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Rotating relativistic stars: Matching conditions and kinematical properties
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In the framework of general relativity, a description of the matching conditions between two rotating perfect
fluids spacetimes in terms of the kinematical properties of the fluids is introduced. The Einstein and Darmois
equations are written using coordinates adapted to the boundary separating both spacetimes. The functions
appearing in the equations have an immediate physical interpretation. The analysis is extended to the case of
matching a perfect fluid spacetinigar interioy with a vacuum spacetim@@ravitational field outside the spar
By solving a boundary problem for a first order partial differential equatiomaster equation)j we define an
exterior tetrad such that the matching conditions and the Einstein equations, for this case, reproduce those of
the two-fluid problem. The formalism is applied to a particular static spherically symmetric star and to the Kerr
metric.
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[. INTRODUCTION and Meinel[12] have constructed a general relativistic gen-
eralization of the classical zero-pressure Maclaurin disk. The
One of the main subjects of relativistic astrophysics is thedensity of the dust disk was determined by computing the
description of the constitution and evolution of relativistic jump in one of the metric functions. The uniqueness of the
stars(neutron stars, quarks stars.). These are stars with exterior gravitational field has been studied 113]. The pos-
rapid internal motion and/or a high density such that it issibility of matching the Wahlquist interior solution with an
necessary to use general relativity to describe them. Usuallgxterior field has been studied by considering a slow rotation
these stars rotaf@vith rigid or differential rotation. Here we  approximation in[14]. The matching of a special class of
will consider stationary and axisymmetric configurations insolutions is presented iri5].
circular motion, i.e. in permanent rotation. Trying to describe A procedure, based in the monodromy matrix, for match-
one of these isolated rotating bodies, we immediately realizéng a given stationary axisymmetric perfect fluid solution to
that we have to cope with the problem of finding an interiora not necessarily asymptotically flat vacuum exterior is de-
solution (the gravitational field inside the sjaand an exte- scribed by Ernst and Hauser [ih6].
rior solution, describing the gravity field produced outside We would like to mention the numerical codes developed
the star. These solutions have to match adequately such thi@at construct models of rotating relativistic stdrk7]. The
we do not have fictitious forces when crossing the star surEinstein equations are integrated numerically with the
face. The condition that the star is an isolated body imposeasymptotic conditions at infinity. These models are very in-
that the exterior solution has to satisfy a condition ofteresting because they produce very accurate results for the
asymptotic flatness. It is obvious from the very beginningglobal properties of rapidly rotating stars. Let us note that
that we do not know the boundary of the stapriori. That  usually those numerical codes use coordinates not adapted to
complicates the situation substantially, and mathematicallyhe surface of the star and then, if discontinuous physical
becomes a free-boundary problem. properties exist in this surfadéor instance, the energy den-
The matching or junctions conditions between two spacesity), they suffer from a reduction of the accuracy due to a
times is a fundamental part of the problem. This subject hakigh-frequency noise at the surface of the gtaibbs phe-
been considered in classic works by Darmfdi$ Lichner-  nomenon [18]. In order to improve the accuracy in those
owicz [2], O’Brien and Syngd3], and Israe[4]. The rela- models, as well as models with phase transition, some
tion between the different approaches has been considered byrface-fitted coordinates could be used. In this paper we
Bonnor and Vickerg5]. The expression of these conditions introduce coordinates of this type, which are exactly adapted
in terms of the Newman-Penrose formalism has been prae the transition surfaces. It is interesting to note that a
sented in[6]. Null matching surfaces have been studied inscheme due to Bonazzad al.[19], which uses numerically
several workd7,8] and a formalism valid for hypersurfaces adapted coordinates in a multi-domain spectral code, pro-
of any constant type is presented[B]. Junction conditions duces improved results near the surface of the star.
for general hypersurfacgghanging the type from point to One way to cope with free-boundary problems is to define
point) are considered if10]. Symmetry-preserving match- coordinates such that the matching hypersurface is given by
ings, especially for stationary and axisymmetric spacetimeghe vanishing of one coordinate in the description of both the
have been studied ifi1]. interior and the exterior regions. In this paper, we will intro-
There are interesting results for the particular case of roeluce coordinates of this kind and we will write down the
tating bodies. By solving two integral equations, NeugebaueEinstein equations and the matching conditigiarmois
conditions using them.
The star interior is usually described as a fluid; here we
*Email address: mgromero@fis.ucm.es will use perfect fluids in circular motion with a barotropic
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equation of state. To have a better knowledge of the condi- We use a Ricci principal tetrad; in our case this implies
tions imposed by the matching process on the kinematicahat we have the fluid velocity® (timelike) as one of the
properties of the fluidvorticity, sheayr. . .), we consider the tetrad elements. Given that we assume that our spacetimes
problem of matching two perfect fluids across a surface ofire stationary and axisymmetric, with a circular motion, we
constant pressure; for instance, two fluids with different rocan choose another element of the tetfadspacelikg in the
tation regimes or with different equations of state. Then, wespace of the orbits generated by the Killing fields. The only
can write the matching conditions by using the kinematicalcondition for the other two elements of the tetréfdand 6°
properties of both fluids on the matching hypersurface. Thigs that they have to lie in the two-dimensional space orthogo-
situation is interesting by itself, because it can be used as @al to ¢° and #*, therefore we have a gauge freedom in
model for a star with a phase transiti¢two regions with  choosing them. We introduce 1-fornrssw, and s in the
different equations of state or rotation laws, separated by {192,.93} space, such that the kinematical properties of the
well-defined surface The results can be used as a guide tofluid can be written in terms of them. The expansirvan-
the problem of matching an interior fluid solution and anishesa is the acceleration 1-form, and the shear and vorticity
exterior vacuum solution, i.e. to obtain an isolated rotatingtensors can be written as follows:
star model. In particular, when matching a fluid interior re-
gion with a vacuum exterior region, we will use the gauge o=0'®s (1)
freedom, that exists in vacuum spacetimes in defining an
orthonormal tetrad, to reproduce the properties of the junc-
tion process of two fluids. Also, we choose coordinates such
that the matching surface is given by the condition of the
vanishing of one of the coordinates. This coordinate is de- The vanishing torsion equations, the first Bianchi identi-
fined in terms of the tetrad in a manner we will describeties, the Einstein field equations, and the Euler equation can
below. be written using these kinematical 1-forms and two other

We will see how this choice of gauge and coordinates had-formsb and», which are also in th¢6?,¢°} space. These
the by-product of a simplified version of the equations in theb and » 1-forms can be interpreted as, respectively, the ex-
interior and exterior regions. Also, in the interior region the pansion of the volume element i¥°,6'} space and the
functions that we find in the equatiof&instein and Darmois connection in the[6?,6% space. For an explicit version of
equationy have an immediate interpretation in terms of thethe exterior system see the Appendix 42@,21]. The energy
properties of the fluid. For the exterior region, we will prove densityu and the pressune parametrize the thermodynamic
that, in general, it is possible to define, in a unique manneproperties of the fluid.
an orthonormal tetrad verifying all the conditions described Let us mention that the symmetry of our problem impose
above. To obtain this tetrad we have to solve a first-ordethat all the functions appearing in our formulation depend
partial differential equation, which we will call thmaster only on two coordinates whose differentials are in the space
equation In our opinion, this tetrad can be considered as ggenerated by?, 6°.
natural prolongation to the exterior of the intrinsic interior
tetrad, which is determined by the fluid velocity.

We apply the formalism to a static spherically symmetry

[OF 01/\W (2)

Ill. KINEMATICAL PROPERTIES AND SECOND
FUNDAMENTAL FORM OF THE MATCHING

conf_lg_uratlon whe_re the entire process can_be done in an HYPERSURFACE
explicit and analytical manner. This configuration can also be
used as a guide for further developments. Tester equa- In the problem of matching two spacetimes which are

tion for the Kerr metric is analyzed, and some particularsolutions of the Einstein equations, the regularity conditions
exact solutions are obtained and analyzed. These particulanpose that the first and the second fundamental forms of the
solutions are extended for tleaster equatiorof more gen-  matching hypersurface coincide when they are calculated
eral spacetimes. both from the inside or from the outside. If one or both
solutions describe perfect fluids, it is a natural question to
ask if the matching conditions can be written using the kine-
IIl. DIFFERENTIAL FORM APPROACH FOR ROTATING matical properties of the fluids. In this manner, we could
PERFECT FLUIDS have a better knowledge of the physical implications of the

To study the properties of the stationary and axisymmetri¢n@iching process. _ o _
perfect fluids in circular motion, we use a fluid-adapted or- 10 €xpress the maiching conditions in terms of the kine-

thonormal tetrad formalism which was previously introducedMatical properties of the perfect fluid, we have to write down
[20]. The Einstein equations are formulated as an exteriof’® Second fundamental form of the matching hypersurface
differential system where the 1-forms usékinematical UYSINY them. We can parametrize the matching hypersurface
1-forms have an immediate interpretation in terms of thePY itS normal 1-form; in our case, a stationary and axisym-
kinematical properties of the fluidacceleration, vorticity, Mewric perfect fluid in circular motion, and if the matching
shear...). To fix the notation, in this section we will Surface is described by the equatipr-const, the normal
present the definitions of these kinematical 1-forms. Forl-form can be written as follows:

completeness, the exterior differential system equivalent to

the Einstein equations will be summarized in the Appendix. nelin{#?,6%; n=n,0*+n;6°
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wheren3+n3=1. Let us take an extension nfon a neigh- Then the kinematical 1-forms can be written as follows
borhood of the matching hypersurface. The covariant derivatsee the Appendix
tive of n can be written as

a=duU (4)
VN=(yo2d12+ Y03013) 0°® 6°+ (yo21M2+ ¥031N3)
X(6°® 6M+ 6" 60°) + (Y1202 + y131N3) 0 ® 6+ 67 b=dv (5)
@ (dny+Tpgng) + 3@ (dng—Tpgn,)
— et
. . - . W= K€ dv+wydU 6
where y,,. are the Ricci rotation coefficients of the Rie- weX(w,dv +wydU) ©
mannian connection arnt,s= y,3,0%+ v,336° is the induced A
Riemannian connection in thigg?, 6} subspace. Whe° s=ee &(w,dv+wydU) (7)
=u, u being the velocity of the fluid, we can rewritén as
follows: v=v,dv+vydU. (8
_ 0o 0t O ol o ol g0 .
Vn=—a-n °® 0+ 5(s—w)-n(¢'® 6"+ 6°©0) Now, we align one of the components of our orthonormal
tetrad with the invariant 1-fornb, so that#?’=Gdv. If we
+(b—a)-n 26+ Te[da—v] parametrize the duality operator %2 6%} subspace by

*dv=(LN—f?)(fdo+dU)(N>f2), and choose 6°

= — 2 3 = = I . 1 --
whereT=—nz60°+n,6°, n,=coSe, Nz=sina, and - indi =% 62, then we have

cates the scalar product in thé?, 4%} subspace. The second
fundamental form of the hypersurfage=const is obtained
by projecting this covariant derivative on the hypersurface g3 G (fdv+dU)
(i.e. calculating the pull-back of this covariant derivative on JN=12 v

it). The result is independent of the extension usea{@2].

whereG, f andN are functions ofJ andv (a similar param-

etrization, especially adapted for interior regions, has been
Let us consider the case when the two spacetimes that w¢ésed in[21]. Here, we have modified it to be also useful for

would like to match describe two configurations of rotatingvacuum spacetimgsTherefore, we can write the spacetime

perfect fluid (for instance, imagine that we have an innermetric as

core of a rotating star in rigid rotation, and the outer part of

the star in a differentially rotating regime, or two regions

IV. THE TWO-FLUID PROBLEM

with different equations of state separated by a well-definedds’= — 8°® 8°+ ' 61+ 5 (Ndv?+dU?+2fdUdv)
surface. We impose that the matching hypersurfatéde a —f
constant-pressure hypersurfage=p,); the velocity of the ©)
fluid u= 6° and ¢* are then tangents t®.
For both fluids, from the Euler equation we have that =—¢°® 6%+ 9w 6*
dp=—(u+p)a, andn=*a/|al]. We also assume that the
fluids have a barotropic equation of state= u(p); then we |al?dv?+|b|?dU*~2(b-a)dUdv
can writea=dU, and therefore the matching surface can be |a|2|b|2— (b-a)? (10

described by the equatidh= const. By using the freedom in
the definition ofU, we can impose that the matching hyper- . . . L
surface2 is described, in both spacetimes, by the equatiori\‘Ote thatG, f_and N_have an immediate interpretation in
U=0. If bAa#0 (the other case, which includes cylindrical erms of the kinematical 1-formes andb

symmetry and dust fluids, is a degenerate one and can be

considered in a separated manf2t]) we can use as our 1

coordinates in thd 62,6} spaceU and other coordinate G= Ib]? (11)
defined up to a constant by the equatibadv (the constant

can be chosen such tmx;]m:voutm). Note that for station-

ary and axisymmetric spacetimes, with no more symmetries, _ |a|?
this coordinatev is invariantly defined(up to a constant - W (12
because we have

d(6°/N\6Y)=b/A\(6°/\ 61) ®) b-a B

———Zz—Fcos{b,a). (13

where 6°/\ 6* is the volume element in the space of the |b] bl
orbits of the Killing fields andib=0 (the AppendiX. There-
fore we can writedb=dv. The Einstein equations can be written as follows:
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N 4pGN+(2—2fy—mnfw, )N

v —

+[8f%p+ (u+3p)f]G+4ff,—2f2

—mnf(w, >~ 2wyw,f) (14)
Ny=—mnw 2N+[4fp+(u+3p)]G+2f,
-mn(w, °-2wyw,f) (15)
Gy=[-2-n’wyw,— (4—n’w  *)f]G (16)
1 N
G,=—2pG*+|2-5n’w, *~(4-n’w, *)7|G
17
pu=—(u+p) (18)
0=w,,+*Nw ,—2fw,—w,[—2pC+A(1+2f
1
+§Uf_§v)]_mu _ENU+fU+2pr
—Nf+2N+EN=¢£,1)], (19

wherem= kef+ee ¢, n=kef—ee ¢, \=m/n and é&=2U
—v+2h(w).

It is interesting to note that Eq19) is the integrability
condition for Eqs(16) and(17) for Gy andG, . Therefore,
if we obtainf andN from these equations and substitute the
result in the rest of the equations, E@.9) is identically
satisfied. Given an equation of state=u(p), the Euler
equation(18) can be solved in order to obtapw p(U) and
u=u(U). The rotation regime has to be fixed by giving a
particular functiorh(w). Finally, we have two second-order
partial differential equations fd& andw from Egs.(14) and

PHYSICAL REVIEW D67, 064011 (2003

Let us concentrate in the matching conditions in these
coordinates. The first fundamental form on the hypersurface
2 can be written as follows:

|a|?
dsi=— 6% 0% + 6L ® 6% +(— dv?
%22 |% |% % % |a|2|b|2—(b-a)2 s
(20)
GN
=— @ 0%+ 0@ 05+ 7) dv?, (21)
Iz
and the second fundamental form
— 0 0o, 1 a
K==i-lay 03®03+5 (s=w)- .

(|o—a)-i 05 ® 0%
fal] , "1

X (05 ® O+ 0y @ %) +

+[T,(da— V)U]Edvz}

=+ N 0 0 ca ¢ aé
=+{ — 60@@0@"’@(66 — k€e®)
X(Nwy—fw,) 0% @05 + —L—\ﬁ o
( Wy ‘Gfu) [2¥sYs \/m G |
ING [ f G, Gy
1 _ _ v
@0k~ N 75| ~f26 *Nag
—f(1-2pG) dv2],

(15). Therefore, the Einstein equations can be reduced to thighere all the function are evaluatedih=0. To obtain the

system of two second-order partial differential equations fo
G andw. Once a solution is known fd& andw alsof and

N are known, and the complete metric can be writtee the
Appendiy).

jJast expression foK the Einstein equations have been used.

We impose that there does not exist any discontinuity in
the fluid velocity onX., i.e. 6y = 65, this condition im-
plies that

Sinlz Sout‘z (h(w))in‘z = (h('w))out‘2
Win‘2 Wout‘z = (m'z1)in|E (mv)outlg (22
bi”lz bout‘z Uin‘z = Uout‘z

Therefore, we can define a unique velocity of the fluid on
3 as 68=6j, = 05y, , associated wittgs we have its ki-
nematical properties and 1-forms; ,Sy ,bs on the surface.
It is easy to check that these 1-forms can be obtained b

projecting the 1-forms defined for the interior and exterior
fluids on the hypersurfacE (the pull-back commutes with
the exterior derivative and the exterior producthen we
have
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ay=0 (23) sy=ee" @) (5 )dy. (26)
by =dv (24)
. The continuity of the first and second fundamental forms
ws = ke U 2@ (g ydy (250  (Darmois conditiongis equivalent to
|
|a|in|2: |a|out‘2 A ( finm: fout‘z
|b|in|2=|b|out‘2 Gin‘zzGoutl2
(b'a)inlxz(b'a)out‘z\ R Nin‘z\:Nout‘X (27)
{(W_S) : a}in‘zz{(w_s) : a}out‘2 (mu)in‘zz (mu)out‘z
(Vv)inm:(vv)out‘z y L (Gu)in‘zz(GU)outlz-

From the equations in E§22), the continuity of the compo- 1 |b|
nentdv? of the first fundamental form, and the components [cogb,a)y]=— mcoib,a)ﬂam— H“U]
0k 0%, 0% ® 0, and6 @ 0 of the second fundamental

form we obtain the continuity of G, N, andw . Using the 1 |b|
Einstein equationgin particular, Eq.(17)] we have that :_Wicoib'aHH (]

Pinis = Pouty- From thedv? component of the second funda-

mental form the continuity o6 in X is derived.

It easy to check, using the previous relations, that

|W|in|2=|w|out‘za |S|in|2=|s|out‘zr (b'W)in‘zz(b'W)outlza
and @-W)in . =(a-W)ou,- Therefore, |al, |b|, |w|, |5,

cos@,b), cos@,w), and codf,w) (the moduli of all the kine-
matical 1-forms and the angles among thdrave to be con-

tinuous in3;.

There are functions that can be discontinuous on the
matching surface. These are, for instantig,Ny ,py, and

202¢

2lw[[wy]= {—2wyw,[fy]l+2(Noy—fw,)

G
X[wyyl+wf[Nyl}
b|? a
=— KZeZS,wUmvu 1+ ucos(b,a)] [m]
laj2”  [bl

w,,- The discontinuity of these functions can be obtained

from the Einstein equations. For these discontinuities we

have
[Ny]=G[u] (28
G
[ful=olul (29)
[pul=—[nu] (30)
G
[wyul= m‘wu[#] (31)

where[ 1=()in—( )out (We have used the fact thét is

|wl?
B m{coib,a)(coib,w)
+coga,w))*~ (1+cogb,a))?
X coga,w)cogb,w)}

1+ Hcos{b a)][,u].
|b] ’

As a summary, we can say that the matching conditions in
these coordinates impose that

X

f,G,N,w,,wy,h(w), and Gy

are continuous ol =0 (as well as all the derivatives up to

continuous inJ=0). It is interesting to note that the discon- the order of continuous differentiability imposed for a regu-

tinuities of these functions depend on the discontinuity.of

lar point. It is assumed that these derivatives have limits

(the energy densily These discontinuities can be written in a from inside and outsidge This is equivalent to the continuity
more intrinsic manner in terms of the derivatives of kine-qf the moduli of all the kinematical 1-forms and the angles

matical properties in th&J direction

|b|?
[|a|U]:ﬂ[NU]:Ta|[’“]

among them.

The two-fluid problem has been reduced to two nonlinear
second order partial differential equations with independent
variablesU andv for G andw in the interior and exterior
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regions. The boundary conditions impose tfaand w be _ Bisi P
continuous and have continuous partidlderivatives onU B=cosh{2\)B+sinh(2\) 5 (39
=0.

5=sinh(2\) B+ cost(2)) 8. (40)

V. THE ISOLATED STAR PROBLEM: VACUUM

EXTERIOR AND INTERIOR FLUID The conditionw/\s=0 is equivalent tax/\§=0, which

Now, we have to match an interior perfect fluid space'[imeIn terms of the variables with carets reads

(modeling the interior of a starand an exterior vacuum

spacetimgmodeling the field produced by the star outside (k+2 d)\)/\[sinr(zx),fﬂ cosr(Z)\)Aﬁ]=O. 47
Following the two-fluid model, we choose a fluid-adapted

tetrad for the interior region. In the exterior region, even\e call this equation thelifferential form master equation

thtin ‘;VG inllﬁlqse ;‘_hﬁo at';']d 6* be in the sp}acedof the OLbitS The solutions of this equation can be separated in two cases:
of the two Killing fields, there is a gauge freedom in choos- - = "o T e T o

ing them. If we take a starting tetrad with caret we can make5 .
the following gauge hyperbolic rotation: +cosh(2)6=0, implies, by using the field equations, that
the spacetime is static. We will not consider this case in
—~ —~ detail here, as it can be treated in a separate and simpler
GOZCOSI’O\)GO-F Sinl”()\)al (32 manner.
In the second case, we haxe «§, which in terms of the

] -~ -~ variables with carets reads as follows:
6*=sinh(\) 8°+ cosh\) 6* (33

where\ is an arbitrary function of the coordinates. We con- k42 d\ = o[ sinh(2)\) B+ cosh2)) 5] (42)
sider aA maintaining the symmetryi.e. A\ does not depend

on the time and axial coordinatesf we choose som& and  \yhereq is an arbitrary function of the coordinatesando.
v coordinates in the space orthogonal to the orbits of therhis is an equation where we have to determinand \.
Killing fields, then,\ is a function ofx andwv. In this section,  Note that we can interpret this equation as determining all
the leading idea is to use this gauge freed@imose\) to  the possible gauge transformations that from a given starting
reproduce the previously developed two-fluid matching protetrad with caret give as result a new tetrad verifyimgs
cess. The main ingredient of the two fluids matching model g qa=0. If we start with a tetrad already satisfying
is @ ¢° such that the corresponding acceleration 1-f@m As=0, then the equation determines the transformations
verifies thata=dU and the matching hypersurfageis de-  that maintain this property. Using coordinatesand v the

scribed by the equatiOU =0. Also, it is satisfied thaﬁion‘2 differential form master equation |mp||es

= 0gut .
s
In the case we are considering now, in the exterior region
we have no Euler equation and no baryotropic equation of
state implying thada=0, but we have the gauge freedom
choosing #°. Hence, we look for a¢° that verifiesw/\s O\ = —m 4 alsiN2M B, + cosi2M) 5 44
=0 and therefore, by the second Bianchi identitida=0 »= "k alsinh2M)B, 2)5,] (44
holds @=dU, at least locally.

Under the previously considered gauge rotation, theVe Will assume that sinhigg,+cosh(d)s and
1-formsa, b, w, ands transform adequately. It is interest- sinh(2)B3,+cosh(2)4, do not vanish, because if both van-

2\ = — ky+ a[SINN(2)) B+ coSH2M) 5,] (43

ing to define auxiliary 1-forms ish then6=0 and the solution is static, if only one of them
vanishes, for instance the second dtie other case has a
B=b—2a (34) similar treatment we will have one of the following possi-
bilities.
S=w-—s (39

1) ,Z%U= 5U=0 and then the solution of the equation is

K=W+S (36) 17 .
. . . ) )\:__J' k,dv +F(x)
such that the transformation relations can be written in the 2

following simple manner:
and

b=b 37 .
2N Tt Ky

a=

k=r+2 dN 39) Sinh(2\) B+ cosh2)) 3,
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(2) B,#0 and then wheret and ¢ are the coordinates of a non-rotating observer
at infinity. For this tetrad we have=0, i.e. it is a rigidly
rotating tetrad.

1 5 Hence, in a non-characteristic case there is an unijue

A= sarctanft — == which satisfied thatv/\s=0 and such that in a given surface

3, coincides with a prescribed one. Therefore, the analysis
done for the two-fluid problem can be reproduced now with

a “virtual” fluid velocity given by this #°. Then, we obtain

exactly the same results as in the two-fluid problem, and the

By

which imposes the following constraint:

R 1 5 Einstein and Darmois equations can be reduced to a bound-
v R
K, = — 2( — T) ary problem for a system of two second-order partial differ-
o, B/, ential equations for two functions in two variables, except
1_(A_> that, in this case, we should impogg, =0 and wx,,=0.
B The conditions imposed by the matching requirements, in the
and kinematical 1-forms are also the same as in the two-fluid
problem.
2)\'X+ Ky A. The characteristic case
o= ~ ~ .
sinh(2\) By + cosh(2\) &y Let us analyze the case when the matching hypersurface

is a characteristic surface for tRRDE master equatiarrhis
Hence we can checl, priori, if we are in one of these cases characteristic surface is given by the conditidgy,ys=0
where the solution to the master equation is known. (note that this condition does not imply in general ti#at
In the general case we can obtairfrom one of the equa- =0 in the exterior region But if Soufs =0, then koyys
tions, for instance from the first one, and then substitute the-0 because;, > &, and therks = §js (note that as we have
result in the other equation to have gionlzz 98ut|2 then binjs =bougs » Winjs =Wougs » and Sigjs
=Souys and we can refer, without any ambiguity, to the ki-
nematical 1-forms 0‘i9|0z on the matching hypersurface and

2N o+ Ky ) .
a= - _ (450  write by, w)s, andsjy, equivalentlysy and «|x). From
sinh(2\) B+ cosh{2\) 8 the vanishing torsion equations, we have that we can write
g the first fundamental form of the surface as follows:
an
. A dsiy = —dt*+e?de?+h(v)dv? (49
2N Tt Ky 2N ,t K,
) = T = ~ - whereus = *d/dt (0|° = Fdt). Using an extension of these
Sinh(2\) B+ cosi{2\) 8,  sinh(2\) B, + cosh{2\) 5,

(46) coordinates to the exterior region the metric can be written as

This last equation is a first-order quasilinear partial differen- 42 _ 4 q12+2g. dtdo+a. do?+q.. dv2+24. dxdy
tial equation that can be used to determineWe call this out™ Ju QAP T Doele T G Do

equation the partial differential equatiORDE) master equa- + gy d X2, (50
tion; to this equation we have to add the boundary condition . . _ .
9?n\z:98ut|z- This fixes\ in the surfaceS defined by an and the matching surface will be given by an equation
equationF (x,0)=0 [i.e. \x=g(v)], but then we have a F(x,v)=0, such that
boundary problem for a quasilinear differential equation, and
it is a well known fact that this problem has a unique solu-
tion, at least locally around, unless the boundary condition
is a characteristic condition.

Note that the PDE master equation depends on the start- Oz =0 (52
ing tetrad with caret. To fix the notation we can choose the
tetrad with caret as follows:

Ous=—1 (51)

Uppls =€ (53
P°=\=g, dt+%d¢>) 47 and choosing 6°=\/—gn(dt+(gw/gn)d<p) and 6!
= V(90— i)/ 9ude We haves=0 anda=d(Iny—gy)
and then the functiord will be U=Iny—g,, such that
7 Uz =0 (rigid rotating virtual fluid, so we have @0, satis-
Pl= A /Mdgo (48)  fying the conditionsyy s = 65,¢x andw/\s=0. However, in
~ Ot this situation this choice is not unique; for instance,
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another possibility is 0°=(—(gttgw—gﬁp)/gw)l’zdt, ing of the interior Schwarchild solutionu(=const) and the

o= ‘/gw(d¢+(gt¢/9w)dt) where U exterior Schwarchild solution.
=\~ (9uTes—9r,)/d,, Which also satisfies the imposed
conditions(virtual fluid with irrotational motion. A. Interior Schwarzschild solution
Hence, we can always choosef&in the exterior region The line element of this solution can be written as fol-

satisfyingw/\s=0 and coinciding with a prescribed one in |ows:
>, which is a “static fluid surfacef24]. In fact, it is possible

to find several ones, but, for instance, we can always choose 2\ 2 1

the virtual fluid with irrotational motion. Therefore, we have ds?=—| a—b /q— - dt2+ dr?

reduced this problem to a two-fluid problem, except that out- R? r2

side we havep=0 andu=0. _Q
+r3(d6%+sirfode?) (54)

B. Matching known solutions

We have analyzed the problem of obtaining new interiorVNerea, b, g, andRare constants. This solution represents a
and new exterior solutions. Now, let us analyze the theoretP€rfect fluid in comoving coordinates and with equation of
ical problem when onéthe interior or the exterigror both ~ Statex=const[23]. We can choose an orgh_onormal tetrad
solutions are known. following the prescription described abové™(is the veloc-

Suppose that an exact interior solution is known. Theity of the fluid and6* is orthogonal to¢® in the {t, ¢} sub-
matching hypersurface is given by the equatipn0. It is ~ SPace
possible to introducé) and v coordinates in this interior
region. Then, we can formulate the boundary problem for the / r2
exterior region using the) andv coordinates and the param- 0= ( a—-b~\/1- —) dt (55)
etrization presented in Sec. IV. This is implemented by giv- R?
ing the values ofG and w and theirU derivatives in the
matching surfacé) =0. g'=r singde (56)
Let us consider the case when an exterior exact solution is '
known in some coordinates, sayandv. First, we have t0  for the kinematical properties we have

choose a matching hypersurfagg given by an implicit
equationF(x,v)=0. Starting from a rigid rotating tetrad

with caret for the asymptotit and ¢ coordinates, we can rz

write down the PDE master equation. The boundary problem a=d I”( a-by\/1- R2 (57)
for this equation is fixed by giving a(v) in X, which is

equivalent to fixing a fluid angular velocity distribution &n

(with respect to a non-rotating observer at infinitfhis also r2

fixes the functiorh(w) on . The matching conditions de- b=dIn|{a—b~\/1- —|r sinég
termineh(w) in the interior, at least locally arour¥l. For a R (58

perfect fluid with a given barotropic equation of staie

= #(p) we can formulate a boundary problem for the Inte'andw andsvanish. Then, the change tbandv coordinates

rior region inU andv coordma_ttes._ . is described by the following relations:
When we know an exact interior solution and an exact

exterior solution, we have to look for the matching surface

>, which will be given by an equatiofr(x,v)=0 in the r2 eV-Uo_g
exterior and byp=0 in the interior. OnX we have 6f U=In{a—b 1‘@ +Up, r=R 1—(T

invariantly defined by the interior fluid velocity, then the (59
PDE master equation and its boundary condition determine
62,:, and theU andv coordinates can be introduced in the
exterior, at least locally arouns. The matching conditions r2
presented in Sec. IV, will determine if there is a hypersurface v=In||{a—b\/1- ? rsing

VI. MATCHING INTERIOR AND EXTERIOR e~ (U-Uggv—uo

SCHWARZSCHILD SOLUTION IN' U AND v sing= . (60)
COORDINATES \/ eU-Uo_ g4\ 2
In this section, we will present a very simple example of Ry1 ( b )
the matching inU andv coordinates; in particular, we will

3, where the two spacetimes can be matched.
apply the formalism for the case of a static solution consist-The line element in these coordinates can be written as

2

+Uo,
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2(U—-Ug)
d2= — U~ V024 e 2V~ U0)e2(e 02+ R2—— du?

b2_(e(U—UO)_a)2
[dv+ b2_(e(U—UO)_a)2

2
o]
2
eZ(U—UO)e—Z(U—UO)_ b
RZ[bZ_ (e(u—uo)_a)z]

(e(UfUO)_a)e(Ufuo)
~1+

J’_

and #° and 6* in these coordinates read as follows: Ny
a=2tanl ——r— 6
6= U~ Vodt 61) sinh(2\) ©7
ot=e (U-VUoelt—vodep, (62) and
The pressure in these coordinates reads %)\Ftanm\e. (69)
_ Up—U
p= ﬂ This first-order partial differential equation has the general
R solution
and the energy density is a constant 3/R?. Jr—2m
A= o (69
r32sing

B. Exterior Schwarzschild solution

The Schwarzschild spacetime for vacuum in the standaravhereF is an arbitrary function of its argument. Let us men-
coordinates can be written as follows: tion that the general solution of the corresponding first-order
partial differential equation can be obtained in the case of a
general static spherically symmetric spacetime

2m 1
ds?=—|1— — dt?+ Wdr2+r2(d¢92Jr sirfdde?).
1-— ds?=—e?’Ndt?+e?Adr2+r?(d 6%+ sirf 0d ¢?)

r
(63)

where we have to solve the equation
Following our approach, we have to choose a tetrad such that

w/\s=0 andéf, s = 69, - We can start with a tetrad of the . A —tan o)\,
form 1,
4
r
- / 2m
0 1 r dt 64) the solution in this case iIs=F(e™"r sinf) whereF is an

arbitrary function of its argument.
;9\1—r sinod 65) Now, suppose that we impose the condition tlﬂﬁ,gz
¢ = Bguﬂz, assuming thak is not a constant. We have

and look for the required transformation. Hence, we have to

. . . . . r2 .
solvethe differential form master equatio@l) that in this 60 = ( aeb/1- _) di

case reduces to R2
sinhA\ - and
d)\/\mﬁ—o, (66)
: _ 0 Jr—2m 2m
from this equation we have=const or Oou=cosh) F| —-—— 1——dt
r¥Zsing r
sinhA\ -
20\=a——— Vr—2m
acosh)\ﬁ +sinh F| —-—— |rsinfde.
r¥Zsing

wherea#0. For our case this equation can be decomposed
into If t=cqt+cCyp, we get
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( r2 r2 and 6° and 6* in these coordinates read as follows:

6% =c,| a—b\/1- —|dt+c,| a—b\/1— —|de,

n R? ’ R? 9°=eY Vot (77)
but then from the coefficient ofit we should haveF pl=e~(U-Uoglv—v0dy. (79

=const, against our assumption. Now, let us consider the

case withh =X\, (a constant We have L . .
o ( Y The condition tha®#),= 62, in U=0, as well as the defini-

. om _ _ tion of 6, impose that)gjn=Uqout andvgjn=voout- The
Oout=COSH{\g) 1—Tdt+smr‘()\0)rsm 0de matching conditions are the continuity of the functions
f,G,N, andGy; aswy, w,, andh(w) vanish. The conti-
and nuity of f,G, andN impose the following relations:
0 I’2 I'2 2 R2 2U 2 U 27ef
60 =c,| a—b 1—§ dt+c,|l a—b 1—§ de m =§e* o[b?— (e~ Yo—a)?]sinkPU, (79
in order to haved{) s = 65,45, we should haves,=0 and m2e2Yo R2e-2Uo
Ao=0, also we can choose,=1, that impliest=t (we (80

: : T2 aUp_ a2
assumep= ¢). Hence, we have that the required tetrad ele- sintfUo  b*—(e a)

ments are
coshU, . (e”Yo—a)e Yo -
2m T AT S Uy 2
0°= /1~ ——dt (70 sinhUo b?~(eVo~a)?
" . The solution of these equations is
0 =r sinfde. (71
For these tetrad elements we have e Vo= Ea (82)
3

a=dlIn \/ 1- T =dU (72) b2= 1/4 (83)
2m ) R 4
b=dlIn| \/1-— rsin6|=dv, (73 m= > 1—§a2

and w and s vanish. The c_hange t9U,v} coordinates is gy sypstituting these relations in the condition imposed by
given by the following relations: the continuity of G, we have that this condition is identi-
cally satisfied(in fact, this happens for any static spherically

32
(84)

U= Eln( 1— 2m +Ug, r= o 2m (74) symmetric spacetimeln order to compare the results with
2 r ’ 1—e2(U-Yo) those obtained by the matching procedure and 6 coordi-
nates, we use that=0 implies thatr =r, and then we have
1 2m\ e Yo=\1-2mir, or, what is equivalent, a
v=gin| 1= it +vo, =31-2mir,, and thenm=r3/2R? anda= 21— rZ/R?.

These are the relations obtained from a direct matchimg in
i 1 . and # coordinates.
sinf=——e""osini(U—Uo). (79 In Fig. 1 we plot the interioKfilled) and the exterior re-
gions of the Schwarzschild spacetimesUnandv coordi-

The line element in those coordinates can be written as  hates. The two regions are bounded by two asymptotes of
U=const and the equatorial plane curve. Note that rthe

ds?=—e?(U-Yodt?+ e~ 2(U~ Vo) =const lines corresponds td=const, in particular, the
) boundary of the star corresponds tb=0, the asymptote
x{ez(v‘vo)d¢2+ du2 with the lower value olU represents the curve=0, andr
sinf(U—U,) = is the asymptote with the upper valuedf The curved
boundary of the regions corresponds to the liven/2 (the
m? equatorial planeand the other curves inside the regions rep-

resentd=const for different values of the constant. The re-
gion is doubly covered by curves @f=const as a conse-
cosiU—U,) 2 quence of the symmetry of the solution with respect to the
mdU} (76) equatorlal plane 6(: ’77/2)

+
e 2t vdm2—sinF(U—U,)

X|dv+
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VII. THE PDE MASTER EQUATION FOR THE KERR then the first-order partial differential equation defining the
METRIC transformations maintaining the property thaf\s=0 (i.e.
a=duU) is

As an example of the first steps towards matching a
vacuum exterior solution with an interior perfect fluid, let us

study the PDE master equation for the Kerr metric. We write 2N+ K, B 2N, + K,
the metric in Boyer-Linquist coordinat¢22] SinV(Z)\),ér T cosh2n) 3, = sinr(zx)fau T cos2n) ;51;
2mr (92
ds’=—dt*+(r?+a’)sinfdde?+ T(aSinzed‘P_dt)z where the v coordinate is defined byv=InD+v,

=In(AY%sin 6)+v, and

+3 dr2+d92 (85)
A ’ ~ damrA®®
=K (93)
where 3 =r?+a%cog6 and A=r?-2mr+a?. We take a
“rigid rotating” tetrad (s=0< 6= k=w) as the starting tet-
rad (with care} ~ - 2amA(—3r?+2mr+a?)x3—2amx
O = K= QO (94)
] L (86)
B a2 ¢ —~ TA3*-2a%(r’>-3mr+a%)Ax’+a*
By= Q (95)
= BDd 8
I e &7 —~  2m(a?-r?)A%*—2 mai(3r2—4mr+a?)x?
- Q
where (96)
—(r2__ 2 1/2
A—(I’ 2mr+a C0520) (88) QZFA3X4—a2A(F+A)X2+a4 (97)
B=312 (89) F=a’+r? (99)
—a (v=vp)
C=2amrsir’o (90) x=e & 0L (99
We are not able to find the general solution for this equation,
D=AY%sing, (91)  but we found a particular solution
|
N _ y( 2marsir?d(r’+a%cos6—2mr) 1?2 (100
=arcsin .
VI[r*+a?r?(cog6+ 1)+ 2mra’sir’ 0+ a*cos 6]sirt 6

The matching surface for this particular solution is givenusing the same coordinates, we plot the level surfaces ,for

by the implicit equation the matching surface fdt=0.1 (the broader solid ling the
(r?+a%cog6)(r2—2mr+a?) surfacer =const inscribed in the boundaxgray filled re-
(r?a?— 2mra®+ a%)co20+ 14+ r2a?+ 2mral =k, gion), the ergoregiorithe doughnut-like shaped regigmand

(101) the horizon(ther = const surface inscribed in the ergoregion
fora=1.9 andm=2. We can see that, for this case, the level

wherek=const. This solution corresponds to the case whersurfaces ol have a dipole-like form such that on the bound-
the interior perfect fluid is in irrotational motion, at least nearary surface the value of decreases from the equator to the
the boundary. poles. Also, we can check that the part of the boundary near-

In Fig. 2 we present a plot of the functionfor a=1.9, est to the poles is outside the ergosphere but the part around
m=2. The height in the plot represents the valuexand  the equator is included in the ergosphere. Note that the hori-
the other two coordinates are=r cosf andp=r siné (ap-  zon is inside the boundary and would be completely covered
plying axial symmetry, we plot together=0 ande=7 for by the fluid.
clarity, and we use the coordinad=p cosg). In Fig. 3, The change tdJ andv coordinates is the following:
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U 1I (r’+a%cog6)(r>—2mr+a?) (102
—Ug=3In
O 27 144 r2a2+ 222mr+ (r2a2— 2mra®+a%)cofo
1 :
v—vo=Eln[(rz—ZmrJraz)smze]. (103
|
In Fig. 4 we plot the Kerr exterior region id andv coor- 9
dinates fora=1.9 andm=2. The similarity with Fig. 1 cor- \=arcsinf ———|. (112
responding to the Schwarzschild solution is apparent. V= 9ttYee

This solution corresponds to passing from a “rigid rotating”

tetrad to an “irrotational motion tetrad,” which is always

possible. For any stationary and axisymmetric metric we can
After we found a particular solution for the PDE master choose

equation for the Kerr metric we thought that perhaps it

A particular solution for the PDE master equation
for a generic spacetime

should be possible to find a particular solution for the PDE 9= /gﬁp—gngwdt 113
master equation for a generic spacetime. B Uoo 113
For a generic stationary and axisymmetric spacetime we
can always choose “rigid rotating” tetrad elements as fol- Ot
lows: 01: ngaga d¢+_¢dt)1 (114)
O¢¢
00= =gy dt+ %d‘P) (104  and then
tt

b=dIn \/gtzzp_g<p<pgtt (115)

2
— g —g g
ol w_—ﬁ"‘f’“dzp_ (105 9o~ 9ud
Ot a=dIn\/——%¢

g‘P‘P

(116
For these tetrad elements we have that

. Yoo ( gw)
_ 2 _ S=——=———d| — (117
b=dInVgi,—9yelut (106 VO5,~ OeeOtt ' Jee

a=dIny—gy. (107 w=0. (118
The matching surface in this case will be given by
~ — O Ot
W= — ———=d| — (108 5
Vo2~ 9,00 | Ot Gio ™ Gubee _ | (119
~ Yoo
s=0 (109

wherek is a constant. The previous solution ferwill be
then determined in a uniqgue manner by the value)ofin the
surface given by Eq119.

S=k=w=— _—g“d(gﬁ) (110 VIIl. CONCLUSIONS
Vo7, — 04e0u | Gu

We have presented the matching conditions for two rotat-
\/ﬁ ing fluids in terms of the kinematical properties of both fluids
Ote gttgw) (111) in general relativity. A simplified form of the Einstein equa-
' tions has been given, using coordinates adapted to the hyper-
surface separating both fluids. A physical situation where this
The first-order PDE master equation determining the gaugeanalysis can be used is the case of a rotating relativistic star
transformations that maintains the property théf\x  with two regions with different physical properties, equations
=0<da=0 can be written easily in terms of these expres-of state, rotation laws . ., separated by a well-defined sur-
sions. To obtain the general solution of this master equatioface. The two-fluid problem is reduced to a system of two
is a formidable problem, however we always know a particunonlinear second-order partial differential equation in two
lar solution which is given by the following expression: variables for two functions in the interior and exterior re-

b—2a=d In(
— O
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T - infinity
) _ \

equatorial
lane
plane 7z
2 4 6 8
\
X
FIG. 1. Interior and exterior regions of Schwarzschild space- FIG. 3. Level surfaces of for the Kerr metric.
times inU andv coordinates.
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exterior vacuum region is also analyzed as a model for an

isolated r(_)tating_relativistic stathe models for the interiqr APPENDIX: DIFFERENTIAL FORM APPROACH

and exterior regions should be calculated at the same.time SUMMARY

By solving a boundary problem for a first order partial dif-

ferential equationmaster equation a tetrad is defined for We consider a stationary and axisymmetric spacetime de-

the exterior region such that the matchifiarmoi9 and  scribing a perfect fluid in circular motion. That means that it

Einstein equations reproduce those of the two-fluid problemadmits two Killing fields{¢, }, ¢ time-like andy space-like

Therefore, this problem can also be reduced to a boundaiso[¢,7]=0 andu (the velocity of the fluig belongs to

problem for a system of two nonlinear second order partiaLin{é, »}.

differential equations in two variables for two functions in  Here we present a summary of a differential form ap-

both regions. proach for this problem; sd20] for more details. We use an
A static spherically symmetric star described by the inte-orthonormal tetrad

rior and exterior Schwarzschild solutions is analyzed within

formalism. The Kerr metric is also studied, the master equa- ds’=— %0 0%+ 0'® 6'+ F*® 0>+ °2 6° (A1)

tion written, some particular exact solutions found, and the o 0 1 . .

change to coordinatds ando for those solutions described. Where¢"=u and¢” and 6 are in the space of the orbits of
Two problems currently under consideration are theth® Symmetry group. We choose a gauge where the Lie de-

asymptotic flatness ibl ando coordinates and the equatorial fvative of all the tetrad element, i=0,1,2,3 in the direc-

symmetry: for both problems the analysis of the sphericallyion of £ and 7 vanishes(so no function appearing in the

symmetric model, presented in Sec. IV, can be used as @etrlc will d_epend on the coord_lnates _adapted to the Killing

guide. Also, we would like to mention that, in principle, it is fields. We |nt.r0duzce35everal differential 1-fornsw,s,b,

possible to develop a numerical code using coordinated v all in Lin{6%,6°} wherea is the acceleration of the

adapted to the surface of the star, or a transition surfacdluid v_elocny,Wls a 1-form such that the vorticity tensor can

using the formalism and results developed in this paper t&€ Written asor=6¢'/A\w, sis a 1-form such that the shear

produce a complementary approach to the already existin%nsor iSST_= 0'®s, bis tht_% c_ierivative of the Iogarithm of
codes. the determinant of the metric in tHg, »} subspace, and is

the Riemannian connection in tH&?,6°} subspace. After
some simplification using a gauge fixingve impose 62

«b) we find the following exterior differential system which

is equivalent to the vanishing torsion equations, the first Bi-
anchi identities, the Einstein equations, and the second Bian-
chi identities:

du=aAu+wA et

dot=(b—a)\#*+s/\u

FIG. 2. 3D plot of\ for the Kerr metric. db=0

064011-13



L. M. GONZALEZ-ROMERO PHYSICAL REVIEW D67, 064011 (2003

In the present paper we use a parametrization where
)] |b|2=1/G, |a|?=N]|b|?, and(b,a)=—f|b|2.
Whenda=0 we havew/\s=0 and, using the vanishing
U equatorial torsion equations, we can parametnzeinds as follows:
Kerr ~
) - plane w= ketdw (A3)
ext. region
s=ee ‘dw, (A%)
r T T T T T 1 = _— = = 2:
R ARy AN 7 7 3 2 \;vzh:erleog 2U—-v+2h(w), a=dU, b=dv, «“=1,0, and
interior? / Y Then 6° and ' can be parametrized as
/ -11 °=eY[Adt+Bde] (A5)
7
- ot=e’"Y[Cdt+Dde], (AB)
=27 whereA, B, C, andD are functions ofw that have to satisfy
FIG. 4. Kerr metric inU andv coordinates. the following linear system of ordinary differential equa-
tions:
da=w/\s ds 0 ce2h(@) B
dw=—(b—2a)/\w do e o |S SS|c pl A7
ds=(b—2a)/\s
dx(W—s)= —2a/\*w—2(a—b)/\xs Therefore, if the rotation regime is_ fixed by means of_ a par-
ticular functionh(w) we can obtain, by solving this linear
B b/Axb ordinary differential system,A=A(w), B=B(w), C
dxb+b/Axb=2p e =C(w), andD =D(w).

The determinant ofS is constant: ¢/dw)(AD—BC)
=0; if Sis a solution ther&' =SPis also a solution, when-
everP is a constant matrix; this freedom is nothing else but
the freedom of choice of theand ¢ coordinates; it and ¢

1 1
dxa+b/\xa=— EW/\*W+ ES/\*S

1 bAxb transform according to the relations
+5(rt3p)— o
|b| t' =Kyt + Koo (A8)
1
- Ed(|b|2)=(|b|2—p)b—|b|2a+[<b,a)a @' =kst+kyp (A9)
1 (wherek,, ks, ks, andk, are constanjs then the corre-
—(b,xa) xa]- Z[(b,(s—w)} (s—w) spondingP is given by

ki k
—(b,*(s=w))*(s=w)] p-i=| * 7. (A10)

ks Ky

dp=—(utpla

Whenf, G, N, andw are known as functions aj andv,

whereu is the energy density of the fluig,is the pressure, ihe metric can be written as follows:

» stands for the Hodge dual in tHe9?, 6%} subspace( ) 0 S ol
indicates the scalar product, ah¢l means the norm. This is ds’=—e*’[A(w)dt+B(w)de]*+e~
the system of equations we have to solve. We have the fol-

2
lowing expression fow: X[C(w)dt+D(w)d¢] (A11)
=}*M+ 1-2-" |, (A2) + [Ndv2+dU?+2fdUdv]. (A12)
2 |bf? [b|? N—f2
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