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Binary black hole initial data for numerical general relativity based on post-Newtonian data
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With the goal of taking a step toward the construction of astrophysically realistic initial data for numerical
simulations of black holes, we for the first time derive a family of fully general relativistic initial data based on
post-2-Newtonian expansions of the 3-metric and extrinsic curvature without spin. It is expected that such
initial data provide a direct connection with the early inspiral phase of the binary system. We discuss a
straightforward numerical implementation, which is based on a generalized puncture method. Furthermore, we
suggest a method to address some of the inherent ambiguity in mapping post-Newtonian data onto a solution
of the general relativistic constraints.
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I. INTRODUCTION ducial innermost stable circular orlgiSCO) which approxi-
mately marks the transition from the inspiral phase to the
One of the most exciting scientific objectives of gravita- plunge and merger. But whatever the starting point, the simu-
tional wave astronomy involves the search for and detailedation will only be astrophysically meaningful if it starts with
study of signals from sources that contain binary black holesastrophysically realistic initial data.
Mergers of two black holes both with masses fl0 The question we want to address in this paper is therefore
—100M, will be observable by the ground based gravita-how to obtain astrophysically realistic initial data for numeri-
tional wave detectors, such as GEO600, Laser Interferometal simulations of binary black hole systems. In general rela-
ric Gravitational Wave Observatorf.IGO) and otherd1]. tivity the initial data must satisfy constraint equations, so
These systems are highly relativistic once they enter the semnly part of the data are freely specifiable, and the rest is
sitive frequency band~50—200 Hz) of the detector. For determined by solving the constraint equatidfts a review
the Laser Interferometer Space AntenldSA), gravita- see, e.g., Ref13]). A lot of the work in constructing initial
tional waves from supermassive binary black hole mergergata has focused on approaches that pick the freely specifi-
(e.g., black holes with mass greater thaifMQ) are very able part of the data with the aim of simplifying the con-
strong, with high signal-to-noise ratios up to*1@], making  straint equations, rather than using astrophysically realistic
these events observable from almost anywhere in the uninitial data. A standard assumption is that the 3-metric is
verse. Astrophysically realistic models of binary black holeconformally flat and the extrinsic curvature is derived from a
coalescence are therefore required to study these phenomemarely longitudinal ansatfsee, e.g., Refd.13-14). Cur-
in detail [3]. rently, there are a number of new approach&s-21 to
To solve the full Einstein equations in the dynamic, non-specify “improved,” including nonconformally flat, initial
linear phase at the end of the binary black hole inspiral welata for binary black holes.
turn to numerical relativity. Numerical relativity has ad-  However, none of these approaches to construct initial
vanced to the point where a time interval of up toMiO data makes explicit use of information from an approxima-
(whereM is the total massof the merger phase of two black tion procedure such as the post-Newtonig@N) method,
holes can be computed if the black holes start out close twhich is believed to accurately represent astrophysical sys-
each othef4-6]. Recent simulations of head-on collisions tems in the limit of slow-moving/far-apart black holes. An
of black holes last significantly longer and give reason forapproximate binary black hole metric based on post-1-
optimism for the orbiting cas]. An approach to produce at Newtonian(1PN) information in a corotating gauge has been
least moderately accurate models for the wave forms genederived by Alvi[22]. However, at present this metric cannot
ated in binary black hole mergers was recently developed ilve used in numerical simulations due to the presence of dis-
the so-called Lazarus projed8—12, a technique that continuities in the matching regiof&3]. An interesting ap-
bridges “close” and “far” limit approximations with full nu-  proach based on quasiequilibrium sequences of initial data
merical relativity. This approach has lead to the first approxi-has been studied numerically, e.g., R&#], although some
mate theoretical estimates for the gravitational radiatioraspects of the method appear to be based on Newtonian or
wave forms and energy to be expected from the plunge 01PN assumptions.
orbiting nonspinning binary black holes to coalescence In this paper we describe a method to generate new fully
[8,12]. general relativistic initial data for two inspiraling black holes
Because of theoretical and numerical limitations, all cur-from PN expressions. The motivation for this method is that
rent numerical simulations must begin by specifying initial even though PN theory may not be able to evolve two black
data when the black holes are already very clssgparation holes when they get close, it can still provide initial data for
=<7M). There is a push to place the starting point of thesdully nonlinear numerical simulations when we start at a
simulations at earlier times, say at a few orbits before a fiseparation where PN theory is valid. In particular, we obtain
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an explicit far limit interface for the Lazarus approach. Ourtypically deals with point particles rather than black holes.
method allows us to incorporate information from the PNOne has to somehow introduce black holes into the theory,
treatment and should eventually provide a direct connectiomwvhich leads to a certain arbitrariness of the data near the
to the inspiral radiation. black holes. We make the specific choice contained in Ref.
As in other approaches, we start from expressions for thé25]. Note that since we are solving elliptic equations, the
3-metric and extrinsic curvature in a convenient gauge. Welata near the black holes affect the solution everywhere.
use expressions for the 3-metric and its conjugate momenkhird, some of the PN expressions that we use are near zone
tum up to PN order¢/c)®, computed in the canonical for- €xpansions which are invalid far from the particles. This
malism of Arnowitt-Deser-MisnefADM) by Jaranowski and means we have data only in a limited region of space.
Schder [25]. This order corresponds to 2.5PN in the Furthermore, the reader should be aware of the following
3-metric and 2PN in the conjugate momentum, since the latbasic feature of the York procedure to compute initial data.
ter contains a time derivative. Therefore, the PN data aré&iven valid free data, which in our case is derived from the
accurate to 2PN. PN data, the procedure projects the data onto the solution
The 3-metric and its conjugate momentum are derivedspace of the constraints. This projection maps the PN data
together with a two-body Hamiltonian using coordinate con-somewhere, but is the end point better than the starting
ditions [26—28, which correspond to the ADM transverse- point? We have to make sure that we do not loose the advan-
tracelesYADMTT) gauge. Note that there are several othertage of starting with PN data over, say, simply using PN
formulations and gauges for PN theory, see, e.g., 2 orbital parameters in the conformally flat data approach. Af-
for a review. The ADMTT gauge has several advantagies: ter describing and resolving several technical issues in the
we can easily find expressions for 3-metric and extrinsic curconstruction of our data set, we will therefdigquantify the
vature, (ii) unlike in the harmonic gauge no logarithmic di- “kick” from PN to fully relativistic data and(ii) suggest a
vergences appediii ) for a single black hole the data simply concrete method for improving the results of our straightfor-
reduce to Schwarzschild in standard isotropic coordinategyard first implementation.
(iv) up to (v/c)® the data look similar to the puncture ap-  Finally, while the PN data for PN circular orbits constitute
proach[16], which simplifies calculations, an@) the trace & quasiequilibrium sequence of initial data in the PN setting,
of the extrinsic curvature vanishes up to ordetd)®, sothat the PN data will not automatically be in quasiequilibrium
we can set it to zergif we go only up to order ¢/c)®], when considered in the general relativistic setting, with or
which can be used to decouple the Hamiltonian constraintvithout solving the constraints. The final goal is to obtain a
equation from the momentum constraint equations. In thdully general relativistic quasiequilibrium sequence based on
ADMTT gauge the 3-metric is conformally flat up to order PN data, but in this paper we solve the constraints without
(v/c)3, at order ¢/c)* deviations from conformal flatness Systematic investigation into the equilibrium properties of
enter. The extrinsic curvature up to order¢)® is simply of ~ our solution. In particular we postpone the issue whether
Bowen-York form [14], with correction terms of order there exists a systematic way to obtain quasiequilibrium data
(vlc)®. with our method(see, however, the comments on the appar-
We will use the York-Lichnerowicz conformal decompo- €nt horizon mass at the end of Seq. V
sition[30] and use the PN data as the freely specifiable data. Notation and organization of the papeWe use units
We numerically solve for a new conformal factér and the whereG=c=1. Lowercase Latin indices denote the spatial
usual correction to the extrinsic curvature, given by a vectofomponents of tensors. The coordinate locations of the two
potential W. The new extrinsic curvature and the 3-metric Particles are denoted by{,y;,z;) and ,,y2,2;). We de-
multiplied by ¥* are then guaranteed to satisfy the con-fine
straints. The real problem in this approach is to find a nu-
merical scheme which can deal with the divergences in the Far=V(X=Xp) 2+ (y—=ya) '+ (2= 2a)° (1)
PN data at the center of each black hole. The most serious
divergence occurs in the PN conformal factgy of the and
conformally flat part of the 3-metric. We therefore rescale the .
PN data by appropriate powers @by to generate a well Nps=(X=Xa,Y—Ya,Z=2Za)/T 5, 2
behaved 3-metric. If we then use the conformally rescaled
data as the freely specifiable data and make the ansatz thahere the subscriph labels the particles. Furthermore we
the new conformal factoW is the PN conformal factogp,  introduce
plus a finite correctioru, we arrive at elliptical equations
which can be solved numerically. The splitting of the new F o=V (Xg—X) 2+ (Y1 Y2) 2+ (21— 25)? ®)
conformal factor intoW = ypyt+u is very similar to the
puncture approacfl6], except that in our case the momen- to denote the separation between the particles. All terms car-
tum constraint has to be solved numerically as well. rying a superscript T are transverse traceless with respect to
Let us point out several issues that arise in the construghe flat 3-metrics;; .
tion of solutions to the constraints of the full theory based on The paper is organized as follows. Sections Il and Il
PN data. First of all, the accuracy of the PN approximationdescribe the PN expressions used. In Sec. IV we derive the
increases with the separation of the binary, and the same isethod we use to solve the constraint equations. Section V
therefore true for the numerical data. Second, PN theorpresents our results, which we discuss in Sec. VI.
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Il. THE PN EXPRESSIONS FOR 3-METRIC On the other hand, if we expand the conformal factor in
AND EXTRINSIC CURVATURE Eq. (6), the puncture singularity of Schwarzschild is no
longer present. If we insert E¢7) into Eq.(6) and expand in

Our starting point is the expressions for the PN 3-metric " ~." /..
g and the PN 3-momentum, computed in the ADMTT

gauge[25]. The ADMTT gauge is specified by demanding o 1 1 3, -
that the 3-metric has the form gij —| 1+ €2§¢(2)+ e PRLON 3_2‘/’(2)) 8ij+ €*hij (a)
9i "= ¢endij +hij’ (4) + el T +0( ), (11)
and that the conjugate momentum satisfies which goes as
7THN5”' =0. (5) on cons
o . 9ij ~| =5 | 6ij +O(1rp), (12
We explicitly include the formal PN expansion parameter ra

~vl/c in all PN expressions, a subscript in round brackets _ -
will denote the order of each term. When a PN term is eva|u.near each partlcle. One necessary condition for a black hole

ated numericallye is set to 1. is the presence of a marginally trapped surface, and while the
We start with the PN expression for the 3-mefi25] Schwarzschild metric in isotropic coordinates has a minimal
surface at radiud/2, the term in lrli in Eq.(12) leads to a
;"= dpndi+ €*hf] {4+ €N {5+ O(€°), (6)  minimum in area at radius zer@gnoring the extrinsic cur-
vature terms Therefore the particle is not necessarily sur-
where the conformal factor of PN theory is given by rounded by a horizon.
. From now on we will use the 3—n1etric of Rdi25] as
4.2 4 6 written in Eq. (6), without expanding/py in €, in order to
Yen=11 g (bt ') +O(eD). @ make sure that we have black holes in our data. The puncture

) . . _ coordinate singularity has replaced the point particle singu-
Using the expressions fap(,) and ¢4, given in Ref.[25]  jarity. This choice is somewhad hog but since PN theory
we see that the conformal factgiy can be written in the s not valid near the particles anyway, we have to make some

simple form choice, and putting in black holes as punctures seems natu-
5 ral.
Ea The determinant of"" is
Jon=1+ 3, S5 +0(e9), ® o
A=1 4la PN_ ;12 6
g "=yt O(e°), (13
where the constants; and E, depend only on the masses CoTT
; sinced'’h;.'=0.

m,, m,, the momenta,, p,, and the separation;, of PN ij ) _
theory. They are given by The PN expansion for the conjugate momenturf2is|

pi mym, WHN= 637Ti(j3)+ 65“7?(]5)-!— 657Ti(£r)T~l— O( €%, (14

EA: EZmA-i- 64 - (9)
2my 21 where

and can be regarded as the energy of each patrticle. o 1 1 L
Note that the PN 3-metric is singular at the location of =~ 5¢@7(t §(¢(2)7T'('3))TT (15
each particle, sinceé ), ¢, andhjj(,) all go as~1ir , as
particle A is approached, anti () is regular. This means and
that the strongest singularity is ifft\~ 1/r 4 and that theyg, . .
term dominates near each particle. Hence near each particle |JTT_§hH4)+ E((b(z)ﬂ_l(JS))TT. (16)

the 3-metric can be approximated by ()~
gN~| 1+ En 45“ o) 10 As in the case of the 3-metric it turns out thalty in Eq. (14)
l 2r,) Y AL is singular, sincem(yy, k), and m(k) all diverge at the

o ) o ) _ location of each particle. But all these singularitiesrif, up
which is just the Schwarzschild 3-metric in isotropic coordi- 1o O(€5) can be removed by rewriting E¢L4) as[31]
nates. For ,—0 we approach the coordinate singularity that

represents the inner asymptotically flat end of Schwarzschild i 4l i g 5 ~i T 6
in isotropic coordinates, which is also called the puncture 7pn= ¥pn| € T(3)T € Ehij(4)+6 (P2ymE) | +O(e”)
representation of Schwarzschild. This shows that if we write (17)
the 3-metric as in Eq6), we actually do have a black hole

centered on each particle. This is nontrivial since PN theoryhich can be verified to agree with E{.4) by re-expanding
in principle only describes particles. Ypn as in Eq.(7) and keeping only terms up ©(e°). Hence
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all .singularities can be absorbed by the (_:onformal factor, KPN:gﬁNKgN: O(€") (23
which is the basis for the puncture method in gengfdl6).
Note that explicit expressions fap,), ¢y, and 77"3) -
can be found in, e.g., RER5] or [27]. In addition Ohteetal. SO thatkKy can be considered traceless upQe®).
[27] also give an expression for the lapse upQpe*) and
for the shift up toO(€®). The explicit expressions a4,
Il. CIRCULAR ORBITS IN PN THEORY

hii(4, and 5", however, we obtained from Jaranowski
and Scheer in a MATHEMATICA file. The PN expressions given in Sec. Il are valid for gen-

It should also be noted that the analytic express{@%  eral orbits. Any particular orbit is specified by giving the
used for the PN termg ), ¢4, and 77'('3) are valid every-  positions and momenta of the two particles. In this paper we
where, while the expressions used ﬂqﬂ;-&), hiTL), and Wwant to consider quasicircular orbits, since they are believed
hIIS) are near zone expansions : . to be astrophysically most relevant. For a given separation

] . .
The near zone expansion is valid only far< ri, we therefore choose the momemta such that we get a

~a\r3J(m;+m,), wherer is the distance from the particle c;:cular tr?rb't ?[f p?St-Z-N?WéOﬂIE:I"(ZITl:E] t:\eory. I vvte .
sources and is the wavelength. In principla”" should be ~ ¢"005€ fhe center ol mass o be at rest the two momenta mus
. : ! .be opposite in sign and equal in magnitude. Also, for reasons
computed from a wave equation, but in the near zone thl%f symmetrvo: and ol for circular orbits must be perpen-
equation can be simplified by replacing the d’Alembertian b Y YP1 P2 Perp

- . ) .
a Laplacian. This is exactly what Jaranowski and $aha Sr:cul?(r :O tf;enllnfe rCO:]]nGICt:ang] trze r:\{vcr)nparzgclis.rNe;(trfrti)rm
[25] do to arrive at the expression bejT we use. In particu- € expressions for angular momentum and energy for circu

lar, the near zone expansion foms) is a spatially constant lar orbits given by Scffar and Wex|32], we find that the

. CirC . . . .
tensor field that just varies in time. So for the purpose Ofmomentum magnitudpey for circular orbits is given by
finding initial data it suffices to choose the initial time such

thathHS) vanishes. Thus in all our numerical computations 2

: . M M 3
we will sethii{5,=0. (pdre)2= ,uzr— +e2Ap’—+ €4 74— 43%) P
Using the gauge conditio(b) we obtain 12 EP) 8ri,
i +0(€e), 24
mon=0f V= O(€). 19 (& (24
The next task is to compute the extrinsic curvature where M=m;+m, and x=m;m,/M. If this formula for

the momentum together with the separation is inserted into
i 1 i 1 i the expressions for 3-metric and extrinsic curvature in Sec.
Ken=— \/_5 TN~ 5 TPND (19 11, we obtain PN initial data for circular orbits. There are,
however, at least two ways how this can be done. One way is
to always insert the momentuit24) to the highest order
known, even in terms which are themselves sayO¢&*).
One might hope to thereby improve the PN trajectory infor-
mation in the initial data. Another way is to consistently only
keep terms up to a specified order, say ui@®°). As an
i = — yold 37l +551hTT + €5 (bypy7ril)TT| + () example let us look at the PN conformal factor given by Egs.
PN PN | €)™ € M4 @7G) '’ (8) and (9). As one can see from Eq9), the momentum
(200  terms are alread®(e?), so that if we insert Eq(24), we
generate terms of0(e®) and O(e®), which should be
such that the conformal factafpy is factored out. The lead- dropped if we consistently want to keep terms only up to
ing term in Eq.(20) is of Bowen-York form, i.e., O(€°). We will see later that the ADM mass of the system is
indeed sensitive to whether or not we drop such terms in the
~ i - i conformal factor. _ .
—77(3)2/2,1 ?[PAHAJr PANA— PANASMA( S —NpaNR) ]. In order to compare with numerically computed ADM
A masses, we will also need an expression for PN total energy
(22) of the system. For circular orbits it is given by

from the conjugate momentumiFj,N. With the help of Egs.
(13) and(18), and using the expressions fe, in Eq. (17)
we find that the extrinsic curvature can be written as

2

Using thatd;ms,=0 outside the singularities and the fact

that the last two terms inside the square bracket of(ZQ). ‘ uM u M
are transverséwith respect tos;;), we find Epn=M-—5—| 1+ €% —— 7} —
Il M 4r 1o
Ji(YpKi =O(€%) (22 I
+€* —9+20-+ —|— +0(e%. (25
outside the singularities. Moreover from E48) we have M m2[8ri,
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IV. SOLVING THE CONSTRAINTS

A. The York procedure

The PN expressions for the 3-metric and the extrinsic cur
vature as given in Eqg6) and (20) do not fulfill the con-
straint equations of general relativity. In order to find a
3-metric and extrinsic curvature which do fulfill the con-

straints, we now apply the York procedure to project the Pl\ln

3-metric and extrinsic curvature onto the solution manifold
of general relativity. In this procedure we freely specify a

3-metricg;; , a symmetric traceless tensat¥ and a scalak.
We then solve the constraint equations

0=V2y— quﬁ— i\If5|<2+ E\IH(NJ' +LWi)
8 12 8
X (AM+ LW g, g; (26)
and
- . 2 — .
0=A W- §\P6V'K+VjA” (27

for ¥ andW'. HereV andR are the covariant derivative and
Ricci scalar associated with the 3-metgg, LW/ =V'W
+VIW - 59TV, WK, andA, W=V,LW!. Then

0ij =‘I'4E,- (28

and

Klj:\I,—lo(Alj_l_LW'J)_l_gg'lK (29

with g'/ being the inverse afj; will satisfy the constraints of
general relativity.

B. Application of the York procedure to the PN data

The idea is to base the freely specifiable quantig_'gs

Al andK on the PN 3-metric, the traceless part of the PN
extrinsic curvature, and the trace of the PN extrinsic curva
ture. The specific PN expressions we use are

T

gﬁ = Irllé‘sij + (h”'(l'4)+ h;lr(rS)) (30
and
i aq~i L, Lot ~ij \TT
Ks=—ts 77(3)+§hij(4)+(¢(2)77(3)) , (3D
with
1 pi  mym,
Ve ar ™ 2m, 2)
1 p;  mum,
+2—r2(m2+ 2m, 2r, ) (32)

PHYSICAL REVIEW D 67, 064008 (2003

Hereg!, K and ¢5 are the PN expression), (20), and
(8) With_aII terms ofO(€®) or higher dropped.
For g;; we choose the conformally rescaled metric

gij= s ‘95 = 8+ s *(hfi {4y + hii{s)), (33

hich has the advantage of being regular near the black
oles. We also conformally rescale the extrinsic curvature
and pick

W

S I
Al = l//éo( Kg— 59'53 K5>

U’

1.
=h

2 gKS!

~ij TT A NTT
_”'('3)_[ it (d)mh) }

(34)

WhereKszgﬁ Kig . Finally, since we only consider terms up
to ordere® and becaus&py=0O(€e’) we choose
K=0. (35

The metricaj is regular near the black holes. fif, de-
notes the distance to the singularity, we have

h5~O(1lr ) (36)
andhyj{,+hjj{s)~1/r , so that
9~ 8, +0(r3). (37)

This means that Christoffel symbols and Ricci scalar com-
puted from the 3-metrig;; go as

Tk ~0(r3) (38)
and
R~O(rp). (39)
We also have
_ Kd~O(r3)+0(r3) (40)
and thus
Ks~O(ra)+0(r}) (41)
and
All~0O(1/r3)+0O(1/3). (42)

So except foAll and 5 all quantities are well behaved near
the black holes.

The remaining problem is to solve Eg&6) and (27)
numerically. Since the PN metric is an approximate solution
it is clear that¥ =~ ¢5 and hence tha¥’ will diverge near the

black hole, which of course is problematic whérw
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~O(1/r%) is calculated by finite differencing in numeric
computations. In order to overcome this problem we make

the ansatz

V= 5+, (43

which in the case of the original puncture data suffices t

regularize the constraint equatigfis]. With this ansatz Eq.
(26) becomes

= _ N — =K 1 —

0=Vau+(g"—68)09;4s5— 9" I'j difs— g‘PR
E *7_ij K i Akl Ty kl_.__

+ 5V AT LW (A LW gpgy (44

where the term

Bijﬁi&j¢5=0 (45)

has been subtracted. This term vanishes analytically away
from the punctures and it is numerically advantageous to use

it to cancel the corresponding term @¥. Using Eqgs.(36),
(38), (39), and(42) one can check that all terms in E@4)

are finite. Furthermore we spwj into the two parts

. . 1 -
Ad=—m(y)— Ehﬂm_ (bymis) " (46)

and
A=Al - Ad (47)

so thatAll = All + All . The advantage of splitting'/ in this
way is that, analytically,
9;AL=0 (48)

away from the punctures. Using E¢.8) the constraint equa-
tion (27) simplifies to

AW +T} AY+T] AS+VAL=0. (49

Equationg44) and(49) now can be solved numerically for
and W' given the boundary conditions that—-0 and W'

—0 for r—oo. There are no additional boundary conditions
at the punctures, rather we assume that there exists a uniq

solution for whichu andW' are C? at the punctures, which

has been proven to be the case for the simpler example co

sidered in Ref[16].

C. Ambiguities in the application of the York procedure

PHYSICAL REVIEW D 67, 064008 (2003

Kil\=0 "1l (51)
and the York procedure would still yield a solution to the
constraints. Each of these different starting points will in
general yield different results fag; andK;; depending on

2. The solution forg;; andK;; becomes independent ©f

only if Ki5j already fulfills the momentum constraint, which is

not the case for the PN expressions. As an example of this

freedom we expan€ in € and choose
Q=1+ €*Q+0(€d). (52)

Because of the absence ©f %) terms in{) we obtain the
simple result

of'=[1+€*Q+0(e% g

= (¢PN+ E4Q)45ij + E4h2;r)ij + E5h2-5-|;ij
+0(€®) (53

and
Kin=[1+€*Q+0(€%)] 2K}y

_ + 4 )—1 37j + SEhTT

=—(¢pnt€Q €)™ € S
+O(66).

+ e (paymlsy) T (54)

We see thag;" andK }y, differ from g™ andK iy, only in the
factor

Ypn= Ypnt €'Q. (55
This shows that an overall conformal rescaling Qy=1
+ €*Q can be understood as a shifty €*Q) in the PN
conformal factor.

Furthermore note that any 3-metgg and extrinsic cur-
vatureK;; constructed by the method explained above are in
general different from the PN expressions for 3-metric and
extrinsic curvature. If one assumes that the PN expressions
are valid and thus astrophysically realistat least in a cer-
tain regime, one can aim to minimize the difference between

g andK;; and the PN expressions in this regime. We will
ater show that the scaling in EG2) can be used to improve
gij such that the ADM mass of the system after the York
procedure is close to what is predicted by pure PN theory in
the regime where PN theory is valid.

V. NUMERICS

Note that the York procedure explained above was applied

to the conformally rescaled quantitigsf andAll. There isa
priori no reason for using;; andA'l. In principle we could
have also started directly withy}" andKy or with gi" and
K@y scaled by any functiof), i.e., with

g"=0%", (50)

We now demonstrate that our method for solving the con-
straints in Eqs(44) and (49) leads to convergent numerical
solutions. We use second order finite differencing together
with a multigrid elliptic solver (BAM_Elliptic in cACTUS
[33]). All grids have uniform resolution. The two black hole
punctures are always staggered between grid points on the
finest grid in the multigrid scheme. Since we absorb all di-
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Hamiltonian constraint violation y—component of momentum constraint violation
—5 T T T T 7
0.000 === ety S A0 hure PN data N
) R i ol after solving (h=0.4)
~0.005 [ 5 / 3x10° || —-— after solving (h=0.2) -
. / .
A . — after solving (h=0.1)
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FIG. 1. Hamiltonian constraint violation for a black hole sepa-
ration ofr,,=8M. The Hamiltonian constraint of pure PN data is
much larger than the Hamiltonian constraint after solving., ap-
plying the York procedune We numerically solve for three different
resolutionsh. The inset is a blow up of the central region, which

shows that our numerical scheme is second order convergent as _ _ _
expected. regular, unlikeypy Which diverges at the black hole loca-

tions ofy=*4.
~As expected, after applying the York procedwg and
K'I are different from the pure PN expressiajs' andKy.

FIG. 2. The momentum constraint for a separation ref
=8M. We observe second order convergence in the resolltion
after solving. The momentum constraint violation of pure PN data is
larger than after solving.

verging terms in the conformal factor the solutianandW'
of Egs. (44) and (49) are regular everywhere, so that no . .
black hole excision or inner boundary conditions are needed;!9U"® 4 SPBWS a comparson of several components of the
As outer boundary conditions we use Robin conditions, i.e.3"MelriCsypngij and gpygjj . As one can see, the compo-
we assume thaie1/r andWie«1/r, wherer is the distance Nents ofg;; exhibit an increase on the order 6f1% when

to the center of mass. In the case of the vector potential thi§ompared tay;". The same conclusion is reached by look-

is a simplifying assumption that works reasonably well ining at Table I, which shows _the 3-metric and extrinsic cur-
practice. vature before and after applying the York procedure. Further-

For the numerical work in this paper we consider non-more Table | shows that the increase in the 3-metric due to

spinning equal mass binaries with their center of mass at re@pPplying the York procedure has about the same order of
at the origin. The binaries are in quasicircular orbits in the

sense that we use E4) to set the momentum of the two 4 ' ' '

black holes before solving the constraints. The two black 5[ | we ]
holes are on thg axis, such that their momenta point in the

positive and negativex directions, resulting in an angular 2r ]

momentum along the direction. Figure 1 shows the Hamil- 1

tonian constraint violation of pure PN dat@ashed ling i.e., -20 -10 0 10 20

before solving the constraints, as well as the Hamiltonian 0-008 ' ' '

constraint after solving at three different resolutidng\fter 0.006 - E| 1

the elliptic solve the constraint equatio®4) and (49) are 0.004 .

satisfied to within a given tolerance of 18 in the 12-norm, 0.002 ]

but to study convergence we show the ADM constraints 0000 | . ) - 2
-20 -10 0 0 0

computed fromg;; and Kj;. The two black holes are at
=+4. One can see that the constraint violation after the °002 ' ' '
York procedure is much smaller than the constraint violation 0.001
of pure PN data. The inset in Fig. 1 is a blowup of the center 0.000
and shows second order convergence to zero in the Hamil_o.001
tonian constraint after solving. We also observe second orde_g g2
convergence to zero in the momentum constraint. As an ex:
ample we show they component of the momentum con-
straint in Fig. 2. We see that pure PN data violates the con- F|G. 3. The solutions ofi and W along they axis for a black
straints. In Fig. 3 we plot the solutionsand W* along they hole separation of ;,=8M. For comparison we also shoypy,,
axis, which contains the black holes. As expected they ar@nhich diverges ay=*4.

-20 -10 0 10 20

y/M
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1.01 0.99 F Nonoooh o .
\\J ‘\ ,' \\//
1.00 0.98 T T FIG. 4. Components of the 3-metric and ex-
- -20 10 0 10 20 trinsic curvature for a black hole separation of
yM ri,=8M. The data are shown befor@ashed
4x1074 . . . 15 . . . lines) and after applying the York procedure
__ gxyp"w_p; K (solid lineg. The components of the 3-metric
oxiol — GV — K, change on the order of 1%.

1-05t W .

—4x107* ' 1 1 -15 L L L
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y/M y/M

—2x1074}

magnitude as the PN corrections@fe*). Since this hap- circular orbits. Figure 5 shows the numerically computed
pens in a region far enough from the particles that PN theonADM mass of pure PN initial datédashed ling the ADM

can actually be trusted to give realistic values, it means thanass of the data obtained after applying the York procedure
solving the elliptic equations introduces significant differ-

ences betweeg;; andgiFj'N in the outer region due to changes mass/M
in the inner region. Before we suggest how this problem can1.04

—T—Y T T r T T T T
be addressed, let us also consider the ADM mass of the sys ‘.‘ ‘\\\ ............ PN total energy ]
tem, which is a coordinate invariant quantity. ' \ ---- ADM mass of pure PN data
We compute the ADM mass along PN inspiral sequences'®® [ i \\ ——~ ADM mass after solving
constructed from PN circular orbits with different radii. \ N ADM mags of two punclures],
Along such a sequence the bare massesndm, are kept 102 | \‘ N\ = 4
constant and the momenta are computed from (E4). for L \\ \\\
\\ N e
TABLE |. Selected components of the 3-metric, extrinsic curva- 1.01 \ \\\\ T
ture, andh{|(,, at the pointx=0, y=12.2M, z=0 for two black L \\ TR
holes located on thg axis aty==*=5.2M. The change in the ¥
3-metric induced by solving the constraints without first rescaling 1800 e 1
ey has about the same magnitude as the PN correctioBgedl). - R e s e R S
The data here are computed by inconsistently keeping all highely gq L e i
order momentum terms ithpy . Voo e
PN value Value after relative 0.98 L L L L L L L L L
(up to O(€%)) solving (@=0) difference °© 2 4 6 8 r:/& 214 16 18 20
1
gPN=1.21866 U= 1.22285 QXX;QN’;? —0.0034 FIG. 5. PN energy of Eq25) and ADM masses before and after
o solving (i.e., applying the York procedureversus coordinate sepa-
oN rationr,, along the PN inspiral sequence. The data here were com-
KPN= — 00022341 K..=—0.0022617 xy Ky - 0012 puted by keeping all momentum termsigy, without consistently
X Y KEN ' dropping higher order terms. In this case the ADM mass of pure PN
PN metric TT term in metric relative size of data_ does_ not agree yvell with the PN energy. The ADM mass after
[up t0 O(€%)] of O(e%) O(e correction solving (with q=0.0) increases on the order 6f1%, when com-
pared to the ADM mass of pure PN data. Furthermore the ADM
hIXTM) mass after solving increases with decreasing separation, which is
g)'?)’(\‘z 1.21866 hII(4):O.00443 @ =0.0036 physically not acceptable. For comparison we also show the ADM

mass of two puncture black holes along the PN sequence with con-
stant bare masses, which show a similar increase in ADM mass.
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(long dashed ling as well as the PN total energyotted mass/M

line) of Eq. (25). In Fig. 5 and the following flggres we plot 10a b T \\' ____________ PN total energy

data forr, between 1 and 20. But note that it has to be L \ ---- ADM mass of pure PN data
expected that the PN data becomes inaccurate for small ~ 1.03 ¢ ‘\ ——- ADM mass after solving (q=0)

for example forr ;,~4M where the black holes are close to o \ ADM mass after solving (q=0.65)

the fiducial 1ISCO of the PN data 102 | | \ | —-— ADM mass of rescaled PN data(q=0.65)

In Fig. 5, we again observe an increase~o01% in the 101 F
ADM mass after applying the York procedure. A further
problem is that none of the numerically determined ADM 1.00 -
masses in Fig. 5 agrees very well with the PN end&fy. I
This problem stems from the fact that the PN initial data in I
Fig. 5 have been obtained by inserting the momen24h as 0.98 -
it is into the expressions for 3-metric and extrinsic curvature
of Sec. Il without consistently dropping terms ©f €®) or I
higher. Since all PN corrections to the momentum are posi-g ¢
tive, the main effect of this inconsistency is to increags

given by Eqs.(8) and(9). The result is that the numerically 0.95 2 "t 6 8 1'0 2 14 16 18 20

0.97

computed ADM masses before and after applying the York r M
procedure show physically unacceptable behavior:the k
ADM mass of pure PN data approaches the PN en&2gy FIG. 6. PN energy of Eq:25) and ADM masses versus coordi-

only very slowly at large separations a(id the ADM mass  nate separation,, along the PN inspiral sequence. Shown are the
of the data after applying the York procedure monotonicallyADM masses before and after applying the York procedure with
increases with decreasing separation. This is physically ndiothq=0 andq=0.65. Here all data are computed by consistently
reasonable because the system is supposed to loose enekggping momentum terms ifipy only up to Newtonian order. The
due to the emission of gravitational radiation. For referencéADM mass of pure PN data now agrees better with the PN energy.
the ADM mass(dot dashed lingfor a sequence of two black The York procedure witly=0.0 again increases the ADM mass on
hole punctures with constant bare masses and with the sartfee order of~1%, when compared to the ADM mass of pure PN
PN momentum(24) is also shown in Fig. 5. Along this se- data. The ADM mass after solving with=0.65, however, does not
quence the ADM mass of the punctures also unphysicall;?hange very much and it alsg closely fo!loyvs the .PN energy down
rises with decreasing separation, which is not surprising® M12~6M. Furthermore untif,;~5.6M it is physically reason-
since the assumption of constant bare masses for puncturégle since it decreases with decreasing separation. For comparison
ignores the growing contribution ofto the conformal factor W€ @so show the ADM mass curve of rescaled PN daiih g

with decreasing separation of the punctures. In all cases stud_”-o'65)' These data, however, have no direct physical significance.
ied by us the solutiom of Eq. (44) is indeed positive, which )
translates directly into an increase in the mass. when compared to pure PN data. If we want more physical

Of course, the question is how we can improve our datdn@ss curves we have to prevent this increase by preventing
SO that |ts behavior is phys|ca”y more rea”stiC. One Canthe INncrease |n-the COﬂfOI’ma| faCtor. We W|” take adVantage
argue that part of the additional energy is tied to an increaseff the freedom in the York procedure mentioned in Sec. IV C
local mass of the individual black holes. In fact, for constantand use the conformal rescaling of E£§2) before applying
bare masses there is a strong growth in the apparent horizéfe York procedure. From E¢55) we see that then the over-
masses. A standard approach is therefore to rescale the b conformal factor becomes
masses to keep the apparent horizon mass fixed and to define
a binding energy by subtracting the apparept horizon masses W =T+ U= thpnt €4Q+ U (56)
from the total mass, e.g., Réfl5]. However, in general it is
not possible to unambiguously define a local mass for gen- , ,
eral relativistic data, and the accuracy and validity of theH€nce, if we choose an appropria@e we have a chance of
estimate for the binding energy therefore depends on, fofPmpensatingi such that¥ ~ Jpy at least in the region far
example, how close the black holes are. from the.black ho_les where PN theory is valid.

As an alternative we have experimented here with a mass NOW, in the limit ofr ;,— the pure PN data we use as a
correction that is tied to properties of the PN approximation Starting point represent two Schwarzschild black holes at rest
As a first step let us keep momentum terms of @¢) in the (in isotropic coordinatgs Thusu is zero for infinite separa-
PN conformal factor/py [see Eqgs(8) and(9)] only up to the  tion and we therefore expect thatgoes likeus1/r 15 (with
appropriate order and to consistently drop all term©@é®) ~ n>0) for larger;,. On the other hand we also have
and higher. This amounts to just using the first Newtoniar?1/r due to the Robin boundary conditions used, so that we
term of the momenturt24) in ypy. The results are shown in €xpect thau is well approximated by
Fig. 6. The ADM mass of pure PN datdashed ling now

much better approaches the PN energy for large separations. N
Yet, the ADM mass after simply applying the York procedure u~— (57
(long dashed linestill shows an increase of order 1% Il
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for larger, whereN is some numerical constant. Numerically PN conformal factor
we find that the exponemt=1. So formallyu seems to be of
ordere®. Yetuis the solution of Eq(44), which according to
the e ordering scheme of PN theory is already satisfied up to1.11
€. Hence from a purely formal PN standpoint we would 110 |
expect thati should be of ordee®. This apparent paradox is
resolved by the observation that PN theory breaks down!.09
close to the black holes, sine&~M/r, diverges there. So 1.08 i
that when we solve the elliptic equatig¢a4), errors in the
PN data close the black holes propagate out and change th!-07
result everywhere by an amount, which cannot be describeq 44 [
by the PN power series expansiondn -
Since we wang to cancelu, we have to choose @ such 1.05
that it has the same falloff in andr, asu. The particular 4 g4 |.
choice we make is

112

1.03

mim, [ 1 1

Q__quz(Z_rl+2_r2)’ (58 20 45 Ao -5 x/(I)M 5 10 15 20

1.02

whereq is a free parameter, which has to be chosen such that ;5 7 The conformal factorgpy and Jpy= e+ €°Q, before
Q+u~=~0 for large separations. The choice @fin Eq. (58) :
is not unique. Rather it is motivated by the fact thafy

given by Eqgs.(8) and (9) already contains such a term, so

that addingQ to zpp_N merely changes the coefficient of a 4t the same place where the PN ene(@§) has a minimum.

term, but does not introduce new types of terms. We decided not to do this since the PN energy itself may not
We fix the value ofq by demanding that for large black pe yery reliable near its minimum. For comparison, Fig. 6

hole separations, the ADM mass curve of the data obtainedisq shows the ADM mass curveot dashed lingfor the PN

by applying the York procedure to the rescaled PN datagaig rescaled by with g=0.65, but without applying the

should coincide with the ADM mass curve of pure PN data.yq i procedure. This curve has no direct physical meaning,

NEmericaIIy we find that the two mass curves coincide fory + e can see that it can be obtained from the curve for pure
q=0.65 at large separations. It turns out thatder0.65 we  p gata(dashed lingby a downwards shift. Figure 7 shows

also get physically more reasonable mass curves in the rgqe pN conformal factor before and after rescaling with
gime where PN theory is expected to be valid. The solid line_ 5 g5 \ve see that the changed,, is rather small.

in Fig. 6 shows the ADM mass obtained for different sepa- A the masses so far are plotted versus the coordinate
rations if we apply the following extended York procedure:separatiorrlz. Figure 8 shows the PN energglotted ling

(i) start with the pure PN initial datdii) rescaleypy USING  {ha ADM mass of pure PN dataashed ling and the ADM
mass of data obtained after rescaling witl 0.65 and ap-
I"lﬂying the York proceduré¢solid line), versus the PN angular
velocity wpy, computed for circular orbits from

and after rescaling witly=0.65 forr,,=8M. The difference be-
tween ¢y and Py is small.

ADM mass(solid line) closely follows the PN energydotted
line) in the region where we expect PN theory to be valid.

Furthermore for separations greater thep~5.6M the 64(r 1,/M)3 w( M\

ADM mass decreases with decreasing separation as it (Moppy)?=—"—"—+ —(—)

should. For smaller separations the ADM mass again in- (1+2r3,/M)% Mirs,

creases. In the literature this minimum has often been inter- ) 5

preted as the location of the innermost stable circular orbit 4| = § ﬁ+ Ll (M) (60)
(ISCO. Note, however, that the PN expressions which we 8M  Mm2/\rqp) -

used up toO(e®) are probably close to breaking down

aroundM/r ;,=1/5.6~0.2, so that the ISCO location may Note thatwpy in Eq. (60) is written such thatwpy is exact up
not be very accurate. Also the location of the minimum canto all PN orders in the limit ofu/M —0. For u/M>0 Eq.

be shifted if we use higher order terms in the rescaling of60) is accurate up to 2PN order. It should be kept in mind,

Ypn, i.e., if we use however, thatwpy probably is not exactly equal to the true
angular velocity after applying the York procedure. Yet our
QZ,PN: Yent €°Q+ €°Q". (59 numerical approach does not immediately yield an angular

velocity which could be used in place afy.
The extraQ’ term will have no influence in the limit of large From Fig. 8 we see that the approximate ISCO of PN
distances, but it will influence the mass curves at small sepaheory computed from the 2PN energy is ndéwpy=0.1,
ration and thus we can move the minimum. Again one couldvhile the ISCO minimum of our datéafter applying the
introduce a one-parameter family i’ terms and fit the extended York procedure witlg=0.65) is nearM wpy
parameter such that the ADM mass curve has the minimurs 0.06, which is very close to the ISCO of test particles in
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FIG. 8. PN energy of Eq25), ADM mass of pure PN data, and FIG. 9. Apparent horizon mass of one of the black holes versus
ADM mass after solving(with gq=0.65) versus the PN angular the PN angular velocitwpy of Eq. (60). The apparent horizon mass
velocity (60). The PN energy has a minimum nesrwpy~0.1, of pure PN data is increasing by about 2% betw&kapy=0.01
which is often interpreted as the ISCO. We see that the ADM masand M wpy=0.06. The apparent horizon mass after solving wjth
after solving (with q=0.65) closely follows the PN energy until =0 increases even more strongly. Yet if we solve vgth0.65 the
M wpn=~0.05. Then neaM wp=0.06 it has a minimum which apparent horizon mass does not vary much, which is one of the
could be regarded as the ISCO. One has to keep in mind, howeverquirements for data that is close to quasiequilibrium. Note, how-
that the ambiguities in the York procedure in principle allow us toever, that the apparent horizon masses shown are only accurate up
shift the location of this minimum. to errors on the order of 2% due to computational limitations.

Schwarzschild. Also note that the ADM mass of pure PNand extrinsic curvature of pure PN data with the correspond-

data(dashed lingdoes not have a minimum at all.
In Table Il we compare some components of the 3-metrigplying the York procedure. The change in the 3-metric in-

ing quantities obtained after rescaling wijl=0.65 and ap-

duced by solving the constraints after first correctifigy

TABLE II. Selected components of the 3-metric, extrinsic cur- (With g=0.65) now is much smaller than the PN corrections

vature anchjj(, at the pointx=0, y=12.2M, z=0 for two black
holes located on the axis aty==*=5.2M. The change in the
3-metric induced by solving the constraints after first rescalipg
(with g=0.65) is much smaller than the PN correctionsOge?).

atO(e*). The change in the extrinsic curvature due to solv-
ing, however, is nearly the same whether or not we use the
rescaling withq=0.65. B

The question arises if the solutiomg; and K" with g

The change in the extrinsic curvature due to solving, however, does-0.65 are astrophysically more realistic then the pure PN
not depend much og and is about the same whether or not we useSO|U'[iOI"ISgiP]-N anngN_ We argue that this is indeed the case

the rescaling witlg=0.65. Here we have included only Newtonian
momentum terms iRy, in order to have a consistent expansion in

€.

PN value Value after relative
(up to O(€)) solving (Q=0.65) difference

g 7gPN
giN=1.21738 Oxy=1.21783 X % —0.00037

K5y'=—0.0022353

PN metric
(up to O(€”))

ghN=1.21738

PN
XX
K _KPN
Kyy=—0.0022673 = — 0,014
xy

TT term in metric relative size of

of O(e%) O(€*) correction
% =0.00364
hyx(a)=0.00443 o

sinceg;; andK" with q=0.65 are close tgfN and K}, in

the far region where PN is accurate, but in addition do fulfill
the constraint equations of general relativity. Furthermore the
ADM mass curve forg;; andK" with q=0.65 is closer to
the PN energy25) than the ADM mass curve of the pure PN
solutionsgj; and K.

Finally, in Fig. 9 we also include a plot of the apparent
horizon mass[ myy=VAay/(167)] of one of the black
holes versus the PN angular velocityy. For the determi-
nation of the apparent horizon we used a grid spacing of
=M/15 with the outer boundary at 128 which leads to an
estimated accuracy of about 2% in the apparent horizon
mass. For the bare PN data, we note a certain increase in the
apparent horizon mass with angular velocity. If we solve
with g=0 the increase is even stronger, since as described
earlier the conformal factor is larger after solving the con-
straints and thus raises the apparent horizon mass. However,
if we solve withq=0.65 the apparent horizon mass is close
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to being constant up tM wpy=0.06, which is the angular issue to study how large an intermediate binary black hole
velocity corresponding to an approximate 1ISCO. Hence théegime might be, where the PN approximation has broken
change introduced by=0.65 appears to move the data down but the separation is still significantly larger than the
closer to quasiequilibrium, for which one typically assumesseparation for an approximate ISG@7].

that the apparent horizon mass is constant. In addition, we want to work with higher order PN ap-
proximations. The explicit regularization for 3PN of Ref.
VI. DISCUSSION [26] could be used as a starting point. However, our proce-

dure may have to be modified because of changes in the
For the first time, we have derived fully relativistic black conformal factorypy. Finally, Jaranowski and Scfea [38]
hole initial data for numerical relativity, starting from 2PN have recently provided us with an expression which includes
expressions of the 3-metric and extrinsic curvature in thepin terms at orderu(c)® in the PN extrinsic curvature. In
ADMTT gauge. We have used the York procedure, and anyuture work we intend to use these terms to add spin to the
procedure for projecting the PN data onto the solution maniplack holes.
fold of general relativity will introduce changes to the PN Recall that we have concentrated on the near zone. We
data. The |arger the violation of the constraints by the Pl\b|an to rep|ace the near zone expansiom;ﬁt‘) with a g|o-
data, the larger the change in the solution process will be. IBaly valid expression. This could be achieved by solving the
principle one may loose the PN characteristics that distinyaye equation determiningiT-L) (see, e.g., Ref[39]) nu-
guished the PN data from other approaches in the first placgqerically, without any nea} zone approximations, which
As we have seen in Sec. V, the size of these chang&goy|d be natural in a method that resorts to numerics any-
depends on how exactly we employ the York procedure fogay if the PN inspiral trajectory is used in this calculation,
the projection. We find that the extended York procedurgpe injtial slice of our spacetime will already contain realistic
(with g=0.65) yields acceptably small changes, so that if theyayitational waves, with the correct PN phasing. When this
PN data we started with are astrophysically realistic, the datgpacetime is then evolved numerically we might eventually
after solving the constraints should still be astrophysicallyhe gple to compute numerical wave forms which continu-
relevant. In particular, our new PN initial data have the niceyysly match PN wave forms.
property that the 3-metric and extrinsic curvature approach Thjs prings us to the final goal of our initial data construc-
the corresponding 2PN expressions in the region where Phjon  namely to use it as the starting point for numerical
theory is valid, providing a natural link to the early inspiral eyolutions. As we pointed out in the Introduction, there are
phase of the binary system. Furthermore, our approach leagg,y numerical evolution methods with which we can begin
to an easy numerical implementation with a generalizéqy explore the physical content of any initial data set by
puncture method. _ evolution and by extraction of physical quantities such as
We consider this work as a first step towards the construcqetajled wave forms or total radiated energ€s-8]. As
tion of astrophysical initial data based on the PN approximamentioned in Ref[8], the Lazarus approach provides an ef-
tion. Although we are able to remove some of the inherénective method for cross-checking the validity of the results
ambiguity of the method, several directions should be exyy choosing different transition times along the binary orbit
plored. Since the PN formalism is unable to unambiguouslyy the region where a far limit approximati¢such as the PN
provide the full information in the black hole region, oneé methog and full numerical relativity overlap. Only by ex-
should examine different ways to introduce black holes. Furienging the ability of full numerical codes to accurately com-
thermore it would seem natural to follow the conformal thin 5 ;te several orbits, will we be able to arrive at a definitive
sandwich approach in order to obtain data that corresponggynciusion about the merit of different initial data sets.
more closely to a quasiequilibrium configuration, although in
principle we rather want data for the appropriate PN inspiral
rate than for exactly circular orbits. Note that after the solu-
tion process it is not known how well the orbital parameters  We would like to thank P. Jaranowski and G. Sehnafor
correspond to quasicircular orbits. One could use, for exmany discussions and sending us their PN expressions in a
ample, the effective potential meth¢#l5] with the new PN MATHEMATICA file. We are also grateful to Dennis Pollney
based data to determine quasicircular orbits of the two blacknd the Cactus Team for help on numerical issues related to
holes. this work, and to Guillaume Faye and Carlos O. Lousto who
Another direction of research is to improve the PN inputparticipated in the initial discussions of this work. M.C. was
to our method. Even though we can solve the constraints fopartially supported by the Marie-Curie Fun@rant No.
rather small separations of the black holes, we cannot trusiPMF-CT-1999-0033% P.D. was supported by the EU Pro-
the numerical data for arbitrarily small coordinate separationgram “Improving the Human Research Potential and the
because this is where the PN data we start with is probabl$ocio-Economic Knowledge BaséResearch Training Net-
unreliable. We have started with a traditional PN approaclwork Contract No. HPRN-CT-2000-00187The computa-
[25], but there has been significant progress in extending théons were performed on the SGI Origin 2000 at the Max-
validity of the PN approximation to smaller separationsPlanck-Institut fu Gravitationsphysik and on the Platinum
through resummation techniqug34—34. It is an important  Linux cluster at NCSA.
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