to the equation of
motion, not as ara priori definition.

We would like to continue along Dirac’s pafi2], and  In our caseC,,,(X,z) is simply the 2< 2 bottom right corner
use Dirac brackets(DB) instead of Poisson brackets. The of Eq. (39):

whereC,.}(x,2) is the inverse of the second-class constraints
PB matrix

Cmn(X,Z)E{Gm(X), ﬁn(Z)}.

dbs

—K(x)ﬁ(x—z)

Cmn(X,2)= ” . . , mn=12, (49
ﬁ—;(x)é(x—z) [F'(x)+F'(2)]8i(x—2)

When dealing with field theory, the matr,,, is generally a differential operator, and the inverse matrix is not unique unless
one specifies the boundary conditions. We choose “no boundary” as our boundary condition; therefore integration by parts can
be done freely, and the inverse matrix is

deps| 2, deps| 2, g\t
. ((T;) F'(x)+ a—}\s) F(z))&i(x—z) (,9_)\5> (X)8(x—2)
Crn(X,2)= dbe) 1 (50)
5
—(W) (X)6(x—2) 0
|
The resulting DB are {$o(x). bo(D)}o=[h'l ¢i(x)+ 'l $;(2)]8;(x—2),
(529
dgs\ "2 5A [ 6B
{AB}o={AB}p+ f d3x(&—;’) Fi(x 5)\(X)( ‘”(X))| {$o(X). 6K(2)}p= bo(2) (X~ 2), (52b)
( SA ) SB , (&¢5)_1 {DK(X), d1(2) } o= p1(X) Sk (X—2) + i (2) 51 (X—2).
RBXCIAENEY ‘Jd Nan ) (520
The final first-class Hamiltonian of a bubble universe is
oA 6B
X[—{¢5(x),B}+{A,¢5(x)}—. (5 8nG[[ vh \?
DN O\ ™
(X) (X) H:fd3X{ Nky|k'P_Nﬁ (% ()\—FR(S))
In this way, from now on, one should work with DB instead
of PB and take the second-class constraints to vanish _
strongly. This will omit the parts proportional #, from the +POCT-A) 1®P”' (53

first-class constraint$453,(45b) and recover the original
form (323,(32Db). At this stage, we have a first-class Hamiltonian composed of

The algebra of the first-class constraints takes the familiafour first-class constraints, and accompanied by two second-
form [12] of a relativistic theory: class constraints. The algebra of the first-class constraints is
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the familiar algebra of other relativistic theories. Before

moving on to quantization schemes we would like to study HG—>HG+J A3 VN[ NKT + NTo 1 =Hg+Hpp, (6)
two more classical aspects: what happens if the action in-

cludes brane matter fields, and what is the relation betweewhereH,, is the matter Hamiltonian, calculated in terms of

Einstein’s solutions and the geodetic brane solutions. the matter fields alone as shown in Appendix C. The algebra
of the constraintg52) remains unchanged under the inclu-
IV. INCLUSION OF MATTER sion of matter, where the PB now include the derivatives

. . . ) . with respect to matter fields as well.
The inclusion of matter is done by adding the action of

V. THE EINSTEIN LIMIT

I gLRm)Jrﬁm _ (54) In some manner Regge-Teitelboim gravity is a generali-

the matter fields to the gravitational action
S= f d*x . o . ; >
167wG zation of Einstein gravity. Any solution to the Einstein equa-
tions is also a solution to the RT equatio(®. We will

The matter Lagrangian density depends in general on SOMgyrive here the necessary conditions for a RT solution to be
matter fields, but also on the four-dimensional meyjs,.  an Einstein solution.

The dynamics of the matter fields is actually not affected by  Fjrst, we use a purely geometric relation
the exchange of the canonical fields frgp, to yA, and one

expects the same equations of motion or the same “matter” 2G,=R®+nB¥ycnC, (62)
Hamiltonian density. On the other hand the momdmtaget _ ) ) ) _
a contribution from the matter Lagrangian whereG,,,, is the Einstein tensor twice projected onto tife

direction. The constraint associated with the introduction of
N [Eq. (58)] is

matter

5L )
A PA:T = \/H[TnnnA_ h”Tniy',Ai]- (59 3 c
oy 20 =R+ nBY,n°—167GT,,=2(Gny—87GTpy).

This contribution depends on the various projections of the (63
energy-momentum tensor The Einstein solution of the equation is therefore associated
with
2 5Lmatter
THr— . (56) A=0. (64)
v—0 59;1,1/

As was shown in Eq(18), ¥ has a degenerate vanishing

Tqn Is the matter energy density, or the projection of thegiganyalye. Therefore the Einstein case with0, will not

energy-momentum tensor twice onto thé direction T, allow for the essential ¥ —\1)~L. One cannot imposa
=(T#*y" y®)nang. While in T,; the energy-momentum

vl L =0 as an additional constraifas was proposed by HT]),
tensor is projected once onto thé direction and once onto but only look at it as a limiting case
— nA B L ’ . .
the V3 tangent spacel ,;=(T*"y ¥ )naye,. See Appen- Second, we use the projection of the Einstein tensor once

dix C for some examples of matter Lagrangians, Hamilto-gnto then” direction and once onto thé, tangent space,,;
nians, and the corresponding energy-momentum tensor pro-

jections. Gnihy = —WinB—(y/(KhT —K));;, (65)
The momenteP, (25) are now changed to
= in Eq. (57) and put the momentur®” in the form
h
PA=— ——{[R®)+ngWBCn.— 167G T,,n"+2W5nt
167G T ! ’ PA=—%[(Gnn—%enn)nh<Gm—8wGTm>h”y,‘}
+167GTyhllyA. (57) o
’ +(y(KhT=K)); 1. (66)
Following the same logic that led us from E@®5) to the
introduction of\ [Eq. (29)], we will definex as It is clear that, if the Einstein equatio,,=8#GT,, and
G,=8wGT,, are both satisfied, the momentuPy makes a
nAaPENB+R ) —167GT,,+2\=0. (58  total derivative such that

The effects of matter are thus—\+87GT,,, PA—P" &xP.—0 6
—JhT,hUy%, but ®P is unchanged. The constraints are XPa=U. (67)

modified as follows: _
The total momenturngd®x P, is a conserved Noether charge

Bo— do— VhTnn, (59)  since the original Lagrangian does not depend explicitly on
y
b it VT (60)
A 3y pA—
Thus the Hamiltonian is changed to K= 4; d°xP™=const. (68)
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The universe, as an extended object, is characterized by the 5P
total momentunu”. The necessary condition for an Einstein — ihy"}—A =0, (70
solution is a vanishing”: oy

which simply means that the wave functional i¥ g scalar
uh= jg d3xPA=0. (690  and does not change its value under reparametrization of the
space coordinates. This can be shown if one takes an infini-

. . tesimal coordinate transformation
The condition(69) simply tells us that the total “bulk”

momentum of the universe vanishes. This motivates us to use

k k k
a new coordinate system for the embedding, namely, the X=Xt e,
“center of mass frame™+ “relative coordinates.” As rela- A A A
tive coordinates we will use the derivativg§. This has a YE) =y () + €y (%),
direct relation to the metric and therefore we expect the
equation of motion to resemble Einstein’s equations. The A OP[Y]
new system and the calculations appear in Appendix D. Dly]—P[y]+ ey Y
VI. QUANTIZATION The wave functional is unchanged if and only if the momen-

Fum constraint holds.

The treatment so far was classical, but the derivation o (2) The other constraint is the Hamiltonian constraint, and

the Hamiltonian and the construction of the various con-
straints are the ingredients one needs for quantization. In tl\%)h
following sections we will describe two quantization
schemes, canonical quantization and functional integral

to order ambiguities the equation is the analogue to the
eeler de-Witt equation

2
quantization. 8nG|( vh\?. BN (o 520l <1\ —1\AB
_2\/ﬁ 3G A+RENX)=A((T—=NI)"7)
A. Canonical quantization >
Dirac’s procedure leads us toward the canonical quantiza- X (X) A 5 d[y]=0. (72
tion of our constrained system. The following recipe was 8y (x) 8y=(x)

constructed by Dira¢12] for quantizing a constrained sys- _ _ _
tem within the Schrdinger picture: represent the system It is accompanied, however, by the operator identity

with a state vectotwave functional, replace all observables
( )

with operators; replace DB with commutatord,}p 87G ~ ~ .
8.G +P®(‘I’—)\|)_2®P

—in[,]; first-class constraints annihilate the state vector; =
second-class constraints represent operator identities; since

the commutator is ill defined for fields at the same space

point, one must place all momenta to the right of the con- B. Functional integral quantization
straint; first-class constraints must commute with each other.
This ensures consistency, and may call for operator orderin%
within the constraint.

In our case, we can use the coordinate representation. T
state vector is represented by a wave functichfy]. The
DB (commutatoy betweeny” and Pg are canonical; there-
fore, these operators can be represented in a canonical w

-0. (72

Calculating functional integrals for a constrained system
not new. This was done for first-class constraints by BFV
4], and was generalized for second-class constraints by
radkin and Fradkinfl7].

The first step is actually a classical calculation, that is,
acalculating the BRST generatfit5]. For this calculation we
Wil adopt the following notations.

YA =YAX), . The set of canonical figldsAwiII ir:\clude trTle Lagrange mul-
tipliers N“=(N,N'"), that is,Q”=(y",\,N#)", and the cor-
responding conjugate momentd ,=(P4,P\,7,). The

. ) Lagrange multipliers are not dynamical; therefore the conju-

Pa(X)=—if VA gate momenta must vanish. This doubles the number of first-

class constraint&,= (7, ,¢,).

R ) ) ) ) For each constraint we introduce a pair of fermionic fields

The operatorP, van|§hes identically. The DI? ok with 7*=(p*,c*)T, and the conjugate momerka=(c,,p,). (In

y”,Pg are not canonical; therefore the operatomust be  our case, all constraints are bosonic and therefore the ghost

expressed as a function gf', Pg. This can be done with fields are fermions.

the aid of the second-class constraihéh). Each index actually represent a discrete index and a con-
The first-class constraints as operators must annihilate thinuous index, for example;*=y”(x). The summation con-

wave functional. These constraints are recognized as followsention is then generalized to sum over the continuous index
(1) The momentum constrairi45b), as well
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Nﬂd’uEJ’ dBXNH(X) b, (X). (73 Q=f d3X[ 7, p"+ b ,ch+hKp e+ p ,chck](x).
(80)
We use the Dirac brackets as in E§1), but the Poisson _ _ .
brackets are generalized to include bosonic and fermionic The main theorem of BFY14] is that the following func-
degrees of freedom tional integral does not depend on the choice of the gauge

fixing Fermi function':
r | r |

LR}j=— — —(—1)""R— —— 74
LR agq” 9P (=4 aq” IPa (74 Zy= J DQADII\D7*DP,M
where @,p) is the set of canonical fields including the fer- _ - )
mionic fields.r,| denote right and left derivatives: xex 'f dt(II\Q"+Pan®—Hy)|, (81
|
dR:&r_qu:qu (75) where M= 8(6,) 8(6,)(delC,,)¥? is taking care of the
aq aq - second-class constraints, and, since the canonical Hamil-

tonian vanishesd = —{V¥,Q}p.
The fermionic index is The determinant ofZ,,,, for compact space manifolds is
calculated in a simple way in Appendix E.
. . . (76)
1 if R isafermion. VIl. AN EXAMPLE: GEODETIC BRANE QUANTUM
COSMOLOGY

0 if R isaboson
nR:

Let us now calculate the structure functions of the theory.
The first-order structure functions are defined by the algebra In the following example we would like to implement
of the constraint$G,,Gp}p=G.US,. Itis only the original GBG for cosmology, and in particular for quantum cosmol-
constraints(not the multiplier momentathat have nonvan- 0gy. Detailed examples and calculations can be found in

ishing structure function&s2): [18,19; here we will just focus on global characteristics of
the Feynman propagator for a geodetic brane within the

,(X) minisuperspace model. Attention will be given to the differ-
b.(X) (m,(2),¢,(2)) ences between “geodetic brane quantum cosmology” and the

® b standard “quantum cosmology.”

0 0 The standard and simple way to describe the cosmological
evolution of the universe is to assume that on large scales the
1o Jd3w¢k(w)uk (x,zw) |’ (77 universe is homogeneous and isotropic. The geometry of
ppR such a universe is described by the Friedmann-Robertson-

. . Walker (FRW) metric
and the relevant first-order structure functions are

— 2 2 2 2
Ui‘w(x,z,w)={6258h""[5(w—x)+5(w—z)] ds?=—N?(t)dt?+a?%(t)dQ3, (82
N ok K oh whereN(t) is the lapse functiona(t) is the scale factor of
oy SNAW=2) + S AAW )} x=2). univgr)se, ] P (t)
(78)
d03=dy?+ x*(4)d3 (83

(Generally, one should also look fitly,G,lp=G,V2, but
hereHy=0.) The second-order structure functions are de-s the line element of the three-dimensional spacelike hyper-
fined by the Jacobi identitl({{G,,Gp}p ,Gclp) =0, where  surface which is assumed to be homogeneous and isotropic.
A means antisymmetrization. Using the first-order functionsdQ3 is the usual line element on a two-sphere, ai(@)
(78) one getsA(G4[{U%,,G.}p+UJ U, 1)=0. This equa- =siny, ¢, or sinhyif the three-space is closed, flat, or open,
tion is satisfied if and only if the expression in the squarerespectively. In general relativity, the components of the met-

brackets is again a sum of constraints: ric are the dynamical fields, the lapse functi(t) is actu-
ally a Lagrange multiplier, and the only dynamical variable
A({UY,,Glp+Ud U =G,uf (79 s the scale factoa(t). This model is called minisuperspace,

since the infinite number of degrees of freedom in the metric
The second-order structure functiodd are antisymmetric s reduced to a finite number. The remnant of general coor-
on both sets of indices. In our case, the second-order struclinate transformation invariance is time reparameterization
ture functions vanish, and the theory is of rank 1. This re-nvariance, that is, the arbitrariness in choosh). The
sembles ordinary gravity and string theory as opposed tasual and most convenient gaugeNis= 1.
membrane theory, where the rank is the dimension of the In GBG the situation is quite different. First, one has to
underlying space manifold. The BRST generator of a rank lembed the FRW metri82) in a flat manifold. The minimal
theory is given byQ =G, 7%+ 3 PUS, n°73. Here itis embedding of a FRW metric calls for one extra dimension.
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We will work here, for simplicity, with the closed universe 1 p2 adp2
x=siny. The embedding in a flat Minkowski spacetime with 0,= —( as— 3T2 + : 2) ~0.
the signature € ,+,+,+,+), is given by[20] 2 a®\? (6a—a®)) -
siny sin 6 cos¢ . ]
. . . The Dirac bracket$51) are defined as
a T(t) . sing sindsing -
Y =lamz)” %7 sinycoss p2 abp2 |\ 7?
A,Blp={A,B}p— +
cosy {ABlo={ABlp a®\® (a—a®\)®
The lapse function is given by(t)= VT2—a? it is not a « %{9 B} A, 0 }ﬁ (89)
Lagrange multiplier, but it depends on two dynamical vari- o\t 2o
ables, the scale facta(t) and the external timelike coordi-
nateT(t). Time reparametrization invariance is, naturally, anand the minisuperspace Hamiltonian is
intrinsic feature of\T2—a2dt, but no gauge fixing is al- , ,
lowed here, since botfi(t) and a(t) are dynamical. The ~—N 3 Pt a
gravitational LagrangiaK22), after integrating over the spa- H= T2 Ga+a’h+ EJF 6a— a3\ +aPy|. (90
tial manifold, is
L We would like to focus on the Feynman propagaltdt|
L= 0( 3Na— 3aa ) (85) K(as,Ts,ts;a;,T;,t;) for the empty geodetic brane universe.
N Although the empty universe is a nonrealistic model for our

universe, the calculation of the propagator is simple and it
o=27*/8xG is a scaling factor; for convenience we will set demonstrates some of the main features and advantages of
o=1. The key for quantization is of course the Hamiltonian.geodetic brane quantum cosmology over the standard quan-
One can derive the Hamiltonian directly from the Lan-tum cosmology models. This propagator is the probability
grangian(85), or use the ready made Hamiltoniés8) and  amplitude that the universe is im(,T;) at timet;, and it
just insert the “minimized” expressions for the embeddingwas in (a;,T;) at timet;. We will use a modified version of
vector and the conjugate momenta. the BFV integral offered by Senjanovi22], where the
ghosts and multipliers were integrated out:
Minisuperspace Hamiltonian

The first step is to introduce the coordinates and conjugate K@, Tr.tr:a,Tib)

momenta. The general embedding veagtris replaced by (. . !
=f du ex 27T|f dt(aP,+TPt+AP)) |,
t

the dynamical degrees of freedamit) and T(t), while the
spatial dependence is forced by the expressif). It is
expected that the conjugate momenta will have two degrees

of freedomP,4(t),P+(t); the delicate issue is the spatial de- du=dadP,dTdPrdrdP)d(¢)

pendence of the momenta. Our choice is X 800 {x, e} 8(61) &( 02)|de({6m10n})|1/2-
P+(1) sirfy sing (91)
" ( Pa<t>z'<x>) 86 9

This propagator is calculated in phase space, where the mea-

the factor sifysin @ being inserted in order to keep the mo- SUre is the Liouville measuréxdp. In addition, the measure
mentum a three-dimensional vector density. The spatial ded# enforces the constraintéirst and second clasby delta

pendence is through'(x) such that the momentum con- functions; i_t includes an ar_bitrary gauge fixing funct_iqrn
straint (32b) vanishes strongly. The normalization is the determinants of the Poisson brackets between first-class

3T AL e : . . constraints and the gauge fixing function, and the determi-
Ifad_x g F()f)zs(lfrgz?;?: QI/Z;)'GIH addition, we sek =A(t) and nants of the Poisson brackets between second-class con-
AT DA .

| tina th : into th traiB q straints. Attention should be given to the following issues.
__Inserting these expressions nto the cons ra(_ 8 an , The canonical Hamiltonian vanishes, therefore it is absent
integrating over spatial coordinates, one is left with one first

I traint in the action.
class constrain The boundary conditions for the propagator determine the

1 2 2 values ofa;,T¢,a;,T;, but not the value ok nor the values
o= 6a+a37\+TT+ & +aP, |~0, (87 of the momenta. Therefore, the momenta andnust be

2 a3\ 6a—ad\ integrated over at the initial point.
The gauge fixing functiory, although arbitrary, must be
and two second-class constraints chosen such that it does not violate the boundary conditions
nor the constraints. In addition, the Poisson brackgts}
0,=P,~0, must not vanish.
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The determinant of the second-class constraints Poisson The calculation of the propagat@1) is carried out in a
brackets is simply simple way following Halliwell[23], and the final propaga-
tor takes the form
30,
|de({0m16n})|1/2: ’K =

p2 a%P; |

+ .
a®\®  (6a—a\)?| K.(as,Ty:a; ,Ti)=f dw exd 2mi o(T;—T))
(92

— .92 _ )
Our convention here isr=1 and Planck constanh =2mi o FX) =FOw]. (93

=1 (h=1/2m). The index ofK. and the¥ in the exponent refers to the

In cases where matter is included, the inclusion of matteexpanding or contracting scale factes. is the conserved
W|” affeCt the result in a feW p|aceS. The aCtion W|” include bu'k energy(the momentum Conjugate to the bu'k “me co-
terms like ¢, an integration over matter fields and mo- ordinateT). Since the value ob is not fixed at the initial
menta will be added, and the first-class constraint will have &ondition, one must integrate over. One should notice ac-
contribution which is simply the matter Hamiltonian—¢  cording to Eq.(69) that the Einstein solution is assiciated
+Hm(a,¢, ). All other constraints remain intact. with w=0. The functionF(x) is given by

1
L3 arcsix+ V1—x2(4x5+ 2x3—3x)], [x|=<1,

F(x)= S (94)
sgr(x) g — 7503 sgnx)arccoshx| - WE=1(4x3+2x3-3x)], 1<Ix],

wherex= (3a/w)3.
Let us now examine the properties of the propagédsy.  K(az.Ts;a:,T1)= f dT,
Actually, the propagator is independent of the internal time

parametert (a common character of all parametrized theo- Xf dewe2Ho(Ta~T2)~ w?[F(xg) ~F(x))]}

ries), and depends exclusively on the valueaddnd T at the

boundaries. - _ L
The most basic characteristic of a propagator is the pos- xf dee2me(Ta=Ty) —w?[F(xp) —F(x))]}

sibility of propagating from an initial state to a final state
through an intermediate state. For example, the propagator
for a nonrelativistic particle is K(Xz,t3;Xq,t1)
= [dx,K(X3,t3;X5,t0)K(X2,15;X1,11). At the intermediate
timet,, one must integrate oves. It is clear that there is no (95)
integration ovett,; t is the evolution parameter, it must be
monotonic t;>t,>t;, and integration ovet, makes no _ Dmia(Ty—Ty)
sense. Another characteristic of the propagator i§<(a1,T2,a1,T1)=f dwe 27 W=06(T,=Ty). (96
Iimtﬁth(xz,tz;xl,tl)= 6(Xo—Xq). The situation with pa-
rametrized theories is quite different. The propagator is inde-l-his cannot be done within the standard quantum cosmology
pendent of the internal time, and integration over all dynamiy,qe|s, since there the only dynamical variable is the scale
cal variables diverges. The solution is, usually, to use one Ofyctora. Such a propagator of only one variable contains no
the dynamical variables as “time,” and integrate only overinformation; it can tell only that the variable is monotonic.
the other variables. The common solution in standard quantum cosmology is to
The question is, how does the propagd®@®) behave at  add another dynamical variable such as a scalar field and to
the intermediate point? What is the relevant evolution paramgse one of them as the evolution parameter. Here we see one
eter and what integrations should be made? One can chegf the main advantages of geodetic brane quantum cosmol-
that, if a is taken to be the monotonic evolution parameterogy over the standard models. The problem of time has an
and integration over at the intermediate point is done, then intrinsic solution as we have one extra degree of freedom
the propagato(93) is well behaved: which serves as “time.”

- f dwe? (T3~ Ty~ w?[F(xg) ~F(x)l}
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Via)-36a%5w (32w over the spatial manifold one gefsli®xP,=(P,0,0,0,0¥;
' s ' ' ' thus the Einstein case is associated with 0, and the only
classical regime i&=0.

The still open question is that of the boundary conditions,
in particular,% (a=0,T) and¥ (a—«,T). One possibility is
that W vanishes at the big ban@€0) andV is bounded at
a—o. This will lead to w quantizationwﬁZSh(n+1/4)
wheren is a positive integer. Clearly, the Einstein case
=0 is excluded by such a quantization condition.

160

V(a)

VIIl. SUMMARY

(1) In the present model of geodetic brane gravity, the
four-dimensional universe floats as an extended object within
a flat mdimensional manifold. It can be generalized, how-
ever, to include fields in the surrounding manifdioulk);
this is done by adding the bulk action integral to the action of
the brane. The brane will feel those bulk fields as forces
influencing its motior{6]. The bulk fields may include mat-
FIG. 1. The potentiaV/,(a). ter fields or the bulk graviti3—5,ﬂ_. _ _
(2) In this paper we have derived the quadratic Hamil-

The most general wave function that can be generatefPhian of a brane universe. The Hamiltonian is a sum of four
using the propagatd®3) is first-class constraints, while two additional second-class con-
straints are present. We used Dirac brackets and found the

_ o o algebra of first-class constraints to be the familiar one from

\I’(a,T)=J dwe?™ T[A(w)e 2™ TN +B(w)e?™“ M), giher relativistic theoriegsuch as string, membrane, or gen-

(97) eral relativity). The BRST generator turns out to be of rank

1.
One can verify that the wave functid®7) [and the propa- (3) Geodetic brane gravity modifies general relativity, and
gator (93)] satisfies the corresponding Wheeler-deWitt equaintroduces in a natural wastark mattercomponents. Dark
tion matter in inflationary models that accompanies ordinary mat-
ter to govern the evolution of the universe can be found in
d 52 [9].
2| = &(x) 72\ é(x) da +E4(x) a2 ¥(a,T)=0, (4) We have formulated the conditions for a solution to be

(98) that of general relativity, and shown that the Einstein case
can be achieved only as a limiting case.

where  £(x)=(1+2x3)JV1—x%, and x=[3a(—i%dl (5) Canonical quantization is possible with the aid of
gT) 113, Putting —i%d/dT=w and neglecting the term Dirac brackets. The resulting Wheeler-de Witt equation in-

proportional to the first derivativeW/da, Eq. (99) looks Ccludes operators which are not free, but are constrained by
like a zero energy Schdinger equation the second-class c.onstramts as opgrator _|dent|t|es. .
(6) The ground is ready for functional integral quantiza-
tion, the BRST generator is of rank 1, and the determinant of
v ,(a)=0, (99 second-class constraints has been brought to a simple form.
(7) A simple application of geodetic brane gravity to cos-
mology is possible within the framework of a minisuper-
space. Classical cosmological models appedRih25. Ca-
34|23 2312 nonical quantization appears|ih8], and the complementary
2 e

(92
_ﬁZE—FVw(a)

with the potential

sa functional integral quantization ifL9].

(8) Another significant advantage of GBG over GR is the
solution to the problem of time. While a homogeneous and
isotropic metric is characterized by only one dynamical vari-
able (the scale factor of the universéhe embedding vector

empty brane universe cannot expand classically byeond th on(ta}{!ns tv‘_’l?h dyn:;\T_lcaltr\]/arlabfﬁ;g_ scale Iacttort;'in(t:lhthe
point. The empty universe model is nonrealistic; a more re- ulk time). Thus, taking the embedding vector to be the ca-

alistic model may include some matter fields, or at least aponical variable W.i” enhance the theory with_one extra vari-
cosmological constant. Analysis of the cosmological constan"flble that may be intepreted as a time coordinate.
universe can be found iL8].

In accordance with Sec. V, one of the necessary condi-
tions for an Einstein solution is E¢7), fd®xP,=0. Within Let F[y] be a functional ofy(x) such that 6F
our minisuperspace model, integrating the mome(@@) =[d®xf(x)dy(x); then the functional derivative is

V,(a)=—o?

=36a°—3w*3(3a)?*- w?, (100)

see Fig. 1. The classical turning pointas= w/3, and the

APPENDIX A: FUNCTIONAL DERIVATIVES

064012-12



GEODETIC BRANE GRAVITY PHYSICAL REVIEW D67, 064012 (2003

SF18y(x)=f(x). The chain rule holds for functional deriva- 5G SF 5G
tives 6F (G[y])/ 6y(x) = dF/dG 6G[y]/ dy(X). {F,G}= f d3x ( .
The delta distribution is a scalar density of weight 1 such SyA(x) OPA(X)  PA(X) syA(x)
that for a three-scalafr(x) (A10)
F(x)= f d3zf(z) 53()(_2). (A1) APPENDIX B: POISSON BRACKETS OF CONSTRAINTS
We will start with the constraint€32):
The covariant derivative of the delta functloﬁ(x 7) is 2
87G[( \h _
defined for a three-vectq'(x) as bo= ——| | =—=| A+RO®)+PO(¥-\I)"1OP|~
2vh G
i i B1
| exgoosto-a--gi. (A2) (13
$=Y|- P=0, (Blb
The delta function is symmetric with its two arguments
$a=P,~0, (Blo
S(X—2)=68(z—X). (A3)
8nG[[ Vnh \? .,
The first covariant derivative of the delta function is antisym- 5= m s.c| PO(Y—\I) “OP|~ (B1d)

metric with its arguments

B(X—2) =Yg B(X~2) = — Vyd(z—X) = — (2 X), The PB of these constraints are listed below:

(A4 {ho(x), 02} =[Q () +Q(2)]5i(x-2)~0,  (B2a)

while the second covariant derivative is again symmetric. {o(X), B1(2)} = Bo(2) 8(X—2) — s\ 1(2) S(x—2)~0

The basic functional derivatives are ' ’ (B2b)
A = —Z7)~
Sy"(x) = SA8(x—2), (A5) {d0(X), Pa(2)} = ¢5(2) 5(x—2)~0, (B2¢)
(@ {6o(X), d5(2)}=[B'(x) + BU(2)18(x~2)+ M(2) 8(x~2),
Syh(x) (B2d)
e 2, B8 {40, 1D} = $i(X) (X =2+ Bil2) 6 (x~ D)~
(B2¢
ij (X) , =0, B2f
Zylejfa (8= yAsh™yg) 15 (x—2) {b(x), ba(2)} (B2f)
dps
_yB“jylAahakalk(X_Z). (A7) {¢k(x),¢5(2)}: ¢5(X) 5“((X_Z)_ W)\lk5(x_z)’
(B29
For a general expressich(x,y,y);,yij) the functional de-
rivative is {ha(X),¢4(2)}=0, (B2h)
SO(x) oD Id _ ﬁ :
= ) —7)+ X)5| X—2Z {¢4(X)1¢5(Z)} 5(X Z) (BZl)
r 0D M( i(x—2)
o 5 e {$5(X), ps(2)} =[F' () +F'(2)]18i(x~2), (B2j)
* ﬁ(x)[(ﬁ’*_y“’h Yaja) 3 (X=2) where the shorthand expressions are
_ yB Rbk _
Yajii¥jph”“dk(x=2)]. (A8) a;;, 8\7/7_(3[P® (W —\)3OP], (B3a)
Another nontrivial example is the three-dimensional Christ-
offel symboIst,—h y YAk 817G
T ! vh
= NYaK(X) 8)j(X—=2) +hya);(X) 8 (X~ 2).
3y™(2) . . 8mG
(A9) Q'=hllg;+2 (Kh”—K”)U—Th'hﬁj $s~0,
The Poisson brackets are defined in the usual way: (B30
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8 s 1
i kily, — Rl TeB=| go#gh"—-g*Pg""| 9,39, D
=| (Kh"—=K"); I h b; e 979" —5979 P
[a(Kh”—K”)} —g*AV(D). (Cab
+ e —
2N |j¢5 The momentunil conjugate tod is given by
i Ui 1995 oL 1. .
m[(Kh'l—K'J)“]— (B3d) = gz ‘/ﬁﬁ(q)_qu)*i)’ (CH
\/ﬁ oK N . - and the corresponding energy-momentum projections are
~— N — 2K KN — (Khil = Kl
M 877G[)\(9)\ K+(Rj 2K,|KJ)(”\(Kh K') L )
Tnn=§(ﬁn2+h”q>,iq>,j +V (C6a
87wG
+(Khl =K ")|J ( ¢5) —2—[P(‘I’—)\|)_1]\i
i b 1
872G Tni: ﬁH(I)’i . (C6b)
X(W—=\I)"2P| = ——P(¥—\I)"!
vh The matter Hamiltonian is
K[~ 1) 1P — (Khil —K) (B3¢ R TN i
i gx ; Humatter=NVh SpIZ+5hI® @+ V] +NTIO,
1 2¢5 ¢5 2 (9¢5 -1 :N\/ﬁTnn‘F Ni\/ﬁTni. (C?)
-3 e -2
T3 2N I\ For a vector fieldA ,(x),
J N . 87G 1
XR(Kh”—K”)} —ZWP(\P—)\I)’Z Ematter:_E\/_ggm\gygFﬂvF)\o1 (C8a
lj
-1 J i ij af 1 ap~BY 1 aBnrv | qNo
X[(® =N~ P]j —=(Kh' K1), (B3f) T¥= | 997 = 799" |9*F )\ F o
(C8b
APPENDIX C: MATTER HAMILTONIANS The momentuniI# conjugate tOAM is given by
Consider here a few simple matter Lagrangians and 1°=o0, (C99
Hamiltonians.
For a cosmological constant, _ Jh
IT'= ——hi(A;— Ag;—N¥Fy), (C9b)
— 47N L !
matter ZA (Cla
and the corresponding energy-momentum projections are
Teh=—2Ag%h. (C1b

The corresponding energy-momentum projections are

The Hamiltonian is simply

— Lmatter=N \/HZA =N \/ﬁTnn .

Hmatter=

For a scalar fieldb(x),

1
V=g ng‘”aM@aﬂHV(CD) ,

Liatter= —

(C2q

(C2b

(C3

(C4a

2m
T o= i, I1; +—h”h"'

. oo FiFj, (C10a
1 Kkl

Tni:ﬁh HkF“ . (ClOb

The Hamiltonian is
ij 1 ijkl
H=Nh —h TTT+ o~ FFy
+NTIF; — Aol
=NvhT,n+ NVh T — Aol (C11)

In this case the Hamiltonian picks up another Lagrange mul-
tiplier Ay, and an additional constraint
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i1 ) (X, X) _
—H',i=EV—9F;°V=0- (C12 (__ )=5'j S(X—X), (D40)
ox!
APPENDIX D: THE CENTER OF MASS AND RELATIVE ﬂJi(X,;) o
COORDINATES P =f(X)— S(X—X). (D4d)
X

We will try to make a canonical transformation to the new
system. We will use a global pait”(t),Pa(t) to describe the We assume one can find such distributions and we move on
total momentum and its conjugate coordinate, and as relativ® the dynamics. We will start with the Hilbert acti¢t) and
coordinates we will use the directional derivative®(x)  do the variation with respect to the new variables:
= yf?(x) of the fieldy”(x). (This is the analogue to a discrete 1
system, where the relative coordinates are differences be- sg— ___ —_ f d*x\—g(G**—8mGT*") &g,
tween the coordinates of the various particles involved. 16wG .

The variation of the action with respectyﬁ(x) is going )
to be very similar to the variation with respect ftg , and :mf d4x\/__g(GMV_87TGTMV)yA‘M5yﬁ/
therefore will resemble Einstein’s equations. The new set of &
canonical “coordinatest fields” YA, P, ,z(x),ma(X) must

obey the canonical PB d4X[[V—Q(G”O—SWGT”O)YA,M],O

" 167G
{YA Pgl=64, (D1a) -
‘ o X 5YA+fd3xéziA(x)Ji(x,x)
{YA mR(x)}=0, (D1b)
2 _ .
{z8(x),Pg} =0, (D10 - mf d*x\—g(G* =87 GTH)y, ,62(X).
{Z}(x), mh(X)} = 58] (x—X). (D1d) (DS)

The variation with respect t8” will lead to the conservation

We will write the transformation from the old set of fields to
of the total momentum:

the new set as

-2
YA(t)=f d3xf(x)yA(t,x), (D2a) %f d*[V—g(G**—87GT%)y, ,]= ua=const.
(D6)
PA(t)=J d3xPa(t,X), (D2b)  The variation with respect ta*(x) will lead to an equation
similar to Einstein’s equations, but the right hand side does
2810 =yA(tX), (D2g) ~ Notvanish:
. o V=0YAl[G*—87GT*](x)
W'A(t,x)=f d3XPA(t,x)J'(X,X), (D2d) - B
=J d*J' (X, x)[V=g(G**=87GT*)ya o(X)] 0-
while the inverse transformation is
(D7)
A — VA 3uoA N+ I (v
yrtx)=Y (t)+f Az (tx)J'(x,x), (D38 e multiply Eq.(D7) by (1A\/—g)g**y", to get
PA(t,X)=Pa() F(X) — 7l ((£,%). (D3b) GH —8wGTH(x)=DM(x)
The functionsf(x),J'(x,x) are distributions over tha/, _ g,wyA(X)J' d3xJ(x,x)
manifold; they do not depend on the canonical fields, and in NES v '
particular are independent of the three-metr_ic. The solution .
to Eq. (D1) put some restrictions of(x),J'(x,x), and they X[V=9(G*=87GT*)y, (X)] -
must satisfy the following relations: (D8)
3 _ An Einstein physicist will interpret Eq(D8) as if there is
f dXFx)=1, (D43 some additional matter in the universe, and may call it dark
matter.
T T T It is easy to reveal Eq3) if one takes the derivative of
f d*xF(x)J(x,x) =0, (D4b) Eq. (D7) with respect tax' and uses Eq(D4d).
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APPENDIX E: DETERMINANT OF SECOND CLASS
CONSTRAINTS PB

We would like to calculate the determinant 6f,.(x,2)
[Eq. (49)]. First we will find the eigenvalues &. Takev (x)
to be a two-component scalar function

g(x)
v(X)= F(x) ) . (ED
The eigenvalue equation @ is
f d®zC(x,2)v(z) = av(X). (E2)

Inserting Eq.(49) into Eq.(E2) one can see that the compo-
nents ofv(x) are proportional, and must obey a differential
equation

1 9¢
g=—— -t (E33
_ o1 a¢s\?
2F'fi+Fiif—;<%) f=af. (E3b)
Multiplying Eq. (E3b) by f one gets
. 1(dps\?
(Fif?)=|a+ — %) }fz. (E4)

Eigenvalues of a differential operator are determined by the
boundary conditions. Our boundary conditions are actually
the fact that the three-manifold has no boundary. Thus, inte-

grating Eq.(E4) overV; gives us

f d3x A

1 2
W) }fz(x)

a+ —
a

0.

(E9)
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Arranging Eq.(E5) one gets
f d3x(dps/IN)2F2(x)

f d3x f2(x)

Cmn(X,2) is a PB matrix and therefore anti-Hermitian;
this causes the eigenvalues©fto be purely imaginary.

One can see that the eigenvalue€aire affected only by
the off-diagonal termg¢s /N, not by F'.

The structure of¥? is very simple. Define the probability
density

2_

(E®)

f2x)
f d3x f2(x)

one sees that any eigenvalue®fis simply the expectation
value of (I¢s/IN)? with respect to some probability distri-

bution f:
Is)?
-

For eachf one finds two complex conjugate purely imagi-
nary eigenvalues. The determinant®fs therefore the mul-
tiplication of all eigenvalues

deps\?

2N ?'

detC=H <
f
The probability density over a compact manifold can be pa-
rametrized by the appropriate harmonics, and the product is
countable. See, for example&6,27] for the compact; har-
monics.

f(x)= (E7)

2_

ol

(E®)

(E9
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