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Rotating relativistic stars: Matching conditions and kinematical properties

L. M. González-Romero*
Departamento de Fı´sica Teo´rica II, Facultad de Ciencias Fı´sicas, Universidad Complutense, 28040-Madrid, Spain

~Received 22 October 2002; published 26 March 2003!

In the framework of general relativity, a description of the matching conditions between two rotating perfect
fluids spacetimes in terms of the kinematical properties of the fluids is introduced. The Einstein and Darmois
equations are written using coordinates adapted to the boundary separating both spacetimes. The functions
appearing in the equations have an immediate physical interpretation. The analysis is extended to the case of
matching a perfect fluid spacetime~star interior! with a vacuum spacetime~gravitational field outside the star!.
By solving a boundary problem for a first order partial differential equation~‘‘master equation’’! we define an
exterior tetrad such that the matching conditions and the Einstein equations, for this case, reproduce those of
the two-fluid problem. The formalism is applied to a particular static spherically symmetric star and to the Kerr
metric.
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I. INTRODUCTION

One of the main subjects of relativistic astrophysics is
description of the constitution and evolution of relativis
stars~neutron stars, quarks stars, . . . !. These are stars with
rapid internal motion and/or a high density such that it
necessary to use general relativity to describe them. Usu
these stars rotate~with rigid or differential rotation!. Here we
will consider stationary and axisymmetric configurations
circular motion, i.e. in permanent rotation. Trying to descr
one of these isolated rotating bodies, we immediately rea
that we have to cope with the problem of finding an inter
solution ~the gravitational field inside the star! and an exte-
rior solution, describing the gravity field produced outsi
the star. These solutions have to match adequately such
we do not have fictitious forces when crossing the star s
face. The condition that the star is an isolated body impo
that the exterior solution has to satisfy a condition
asymptotic flatness. It is obvious from the very beginni
that we do not know the boundary of the stara priori. That
complicates the situation substantially, and mathematic
becomes a free-boundary problem.

The matching or junctions conditions between two spa
times is a fundamental part of the problem. This subject
been considered in classic works by Darmois@1#, Lichner-
owicz @2#, O’Brien and Synge@3#, and Israel@4#. The rela-
tion between the different approaches has been considere
Bonnor and Vickers@5#. The expression of these condition
in terms of the Newman-Penrose formalism has been
sented in@6#. Null matching surfaces have been studied
several works@7,8# and a formalism valid for hypersurface
of any constant type is presented in@9#. Junction conditions
for general hypersurfaces~changing the type from point to
point! are considered in@10#. Symmetry-preserving match
ings, especially for stationary and axisymmetric spacetim
have been studied in@11#.

There are interesting results for the particular case of
tating bodies. By solving two integral equations, Neugeba
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and Meinel@12# have constructed a general relativistic ge
eralization of the classical zero-pressure Maclaurin disk. T
density of the dust disk was determined by computing
jump in one of the metric functions. The uniqueness of
exterior gravitational field has been studied in@13#. The pos-
sibility of matching the Wahlquist interior solution with a
exterior field has been studied by considering a slow rota
approximation in@14#. The matching of a special class o
solutions is presented in@15#.

A procedure, based in the monodromy matrix, for matc
ing a given stationary axisymmetric perfect fluid solution
a not necessarily asymptotically flat vacuum exterior is
scribed by Ernst and Hauser in@16#.

We would like to mention the numerical codes develop
to construct models of rotating relativistic stars@17#. The
Einstein equations are integrated numerically with t
asymptotic conditions at infinity. These models are very
teresting because they produce very accurate results fo
global properties of rapidly rotating stars. Let us note th
usually those numerical codes use coordinates not adapt
the surface of the star and then, if discontinuous phys
properties exist in this surface~for instance, the energy den
sity!, they suffer from a reduction of the accuracy due to
high-frequency noise at the surface of the star~Gibbs phe-
nomenon! @18#. In order to improve the accuracy in thos
models, as well as models with phase transition, so
surface-fitted coordinates could be used. In this paper
introduce coordinates of this type, which are exactly adap
to the transition surfaces. It is interesting to note tha
scheme due to Bonazzolaet al. @19#, which uses numerically
adapted coordinates in a multi-domain spectral code, p
duces improved results near the surface of the star.

One way to cope with free-boundary problems is to defi
coordinates such that the matching hypersurface is given
the vanishing of one coordinate in the description of both
interior and the exterior regions. In this paper, we will intr
duce coordinates of this kind and we will write down th
Einstein equations and the matching conditions~Darmois
conditions! using them.

The star interior is usually described as a fluid; here
will use perfect fluids in circular motion with a barotrop
©2003 The American Physical Society11-1
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equation of state. To have a better knowledge of the co
tions imposed by the matching process on the kinemat
properties of the fluid~vorticity, shear, . . . !, we consider the
problem of matching two perfect fluids across a surface
constant pressure; for instance, two fluids with different
tation regimes or with different equations of state. Then,
can write the matching conditions by using the kinemati
properties of both fluids on the matching hypersurface. T
situation is interesting by itself, because it can be used
model for a star with a phase transition~two regions with
different equations of state or rotation laws, separated b
well-defined surface!. The results can be used as a guide
the problem of matching an interior fluid solution and
exterior vacuum solution, i.e. to obtain an isolated rotat
star model. In particular, when matching a fluid interior r
gion with a vacuum exterior region, we will use the gau
freedom, that exists in vacuum spacetimes in defining
orthonormal tetrad, to reproduce the properties of the ju
tion process of two fluids. Also, we choose coordinates s
that the matching surface is given by the condition of
vanishing of one of the coordinates. This coordinate is
fined in terms of the tetrad in a manner we will descri
below.

We will see how this choice of gauge and coordinates
the by-product of a simplified version of the equations in
interior and exterior regions. Also, in the interior region t
functions that we find in the equations~Einstein and Darmois
equations! have an immediate interpretation in terms of t
properties of the fluid. For the exterior region, we will pro
that, in general, it is possible to define, in a unique man
an orthonormal tetrad verifying all the conditions describ
above. To obtain this tetrad we have to solve a first-or
partial differential equation, which we will call themaster
equation. In our opinion, this tetrad can be considered a
natural prolongation to the exterior of the intrinsic interi
tetrad, which is determined by the fluid velocity.

We apply the formalism to a static spherically symme
configuration where the entire process can be done in
explicit and analytical manner. This configuration can also
used as a guide for further developments. Themaster equa-
tion for the Kerr metric is analyzed, and some particu
exact solutions are obtained and analyzed. These partic
solutions are extended for themaster equationof more gen-
eral spacetimes.

II. DIFFERENTIAL FORM APPROACH FOR ROTATING
PERFECT FLUIDS

To study the properties of the stationary and axisymme
perfect fluids in circular motion, we use a fluid-adapted
thonormal tetrad formalism which was previously introduc
@20#. The Einstein equations are formulated as an exte
differential system where the 1-forms used~kinematical
1-forms! have an immediate interpretation in terms of t
kinematical properties of the fluid~acceleration, vorticity,
shear, . . . !. To fix the notation, in this section we wil
present the definitions of these kinematical 1-forms. F
completeness, the exterior differential system equivalen
the Einstein equations will be summarized in the Append
06401
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We use a Ricci principal tetrad; in our case this impli
that we have the fluid velocityu0 ~timelike! as one of the
tetrad elements. Given that we assume that our spacet
are stationary and axisymmetric, with a circular motion,
can choose another element of the tetradu1 ~spacelike! in the
space of the orbits generated by the Killing fields. The o
condition for the other two elements of the tetradu2 andu3

is that they have to lie in the two-dimensional space ortho
nal to u0 and u1, therefore we have a gauge freedom
choosing them. We introduce 1-formsa,w, and s in the
$u2,u3% space, such that the kinematical properties of
fluid can be written in terms of them. The expansionQ van-
ishes,a is the acceleration 1-form, and the shear and vortic
tensors can be written as follows:

s5u1
^ ss ~1!

vT5u1`w. ~2!

The vanishing torsion equations, the first Bianchi iden
ties, the Einstein field equations, and the Euler equation
be written using these kinematical 1-forms and two oth
1-formsb andn, which are also in the$u2,u3% space. These
b and n 1-forms can be interpreted as, respectively, the
pansion of the volume element in$u0,u1% space and the
connection in the$u2,u3% space. For an explicit version o
the exterior system see the Appendix and@20,21#. The energy
densitym and the pressurep parametrize the thermodynam
properties of the fluid.

Let us mention that the symmetry of our problem impo
that all the functions appearing in our formulation depe
only on two coordinates whose differentials are in the sp
generated byu2,u3.

III. KINEMATICAL PROPERTIES AND SECOND
FUNDAMENTAL FORM OF THE MATCHING

HYPERSURFACE

In the problem of matching two spacetimes which a
solutions of the Einstein equations, the regularity conditio
impose that the first and the second fundamental forms of
matching hypersurface coincide when they are calcula
both from the inside or from the outside. If one or bo
solutions describe perfect fluids, it is a natural question
ask if the matching conditions can be written using the kin
matical properties of the fluids. In this manner, we cou
have a better knowledge of the physical implications of
matching process.

To express the matching conditions in terms of the kin
matical properties of the perfect fluid, we have to write dow
the second fundamental form of the matching hypersurf
using them. We can parametrize the matching hypersur
by its normal 1-form; in our case, a stationary and axisy
metric perfect fluid in circular motion, and if the matchin
surface is described by the equationp5const, the normal
1-form can be written as follows:

nPLin$u2,u3%; n[n2u21n3u3
1-2
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wheren2
21n3

251. Let us take an extension ofn on a neigh-
borhood of the matching hypersurface. The covariant der
tive of n can be written as

¹n5~g020n21g030n3!u0
^ u01~g021n21g031n3!

3~u0
^ u11u1

^ u0!1~g121n21g131n3!u1
^ u11u2

^ ~dn21G23n3!1u3
^ ~dn32G23n2!

where gabc are the Ricci rotation coefficients of the Rie
mannian connection andG23[g232u

21g233u
3 is the induced

Riemannian connection in the$u2,u3% subspace. Whenu0

5u, u being the velocity of the fluid, we can rewrite¹n as
follows:

¹n52a•n u0
^ u01

1

2
~s2w!•n~u0

^ u11u1
^ u0!

1~b2a!•n u1
^ u11T^ @da2n#

whereT[2n3u21n2u3, n25cosa, n35sina, and • indi-
cates the scalar product in the$u2,u3% subspace. The secon
fundamental form of the hypersurfacep5const is obtained
by projecting this covariant derivative on the hypersurfa
~i.e. calculating the pull-back of this covariant derivative
it!. The result is independent of the extension used forn @22#.

IV. THE TWO-FLUID PROBLEM

Let us consider the case when the two spacetimes tha
would like to match describe two configurations of rotati
perfect fluid ~for instance, imagine that we have an inn
core of a rotating star in rigid rotation, and the outer part
the star in a differentially rotating regime, or two regio
with different equations of state separated by a well-defi
surface!. We impose that the matching hypersurfaceS be a
constant-pressure hypersurface (p5p0); the velocity of the
fluid u5u0 andu1 are then tangents toS.

For both fluids, from the Euler equation we have th
dp52(m1p)a, andn56a/uau. We also assume that th
fluids have a barotropic equation of statem5m(p); then we
can writea5dU, and therefore the matching surface can
described by the equationU5const. By using the freedom in
the definition ofU, we can impose that the matching hype
surfaceS is described, in both spacetimes, by the equat
U50. If b`aÞ0 ~the other case, which includes cylindric
symmetry and dust fluids, is a degenerate one and ca
considered in a separated manner@21#! we can use as ou
coordinates in the$u2,u3% spaceU and other coordinatev
defined up to a constant by the equationb5dv ~the constant
can be chosen such thatv in uS

5voutuS
). Note that for station-

ary and axisymmetric spacetimes, with no more symmetr
this coordinatev is invariantly defined~up to a constant!
because we have

d~u0`u1!5b`~u0`u1! ~3!

where u0`u1 is the volume element in the space of t
orbits of the Killing fields anddb50 ~the Appendix!. There-
fore we can writeb5dv.
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Then the kinematical 1-forms can be written as follow
~see the Appendix!:

a5dU ~4!

b5dv ~5!

w5k̂ej~Ãvdv1ÃUdU! ~6!

s5 êe2j~Ãvdv1ÃUdU! ~7!

n5nvdv1nUdU. ~8!

Now, we align one of the components of our orthonorm
tetrad with the invariant 1-formb, so thatu25Gdv. If we
parametrize the duality operator in$u2,u3% subspace by
!dv5(1/AN2 f 2)( f dv1dU)(N. f 2), and choose u3

5!u2, then we have

u35
G

AN2 f 2
~ f dv1dU!

whereG, f andN are functions ofU andv ~a similar param-
etrization, especially adapted for interior regions, has b
used in@21#. Here, we have modified it to be also useful f
vacuum spacetimes!. Therefore, we can write the spacetim
metric as

ds252u0
^ u01u1

^ u11
G

N2 f 2
~Ndv21dU212 f dUdv !

~9!

52u0
^ u01u1

^ u1

1
uau2dv21ubu2dU222~b•a!dUdv

uau2ubu22~b•a!2
. ~10!

Note thatG, f and N have an immediate interpretation i
terms of the kinematical 1-formsa andb

G5
1

ubu2
~11!

N5
uau2

ubu2
~12!

f 52
b•a

ubu2
52

uau
ubu

cos~b,a!. ~13!

The Einstein equations can be written as follows:
1-3
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Nv524pGN1~222 f U2mn fÃU
2!N

1@8 f 2p1~m13p! f #G14 f f v22 f 2

2mn f~Ãv
222ÃUÃv f ! ~14!

NU52mnÃU
2N1@4 f p1~m13p!#G12 f v

2mn~Ãv
222ÃUÃv f ! ~15!

GU5@222n2ÃUÃv2~42n2ÃU
2! f #G ~16!

Gv522pG21F22
1

2
n2Ãv

22~42n2ÃU
2!

N

2 GG
~17!

pU52~m1p! ~18!

05Ãvv1NÃuu22 f Ãuv2Ãv@22pG1l~112 f

1jUf 2jv!#2ÃUF2
1

2
NU1 f v12pG f

2l~ f 12N1jUN2jv f !G , ~19!

wherem5kej1ee2j, n5kej2ee2j, l5m/n andj52U
2v12h(Ã).

It is interesting to note that Eq.~19! is the integrability
condition for Eqs.~16! and ~17! for GU andGv . Therefore,
if we obtain f andN from these equations and substitute t
result in the rest of the equations, Eq.~19! is identically
satisfied. Given an equation of statem5m(p), the Euler
equation~18! can be solved in order to obtainp5p(U) and
m5m(U). The rotation regime has to be fixed by giving
particular functionh(Ã). Finally, we have two second-orde
partial differential equations forG andÃ from Eqs.~14! and
~15!. Therefore, the Einstein equations can be reduced to
system of two second-order partial differential equations
G andÃ. Once a solution is known forG andÃ also f and
N are known, and the complete metric can be written~see the
Appendix!.
on

b
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Let us concentrate in the matching conditions in the
coordinates. The first fundamental form on the hypersurf
S can be written as follows:

dsuS
2 52u uS

0
^ u uS

0 1u uS
1

^ u uS
1 1S uau2

uau2ubu22~b•a!2D
uS

dv2

~20!

52u uS
0

^ u uS
0 1u uS

1
^ u uS

1 1S GN

N2 f 2D
uS

dv2, ~21!

and the second fundamental form

K56H 2uau uS u uS
0

^ u uS
0 1

1

2 F ~s2w!•
a

uauG uS

3~u uS
0

^ u uS
1 1u uS

1
^ u uS

0 !1F ~b2a!•
a

uauG uS
u uS

1
^ u uS

1

1@Tv~da2n!v# uSdv2J
56H 2AN

G
u uS

0
^ u uS

0 1
1

ANG
~ êe2j2k̂ej!

3~NÃU2 f Ãv!u uS
0

^ su uS
1 1S 2

f

ANG
2AN

GD u uS
1

^ u uS
1 2

ANG

N2 f 2 FANS f

AN
D

v

2 f
Gv

2G
1N

GU

2G

2 f ~122pG!Gdv2J ,

where all the function are evaluated inU50. To obtain the
last expression forK the Einstein equations have been use

We impose that there does not exist any discontinuity
the fluid velocity onS, i.e. u inuS

0 5uoutuS
0 this condition im-

plies that
H sin uS 5 soutuS

win uS 5 woutuS

bin uS 5 boutuS

J ⇔H ~h~Ã!! in uS 5 ~h~Ã!!outuS

~Ãv! in uS 5 ~Ãv!outuS

v in uS 5 voutuS

J . ~22!
ior
Therefore, we can define a unique velocity of the fluid
S as uS

0 [u inuS
0 5uoutuS

0 , associated withuS
0 we have its ki-

nematical properties and 1-formswS ,sS ,bS on the surface.
It is easy to check that these 1-forms can be obtained
 y

projecting the 1-forms defined for the interior and exter
fluids on the hypersurfaceS ~the pull-back commutes with
the exterior derivative and the exterior product!. Then we
have
1-4
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aS50 ~23!

bS5dv ~24!

wS5k̂e2v12h(Ã)~Ãv!dv ~25!
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sS5 êe1v22h(Ã)~Ãv!dv. ~26!

The continuity of the first and second fundamental for
~Darmois conditions! is equivalent to
uau in uS
5uauoutuS

ubu in uS
5ubuoutuS

~b•a! in uS
5~b•a!outuS

$~w2s!•a% in uS
5$~w2s!•a%outuS

~nv! in uS
5~nv!outuS

6 ⇔5
f in uS

5 f outuS

Gin uS
5GoutuS

Nin uS
5NoutuS

~ÃU! in uS
5~ÃU!outuS

~GU! in uS
5~GU!outuS

.

~27!
s in

u-
its

es

ear
ent
From the equations in Eq.~22!, the continuity of the compo-
nentdv2 of the first fundamental form, and the componen
u uS

0
^ u uS

0 , u uS
0

^ u uS
1 , andu uS

1
^ u uS

1 of the second fundamenta
form we obtain the continuity off, G, N, andÃU . Using the
Einstein equations@in particular, Eq. ~17!# we have that
pin uS

5poutuS
. From thedv2 component of the second funda

mental form the continuity ofGU in S is derived.
It easy to check, using the previous relations, t

uwu in uS
5uwuoutuS

, usu in uS
5usuoutuS

, (b•w) in uS
5(b•w)outuS

,

and (a•w) in uS
5(a•w)outuS

. Therefore, uau, ubu, uwu, usu,
cos(a,b), cos(a,w), and cos(b,w) ~the moduli of all the kine-
matical 1-forms and the angles among them! have to be con-
tinuous inS.

There are functions that can be discontinuous on
matching surface. These are, for instance,f U ,NU ,pU , and
Ãuu . The discontinuity of these functions can be obtain
from the Einstein equations. For these discontinuities
have

@NU#5G@m# ~28!

@ f U#5
G

2N
@m# ~29!

@pU#52@m# ~30!

@ÃUU#5
G

2N
ÃU@m# ~31!

where @ #5( ) in2( )out ~we have used the fact thatḣ is
continuous inU50). It is interesting to note that the discon
tinuities of these functions depend on the discontinuity om
~the energy density!. These discontinuities can be written in
more intrinsic manner in terms of the derivatives of kin
matical properties in theU direction

@ uauU#5
ubu2

2uau @NU#5
1

2uau @m#
s

t

e

d
e

-

@cos~b,a!U#52
1

uau
cos~b,a!@ uauU#2

ubu
uau @ f U#

52
1

2uau2 H cos~b,a!1
ubu
uauJ @m#

2uwu@wU#5
k2e2j

G
$22ÃUÃv@ f U#12~NÃU2 f Ãv!

3@ÃUU#1ÃU
2 @NU#%

52k2e2jÃUÃv

ubu2

uau2
H 11

uau
ubu

cos~b,a!J @m#

5
uwu2

uauubusin4~b,a!
$cos~b,a!„cos~b,w!

1cos~a,w!…22„11cos~b,a!…2

3cos~a,w!cos~b,w!%

3H 11
uau
ubu

cos~b,a!J @m#.

As a summary, we can say that the matching condition
these coordinates impose that

f ,G,N,Ãv ,ÃU ,h~Ã!, and GU

are continuous onU50 ~as well as all thev derivatives up to
the order of continuous differentiability imposed for a reg
lar point. It is assumed that these derivatives have lim
from inside and outside!. This is equivalent to the continuity
of the moduli of all the kinematical 1-forms and the angl
among them.

The two-fluid problem has been reduced to two nonlin
second order partial differential equations with independ
variablesU and v for G and Ã in the interior and exterior
1-5
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regions. The boundary conditions impose thatG and Ã be
continuous and have continuous partialU derivatives onU
50.

V. THE ISOLATED STAR PROBLEM: VACUUM
EXTERIOR AND INTERIOR FLUID

Now, we have to match an interior perfect fluid spaceti
~modeling the interior of a star! and an exterior vacuum
spacetime~modeling the field produced by the star outsid!.
Following the two-fluid model, we choose a fluid-adapt
tetrad for the interior region. In the exterior region, ev
when we impose thatu0 andu1 be in the space of the orbit
of the two Killing fields, there is a gauge freedom in choo
ing them. If we take a starting tetrad with caret we can ma
the following gauge hyperbolic rotation:

u05cosh~l!u 0̂1sinh~l!u 1̂ ~32!

u15sinh~l!u 0̂1cosh~l!u 1̂ ~33!

wherel is an arbitrary function of the coordinates. We co
sider al maintaining the symmetry~i.e. l does not depend
on the time and axial coordinates!. If we choose somex and
v coordinates in the space orthogonal to the orbits of
Killing fields, then,l is a function ofx andv. In this section,
the leading idea is to use this gauge freedom~choosel) to
reproduce the previously developed two-fluid matching p
cess. The main ingredient of the two fluids matching mo
is a u0 such that the corresponding acceleration 1-forma
verifies thata5dU and the matching hypersurfaceS is de-
scribed by the equationU50. Also, it is satisfied thatu in uS

0

5uoutuS
0 .

In the case we are considering now, in the exterior reg
we have no Euler equation and no baryotropic equation
state implying thatda50, but we have the gauge freedo
choosingu0. Hence, we look for au0 that verifiesw`s
50 and therefore, by the second Bianchi identities,da50
holds (a5dU, at least locally!.

Under the previously considered gauge rotation,
1-formsa, b, w, ands transform adequately. It is interes
ing to define auxiliary 1-forms

b[b22a ~34!

d[w2s ~35!

k[w1s ~36!

such that the transformation relations can be written in
following simple manner:

b5b̂ ~37!

k5k̂12 dl ~38!
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b5cosh~2l!b̂1sinh~2l!d̂ ~39!

d5sinh~2l!b̂1cosh~2l!d̂. ~40!

The conditionw`s50 is equivalent tok`d50, which
in terms of the variables with carets reads

~ k̂12 dl!`@sinh~2l!b̂1cosh~2l!d̂#50. ~41!

We call this equation thedifferential form master equation.
The solutions of this equation can be separated in two ca

d50 and dÞ0. The first one, whend[sinh(2l)b̂

1cosh(2l)d̂50, implies, by using the field equations, th
the spacetime is static. We will not consider this case
detail here, as it can be treated in a separate and sim
manner.

In the second case, we havek5ad, which in terms of the
variables with carets reads as follows:

k̂12 dl5a@sinh~2l!b̂1cosh~2l!d̂# ~42!

wherea is an arbitrary function of the coordinatesx andv.
This is an equation where we have to determinea and l.
Note that we can interpret this equation as determining
the possible gauge transformations that from a given star
tetrad with caret give as result a new tetrad verifyingw`s
50⇔da50. If we start with a tetrad already satisfyingw
`s50, then the equation determines the transformati
that maintain this property. Using coordinatesx and v the
differential form master equation implies

2l ,x52k̂x1a@sinh~2l!b̂x1cosh~2l!d̂x# ~43!

2l ,v52k̂v1a@sinh~2l!b̂v1cosh~2l!d̂v#. ~44!

We will assume that sinh(2l)b̂x1cosh(2l)d̂x and

sinh(2l)b̂v1cosh(2l)d̂v do not vanish, because if both van
ish thend50 and the solution is static, if only one of them
vanishes, for instance the second one~the other case has
similar treatment!, we will have one of the following possi
bilities.

~1! b̂v5 d̂v50 and then the solution of the equation is

l52
1

2E k̂vdv1F~x!

and

a5
2l ,x1k̂x

sinh~2l!b̂x1cosh~2l!d̂x
1-6
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~2! b̂vÞ0 and then

l5
1

2
arctanhS 2

d̂v

b̂v
D

which imposes the following constraint:

k̂v5
1

12S d̂v

b̂v
D 2 S 2

d̂v

b̂v
D

v

and

a5
2l ,x1k̂x

sinh~2l!b̂x1cosh~2l!d̂x

.

Hence we can check,a priori, if we are in one of these case
where the solution to the master equation is known.

In the general case we can obtaina from one of the equa-
tions, for instance from the first one, and then substitute
result in the other equation to have

a5
2l ,x1k̂x

sinh~2l!b̂x1cosh~2l!d̂x

~45!

and

2l ,x1k̂x

sinh~2l!b̂x1cosh~2l!d̂x

5
2l ,v1k̂v

sinh~2l!b̂v1cosh~2l!d̂v

.

~46!

This last equation is a first-order quasilinear partial differe
tial equation that can be used to determinel. We call this
equation the partial differential equation~PDE! master equa-
tion; to this equation we have to add the boundary condit
u inuS

0 5uoutuS
0 . This fixesl in the surfaceS defined by an

equationF(x,v)50 @i.e. l uS5g(v)], but then we have a
boundary problem for a quasilinear differential equation, a
it is a well known fact that this problem has a unique so
tion, at least locally aroundS, unless the boundary conditio
is a characteristic condition.

Note that the PDE master equation depends on the s
ing tetrad with caret. To fix the notation we can choose
tetrad with caret as follows:

û05A2gttS dt1
gtw

gtt
dw D ~47!

û15Agtw
2 2gwwgtt

2gtt
dw ~48!
06401
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wheret andw are the coordinates of a non-rotating observ
at infinity. For this tetrad we haves50, i.e. it is a rigidly
rotating tetrad.

Hence, in a non-characteristic case there is an uniqueu0

which satisfied thatw`s50 and such that in a given surfac
S coincides with a prescribed one. Therefore, the analy
done for the two-fluid problem can be reproduced now w
a ‘‘virtual’’ fluid velocity given by this u0. Then, we obtain
exactly the same results as in the two-fluid problem, and
Einstein and Darmois equations can be reduced to a bo
ary problem for a system of two second-order partial diff
ential equations for two functions in two variables, exce
that, in this case, we should imposepout50 andmout50.
The conditions imposed by the matching requirements, in
kinematical 1-forms are also the same as in the two-fl
problem.

A. The characteristic case

Let us analyze the case when the matching hypersur
is a characteristic surface for thePDE master equation. This
characteristic surface is given by the conditiondoutuS50
~note that this condition does not imply in general thatd
50 in the exterior region!. But if doutuS50, then koutuS
50 becausek in}d in and thenk uS}d uS ~note that as we have
u inuS

0 5uoutuS
0 then binuS5boutuS , winuS5woutuS , and sinuS

5soutuS and we can refer, without any ambiguity, to the k
nematical 1-forms ofu uS

0 on the matching hypersurface an
write buS , wuS , and suS , equivalentlyd uS and k uS). From
the vanishing torsion equations, we have that we can w
the first fundamental form of the surface as follows:

dsuS
2 52dt21e2vdw21h~v !dv2 ~49!

whereuuS56]/]t (u uS
0 57dt). Using an extension of thes

coordinates to the exterior region the metric can be written

dsout
2 5gttdt212gtwdtdw1gwwdw21gvvdv212gxvdxdv

1gxxdx2, ~50!

and the matching surface will be given by an equat
F(x,v)50, such that

gttuS521 ~51!

gtwuS50 ~52!

gwwuS5e2v ~53!

and choosing u05A2gtt„dt1(gtw /gtt)dw… and u1

5A(gwwgtt2gtw
2 )/gttdw we haves50 anda5d(lnA2gtt)

and then the functionU will be U5 lnA2gtt, such that
U uS50 ~rigid rotating virtual fluid!, so we have auout

0 satis-
fying the conditionsu inuS

0 5uoutuS
0 andw`s50. However, in

this situation this choice is not unique; for instanc
1-7
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another possibility is u05„2(gttgww2gtw
2 )/gww…

1/2dt,
u15Agww„dw1(gtw /gww)dt… where U
5 lnA2(gttgww2gtw

2 )/gww which also satisfies the impose
conditions~virtual fluid with irrotational motion!.

Hence, we can always choose au0 in the exterior region
satisfyingw`s50 and coinciding with a prescribed one
S, which is a ‘‘static fluid surface’’@24#. In fact, it is possible
to find several ones, but, for instance, we can always cho
the virtual fluid with irrotational motion. Therefore, we hav
reduced this problem to a two-fluid problem, except that o
side we havep50 andm50.

B. Matching known solutions

We have analyzed the problem of obtaining new inter
and new exterior solutions. Now, let us analyze the theo
ical problem when one~the interior or the exterior! or both
solutions are known.

Suppose that an exact interior solution is known. T
matching hypersurface is given by the equationp50. It is
possible to introduceU and v coordinates in this interior
region. Then, we can formulate the boundary problem for
exterior region using theU andv coordinates and the param
etrization presented in Sec. IV. This is implemented by g
ing the values ofG and Ã and theirU derivatives in the
matching surfaceU50.

Let us consider the case when an exterior exact solutio
known in some coordinates, sayx and v. First, we have to
choose a matching hypersurfaceS, given by an implicit
equationF(x,v)50. Starting from a rigid rotating tetrad
with caret for the asymptotict and w coordinates, we can
write down the PDE master equation. The boundary prob
for this equation is fixed by giving al(v) in S, which is
equivalent to fixing a fluid angular velocity distribution onS
~with respect to a non-rotating observer at infinity!. This also
fixes the functionh(Ã) on S. The matching conditions de
termineh(Ã) in the interior, at least locally aroundS. For a
perfect fluid with a given barotropic equation of statem
5m(p) we can formulate a boundary problem for the in
rior region inU andv coordinates.

When we know an exact interior solution and an ex
exterior solution, we have to look for the matching surfa
S, which will be given by an equationF(x,v)50 in the
exterior and byp50 in the interior. OnS we haveu uS

0

invariantly defined by the interior fluid velocity, then th
PDE master equation and its boundary condition determ
uout

0 , and theU andv coordinates can be introduced in th
exterior, at least locally aroundS. The matching conditions
presented in Sec. IV, will determine if there is a hypersurfa
S where the two spacetimes can be matched.

VI. MATCHING INTERIOR AND EXTERIOR
SCHWARZSCHILD SOLUTION IN U AND v

COORDINATES

In this section, we will present a very simple example
the matching inU and v coordinates; in particular, we wil
apply the formalism for the case of a static solution cons
06401
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ing of the interior Schwarchild solution (m5const) and the
exterior Schwarchild solution.

A. Interior Schwarzschild solution

The line element of this solution can be written as fo
lows:

ds252S a2bAq2
r 2

R2D 2

dt21
1

12
r 2

R2

dr2

1r 2~du21sin2udw2! ~54!

wherea, b, q, andR are constants. This solution represent
perfect fluid in comoving coordinates and with equation
statem5const @23#. We can choose an orthonormal tetra
following the prescription described above (u0 is the veloc-
ity of the fluid andu1 is orthogonal tou0 in the $t,w% sub-
space!

u05S a2bA12
r 2

R2D dt ~55!

u15r sinudw, ~56!

for the kinematical properties we have

a5d lnS a2bA12
r 2

R2D ~57!

b5d lnF S a2bA12
r 2

R2D r sinuG
~58!

andw ands vanish. Then, the change toU andv coordinates
is described by the following relations:

U5 lnS a2bA12
r 2

R2D 1U0 , r 5RA12S eU2U02a

b D 2

~59!

v5 lnF S a2bA12
r 2

R2D r sinuG1v0 ,

sinu5
e2(U2U0)ev2v0

RA12S eU2U02a

b
D 2

. ~60!

The line element in these coordinates can be written as
1-8



ROTATING RELATIVISTIC STARS: MATCHING . . . PHYSICAL REVIEW D67, 064011 ~2003!
ds252e2(U2U0)dt21e22(U2U0)e2(v2v0)dw21R2
e2(U2U0)

b22~e(U2U0)2a!2
dU2

1

H dv1F211
~e(U2U0)2a!e(U2U0)

b22~e(U2U0)2a!2 GdUJ 2

e2(U2U0)e22(v2v0)2
b2

R2@b22~e(U2U0)2a!2#
a

th
e

t

se

ral

n-
der
f a
andu0 andu1 in these coordinates read as follows:

u05eU2U0dt ~61!

u15e2(U2U0)e(v2v0)dw. ~62!

The pressure in these coordinates reads

p5
2312 aeU02U

R2

and the energy density is a constantm53/R2.

B. Exterior Schwarzschild solution

The Schwarzschild spacetime for vacuum in the stand
coordinates can be written as follows:

ds252S 12
2m

r Ddt21
1

12
2m

r

dr21r 2~du21sin2udw2!.

~63!

Following our approach, we have to choose a tetrad such
w`s50 andu inuS

0 5uoutuS
0 . We can start with a tetrad of th

form

u 0̂5A12
2m

r
dt ~64!

u 1̂5r sinudw ~65!

and look for the required transformation. Hence, we have
solve the differential form master equation~41! that in this
case reduces to

dl`
sinhl

coshl
b̂50, ~66!

from this equation we havel5const or

2dl5a
sinhl

coshl
b̂

whereaÞ0. For our case this equation can be decompo
into
06401
rd

at
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d

a52 tanu
lu

sinh~2l!
~67!

and

r ~r 22m!

r 23m
l r5tanulu . ~68!

This first-order partial differential equation has the gene
solution

l5FS Ar 22m

r 3/2sinu
D ~69!

whereF is an arbitrary function of its argument. Let us me
tion that the general solution of the corresponding first-or
partial differential equation can be obtained in the case o
general static spherically symmetric spacetime

ds252e2n(r )dt21e2b(r )dr21r 2~du21sin2udw2!

where we have to solve the equation

1

1

r
2n8

l r5tan~u!lu

the solution in this case isl5F(e2nr sinu) whereF is an
arbitrary function of its argument.

Now, suppose that we impose the condition thatu inuS
0

5uoutuS
0 , assuming thatl is not a constant. We have

u in
0 5S a2bA12

r 2

R2D d t̂

and

uout
0 5coshS FS Ar 22m

r 3/2sinu
D DA12

2m

r
dt

1sinhS FS Ar 22m

r 3/2sinu
D D r sinudw.

If t̂5c1t1c2w, we get
1-9
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u in
0 5c1S a2bA12

r 2

R2D dt1c2S a2bA12
r 2

R2D dw,

but then from the coefficient ofdt we should haveF
5const, against our assumption. Now, let us consider
case withl5l0 ~a constant!. We have

uout
0 5cosh~l0!A12

2m

r
dt1sinh~l0!r sinudw

and

u in
0 5c1S a2bA12

r 2

R2D dt1c2S a2bA12
r 2

R2D dw

in order to haveu inuS
0 5uoutuS

0 , we should havec250 and

l050, also we can choosec151, that implies t̂5t ~we
assumeŵ5w). Hence, we have that the required tetrad e
ments are

u05A12
2m

r
dt ~70!

u15r sinudw. ~71!

For these tetrad elements we have

a5d lnSA12
2m

r D 5dU ~72!

b5d lnSA12
2m

r
r sinu D 5dv, ~73!

and w and s vanish. The change to$U,v% coordinates is
given by the following relations:

U5
1

2
lnS 12

2m

r D1U0 , r 5
2m

12e2(U2U0)
~74!

v5
1

2
lnF S 12

2m

r D r 2sin2uG1v0 ,

sinu52
1

m
ev2v0sinh~U2U0!. ~75!

The line element in those coordinates can be written as

ds252e2(U2U0)dt21e22(U2U0)

3H e2(v2v0)dw21
m2

sinh4~U2U0!
dU2

1
m2

e22(v2v0)m22sinh2~U2U0!

3Fdv1
cosh~U2U0!

dUG2J ~76!

sinh~U2U0!

06401
e

-

andu0 andu1 in these coordinates read as follows:

u05eU2U0dt ~77!

u15e2(U2U0)e(v2v0)dw. ~78!

The condition thatu in
0 5uout

0 in U50, as well as the defini-
tion of u1, impose thatU0,in5U0,out and v0,in5v0,out . The
matching conditions are the continuity of the functio
f ,G,N, andGU ; asÃU , Ãv , andh(Ã) vanish. The conti-
nuity of f ,G, andN impose the following relations:

m25
R2

b2
e22U0@b22~e2U02a!2#sinh2U0 ~79!

m2e2U0

sinh4U0

5
R2e22U0

b22~e2U02a!2
~80!

2
coshU0

sinhU0
5211

~e2U02a!e2U0

b22~e2U02a!2
. ~81!

The solution of these equations is

e2U05
2

3
a ~82!

b251/4 ~83!

m5
R

2 S 12
4

9
a2D 3/2

. ~84!

By substituting these relations in the condition imposed
the continuity ofGU we have that this condition is identi
cally satisfied~in fact, this happens for any static spherica
symmetric spacetime!. In order to compare the results wit
those obtained by the matching procedure inr andu coordi-
nates, we use thatU50 implies thatr 5r 0, and then we have
e2U05A122m/r 0 or, what is equivalent, a
5 3

2 A122m/r 0, and thenm5r 0
3/2R2 and a5 3

2 A12r 0
2/R2.

These are the relations obtained from a direct matchingr
andu coordinates.

In Fig. 1 we plot the interior~filled! and the exterior re-
gions of the Schwarzschild spacetimes inU and v coordi-
nates. The two regions are bounded by two asymptote
U5const and the equatorial plane curve. Note that thr
5const lines corresponds toU5const, in particular, the
boundary of the star corresponds toU50, the asymptote
with the lower value ofU represents the curver 50, andr
5` is the asymptote with the upper value ofU. The curved
boundary of the regions corresponds to the lineu5p/2 ~the
equatorial plane! and the other curves inside the regions re
resentu5const for different values of the constant. The r
gion is doubly covered by curves ofu5const as a conse
quence of the symmetry of the solution with respect to
equatorial plane (u5p/2).
1-10
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VII. THE PDE MASTER EQUATION FOR THE KERR
METRIC

As an example of the first steps towards matching
vacuum exterior solution with an interior perfect fluid, let
study the PDE master equation for the Kerr metric. We w
the metric in Boyer-Linquist coordinates@22#

ds252dt21~r 21a2!sin2udw21
2mr

S
~a sin2udw2dt!2

1SS dr2

D
1du2D , ~85!

where S5r 21a2cos2u and D5r 222mr1a2. We take a
‘‘rigid rotating’’ tetrad (s50⇔d5k5w) as the starting tet-
rad ~with caret!

u 0̂5
A
B S dt1

C
A 2

dw D ~86!

u 1̂5
BD
A dw ~87!

where

A5~r 222mr1a2cos2u!1/2 ~88!

B5S1/2 ~89!

C52amr sin2u ~90!

D5D1/2sinu, ~91!
en

e
a

06401
a

e

then the first-order partial differential equation defining t
transformations maintaining the property thatw`s50 ~i.e.
a5dU) is

2l ,r1k̂ r

sinh~2l!b̂ r1cosh~2l!d̂ r

5
2l ,v1k̂v

sinh~2l!b̂v1cosh~2l!d̂v

~92!

where the v coordinate is defined byv5 ln D1v0
5ln(D1/2sinu)1v0 and

dv
ˆ5k v̂5

4amrD2x3

V
~93!

d r
ˆ5k r̂5

2amD~23r 212mr1a2!x322a3mx

V
~94!

bv
ˆ5

GD3x422a2~r 223mr1a2!Dx21a4

V
~95!

b r
ˆ5

2m~a22r 2!D2x422 ma2~3r 224mr1a2!x2

V
~96!

V5GD3x42a2D~G1D!x21a4 ~97!

G5a21r 2 ~98!

x5e2(v2v0). ~99!

We are not able to find the general solution for this equati
but we found a particular solution
l5arcsinhS 2mar sin2u~r 21a2cos2u22mr!21/2

A@r 41a2r 2~cos2u11!12mra2sin2u1a4cos2u#sin2u
D . ~100!
r

n
el
d-
e

ear-
und
ori-
red
The matching surface for this particular solution is giv
by the implicit equation

~r 21a2cos2u!~r 222mr1a2!

~r 2a222mra21a4!cos2u1r 41r 2a212mra2
5k,

~101!

wherek5const. This solution corresponds to the case wh
the interior perfect fluid is in irrotational motion, at least ne
the boundary.

In Fig. 2 we present a plot of the functionl for a51.9,
m52. The height in the plot represents the value ofl and
the other two coordinates arez5r cosu andr5r sinu ~ap-
plying axial symmetry, we plot togetherw50 andw5p for
clarity, and we use the coordinateX5r cosw). In Fig. 3,
n
r

using the same coordinates, we plot the level surfaces fol,
the matching surface fork50.1 ~the broader solid line!, the
surfacer 5const inscribed in the boundary~gray filled re-
gion!, the ergoregion~the doughnut-like shaped region!, and
the horizon~ther 5const surface inscribed in the ergoregio!
for a51.9 andm52. We can see that, for this case, the lev
surfaces ofl have a dipole-like form such that on the boun
ary surface the value ofl decreases from the equator to th
poles. Also, we can check that the part of the boundary n
est to the poles is outside the ergosphere but the part aro
the equator is included in the ergosphere. Note that the h
zon is inside the boundary and would be completely cove
by the fluid.

The change toU andv coordinates is the following:
1-11
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U2U05
1

2
lnS ~r 21a2cos2u!~r 222mr1a2!

r 41r 2a212a2mr1~r 2a222mra21a4!cos2u
D ~102!

v2v05
1

2
ln@~r 222mr1a2!sin2u#. ~103!
er
i
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In Fig. 4 we plot the Kerr exterior region inU andv coor-
dinates fora51.9 andm52. The similarity with Fig. 1 cor-
responding to the Schwarzschild solution is apparent.

A particular solution for the PDE master equation
for a generic spacetime

After we found a particular solution for the PDE mast
equation for the Kerr metric we thought that perhaps
should be possible to find a particular solution for the P
master equation for a generic spacetime.

For a generic stationary and axisymmetric spacetime
can always choose ‘‘rigid rotating’’ tetrad elements as f
lows:

u 0̂5A2gttS dt1
gtw

gtt
dw D ~104!

u 1̂5Agtw
2 2gwwgtt

2gtt
dw. ~105!

For these tetrad elements we have that

b̂5d lnAgtw
2 2gwwgtt ~106!

â5d lnA2gtt. ~107!

ŵ52
2gtt

Agtw
2 2gwwgtt

dS gtw

gtt
D ~108!

ŝ50 ~109!

then

d̂5k̂5ŵ52
2gtt

Agtw
2 2gwwgtt

dS gtw

gtt
D ~110!

b̂22â5d lnSAgtw
2 2gttgww

2gtt
D . ~111!

The first-order PDE master equation determining the ga
transformations that maintains the property thatd`k
50⇔da50 can be written easily in terms of these expre
sions. To obtain the general solution of this master equa
is a formidable problem, however we always know a parti
lar solution which is given by the following expression:
06401
t

e
-

e

-
n
-

l5arcsinhS gtw

A2gttgww
D . ~112!

This solution corresponds to passing from a ‘‘rigid rotatin
tetrad to an ‘‘irrotational motion tetrad,’’ which is alway
possible. For any stationary and axisymmetric metric we
choose

u05Agtw
2 2gttgww

gww
dt ~113!

u15AgwwS dw1
gtw

gww
dtD , ~114!

and then

b5d lnAgtw
2 2gwwgtt ~115!

a5d lnAgtw
2 2gttgww

gww
~116!

s5
gww

Agtw
2 2gwwgtt

dS gtw

gww
D ~117!

w50. ~118!

The matching surface in this case will be given by

gtw
2 2gttgww

gww
5k ~119!

wherek is a constant. The previous solution forl will be
determined in a unique manner by the value ofl in the
surface given by Eq.~119!.

VIII. CONCLUSIONS

We have presented the matching conditions for two ro
ing fluids in terms of the kinematical properties of both flui
in general relativity. A simplified form of the Einstein equa
tions has been given, using coordinates adapted to the hy
surface separating both fluids. A physical situation where
analysis can be used is the case of a rotating relativistic
with two regions with different physical properties, equatio
of state, rotation laws, . . . , separated by a well-defined su
face. The two-fluid problem is reduced to a system of t
nonlinear second-order partial differential equation in tw
variables for two functions in the interior and exterior r
1-12
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1gions. The boundary conditions for these functions are th
continuity of them and theirU derivatives on the matching
surface, which is described by the equationU50.

The matching of a perfect fluid interior region and
exterior vacuum region is also analyzed as a model for
isolated rotating relativistic star~the models for the interior
and exterior regions should be calculated at the same tim!.
By solving a boundary problem for a first order partial d
ferential equation~master equation!, a tetrad is defined for
the exterior region such that the matching~Darmois! and
Einstein equations reproduce those of the two-fluid proble
Therefore, this problem can also be reduced to a bound
problem for a system of two nonlinear second order par
differential equations in two variables for two functions
both regions.

A static spherically symmetric star described by the in
rior and exterior Schwarzschild solutions is analyzed wit
formalism. The Kerr metric is also studied, the master eq
tion written, some particular exact solutions found, and
change to coordinatesU andv for those solutions described

Two problems currently under consideration are
asymptotic flatness inU andv coordinates and the equatori
symmetry; for both problems the analysis of the spherica
symmetric model, presented in Sec. IV, can be used a
guide. Also, we would like to mention that, in principle, it
possible to develop a numerical code using coordina
adapted to the surface of the star, or a transition surf
using the formalism and results developed in this pape
produce a complementary approach to the already exis
codes.

FIG. 1. Interior and exterior regions of Schwarzschild spa
times inU andv coordinates.

FIG. 2. 3D plot ofl for the Kerr metric.
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APPENDIX: DIFFERENTIAL FORM APPROACH
SUMMARY

We consider a stationary and axisymmetric spacetime
scribing a perfect fluid in circular motion. That means tha
admits two Killing fields$j,h%, j time-like andh space-like
also @j,h#50 and u ~the velocity of the fluid! belongs to
Lin$j,h%.

Here we present a summary of a differential form a
proach for this problem; see@20# for more details. We use an
orthonormal tetrad

ds252u0
^ u01u1

^ u11u2
^ u21u3

^ u3 ~A1!

whereu0[u andu0 andu1 are in the space of the orbits o
the symmetry group. We choose a gauge where the Lie
rivative of all the tetrad elementsu i , i 50,1,2,3 in the direc-
tion of j and h vanishes~so no function appearing in th
metric will depend on the coordinates adapted to the Killi
fields!. We introduce several differential 1-formsa,w,s,b,
and n all in Lin$u2,u3% wherea is the acceleration of the
fluid velocity,w is a 1-form such that the vorticity tensor ca
be written asvT5u1`w, s is a 1-form such that the shea
tensor isST5u1

^ ss, b is the derivative of the logarithm o
the determinant of the metric in the$j,h% subspace, andn is
the Riemannian connection in the$u2,u3% subspace. After
some simplification using a gauge fixing~we imposeu2

}b) we find the following exterior differential system whic
is equivalent to the vanishing torsion equations, the first
anchi identities, the Einstein equations, and the second B
chi identities:

du5a`u1w`u1

du15~b2a!`u11s`u

db50

- FIG. 3. Level surfaces ofl for the Kerr metric.
1-13
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da5w`s

dw52~b22a!`w

ds5~b22a!`s

d!~w2s!522a`!w22~a2b!`!s

d!b1b`!b52p
b`!b

ubu2

d!a1b`!a52
1

2
w`!w1

1

2
s`!s

1
1

2
~m13p!

b`!b

ubu2

2
1

2
d~ ubu2!5~ ubu22p!b2ubu2a1@^b,a&a

2^b,!a& !a#2
1

4
@^b,~s2w!& ~s2w!

2^b,!~s2w!&!~s2w!#

dp52~m1p!a

wherem is the energy density of the fluid,p is the pressure
! stands for the Hodge dual in the$u2,u3% subspace,̂ &
indicates the scalar product, andu u means the norm. This is
the system of equations we have to solve. We have the
lowing expression forn:

n5
1

2
!

d~ ubu2!

ubu2
1S 122

p

ubu2D !b. ~A2!

FIG. 4. Kerr metric inU andv coordinates.
e

06401
l-

In the present paper we use a parametrization wh
ubu2[1/G, uau25Nubu2, and^b,a&52 f ubu2.

Whenda50 we havew`s50 and, using the vanishing
torsion equations, we can parametrizew ands as follows:

w5k̂ejdÃ ~A3!

s5 êe2jdÃ, ~A4!

where j52U2v12h(Ã), a5dU, b5dv, k251,0, and
e251,0.

Thenu0 andu1 can be parametrized as

u05eU@Adt1Bdw# ~A5!

u15ev2U@Cdt1Ddw#, ~A6!

whereA, B, C, andD are functions ofÃ that have to satisfy
the following linear system of ordinary differential equ
tions:

dS

dÃ
5S 0 ke2h(Ã)

ee22h(Ã) 0 DS, S[S A B

C DD . ~A7!

Therefore, if the rotation regime is fixed by means of a p
ticular functionh(Ã) we can obtain, by solving this linea
ordinary differential system,A5A(Ã), B5B(Ã), C
5C(Ã), andD5D(Ã).

The determinant ofS is constant: (d/dÃ)(AD2BC)
50; if S is a solution thenS8[SP is also a solution, when-
everP is a constant matrix; this freedom is nothing else b
the freedom of choice of thet andw coordinates; ift andw
transform according to the relations

t85k1t1k2w ~A8!

w85k3t1k4w ~A9!

~where k1 , k2 , k3, and k4 are constants!, then the corre-
spondingP is given by

P215S k1 k2

k3 k4
D . ~A10!

Whenf, G, N, andÃ are known as functions ofU andv,
the metric can be written as follows:

ds252e2U@A~Ã!dt1B~Ã!dw#21e2v22U

3@C~Ã!dt1D~Ã!dw#2 ~A11!

1
G

N2 f 2
@Ndv21dU212 f dUdv#. ~A12!
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