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Measuring a Kaluza-Klein radius smaller than the Planck length
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Hestenes has shown that a bispinor field on a Minkowski space-time is equivalent to an orthonormal tetrad
of one-forms together with a complex scalar field. More recently, the Dirac and Einstein equations were unified
in a tetrad formulation of a Kaluza-Klein model which gives precisely the usual Dirac-Einstein Lagrangian. In
this model, Dirac’s bispinor equation is obtained in the limit for which the radius of higher compact dimensions
of the Kaluza-Klein manifold becomes vanishingly small compared with the Planck length. For a small but
finite radius, the Kaluza-Klein model predicts the velocity splitting of single fermion wave packets. That is, the
model predicts that a single fermion wave packet will split into two wave packets with slightly different group
velocities. The observation of such wave packet splits would determine the size of the Kaluza-Klein radius. If
wave packet splits were not observed in experiments with currently achievable accuracies, the Kaluza-Klein
radius would be bounded by at most 2B times the Planck length.
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[. INTRODUCTION The tetrad Kaluza-Klein model is based on a constrained
Yang-Mills formulation of the Dirac theor}2—4,10-12. In

Using geometric algebra, Hestenes showed in 1967 that this formulation a bispinor fieldV is mapped to a set of
bispinor field on a Minkowski space-time is equivalent to anSL(2R) X U(1) gauge potential&® and a complex scalar
orthonormal tetrad of one-forms together with a complexfield p. The map¥ —(AX ,p) imposes an orthogonal con-
scalar field, and that fermion plane waves can be representegraint on the gauge potentials.. Apart from the excep-
as isometric modes of the tetrft]. More recently, the Dirac  tional setp=0, the map\If_>(A§ ,p) is a double covering
and Einstein equations were unified in a tetrad formulation ofnap onto its image(Such a double covering map has no
a Kaluza-Klein model which gives precisely the usual Dirac-gbservable effectst, 10,13.) The image of this map contains

Einstein Lagrangiar{2,3]. In this model, the self-adjoint precisely the gauge potentials which satisfy the orthogo-
modes of the tetrad describe gravity, whereas, as in Hesteng$3| constraint

work, the isometric modes of the tetrad together with a scalar
field describe fermions. An analogy can be made between the ALA = —1p?up (1.1
tetrad modes and the elastic and rigid modes of a deformable

body[2]. For a deformable body, the elastic modes are selfyhereg, , denotes the space-time metric. The gauge index
adjoint and the rigid modes are isometric with respect to thg =0,1,2.3 is lowered and raised using a gauge meic
Euclidean metric ofR®. This analogy extends into the quan- gnq its inverseg’® (see Sec. )l Repeated indices are
tum realm since rigid modes satisfying Euler’s equation carsymmed. We show in formulé2.11) in Sec. Il that via the
be Fermi quantize@4]. As yvith Eule_r’s equati(_)n fo_r a rigic_;l map\If—>(A§ ,p) the Dirac bispinor Lagrangiaf®.1) equals
body, the tetrad formulation of Dirac’s partial differential 5 ~onstrained Yang-Mills Lagrangian in the limit of an infi-
bispinor equation is a classical Hamiltonian system, Withnitely large coupling constant, which we denotegas
(noncanonicalunitary Lie-Poisson brackefd]. Fermi quan- In the Kaluza-Klein formulation of the tensor Dirac
tization of such classical systems is possible whenever thﬁ‘weory we map the fermion fieldA& ,p) to a tetrad of vector
Lie algebra can be represented by fermion creation and ar?feldsv’ and a complex scalar fiek’j also denotedpasn a
nihilation operators. Note that most Lie algebras can be rEpémoothK manifoldM = X X G Where)’< is a space-time and
rgsentgd by_ fermion operato[r's*_], S0 there exist_many plas— G=SL(2R)XU(1) (see S’ec. ). The tetradvy together
sical Lie-Poisson systems which can be Fermi quantized. with a (fixed) basis of right-invariant vector fields @ de-

The.usej of tetrads to .descfibe gravjty hqs a long hiStor)fermines a metric denoted &s), a volume form denoted as
[6], which includes coupling with the Dirac field as a sourced% and also a curvature two-form denotedRi, ), on M

[7]. However, introducing a tetrad to describe both fermion o . A
and gravitational fields solves an important problem poseésee_Sec_. N The .un|f|ed actiors for the gravitational and
ermion fields is given by

by current theories of fermion-graviton interaction. To define
bispinors, reference tetrad fields or their equivalent must be

defined on the space-time manif¢®]. However, only ten of S= f Ldy (1.2
the 16 components of a tetrad field describe gravity. The

remaining six components are supernumerary boson fields in . _
current gravitational theorid®]. In the Kaluza-Klein tetrad where the unified Lagrangidnis (see Sec. Il
model, the tetrads, which do not require a reference field, 1
describe both fermions and gravity without superfluous de- L=——R,+ —uvn(p+p)v (p+u) (1.3
grees of freedon2]. 16wy 0 go KPTHIVAPTH
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wherex, is Newton’s gravitational constard, is the Yang- 1

Mills coupling constant referred to previously, and H=Ho+ g_Hl (1.6
=2mg/gy, Wheremy is the fermion mass. In formuld..3), 0

we employ the sum of sectional curvatures restricted to the

subspace spanned by the tetrad where 1¢,~10 1" is a very small dimensionless parameter,

Hy is exactly the usual Dirac bispinor Hamiltonian, and both
Ho andH, are integrals of measurable functions of the bis-
pinor field\W. By the spectral theorem botthy andH 4 (after
regularization common in quantum field theojiean be rep-

By formulating the Kaluza-Klein Lagrangiafl.3) with the resented as self-adjoint operators, and thus a perturbative
tetradvy , the orthogonal constrairiL.1) is eliminated(see ~ duantum field theory could be formulated as for other non-
Sec. 1)) linear fields, with 1¢, as the expansion parameter.

The limit on the Yang-Mills coupling constam, has a Although the practical use of such a nonlinear theory is
geometric significance in the Kaluza-Klein tetrad model, invery difficult, the Lagrangiar(1.3 has observable predic-
that asg, becomes infinitely large, as required to obtain thetions at the classical or first quantized level for the nonlinear
usual Dirac-Einstein equations from the Lagrangiard), wave phenomena discussed in Sec. IV. Such predictions do
the radius of the higher compact dimensions in the Kaluzanot conflict with quantum field theory because only the fer-
Klein model becomes vanishingly small, even when com-mion part of the Lagrangiafi.3) contains the radiug,, and
pared to the Planck lengfii4]. This can be seen from the this radius is only manifested as the small dimensionless
following argument. In the Lagrangiafi.3) the constants coupling constant &j,. [It is shown in formula(3.33 of
Jo. ko, and u are functions of three “fundamental” con- Sec. Ill that the Lagrangiafl.3) is the sum of the usual
stantsmg, dg, and\p, wheremy is the fermion massjy, is  Hilbert-Einstein Lagrangian for the gravitational field plus a
a radius that characterizes the size of the higher compastang-Mills Lagrangian for the fermion fielfiSince &, only
dimensions of the Kaluza-Klein manifoldl, and\p is the  slightly perturbs the fermion wave packets, quantum effects

3 3
R,=> > (R(vy,ux)v’,v). (1.4
J=0 K=0

Planck length. In Sec. Ill we show that at the Planck length scale, such as the effect of gravity fluc-
tuations on the nonlinear fermion wave packets, would not
8\ 12 be observable in the experiments proposed in this pier
50=(53—) \p (1.5 (Even the Earth’s gravity as an external field would not be
0

discernible in the proposed experimepts.

Therefore, at the first quantized level there is no conflict
Thus, in the limit required to obtain Dirac’s equation,@&s  with quantum field theory in proposing an experiment with
becomes infinitely larged, is much smaller than the Planck freely propagating, single fermions in order to observe a
length\p. small self-interaction of the Dirac equation. Also, the classi-

For nonvanishing values of the radids, the Dirac equa- cal or first quantized equations in this paper are then suffi-
tion obtained from the Lagrangiaid.3) is nonlinear(in the  cient to derive observable predictions from the Kaluza-Klein
bispinor variabledl), and solutions of this equation exhibit a model.
phenomenon known as velocity splitting, whereby a free fer- We conclude this introduction with some brief remarks on
mion wave packet splits into two wave packets travelingthe implications of the tetrad Kaluza-Klein model. While it is
with a small velocity differenc¢l5,16. In Sec. IV we shall generally agreed that the classical limit {arlarge number
derive formulas relating, to the velocity splitting in free of photons is the classical electromagnetic field, it is also
fermion wave packets. Thus in principle it is possible fromwidely believed that no classical limit exists in the same
formula (1.5 to determine or bound the radidg with fer-  sense for fermion$9,18,19. We believe that this belief is
mion beam experiments designed to detect velocity splittinginfounded given that, as previously discussed, fermions,
in wave packets. Consider a current experiment where singlgravitons, and gauge bosons can be unified at a classical
electrons are emitted at 100 km intervals in wave packets devel in a tetrad Kaluza-Klein mod¢B]. Also, the observ-
length 10°° m, traveling ove 1 m athalf the speed of light ability of the higher dimensions of the tetrad Kaluza-Klein
[17]. From formulas(4.16) and (4.17) in Sec. IV, assuming model through velocity splitting suggests new experiments to
that velocity splitting is not observed, we can estimate thatest quantum mechanics in a nonlinear regime.
go must be greater than 10 and thus, from formul&1.5), In Sec. Il of this paper we review the derivation which
8, must be smaller than 16° times the Planck length. Ex- demonstrates that the Dirac bispinor Lagrangian equals a
periments with slower electrons or with protons could reduceconstrained Yang-Mills Lagrangian in the limit of an infi-
the above bound oi, by 20 orders of magnitude. nitely large coupling constant. We show how all bispinor

These experiments can be performed at a “first quanebservables are directly derived from well known Yang-
tized” level with single fermions and in the absence of aMills formulas. Then in Sec. lll we show how both the limit
discernible gravitational field. The reason is that from for-and the orthogonal constraifit.1) are explained geometri-
mula (1.5 a nonvanishing radiug, determines a small fer- cally in a Kaluza-Klein tetrad model. Finally, in Sec. IV we
mion self-interaction constantdd in terms of which the show how the Kaluza-Klein radiug, can be measured in
generalized Dirac HamiltoniaH can be written as velocity splitting experiments.
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II. TENSOR FORM OF THE DIRAC LAGRANGIAN whereaq 11]

In previous papers we derived the tensor form of Dirac’s
bispinor Lagrangian and reviewed the history of such deri-
vations by Takahashi and oth€f3,4,11]. To introduce the > — c
notation needed for the remainder of this paper, we will o= Im[Wy, W], (2.4

briefly review in this section the derivation which demon- c . 0
strates that the Dirac bispinor Lagrangiéhl) equals the y\ihere\I"Z denotes the charge conjugatef Notg thatja’
andj:, are the SL(R) Noether currents, anpf; is the

constrained Yang-Mills Lagrangiaf®.11) in the limit of an  Ja ‘
infinitely large coupling constantin Kaluza-Klein geometry U(1) Noether currenf11]. The Noether currents; and sca-
this limit is equivalent to the radius of the higher compactlar s satisfy an orthogonal constraint known as a Fierz iden-
dimensions being very small compared to the Planck lepgthlity [11,21,22:

In addition, we will show how all bispinor observablesg., K2

the energy-momentum tensdf”, spin polarization tensor Jalks=181"9ap (2.9
S*AY, and electric current vectal® for the Dirac bispinor
field) can be derived directly from well known Yang-Mills

jL=Rg ¥y, ¥°],

where the gauge indicekK,L are raised and lowered using a
Minkowski metricg;x (with diagonal element§l, —1, —1,

formulas. . o K :
R . - : : —1} and zeros off the diagonadnd its inversey". As with
givgg&:)cys bispinor Lagrangiah,, for the bispinor fiela¥ is space-time tensor indices, repeated gauge indices are

summed from 0 to 3. Note from formulé2.3) and(2.4) that
the Noether currentg. are real.

As shown previously 11], we can map the Noether cur-
rentjX into a subset of SL(Z)x U(1) currentslX by set-
ting

Lo=ReiV y*3, ¥ —mys] (2.1)

wheres is the complex scalar field defined by

Re(s]=w¥, K= I)=(-i3—ij2ijL -0 (29

Im[s]=iVy°¥, (2.20  whered,=(J%,J2,33) are complex SL(Z) currents and?
is the U1) current. We then map a subset of SIGP,
and wherey® for «=0,1,2,3 andy® are Dirac matricef20], X U(1) gauge potentialdX and a complex scalar fiejdinto
m, denotes the fermion mass, denote partial derivatives (J¥s) by setting
with respect to space-time coordinates, dnsing bispinor

. — K_ 2K
notation ¥ =¥ "% where¥ " denotes the transpose con- Jo=4lp|*A;,
jugate of W. The tensor indicesy, B, y are lowered and ”
raised using the Minkowski space-time metric, which we de- s=4[p|°p. 2.7

note a , and its invers@®?. Repeated tensor indices are . .
Yap @ P By formula(2.6) the gauge potennabsﬁ are restricted to an

summed from O to 3. .
It was previously shown that, except for the mass termSL(2R)>U(1) subgroup for which

Dirac’s bispinor Lagrangian(2.1) is invariant under 14 24 34
SL(2,R)><U(p1) gaugg tra?]sformationsll]. Moreover, it REALI=REAI=IMIAL]=0. 28
was shown that the scalarin formula (2.2 is invariant Note from formulas(2.6) and (2.7) that A? is real.
underl SL&ZS) ga:Jge trgnsfohrma;ons, and trar}sform_s as a Using different notation Takahas[|226:|¥ derived the fol-
complex scalar under the gauge transformations : Lo e e ; )
(i.e., chiral gauge transformation41]). To make the La- lowing formula for Dirac’s bispinor Lagrangiai2. 1)
grangian(2.1) invariant for all SL(2R) X U(1) gauge trans- Lp=—RE (d,Az)-A“X AP+ 2ipA%9%p+ 4my| p|?p]
formations, it was shown to suffice thaw, transforms likes (
(the complex conjugate df). Sincem, appears in the La-
grangian(2.1) without derivatives, the assumption that, ~ whereA = (AL,A2, A3), with the orthogonal constraifi2.5)
transform likes under U1) chiral gauge transformations has expressed as
no effect on the Dirac equatidii].

Also as previously showhl1], from the Dirac bispinor AﬁAKﬁ=—|p|Zgaﬁ. (2.10
Lagrangian (2.1) we can derive the following SL(R)
X U(1) Noether current§® for K=0,1,2,3. In particular]® [Formulas(2.9) and(2.10 are derived from first principles in

is the electromagnetic current ajg is the chiral current; Ref.[11].] Once the SL(Z) < U(1) gauge symmetry of for-
ie. mula (2.9 is recognized, the demonstration that Dirac’s bis-

pinor Lagrangian(2.1) equals a constrained Yang-Mills La-
0 \I_fy v _gran_gian in_the limit of an infinitely large coupling constant
@ “« is fairly obvious.
s~ . Consider the following Yang-Mills Lagrangidry, for the
Ja=¥y.yY, (2.3 gauge potential&® and the complex scalar fieja!

2.9
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Lg

1 K aff 1 a
- 4g RqAaﬁAK ]+ &Da(p_‘_M)D (p+lu‘)
(2.11

where the Yang-Mills field tensohl ;= (A4 A,p) is de-
fined as

AL 5= 0, A= AL,

AaBZ(?aAB—ﬁﬁAa—gAaXAB,
2.12

whereby the Yang-Mills coupling constarmf is the self-
coupling of the gauge potentiak,. Furthermore, in the
Lagrangian(2.11), the complex scalau satisfies

2mg

, dau=0,
Jo H

m= (2.13
wherem, is the fermion mass amgh = (3/2)g. As previously
stated, for Dirac’s bispinor Lagrangid@.1) both the com-
plex scalar fields and the fermion masm, transform as
U(1) scalars. The same is true fprand u by formulas(2.7)
and (2.13. Hence the covariant derivativ®, acts onp
+ u as follows:

(2.19

That is,gg=(3/2)g is the Yang-Mills constant which couples
the U1) scalarsp and u to the U1l) gauge potentiaAg.
Then, as previously showrd 2], from formulas(2.9)—(2.14),
Dirac’s bispinor Lagrangiaf2.1) equals

Du(p+u)=dup+igoAS(p+p).

LD: ||m Lg .

g—

(2.195

Note that the Euler-Lagrange equation for the Lagrangia

(2.12) with the orthogonal constrair{2.10 expressed using
Lagrange multipliers commutes with the restrictiGR.8).
Hence, theA, can be used to denote either SIE?,or the
subset of SL(R) gauge potentials. By regarding SLR,as
embedded in the complex analytic group SIGP, we are

able to use familiar vector operations to express the Lie al

gebra structure constants in formul@9) and (2.12. The
vector operations greatly simplify derivations.

Note also from the Lagrangiaf2.15 that we can derive
all bispinor observablee.g., the energy-momentum tensor
T, spin polarization tensd®*#?, and electric current vec-
tor J¢) directly from the Yang-Mills formulas. For example,
the Dirac spin polarization tens@*#” is usually expressed
in bispinor notation as

1
SUBY=— T W(y oh 7+ oYy W, (2.16

whereo*f=(i/2) (y*yP— y#v*). Using the identity[7]
(2.17

together with formula$2.3), (2.6), (2.7), and(2.10, formula
(2.16 reduces to

YEoPY+ gPYy¥= 2By 59/

PHYSICAL REVIEW D67, 064006 (2003

1 — 1
SaBy= — Esaﬁwﬁp vsy° ¥ Esaﬁvan

=2|p|2e P AY=2A APX A, 018
1

The Yang-Mills version of the spin polarization tensor is eas-
ily shown from formula(2.11) to be

1
SgﬂyzaRe[AﬁBAKV—AﬁyAKﬁ]. (2.19
In the limit of a large coupling constany, the Yang-Mills

formula(2.19 becomes, using the definition Aﬁﬁ given in
formula(2.12,

lim Sg#7=2A%- APX AY

g—o

(2.20

which equalsS*#” by formula(2.18. Similarly, we can de-
rive T*¥ andJ® directly from the Yang-Mills formulas.

We mention in passing that, just as for Yang-Mills fields,
the bispinor canonicalnonsymmetrig energy-momentum
tensorT*? and spin polarization tens@*#” satisfy the re-
lation [23]

3,S*P7—TPY+T78=0. (2.21
From this relation we can define a symmetric energy-
momentum tensor, which is also conserved as follows:

1
O =T+ 2g,(S7+57-5F).  (2.22

In general relativity, the symmetric tens@*# is the bis-

r;lt)inor source of the gravitational field, which is derived by

varying the action with respect to the metric ten$as.
[The action is formed of the Lagrangi&®.11) with the or-
thogonal constrain(2.10 expressed using Lagrange multi-
pliers] Note that the general relativistic derivation of a sym-
metric energy-momentum tens@? is more self-evident
using the Yang-Mills formulas rather than the bispinor for-
mulas[24]. Also, for those interested in torsion theory gen-
eralizations, the interaction with torsion is much simpler to
derive using the Yang-Mills formulds/].

Although, as we have seen, embedding the gauge group
SL(2R) in the complex analytic group SL(@) simplifies
derivations, for the Kaluza-Klein model presented in Sec. lll,
it is more direct to express the Lagrangi@ill) in terms of
real gauge potentialsﬁ, which are defined by setting

in=4lp|?FL,

s=4/p|%p. (2.23
Note from formulag2.3) and(2.4) that the Noether currents
jﬁ are real, and hence the gauge potenﬂﬁﬁsare also real.
Also, note from formula(2.3) that the chiral Y1) gauge
potential isFi. By formulas (2.5 and (2.23, these gauge
potentials satisfy the orthogonal constraint
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FaFks=pl"gas- (2.24
In terms of the fields I{§ ,p) the Lagrangian2.11) be-
comes

1 K Fap 11— a
L FQBFK +&Da(p+M)D (P"',U«) (225)

a9
where the Yang-Mills field tende';B is given by

Fop=daF p— dgF ot af5FoF, (2.26
and where we denote the SLRJ X U(1) Lie algebra struc-
ture constants a{sﬁK. Similar to formula(2.14), the covari-
ant derivativeD , acts on the (1) scalarsp and u as fol-
lows:

Du(p+u)=dap—igoFi(p+p). (2.27)

I1l. KALUZA-KLEIN RADIUS SMALLER THAN THE
PLANCK LENGTH

PHYSICAL REVIEW D 67, 064006 (2003

The fermion field orX we denote asRX,p), wherep is a
complex scalar field and*=|p|8¥. Thus the dynamical
fields are the tetrad of one-form@ and p. We will show
that the gravitational fiel@@ and the bispinor fieldV (which
together have 168=18 real componentsare represented
faithfully by gX and p (which also have 162=18 real
components [2]. We will then derive the usual Einstein-
Dirac Lagrangian from the Kaluza-Klein Lagrangi&®22)
for the fieldsX andp.

On G, the four-dimensional real Lie group SLB,

X U(1), we fix anonsingular tetrad of right-invariant one-
forms of with K=0,1,2,3. The tetrad of right-invariant one-
forms & defines a right-invariant metric on the Lie groGp
given by

a=gka’®aX, (3.9
whereg;k has the same form as the Minkowski metric in the
definition (3.2). SinceG is a four-dimensional Lie group, the
o form a basis for the dual of the Lie algebra®f

For vector fieldsy andw on G, we will denote the inner
product with respect to the metrie by (v,w), that is,

In this section we will derive Dirac’s bispinor Lagrangian (3.5
(2.1) from a tetrad Kaluza-Klein model, which explicates
both the orthogonal constrairi®.24) and the limit(2.15). The tetrad of right-invariant one-forms® uniquely deter-
The orthogonal constraint will be shown to be inherent in themines a dual tetrad of right-invariant vector fields on G
structure of the tetrads, whereas the limit implies that thesatisfying
radius of the higher compact dimensions of the Kaluza-Klein
model is vanishingly small compared with the Planck length,

as a condition for the equality of the Einstein-Dirac and ) ) ) ) ) )
Kaluza-Klein Lagrangians. The right-invariant vector fieldax form a basis for the Lie

(v, W)= a(v,W) =g ca’(v)a(w).

aX(ay) =455 (3.6

Kaluza-Klein tetrad model. LeM =XXG be the Kaluza-
Klein manifold, withX a four-dimensional space-time, aGd
the four-dimensional real Lie group SL@,<U(1). On the

space-timeX, we assume the existence of a global, nonsin-

gular tetrad of one-form@X with K=0,1,2,3. The gravita-
tional field onX, which we denote ag, is defined to be the

unique metric tensor with the Minkowski signature, for

which the tetrad8¥ is orthonormal, that is,

B=9;xB’® B, (3.1
where
1 0 0 0
» 0 -1 0 35
9k=9" = 0 0 -1 0 (3.2
0 O 0o -1

The tetrad of smooth one-form@* uniquely determines its

dual tetrad of smooth vector fields on X satisfying
B (by) =65, (3.3

where 8 equals 1 ifJ=K, and zero otherwise. From for-

mula (3.1), the vector fielddb form an orthonormal basis
for each tangent space #f

(3.5 and(3.6) we get
3.7

We can choose the fixed tetra#f so that the vector fields
ak satisfy the following SL(R) X U(1) commutation rela-
tions:

(ay,ak) =0k -

[ag.a;]=— 0 tay,
[ag,8,]= 0" "ay,

[a;,8,]=6""a, (3.8
whereéis a length parameter. All other commutators vanish.
As usual in general relativity, both length and time carry the
same unit. As on any physical manifold, the one-forafs
carry units of length, so that their duals, the vector fieds

in formula (3.8), carry units of massi.e., inverse length
From formulag3.7) and(3.8) it is evident thats is the radius

of the U1) subgroups of SL(R). Formula(3.8) can be
written more succinctly as

1.,
[aJ!aK]:Ef\]KaLi (3.9

which defines the Lie algebra structure constdfjs Note
that the structure constarity, are dimensionless, so that the
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length parameted is required in formuld3.9) to balance the
dimensions. Also, in formulé3.4), the metric constantg;x

are dimensionless. Although we do not make use of the fol-
lowing property in the tetrad Kaluza-Klein model, note from

formulas (3.2) and (3.8) that fJKngLMfg"K is completely

antisymmetric in the indiced K, andL. When this property
holds, the metric is called “bi-invariant,” since it is both
right and left invarian{25]. We will see generally that the

PHYSICAL REVIEW D67, 064006 (2003

| Yapt )\ZQJKFJHFE —NFlgx

: (3.14
—NgykF s Jik

Y

where A\ =(x8)'® is a Kaluza-Klein parameter having di-
mension of lengtf14], and

Fi=IplBL . (3.19

tetrad Kaluza-Klein model does not require that the right-Thus, v is precisely the Kaluza-Klein metrigl4] for the

invariant metrica given in formula(3.4) be bi-invariant.

gravitational fieldg,; and the gauge potentiaﬁ;. By for-

Note that, while the orthonormal and commutation rela-mulas(3.13 and(3.15 the F'; satisfy

tions (3.7) and (3.8) determine the radius of the(ll) sub-

groups of SL(R), they do not determine the radius of the

U(1) factor of the Lie grougs=SL(2R) X U(1). Theradius
of the U1) factor of G will be denoted ash,. The ratiod/ &,
is a parameter which we can equate to the ragidg of
coupling constants in the Yang-Mills Lagrangiéh25. That
is, the length parametei, and é of the tetrad Kaluza-Klein
model will be set ass,=(2/3)4 in correspondence with,
=(3/2)g in the Lagrangian2.25.

Thus on the Kaluza-Klein manifoltl = XX G, we can
define a fixed tetrad of one-formg® and a dynamic tetrad of
one-formsBX induced from the projections dl onto its
factorsG andX. («* and 8 on M are the pullbacks o&X
on G and X on X by the projection mapsWe define a third
tetrad of one-forms/X on M by:

vK=aX— (k)" p| B¢ (3.10
where « is 16#/3 times Newton’s constanty, andp is a
complex scalar field oM. Note that the constant has di-
mension of length squared, the constaritas dimension of
length as in formuld3.9), the scalar fielgh has dimension of
mass, and the one-forms®, X, andv* each have dimen-
sion of length.

The one-forms g¥,vX) form a basis for each cotangent
space ofM =XXG. The Kaluza-Klein metric orM is de-
fined to be

Y=g (B B+ o), (3.11
which depends only on the dynamical field$ andp, since
aX in formula(3.10 is fixed by the basis chosen for the Lie
algebra ofG.

To demonstrate that is a Kaluza-Klein metric, we define
local coordinate one-formdx® with «=0,1,2,3 on an open
chartVC X. The gravitational fielg3 is expressed locally on
V by

(3.12

Writing 8= X dx®, we obtain, from formulag3.1) and

(3.12,

B=0,pdx*@dx".

Gap=9oxBaB (3.13

If we choose @x%,aX) for a basis of one-forms, then from
formulas (3.10 and (3.13 the Kaluza-Klein metric(3.11)
has the following components:

(3.19

which is precisely the orthogonal constrai@t24). Further-
more, by formula(3.13, the gravitational fieldy,z has the
same(Minkowski) signature ag;x on G.

We denote the vector fields dual t8'f,a¥) as by ,ax).
The vector fields dual tog¥,v¥) are then ¢« ,ax), where
from formula(3.10

gJKFinglngaﬁi

v=by+(x8)plag. (3.17)

From formula(3.11), the vector fields fk ,ax) form an or-
thonormal basis with respect to the Kaluza-Klein merian
each tangent space bf.

We extend the inner product notation in formy&5) to
vector fieldsv andw defined onM as follows:

(v,w)=y(v,wW) =g,k B'(v) B (W) + v’(v) ¥ (W)].
(3.18

Thus, for the orthonormal vector fieldg anday defined on
M1

(v3,0k)=(ay,ak) =0k,
(3.19

for all indicesJ,K=0,1,2,3. That is, with respect to the basis
(vk,ak), the Kaluza-Klein metricy becomes

<UJ 1aK>:O

gk O

0

(3.20

Osk]

The manifoldM =XX G has a natural right action d&
defined byh(x,g)=(x,gh) for each &,g)eM andheG.
Foruvg to be right invariant, it is necessary and sufficient that
bk and |p| depend only on the space-time coordinates
e X. Specifically, we assume that the complex scalar field
has the form

p=eY1%p(x), (3.2
wherey is a global Y1) coordinate ofG for which az=
—dldy is a U1) unit vector field onG which commutes with
every right-invariant vector field oG [see formulag3.7)
and (3.8)].

Our goal in this section is to derive the Einstein and Dirac
Lagrangians from the following Lagrangian for the fields

(B%.p):
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11— tational field plus the Dirac-Yang-Mills Lagrangian given
BT PR g—UK(P+M)v (p+u) (322  informula(2.25 for the fermion field, and similarly for the
0 0 total action(3.26). Furthermore, the limit2.15 required to

where k, and g, are constants«, is Newton’s constant  obtain Dirac’s bispinor equation forces the length parameters
and wherev¥=g’v ;. The mass parameter is defined on 6 and &, in the Kaluza-Klein model to become vanishingly
M by small compared with the Planck lengthy= «3'2.
, Proof. We will derive an alternative local expression for
p=e'%p, (3.23  the Lagrangian(3.22, which simplifies the computations.

- ) i Define a local coordinate tetrad, as follows:
whereg is a constant. R, is the sum of sectional curvatures

over the four-dimensional subspaces spanned by the ortho- va:5a+(K5)1/3F';aK- (3.28
normal tetradv i in each tangent space bf:

L

JKALM Sincev,=Bvy, the tetradw andv, in formulas(3.17
R,=97"g""(R(vy,v)vk,vm) (824 and(3.28 span the same four-dimensional distribution over
the Kaluza-Klein manifoldM.

whereR(, ) is the curvature two-formi25] associated with The inverse relation. — b® . whereb® are the Compo-
the Kaluza-Klein metricy on M. K= BPklas K p

Let dy denote the volume form ol =Xx G defined by nents of the vector fieIdezb‘K’Qa_, follows from formulas
the Kaluza-Klein metricy. (We do not confuse the symbol (3.3, (.3'13’ (3.17, and(3.28. Similarly, formulas(3.3) and
“d" with exterior differentiation since the metrig is not a  (3-13 imply
differential form) Similarly let de anddg denote the vol- b8 = ap pd
ume forms defined by the metricsand 8 on the manifolds k=9k9" Ba
G and X, respectively. Note thad« is a fixed volume form aB— P IKpaps (3.29
on G, whereagd8 depends on the dynamic fiel@. Since g =97 b0k :
the one-forms gK,»X) are orthonormal, we see from for-

Then, substituting/x =bgv, into R,, the sum of sectional
mula (3.10 that P= Dy

curvatures over the distribution spanned dy in formula
dy=dg.da. (325  (3:24, gives

— ~NaBAYF,
Therefore, the action associated with the Lagrang®&g? R,=9""g7(R(va,0))vp,05) (3.30

is given by and the LagrangiafB.22 equals
167TKO v gO a p lu’ p ,lL . -

Note that in the actiori3.26 the gravitational fieldy,; and
the bispinor fieldW, which together have 108=18 real
components, are represented 8§ and p, which also have
16+ 2=18 real component2].

We show in the following theorem that the Lagrangian

Formula(3.30 is evaluated by computin®, using the
vector fields ¢, ,ax) as a basis oM. Note that with respect
to this basis the Kaluza-Klein metri8.11) has the following
components:

(3.22 equals the Hilbert-Einstein Lagrangian for the gravi- g 0
tational field plus the Dirac-Yang-Mills Lagrangia®.25. y= B . (3.32
The constraint(2.24) of the Dirac-Yang-Mills equation has 0 9w

already been shown to be a consequence of the tetrad
formula (3.16).

Theorem If we define the constants, g, gq in terms of
Newton’s constani and the length parametefsand §, as

lF‘ne local expressions af,, R,, andy given in formulas
(3.28), (3.30, and(3.32 are equal to the usual expressions
in Kaluza-Klein theony 14]. A straightforward derivation us-
ing the commutation relation8.9) shows that

follows:
3
K= ]-G%KO, R,=Rx+ Z(K5)2/3F§ﬂ|:zﬁ (3.33
(k5)M3 whereRy denotes the scalar curvature Xfand
B T N L B CRY
(k&)Y where d, are the coordinate vector fields dual dx“ in
9o= 5, (327 formula(3.12 andg= (x/5%)*2 Note in formula(3.33 that

indices are raised and lowered in the obvious way. That is,
then the total Lagrangiah given in formula(3.22 equals wp 55 5
the Hilbert-Einstein Lagrangian (#6¢,) 'Ry for the gravi- Fk"=9""9""9kFys- (3.39
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[Because in formulg3.24), we restrictedR, to the tetrad Since the velocity splitting depends on the coupling con-
vk, the scalar curvature o does not occur in formula stantg, (and vanishes ag, becomes infinite measurement
(3.33.] of the velocity splitting will determinegy, and through for-

Having computedR, in formula(3.33), and choosing the mula(3.36), the Kaluza-Klein radiug,. We discuss experi-
constantsg, g, andgg as in formula(3.27), we see in formula ments to measure such velocity splitting and show that cur-
(3.3 that the total Lagrangiah equals the Hilbert-Einstein rently achievable experiments could boudgl to less than
Lagrangian fog,,z plus the Dirac-Yang-Mills Lagrangialn, 102 times the Planck length if velocity splitting were not

given in formula(2.25 for FX andp. observed.
Furthermore, sincé=(3/2)3,, formula(3.27) gives The Euler-Lagrangian equations f¢2.10 and (2.11)
have exact plane wave solutions of the farb6]
8 1/2
8= (?> Ap (3.36 A%(xP)=A%(0),
0

which relates the Kaluza-Klein radidg to the Planck length
Ap=«3'?. Thus, in the limit required to obtain Dirac's equa-
tion, that is aggy becomes infinitely larged, must become
vanishingly small compared to the Planck length. The same p(xP)=p(0), (4.2)
is true for the radiu$=(3/2)6,. O

The following observations derive from the proof of the wherex® e R* denotes the space-time coordinatégyener-
theorem and demonstrate that the Lagrang&f?) signifi-  ates a one-parameter subgroup of SC)2gauge transfor-
cantly generalizes the Kaluza-Klein theory. First, from for- mations, andd(x”)=px? wherepgze R* denotes the mo-
mulas(3.10, (3.11, (3.13, and(3.19, and from the local mentum variables. Note that &¥(0) and p(0) satisfy the
expressions of the Lagrangian in formul@s28), (3.30, and  orthogonal constraint2.10), then the same is true for
(3.31), the gauge grous of the Kaluza-Klein manifoldM  AK(x#) andp(x#) for all X R?, since in formula(4.1) the
=XXG can be generalized to larger Lie groups of dimen-g) (2 C) gauge transformations generated bpreserve the
sion d>4. For such generalizations we definqzzbﬁvﬁ orthogonal constraint. Note also that
where bf=g*#g,B), . Although thed global vector fields
vk are too many to form a tetrad wheh>4, they span a
four-dimensional distributiospanned locally by the coordi-

nate tetrads ). _for somew e C? satisfyingw- w=1.[The reader is reminded

Second, the nonphysical cosmological constant, which i ; e ;
the scalar curvaturédenoted asRg) of the Lie groupG ?a? tsat(efoce) II?S3 t]he complexification of S(2) for which we

occurring in the Lagrangian of the usual Kaluza-Klein model . . .
[14], is absent in the Lagrangia.22 because in formula Differentiating formula(4.1), we get using formul&4.2)
(3.24 we restrictedR,, to the four-dimensional distribution
spanned by they. 9 A}=0,

Third, for the same reason, even though the metric given
in formula (3.4) is bi-invariant(i.e., both right and left in-
variand, the theorem does not require that the right-invariant I Ap=—2p XAy,
metric also be left invariant, which in the usual Kaluza-Klein
model restricts the choice of Lie groupk4].

A (xB)=eZPTA (0),

T(A,) =i wXA, (4.2)

d,p=0. 4.3

IV. MEASUREMENT OF THE KALUZA-KLEIN RADIUS Note in formula(4.3) that theA , have twice the rotation rate
of bispinors, ang“p,=m? wheremis the mass of the plane
wave solution(4.1). We also assume that the plane waves
(4.1) satisfy the same conditions which are satisfied by bis-
epinor plane waves, given as follows:

In this section we will first show that exact plane wave
solutions(in a Minkowski space-timeof the Euler-Lagrange
equations for the Lagrangig.11) with the orthogonal con-
straint (2.10, are in one-to-one correspondence with th
plane wave solutions of Dirac’s bispinor equatigrhich as
previously shown is obtained in the limit that the Yang-Mills paAozo,
coupling constanig, [and g=(2/3)gy] becomes infinite “

Using a wave packet approximation, we derive quasilinear

partial differential equations for wave packets with slowly p*A,=*m|p|w, (4.9
varying amplitude and momentum. Solutions to these equa-

tions propagate along two families of characteristic curvesvhere the positive sign is used for particles and the negative
with a small velocity difference. Thus a single fermion wavesign for antiparticles. Sincg is constant by Eq(4.3), for-
packet may split into two wave packets traveling with mula (4.4) can be regarded as the initial conditions for the
slightly different velocities. fields Aﬁ. Note that formula(4.4) is consistent withp“p,
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=n?, as well asw-w=1 and the orthogonal constraint Lagrangian(2.11) and the orthogonal constraif2.10 are
(2.10. Moreover,p, for particles becomes p,, for antipar-  independent of the phase *6 in formula (4.1), we may set
ticles. Conversely, withp,, so defined, formul#4.4) defines €=0 and drop the distinction betweer? andy”. The re-
o, and hence the gauge generafoin formulas (4.1) and _sultlng Euler-Lagrange equations are the equations govern-
(4.2). ing the wave packetll5], and are given by
Since in the following we only deal with particlés.g.,
electrons and protonswe will disregard the antiparticle for-
mulas. Sincep is constant we can chooge>0 for particle 9 D=
plane waves| This is equivalent to choosing a positive mass oPp=pPa
parameten in the Lagrangiar(2.11).] 9.39=0 4.9
Note from the orthogonal constrairi2.10 that if we @ ' '
chooseu>0 andp>0 for particle plane waves then each yherem=m(p) is given in formula(4.5), and
plane wave(4.1) has a constant amplitude equal goAs
shown in previous workl16], each exact plane wave solution 5 5
(4.1) has a massn=m(p), which depends on its constant Ja JUaZ(g—P +4p
amplitudep. To derivem(p), substitute the plane wayé.1) 0
into the Euler-Lagrange equations for the Lagrand2dl)  whereu,=p,/m. J, is the electric currerfi.e., the Noet-
with the orthogonal constrain(2.10 expressed using her current which is gauge parallel to in formula (4.2)].
Lagrange multiplyer§16]. Then, the mass can be shown The first two equation&.9) are called the eikonal equations,

PP ,=Mm?,

u, (4.10

to satisfy the following quadratic equation: and the last equatio®.9) expresses the conservation of the
5 _ electric current,, .
(m=mg)“+b(m—mg)+c=0 (4.9 To analyze Eq(4.9), we now consider a space-time with
Where one space dimension such that
1,u)
1 ua:(uo,ul):(; (411)
Mo= 5 Yok, J1—u?
_ for the velocity parameteu, and similarly we denote®
b=2my+ ,
0™ GoP =(x,t). Formula(4.9) becomes
1
_ 2 d J
c=5mg. (4.6 T+ 2 guly =
3 S Qu)+ = (Ju)=0,

We deduce from formulagt.5 and(4.6) that the massn
is positive for all positive amplitu_dep. Expandingm in i(mul)Jri(muo):O’ (4.12
powers ofmg/gop, we have approximately for a large Yang- gt 12

Mills coupling constant, that
ping Yo where the two dependent variables are the amplijudad

mg the velocityu. [Recall from formulag4.7), (4.10, and(4.11)
3900 (4.7 thatm=m(p), J=JI(p), andu*=u*(u) for =0, 1]

0 Characteristic curves for the quasilinear partial differen-
Note that, in the limit agy, becomes infinitely large, the i@l equations4.12 are easily deriveil5], and are given by

massm becomesn,, which is constant, and hence indepen- dx  u+A

dent of the amplitude. —_— =
Wave packets are defined to be plane waves with slowly dt  1xuA

varying parameterge.g., amplitude, spin, and momentum

m== mo_

(4.13

To describe such wave packets we introduce “slow” coordi-Where
natesy?=ex?, wheree>0 is a small parameter, into for- A=Im7I'm 41
mula(4.1) by the substitution&"(y#) for AX(0), p(y#) for ’ 4.19
p(0), £~16(y*) for p,x*, and whereJ’ and m’ denote the derivatives af and m with
respect top. On the two families of characteristic curves,
- i=s 7 signified by the* signs in formula(4.13, we have
“ogxe ay®’
! d +J,A d (4.15
u=*——dp. .
o= 20 4.9 1-u® 3
[e3 ayll

Note that for the two families of characteristic curvdsl?3),
Using the Whitham methofdL5], we express the Lagrangian the group velocitydx/dt equals the relativistic addition of
(2.12) in terms ofe, y#, 6, A, andp. Then, because the velocities,u and =A, respectively. The velocity splitting is

!

064006-9



F. REIFLER AND R. MORRIS

defined to be &. Substituting the expressions far and J
from formulas(4.7) and(4.10 into formula(4.14), we derive

PHYSICAL REVIEW D67, 064006 (2003

Then, substitutingyy in formula (4.17) into (3.36) gives the
following approximate relation between the Kaluza-Klein ra-

the following approximate formula for velocity splitting for a dius 8, and experimentally determined paramet@he fer-

large Yang-Mills coupling constary:

ZAN\/molgop. (416)

Here and henceforth we will ignore nonsignificant factors

[e.g., 2/3 in formula4.16)] in deriving approximate formu-
las.
Consider a fermion wave packet of lendth, volumeL,

and density ]ng. For a wave packet of nearly uniform den-

sity this impliesp~1/L, [see formulag2.7) and(2.10]. To

mion masamg, fermion velocityu, wave packet length,
and free path length,) for which velocity splitting is mini-
mally detectable:

(4.18

50 UZLO 3/2
Ap  |mpL2

Consider a current experimelrit7] where single electrons
are emitted at 100 km intervals in wave packets of length

minimally detect velocity splitting over the free path of the 1075 m, traveling a free pathfol m at half the speed of
fermion, the original wave packet must split into two wave |ight. That is,L,=10"% m, L;=1 m, andu=0.5. Assuming

packets separated by a distance of at legsiThus, we must
havely~2t;A wheret;=L/u is the time for the fermion
to travel the length of the free path at the fermion velocity
u. Hence A~uly/L,.

Substituting A~uly/L; and p~1/L, into formula
(4.16), we get approximately

mo'—i
u’ly”

(4.17)

that velocity splitting is not observed, and given that the
electron mass is 410" m1, we deduce from formulas
(4.17 and (4.189 that g, must be greater than 1{ and
henced, must be smaller than 16° times the Planck length
Ap. Since in formula(4.18 the estimate ofs, is propor-
tional to the velocityu cubed and inversely proportional to
the 3/2 power of the mass, refined experiments using
slower electrons ofmore massive protons could improve
the bound ond, by 20 orders of magnitude.
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