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Measuring a Kaluza-Klein radius smaller than the Planck length

Frank Reifler and Randall Morris
Lockheed Martin Corporation, Naval Electronic and Surveillance Systems, 199 Borton Landing Road, Moorestown, New Jersey
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Hestenes has shown that a bispinor field on a Minkowski space-time is equivalent to an orthonormal tetrad
of one-forms together with a complex scalar field. More recently, the Dirac and Einstein equations were unified
in a tetrad formulation of a Kaluza-Klein model which gives precisely the usual Dirac-Einstein Lagrangian. In
this model, Dirac’s bispinor equation is obtained in the limit for which the radius of higher compact dimensions
of the Kaluza-Klein manifold becomes vanishingly small compared with the Planck length. For a small but
finite radius, the Kaluza-Klein model predicts the velocity splitting of single fermion wave packets. That is, the
model predicts that a single fermion wave packet will split into two wave packets with slightly different group
velocities. The observation of such wave packet splits would determine the size of the Kaluza-Klein radius. If
wave packet splits were not observed in experiments with currently achievable accuracies, the Kaluza-Klein
radius would be bounded by at most 10225 times the Planck length.

DOI: 10.1103/PhysRevD.67.064006 PACS number~s!: 03.65.Pm, 04.20.Gz, 04.50.1h, 11.15.2q
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I. INTRODUCTION

Using geometric algebra, Hestenes showed in 1967 th
bispinor field on a Minkowski space-time is equivalent to
orthonormal tetrad of one-forms together with a comp
scalar field, and that fermion plane waves can be represe
as isometric modes of the tetrad@1#. More recently, the Dirac
and Einstein equations were unified in a tetrad formulation
a Kaluza-Klein model which gives precisely the usual Dira
Einstein Lagrangian@2,3#. In this model, the self-adjoin
modes of the tetrad describe gravity, whereas, as in Heste
work, the isometric modes of the tetrad together with a sc
field describe fermions. An analogy can be made between
tetrad modes and the elastic and rigid modes of a deform
body @2#. For a deformable body, the elastic modes are s
adjoint and the rigid modes are isometric with respect to
Euclidean metric onR3. This analogy extends into the qua
tum realm since rigid modes satisfying Euler’s equation c
be Fermi quantized@4#. As with Euler’s equation for a rigid
body, the tetrad formulation of Dirac’s partial differenti
bispinor equation is a classical Hamiltonian system, w
~noncanonical! unitary Lie-Poisson brackets@4#. Fermi quan-
tization of such classical systems is possible whenever
Lie algebra can be represented by fermion creation and
nihilation operators. Note that most Lie algebras can be r
resented by fermion operators@5#, so there exist many clas
sical Lie-Poisson systems which can be Fermi quantized

The use of tetrads to describe gravity has a long hist
@6#, which includes coupling with the Dirac field as a sour
@7#. However, introducing a tetrad to describe both ferm
and gravitational fields solves an important problem po
by current theories of fermion-graviton interaction. To defi
bispinors, reference tetrad fields or their equivalent mus
defined on the space-time manifold@8#. However, only ten of
the 16 components of a tetrad field describe gravity. T
remaining six components are supernumerary boson field
current gravitational theories@9#. In the Kaluza-Klein tetrad
model, the tetrads, which do not require a reference fi
describe both fermions and gravity without superfluous
grees of freedom@2#.
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The tetrad Kaluza-Klein model is based on a constrain
Yang-Mills formulation of the Dirac theory@2–4,10–12#. In
this formulation a bispinor fieldC is mapped to a set o
SL(2,R)3U(1) gauge potentialsAa

K and a complex scala
field r. The mapC→(Aa

K ,r) imposes an orthogonal con
straint on the gauge potentialsAa

K . Apart from the excep-
tional setr50, the mapC→(Aa

K ,r) is a double covering
map onto its image.~Such a double covering map has n
observable effects@4,10,13#.! The image of this map contain
precisely the gauge potentialsAa

K which satisfy the orthogo-
nal constraint

Aa
KAKb52uru2gab ~1.1!

wheregab denotes the space-time metric. The gauge ind
K50,1,2,3 is lowered and raised using a gauge metricgJK
and its inversegJK ~see Sec. II!. Repeated indices ar
summed. We show in formula~2.11! in Sec. II that via the
mapC→(Aa

K ,r) the Dirac bispinor Lagrangian~2.1! equals
a constrained Yang-Mills Lagrangian in the limit of an infi
nitely large coupling constant, which we denote asg0 .

In the Kaluza-Klein formulation of the tensor Dira
theory, we map the fermion field (Aa

K ,r) to a tetrad of vector
fields vK and a complex scalar field, also denoted asr, on a
smooth manifoldM5X3G, whereX is a space-time and
G5SL(2,R)3U(1) ~see Sec. III!. The tetradvK together
with a ~fixed! basis of right-invariant vector fields onG de-
termines a metric denoted as^ , &, a volume form denoted a
dg, and also a curvature two-form denoted asR( , ), on M
~see Sec. III!. The unified actionS for the gravitational and
fermion fields is given by

S5E L dg ~1.2!

where the unified LagrangianL is ~see Sec. III!

L5
1

16pk0
Rv1

1

g0
vK~r1m!vK~r1m! ~1.3!
©2003 The American Physical Society06-1
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wherek0 is Newton’s gravitational constant,g0 is the Yang-
Mills coupling constant referred to previously, andm
52m0 /g0 , wherem0 is the fermion mass. In formula~1.3!,
we employ the sum of sectional curvatures restricted to
subspace spanned by the tetradvK :

Rv5 (
J50

3

(
K50

3

^R~vJ ,vK!vJ,vK&. ~1.4!

By formulating the Kaluza-Klein Lagrangian~1.3! with the
tetradvK , the orthogonal constraint~1.1! is eliminated~see
Sec. III!.

The limit on the Yang-Mills coupling constantg0 has a
geometric significance in the Kaluza-Klein tetrad model,
that asg0 becomes infinitely large, as required to obtain t
usual Dirac-Einstein equations from the Lagrangian~1.3!,
the radius of the higher compact dimensions in the Kalu
Klein model becomes vanishingly small, even when co
pared to the Planck length@14#. This can be seen from th
following argument. In the Lagrangian~1.3! the constants
g0 , k0 , and m are functions of three ‘‘fundamental’’ con
stants,m0 , d0 , andlP , wherem0 is the fermion mass,d0 is
a radius that characterizes the size of the higher com
dimensions of the Kaluza-Klein manifoldM, andlP is the
Planck length. In Sec. III we show that

d05S 8p

g0
3 D 1/2

lP . ~1.5!

Thus, in the limit required to obtain Dirac’s equation, asg0
becomes infinitely large,d0 is much smaller than the Planc
lengthlP .

For nonvanishing values of the radiusd0 , the Dirac equa-
tion obtained from the Lagrangian~1.3! is nonlinear~in the
bispinor variablesC!, and solutions of this equation exhibit
phenomenon known as velocity splitting, whereby a free
mion wave packet splits into two wave packets travel
with a small velocity difference@15,16#. In Sec. IV we shall
derive formulas relatingg0 to the velocity splitting in free
fermion wave packets. Thus in principle it is possible fro
formula ~1.5! to determine or bound the radiusd0 with fer-
mion beam experiments designed to detect velocity split
in wave packets. Consider a current experiment where si
electrons are emitted at 100 km intervals in wave packet
length 1025 m, traveling over 1 m athalf the speed of light
@17#. From formulas~4.16! and ~4.17! in Sec. IV, assuming
that velocity splitting is not observed, we can estimate t
g0 must be greater than 1017, and thus, from formula~1.5!,
d0 must be smaller than 10225 times the Planck length. Ex
periments with slower electrons or with protons could redu
the above bound ond0 by 20 orders of magnitude.

These experiments can be performed at a ‘‘first qu
tized’’ level with single fermions and in the absence of
discernible gravitational field. The reason is that from f
mula ~1.5! a nonvanishing radiusd0 determines a small fer
mion self-interaction constant 1/g0 in terms of which the
generalized Dirac HamiltonianH can be written as
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H5H01
1

g0
H1 ~1.6!

where 1/g0'10217 is a very small dimensionless paramet
H0 is exactly the usual Dirac bispinor Hamiltonian, and bo
H0 andH1 are integrals of measurable functions of the b
pinor fieldC. By the spectral theorem bothH0 andH1 ~after
regularization common in quantum field theories! can be rep-
resented as self-adjoint operators, and thus a perturba
quantum field theory could be formulated as for other no
linear fields, with 1/g0 as the expansion parameter.

Although the practical use of such a nonlinear theory
very difficult, the Lagrangian~1.3! has observable predic
tions at the classical or first quantized level for the nonlin
wave phenomena discussed in Sec. IV. Such predictions
not conflict with quantum field theory because only the f
mion part of the Lagrangian~1.3! contains the radiusd0 , and
this radius is only manifested as the small dimensionl
coupling constant 1/g0 . @It is shown in formula~3.33! of
Sec. III that the Lagrangian~1.3! is the sum of the usua
Hilbert-Einstein Lagrangian for the gravitational field plus
Yang-Mills Lagrangian for the fermion field.# Sinced0 only
slightly perturbs the fermion wave packets, quantum effe
at the Planck length scale, such as the effect of gravity fl
tuations on the nonlinear fermion wave packets, would
be observable in the experiments proposed in this paper@8#.
~Even the Earth’s gravity as an external field would not
discernible in the proposed experiments.!

Therefore, at the first quantized level there is no confl
with quantum field theory in proposing an experiment w
freely propagating, single fermions in order to observe
small self-interaction of the Dirac equation. Also, the clas
cal or first quantized equations in this paper are then su
cient to derive observable predictions from the Kaluza-Kle
model.

We conclude this introduction with some brief remarks
the implications of the tetrad Kaluza-Klein model. While it
generally agreed that the classical limit for~a large number!
of photons is the classical electromagnetic field, it is a
widely believed that no classical limit exists in the sam
sense for fermions@9,18,19#. We believe that this belief is
unfounded given that, as previously discussed, fermio
gravitons, and gauge bosons can be unified at a clas
level in a tetrad Kaluza-Klein model@3#. Also, the observ-
ability of the higher dimensions of the tetrad Kaluza-Kle
model through velocity splitting suggests new experiments
test quantum mechanics in a nonlinear regime.

In Sec. II of this paper we review the derivation whic
demonstrates that the Dirac bispinor Lagrangian equa
constrained Yang-Mills Lagrangian in the limit of an infi
nitely large coupling constant. We show how all bispin
observables are directly derived from well known Yan
Mills formulas. Then in Sec. III we show how both the lim
and the orthogonal constraint~1.1! are explained geometri
cally in a Kaluza-Klein tetrad model. Finally, in Sec. IV w
show how the Kaluza-Klein radiusd0 can be measured in
velocity splitting experiments.
6-2
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II. TENSOR FORM OF THE DIRAC LAGRANGIAN

In previous papers we derived the tensor form of Dira
bispinor Lagrangian and reviewed the history of such d
vations by Takahashi and others@2,4,11#. To introduce the
notation needed for the remainder of this paper, we w
briefly review in this section the derivation which demo
strates that the Dirac bispinor Lagrangian~2.1! equals the
constrained Yang-Mills Lagrangian~2.11! in the limit of an
infinitely large coupling constant.~In Kaluza-Klein geometry
this limit is equivalent to the radius of the higher compa
dimensions being very small compared to the Planck leng!
In addition, we will show how all bispinor observables~e.g.,
the energy-momentum tensorTab, spin polarization tenso
Sabg, and electric current vectorJa for the Dirac bispinor
field! can be derived directly from well known Yang-Mill
formulas.

Dirac’s bispinor LagrangianLD for the bispinor fieldC is
given by

LD5Re@ i C̄ga]aC2m0s# ~2.1!

wheres is the complex scalar field defined by

Re@s#5C̄C,

Im@s#5 i C̄g5C, ~2.2!

and wherega for a50,1,2,3 andg5 are Dirac matrices@20#,
m0 denotes the fermion mass,]a denote partial derivatives
with respect to space-time coordinates, and~using bispinor
notation! C̄5C1g0, whereC1 denotes the transpose co
jugate of C. The tensor indicesa, b, g are lowered and
raised using the Minkowski space-time metric, which we d
note asgab , and its inversegab. Repeated tensor indices a
summed from 0 to 3.

It was previously shown that, except for the mass te
Dirac’s bispinor Lagrangian ~2.1! is invariant under
SL(2,R)3U(1) gauge transformations@11#. Moreover, it
was shown that the scalars in formula ~2.2! is invariant
under SL(2,R) gauge transformations, and transforms a
complex U~1! scalar under the U~1! gauge transformation
~i.e., chiral gauge transformations@11#!. To make the La-
grangian~2.1! invariant for all SL(2,R)3U(1) gauge trans-
formations, it was shown to suffice thatm0 transforms likes̄
~the complex conjugate ofs!. Sincem0 appears in the La-
grangian~2.1! without derivatives, the assumption thatm0
transform likes̄ under U~1! chiral gauge transformations ha
no effect on the Dirac equation@11#.

Also as previously shown@11#, from the Dirac bispinor
Lagrangian ~2.1! we can derive the following SL(2,R)
3U(1) Noether currentsj a

K for K50,1,2,3. In particular,j a
0

is the electromagnetic current andj a
3 is the chiral current;

i.e.,

j a
05C̄gaC

j a
35C̄gag5C, ~2.3!
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whereas@11#

j a
15Re@C̄gaCC#,

j a
25Im@C̄gaCC#, ~2.4!

whereCC denotes the charge conjugate ofC. Note thatj a
0,

j a
1, and j a

2 are the SL(2,R) Noether currents, andj a
3 is the

U~1! Noether current@11#. The Noether currentsj a
K and sca-

lar s satisfy an orthogonal constraint known as a Fierz id
tity @11,21,22#:

j a
K j Kb5usu2gab , ~2.5!

where the gauge indicesJ,K,L are raised and lowered using
Minkowski metricgJK ~with diagonal elements$1, 21, 21,
21% and zeros off the diagonal! and its inversegJK. As with
space-time tensor indices, repeated gauge indices
summed from 0 to 3. Note from formulas~2.3! and~2.4! that
the Noether currentsj a

K are real.
As shown previously@11#, we can map the Noether cu

rent j a
K into a subset of SL(2,C)3U(1) currentsJa

K by set-
ting

Ja
K5~Ja

0,Ja!5~2 j a
3,2 i j a

2,i j a
1,2 j a

0 ! ~2.6!

whereJa5(Ja
1,Ja

2,Ja
3) are complex SL(2,C) currents andJa

0

is the U~1! current. We then map a subset of SL(2,C)
3U(1) gauge potentialsAa

K and a complex scalar fieldr into
(Ja

K ,s) by setting

Ja
K54uru2Aa

K ,

s54uru2r̄. ~2.7!

By formula ~2.6! the gauge potentialsAa
K are restricted to an

SL(2,R)3U(1) subgroup for which

Re@Aa
1 #5Re@Aa

2 #5Im@Aa
3 #50. ~2.8!

Note from formulas~2.6! and ~2.7! that Aa
0 is real.

Using different notation Takahashi@22# derived the fol-
lowing formula for Dirac’s bispinor Lagrangian~2.1!:

LD52Re@~]aAb!"Aa3Ab12i r̄Aa
0]ar14m0uru2r̄ #

~2.9!

whereAa5(Aa
1,Aa

2,Aa
3), with the orthogonal constraint~2.5!

expressed as

Aa
KAKb52uru2gab . ~2.10!

@Formulas~2.9! and~2.10! are derived from first principles in
Ref. @11#.# Once the SL(2,C)3U(1) gauge symmetry of for-
mula ~2.9! is recognized, the demonstration that Dirac’s b
pinor Lagrangian~2.1! equals a constrained Yang-Mills La
grangian in the limit of an infinitely large coupling consta
is fairly obvious.

Consider the following Yang-Mills LagrangianLg for the
gauge potentialsAa

K and the complex scalar fieldr:
6-3
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Lg52
1

4g
Re@Aab

K AK
ab#1

1

g0
Da~r1m!Da~r1m!

~2.11!

where the Yang-Mills field tensorAab
K 5(Aab

0 ,Aab) is de-
fined as

Aab
0 5]aAb

02]bAa
0,

Aab5]aAb2]bAa2gAa3Ab ,
~2.12!

whereby the Yang-Mills coupling constantg is the self-
coupling of the gauge potentialsAa . Furthermore, in the
Lagrangian~2.11!, the complex scalarm satisfies

m5
2m0

g0
, ]am50, ~2.13!

wherem0 is the fermion mass andg05(3/2)g. As previously
stated, for Dirac’s bispinor Lagrangian~2.1! both the com-
plex scalar fields and the fermion massm0 transform as
U~1! scalars. The same is true forr andm by formulas~2.7!
and ~2.13!. Hence the covariant derivativeDa acts onr
1m as follows:

Da~r1m!5]ar1 ig0Aa
0~r1m!. ~2.14!

That is,g05(3/2)g is the Yang-Mills constant which couple
the U~1! scalarsr and m to the U~1! gauge potentialAa

0.
Then, as previously shown@12#, from formulas~2.9!–~2.14!,
Dirac’s bispinor Lagrangian~2.1! equals

LD5 lim
g→`

Lg . ~2.15!

Note that the Euler-Lagrange equation for the Lagrang
~2.11! with the orthogonal constraint~2.10! expressed using
Lagrange multipliers commutes with the restriction~2.8!.
Hence, theAa can be used to denote either SL(2,C) or the
subset of SL(2,R) gauge potentials. By regarding SL(2,R) as
embedded in the complex analytic group SL(2,C), we are
able to use familiar vector operations to express the Lie
gebra structure constants in formulas~2.9! and ~2.12!. The
vector operations greatly simplify derivations.

Note also from the Lagrangian~2.15! that we can derive
all bispinor observables~e.g., the energy-momentum tens
Tab, spin polarization tensorSabg, and electric current vec
tor Ja) directly from the Yang-Mills formulas. For example
the Dirac spin polarization tensorSabg is usually expressed
in bispinor notation as

Sabg52
1

4
C̄~gasbg1sbgga!C, ~2.16!

wheresab5( i /2)(gagb2gbga). Using the identity@7#

gasbg1sbgga52«abgdgdg5 ~2.17!

together with formulas~2.3!, ~2.6!, ~2.7!, and~2.10!, formula
~2.16! reduces to
06400
n

l-

Sabg52
1

2
«abgdC̄gdg5C5

1

2
«abgdJd

0

52uru2«abgdAd
052Aa

•Ab3Ag.
~2.18!

The Yang-Mills version of the spin polarization tensor is ea
ily shown from formula~2.11! to be

Sg
abg5

1

g
Re@AK

abAKg2AK
agAKb#. ~2.19!

In the limit of a large coupling constantg, the Yang-Mills
formula ~2.19! becomes, using the definition ofAab

K given in
formula ~2.12!,

lim
g→`

Sg
abg52Aa

•Ab3Ag ~2.20!

which equalsSabg by formula ~2.18!. Similarly, we can de-
rive Tab andJa directly from the Yang-Mills formulas.

We mention in passing that, just as for Yang-Mills field
the bispinor canonical~nonsymmetric! energy-momentum
tensorTab and spin polarization tensorSabg satisfy the re-
lation @23#

]aSabg2Tbg1Tgb50. ~2.21!

From this relation we can define a symmetric energ
momentum tensor, which is also conserved as follows:

Qab5Tab1
1

2
]g~Sbga1Sagb2Sgab!. ~2.22!

In general relativity, the symmetric tensorQab is the bis-
pinor source of the gravitational field, which is derived b
varying the action with respect to the metric tensor@23#.
@The action is formed of the Lagrangian~2.11! with the or-
thogonal constraint~2.10! expressed using Lagrange mult
pliers.# Note that the general relativistic derivation of a sym
metric energy-momentum tensorQab is more self-evident
using the Yang-Mills formulas rather than the bispinor fo
mulas@24#. Also, for those interested in torsion theory ge
eralizations, the interaction with torsion is much simpler
derive using the Yang-Mills formulas@7#.

Although, as we have seen, embedding the gauge gr
SL(2,R) in the complex analytic group SL(2,C) simplifies
derivations, for the Kaluza-Klein model presented in Sec.
it is more direct to express the Lagrangian~2.11! in terms of
real gauge potentialsFa

K , which are defined by setting

j a
K54uru2Fa

K ,

s54uru2r̄. ~2.23!

Note from formulas~2.3! and~2.4! that the Noether current
j a
K are real, and hence the gauge potentialsFa

K are also real.
Also, note from formula~2.3! that the chiral U~1! gauge
potential isFa

3. By formulas ~2.5! and ~2.23!, these gauge
potentials satisfy the orthogonal constraint
6-4
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Fa
KFKb5uru2gab . ~2.24!

In terms of the fields (Fa
K ,r) the Lagrangian~2.11! be-

comes

Lg5
1

4g
Fab

K FK
ab1

1

g0
Da~r1m!Da~r1m! ~2.25!

where the Yang-Mills field tensorFab
L is given by

Fab
L 5]aFb

L2]bFa
L1g fJK

L Fa
J Fb

K , ~2.26!

and where we denote the SL(2,R)3U(1) Lie algebra struc-
ture constants asf JK

L . Similar to formula~2.14!, the covari-
ant derivativeDa acts on the U~1! scalarsr and m as fol-
lows:

Da~r1m!5]ar2 ig0Fa
3~r1m!. ~2.27!

III. KALUZA-KLEIN RADIUS SMALLER THAN THE
PLANCK LENGTH

In this section we will derive Dirac’s bispinor Lagrangia
~2.1! from a tetrad Kaluza-Klein model, which explicate
both the orthogonal constraint~2.24! and the limit ~2.15!.
The orthogonal constraint will be shown to be inherent in
structure of the tetrads, whereas the limit implies that
radius of the higher compact dimensions of the Kaluza-Kl
model is vanishingly small compared with the Planck leng
as a condition for the equality of the Einstein-Dirac a
Kaluza-Klein Lagrangians.

To begin, we first describe the dynamical fields of t
Kaluza-Klein tetrad model. LetM5X3G be the Kaluza-
Klein manifold, withX a four-dimensional space-time, andG
the four-dimensional real Lie group SL(2,R)3U(1). On the
space-timeX, we assume the existence of a global, nons
gular tetrad of one-formsbK with K50,1,2,3. The gravita-
tional field onX, which we denote asb, is defined to be the
unique metric tensor with the Minkowski signature, f
which the tetradbK is orthonormal, that is,

b5gJKbJ
^ bK, ~3.1!

where

gJK5gJK5F 1 0 0 0

0 21 0 0

0 0 21 0

0 0 0 21

G . ~3.2!

The tetrad of smooth one-formsbK uniquely determines its
dual tetrad of smooth vector fieldsbK on X satisfying

bK~bJ!5dJ
K , ~3.3!

wheredJ
K equals 1 ifJ5K, and zero otherwise. From for

mula ~3.1!, the vector fieldsbK form an orthonormal basis
for each tangent space ofX.
06400
e
e
n
,

-

The fermion field onX we denote as (FK,r), wherer is a
complex scalar field andFK5urubK. Thus the dynamical
fields are the tetrad of one-formsbK and r. We will show
that the gravitational fieldb and the bispinor fieldC ~which
together have 1018518 real components! are represented
faithfully by bK and r ~which also have 1612518 real
components! @2#. We will then derive the usual Einstein
Dirac Lagrangian from the Kaluza-Klein Lagrangian~3.22!
for the fieldsbK andr.

On G, the four-dimensional real Lie group SL(2,R)
3U(1), we fix a nonsingular tetrad of right-invariant one
formsaK with K50,1,2,3. The tetrad of right-invariant one
formsaK defines a right-invariant metric on the Lie groupG
given by

a5gJKaJ
^ aK, ~3.4!

wheregJK has the same form as the Minkowski metric in t
definition ~3.2!. SinceG is a four-dimensional Lie group, the
aK form a basis for the dual of the Lie algebra ofG.

For vector fieldsv andw on G, we will denote the inner
product with respect to the metrica by ^v,w&, that is,

^v,w&5a~v,w!5gJKaJ~v !aK~w!. ~3.5!

The tetrad of right-invariant one-formsaK uniquely deter-
mines a dual tetrad of right-invariant vector fieldsaK on G
satisfying

aK~aJ!5dJ
K . ~3.6!

The right-invariant vector fieldsaK form a basis for the Lie
algebra ofG. This basis is orthonormal, since from formula
~3.5! and ~3.6! we get

^aJ ,aK&5gJK . ~3.7!

We can choose the fixed tetradaK so that the vector fields
aK satisfy the following SL(2,R)3U(1) commutation rela-
tions:

@a0 ,a1#52d21a2 ,

@a0 ,a2#5d21a1 ,

@a1 ,a2#5d21a0 , ~3.8!

whered is a length parameter. All other commutators vani
As usual in general relativity, both length and time carry t
same unit. As on any physical manifold, the one-formsaK

carry units of length, so that their duals, the vector fieldsaK
in formula ~3.8!, carry units of mass~i.e., inverse length!.
From formulas~3.7! and~3.8! it is evident thatd is the radius
of the U~1! subgroups of SL(2,R). Formula ~3.8! can be
written more succinctly as

@aJ ,aK#5
1

d
f JK

L aL , ~3.9!

which defines the Lie algebra structure constantsf JK
L . Note

that the structure constantsf JK
L are dimensionless, so that th
6-5
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length parameterd is required in formula~3.9! to balance the
dimensions. Also, in formula~3.4!, the metric constantsgJK
are dimensionless. Although we do not make use of the
lowing property in the tetrad Kaluza-Klein model, note fro
formulas ~3.2! and ~3.8! that f JKL5gLM f JK

M is completely
antisymmetric in the indicesJ, K, andL. When this property
holds, the metric is called ‘‘bi-invariant,’’ since it is bot
right and left invariant@25#. We will see generally that the
tetrad Kaluza-Klein model does not require that the rig
invariant metrica given in formula~3.4! be bi-invariant.

Note that, while the orthonormal and commutation re
tions ~3.7! and ~3.8! determine the radius of the U~1! sub-
groups of SL(2,R), they do not determine the radius of th
U~1! factor of the Lie groupG5SL(2,R)3U(1). Theradius
of the U~1! factor ofG will be denoted asd0 . The ratiod/d0
is a parameter which we can equate to the ratiog0 /g of
coupling constants in the Yang-Mills Lagrangian~2.25!. That
is, the length parametersd0 andd of the tetrad Kaluza-Klein
model will be set asd05(2/3)d in correspondence withg0
5(3/2)g in the Lagrangian~2.25!.

Thus on the Kaluza-Klein manifoldM5X3G, we can
define a fixed tetrad of one-formsaK and a dynamic tetrad o
one-formsbK induced from the projections ofM onto its
factorsG andX. (aK andbK on M are the pullbacks ofaK

on G andbK on X by the projection maps.! We define a third
tetrad of one-formsnK on M by:

nK5aK2~kd!1/3urubK ~3.10!

where k is 16p/3 times Newton’s constantk0 , and r is a
complex scalar field onM. Note that the constantk has di-
mension of length squared, the constantd has dimension of
length as in formula~3.9!, the scalar fieldr has dimension of
mass, and the one-formsaK, bK, andnK each have dimen
sion of length.

The one-forms (bK,nK) form a basis for each cotange
space ofM5X3G. The Kaluza-Klein metric onM is de-
fined to be

g5gJK~bJ
^ bK1nJ

^ nK!, ~3.11!

which depends only on the dynamical fieldsbK andr, since
aK in formula ~3.10! is fixed by the basis chosen for the L
algebra ofG.

To demonstrate thatg is a Kaluza-Klein metric, we define
local coordinate one-formsdxa with a50,1,2,3 on an open
chartV,X. The gravitational fieldb is expressed locally on
V by

b5gabdxa
^ dxb. ~3.12!

Writing bK5ba
K dxa, we obtain, from formulas~3.1! and

~3.12!,

gab5gJKba
J bb

K . ~3.13!

If we choose (dxa,aK) for a basis of one-forms, then from
formulas ~3.10! and ~3.13! the Kaluza-Klein metric~3.11!
has the following components:
06400
l-

-

-

g5Fgab1l2gJKFa
J Fb

K 2lFa
J gJK

2lgJKFb
K gJK

G , ~3.14!

where l5(kd)1/3 is a Kaluza-Klein parameter having d
mension of length@14#, and

Fa
K5uruba

K . ~3.15!

Thus, g is precisely the Kaluza-Klein metric@14# for the
gravitational fieldgab and the gauge potentialsFa

K . By for-
mulas~3.13! and ~3.15! the Fa

K satisfy

gJKFa
J Fb

K5uru2gab , ~3.16!

which is precisely the orthogonal constraint~2.24!. Further-
more, by formula~3.13!, the gravitational fieldgab has the
same~Minkowski! signature asgJK on G.

We denote the vector fields dual to (bK,aK) as (bK ,aK).
The vector fields dual to (bK,nK) are then (vK ,aK), where
from formula ~3.10!

vK5bK1~kd!1/3uruaK . ~3.17!

From formula~3.11!, the vector fields (vK ,aK) form an or-
thonormal basis with respect to the Kaluza-Klein metricg on
each tangent space ofM.

We extend the inner product notation in formula~3.5! to
vector fieldsv andw defined onM as follows:

^v,w&5g~v,w!5gJK@bJ~v !bK~w!1nJ~v !nK~w!#.
~3.18!

Thus, for the orthonormal vector fieldsvK andaK defined on
M,

^vJ ,vK&5^aJ ,aK&5gJK ,

^vJ ,aK&50 ~3.19!

for all indicesJ,K50,1,2,3. That is, with respect to the bas
(vK ,aK), the Kaluza-Klein metricg becomes

g5FgJK 0

0 gJK
G . ~3.20!

The manifoldM5X3G has a natural right action ofG
defined byh(x,g)5(x,gh) for each (x,g)PM and hPG.
For vK to be right invariant, it is necessary and sufficient th
bK and uru depend only on the space-time coordinatesx
PX. Specifically, we assume that the complex scalar fielr
has the form

r5eiy /d0r̃~x!, ~3.21!

where y is a global U~1! coordinate ofG for which a35
2]/]y is a U~1! unit vector field onG which commutes with
every right-invariant vector field onG @see formulas~3.7!
and ~3.8!#.

Our goal in this section is to derive the Einstein and Dir
Lagrangians from the following Lagrangian for the field
(bK,r):
6-6
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L5
1

16pk0
Rv1

1

g0
vK~r1m!vK~r1m! ~3.22!

where k0 and g0 are constants (k0 is Newton’s constant!,
and wherevK5gJKvJ . The mass parameterm is defined on
M by

m5eiy /d0m̃ ~3.23!

wherem̃ is a constant. Rv is the sum of sectional curvature
over the four-dimensional subspaces spanned by the o
normal tetradvK in each tangent space ofM:

Rv5gJKgLM^R~vJ ,vL!vK ,vM& ~3.24!

whereR( , ) is the curvature two-form@25# associated with
the Kaluza-Klein metricg on M.

Let dg denote the volume form onM5X3G defined by
the Kaluza-Klein metricg. ~We do not confuse the symbo
‘‘ d’’ with exterior differentiation since the metricg is not a
differential form.! Similarly let da and db denote the vol-
ume forms defined by the metricsa andb on the manifolds
G andX, respectively. Note thatda is a fixed volume form
on G, whereasdb depends on the dynamic fieldsbK. Since
the one-forms (bK,nK) are orthonormal, we see from fo
mula ~3.10! that

dg5db∧da. ~3.25!

Therefore, the action associated with the Lagrangian~3.22!
is given by

S5E L~bK,r!db∧da. ~3.26!

Note that in the action~3.26! the gravitational fieldgab and
the bispinor fieldC, which together have 1018518 real
components, are represented bybK and r, which also have
1612518 real components@2#.

We show in the following theorem that the Lagrangi
~3.22! equals the Hilbert-Einstein Lagrangian for the gra
tational field plus the Dirac-Yang-Mills Lagrangian~2.25!.
The constraint~2.24! of the Dirac-Yang-Mills equation ha
already been shown to be a consequence of the tetra
formula ~3.16!.

Theorem. If we define the constantsk, g, g0 in terms of
Newton’s constantk0 and the length parametersd andd0 as
follows:

k5
16p

3
k0 ,

g5
~kd!1/3

d
,

g05
~kd!1/3

d0
, ~3.27!

then the total LagrangianL given in formula~3.22! equals
the Hilbert-Einstein Lagrangian (16pk0)21RX for the gravi-
06400
o-

in

tational field plus the Dirac-Yang-Mills LagrangianLg given
in formula ~2.25! for the fermion field, and similarly for the
total action~3.26!. Furthermore, the limit~2.15! required to
obtain Dirac’s bispinor equation forces the length parame
d andd0 in the Kaluza-Klein model to become vanishing
small compared with the Planck lengthlP5k0

1/2.
Proof. We will derive an alternative local expression fo

the Lagrangian~3.22!, which simplifies the computations
Define a local coordinate tetradva as follows:

va5]a1~kd!1/3Fa
KaK . ~3.28!

Sinceva5ba
KvK , the tetradsvK and va in formulas~3.17!

and ~3.28! span the same four-dimensional distribution ov
the Kaluza-Klein manifoldM.

The inverse relationvK5bK
ava , wherebK

a are the compo-
nents of the vector fieldsbK5bK

a]a , follows from formulas
~3.3!, ~3.15!, ~3.17!, and~3.28!. Similarly, formulas~3.3! and
~3.13! imply

bK
b5gJKgabba

J ,

gab5gJKbJ
abK

b . ~3.29!

Then, substitutingvK5bK
ava into Rv , the sum of sectiona

curvatures over the distribution spanned byvK in formula
~3.24!, gives

Rv5gabggd^R~va ,vg!vb ,vd& ~3.30!

and the Lagrangian~3.22! equals

L5
1

16pk0
Rv1

1

g0
va~r1m!va~r1m!. ~3.31!

Formula ~3.30! is evaluated by computingRv using the
vector fields (va ,aK) as a basis onM. Note that with respect
to this basis the Kaluza-Klein metric~3.11! has the following
components:

g5Fgab 0

0 gJK
G . ~3.32!

The local expressions ofva , Rv , andg given in formulas
~3.28!, ~3.30!, and ~3.32! are equal to the usual expressio
in Kaluza-Klein theory@14#. A straightforward derivation us-
ing the commutation relations~3.9! shows that

Rv5RX1
3

4
~kd!2/3Fab

K FK
ab ~3.33!

whereRX denotes the scalar curvature ofX, and

Fab
K 5]aFb

K2]bFa
K1g fMN

K Fa
MFb

N ~3.34!

where ]a are the coordinate vector fields dual todxa in
formula ~3.12! andg5(k/d2)1/3. Note in formula~3.33! that
indices are raised and lowered in the obvious way. That

FK
ab5ggagdbgJKFgd

J . ~3.35!
6-7
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@Because in formula~3.24!, we restrictedRv to the tetrad
vK , the scalar curvature ofG does not occur in formula
~3.33!.#

Having computedRv in formula ~3.33!, and choosing the
constantsk, g, andg0 as in formula~3.27!, we see in formula
~3.31! that the total LagrangianL equals the Hilbert-Einstein
Lagrangian forgab plus the Dirac-Yang-Mills LagrangianLg

given in formula~2.25! for Fa
K andr.

Furthermore, sinced5(3/2)d0 , formula ~3.27! gives

d05S 8p

g0
3 D 1/2

lP ~3.36!

which relates the Kaluza-Klein radiusd0 to the Planck length
lP5k0

1/2. Thus, in the limit required to obtain Dirac’s equ
tion, that is asg0 becomes infinitely large,d0 must become
vanishingly small compared to the Planck length. The sa
is true for the radiusd5(3/2)d0 . h

The following observations derive from the proof of th
theorem and demonstrate that the Lagrangian~3.22! signifi-
cantly generalizes the Kaluza-Klein theory. First, from fo
mulas ~3.10!, ~3.11!, ~3.13!, and ~3.15!, and from the local
expressions of the Lagrangian in formulas~3.28!, ~3.30!, and
~3.31!, the gauge groupG of the Kaluza-Klein manifoldM
5X3G can be generalized to larger Lie groups of dime
sion d.4. For such generalizations we definevK5bK

bvb

wherebK
b5gabgJKba

J . Although thed global vector fields
vK are too many to form a tetrad whend.4, they span a
four-dimensional distribution~spanned locally by the coordi
nate tetradsva).

Second, the nonphysical cosmological constant, whic
the scalar curvature~denoted asRG) of the Lie groupG
occurring in the Lagrangian of the usual Kaluza-Klein mod
@14#, is absent in the Lagrangian~3.22! because in formula
~3.24! we restrictedRv to the four-dimensional distribution
spanned by thevK .

Third, for the same reason, even though the metric gi
in formula ~3.4! is bi-invariant ~i.e., both right and left in-
variant!, the theorem does not require that the right-invari
metric also be left invariant, which in the usual Kaluza-Kle
model restricts the choice of Lie groups@14#.

IV. MEASUREMENT OF THE KALUZA-KLEIN RADIUS

In this section we will first show that exact plane wa
solutions~in a Minkowski space-time! of the Euler-Lagrange
equations for the Lagrangian~2.11! with the orthogonal con-
straint ~2.10!, are in one-to-one correspondence with t
plane wave solutions of Dirac’s bispinor equation„which as
previously shown is obtained in the limit that the Yang-Mi
coupling constantg0 @and g5(2/3)g0] becomes infinite….
Using a wave packet approximation, we derive quasilin
partial differential equations for wave packets with slow
varying amplitude and momentum. Solutions to these eq
tions propagate along two families of characteristic cur
with a small velocity difference. Thus a single fermion wa
packet may split into two wave packets traveling w
slightly different velocities.
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Since the velocity splitting depends on the coupling co
stantg0 ~and vanishes asg0 becomes infinite!, measurement
of the velocity splitting will determineg0 and through for-
mula ~3.36!, the Kaluza-Klein radiusd0 . We discuss experi-
ments to measure such velocity splitting and show that c
rently achievable experiments could boundd0 to less than
10225 times the Planck length if velocity splitting were no
observed.

The Euler-Lagrangian equations for~2.10! and ~2.11!
have exact plane wave solutions of the form@16#

Aa
0~xb!5Aa

0~0!,

Aa~xb!5e2iu~xb!TAa~0!,

r~xb!5r~0!, ~4.1!

wherexbPR4 denotes the space-time coordinates,T gener-
ates a one-parameter subgroup of SL(2,C) gauge transfor-
mations, andu(xb)5pbxb where pbPR4 denotes the mo-
mentum variables. Note that ifAa

K(0) and r~0! satisfy the
orthogonal constraint~2.10!, then the same is true fo
Aa

K(xb) andr(xb) for all xbPR4, since in formula~4.1! the
SL(2,C) gauge transformations generated byT preserve the
orthogonal constraint. Note also that

T~Aa!5 i v3Aa ~4.2!

for somevPC3 satisfyingv•v51. @The reader is reminded
that SL(2,C) is the complexification of SU~2! for which we
can takevPR3.]

Differentiating formula~4.1!, we get using formula~4.2!

]aAb
050,

]aAb522pav3Ab ,

]ar50. ~4.3!

Note in formula~4.3! that theAa have twice the rotation rate
of bispinors, andpapa5m2 wherem is the mass of the plane
wave solution~4.1!. We also assume that the plane wav
~4.1! satisfy the same conditions which are satisfied by b
pinor plane waves, given as follows:

paAa
050,

paAa56muruv, ~4.4!

where the positive sign is used for particles and the nega
sign for antiparticles. Sincer is constant by Eq.~4.3!, for-
mula ~4.4! can be regarded as the initial conditions for t
fields Aa

K . Note that formula~4.4! is consistent withpapa
6-8
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5m2, as well asv•v51 and the orthogonal constrain
~2.10!. Moreover,pa for particles becomes2pa for antipar-
ticles. Conversely, withpa so defined, formula~4.4! defines
v, and hence the gauge generatorT in formulas ~4.1! and
~4.2!.

Since in the following we only deal with particles~e.g.,
electrons and protons!, we will disregard the antiparticle for
mulas. Sincer is constant we can chooser.0 for particle
plane waves.@This is equivalent to choosing a positive ma
parameterm in the Lagrangian~2.11!.#

Note from the orthogonal constraint~2.10! that if we
choosem.0 andr.0 for particle plane waves then eac
plane wave~4.1! has a constant amplitude equal tor. As
shown in previous work@16#, each exact plane wave solutio
~4.1! has a massm5m(r), which depends on its constan
amplituder. To derivem(r), substitute the plane wave~4.1!
into the Euler-Lagrange equations for the Lagrangian~2.11!
with the orthogonal constraint~2.10! expressed using
Lagrange multiplyers@16#. Then, the massm can be shown
to satisfy the following quadratic equation:

~m2m0!21b~m2m0!1c50 ~4.5!

where

m05
1

2
g0m,

b52m01g0r,

c5
1

3
m0

2. ~4.6!

We deduce from formulas~4.5! and~4.6! that the massm
is positive for all positive amplitudesr. Expandingm in
powers ofm0 /g0r, we have approximately for a large Yang
Mills coupling constantg0 that

m'm02
m0

2

3g0r
. ~4.7!

Note that, in the limit asg0 becomes infinitely large, the
massm becomesm0 , which is constant, and hence indepe
dent of the amplituder.

Wave packets are defined to be plane waves with slo
varying parameters~e.g., amplitude, spin, and momentum!.
To describe such wave packets we introduce ‘‘slow’’ coor
natesyb5«xb, where«.0 is a small parameter, into for
mula ~4.1! by the substitutionsAa

K(yb) for Aa
K(0), r(yb) for

r~0!, «21u(yb) for paxa, and

]a5
]

]xa 5«
]

]ya ,

pa5
]u

]ya . ~4.8!

Using the Whitham method@15#, we express the Lagrangia
~2.11! in terms of«, yb, u, Aa

K , and r. Then, because th
06400
-

ly

-

Lagrangian~2.11! and the orthogonal constraint~2.10! are
independent of the phase«21u in formula ~4.1!, we may set
«50 and drop the distinction betweenxb and yb. The re-
sulting Euler-Lagrange equations are the equations gov
ing the wave packets@15#, and are given by

papa5m2,

]apb5]bpa ,

]aJa50, ~4.9!

wherem5m(r) is given in formula~4.5!, and

Ja5Jua5S 12m

g0
r214r3Dua ~4.10!

whereua5pa /m. Ja is the electric current@i.e., the Noet-
her current which is gauge parallel tov in formula ~4.2!#.
The first two equations~4.9! are called the eikonal equation
and the last equation~4.9! expresses the conservation of th
electric currentJa .

To analyze Eq.~4.9!, we now consider a space-time wit
one space dimension such that

ua5~u0,u1!5
~1,u!

A12u2
~4.11!

for the velocity parameteru, and similarly we denotexa

5(x,t). Formula~4.9! becomes

]

]t
~Ju0!1

]

]x
~Ju1!50,

]

]t
~mu1!1

]

]x
~mu0!50, ~4.12!

where the two dependent variables are the amplituder and
the velocityu. @Recall from formulas~4.7!, ~4.10!, and~4.11!
that m5m(r), J5J(r), andua5ua(u) for a50, 1.#

Characteristic curves for the quasilinear partial differe
tial equations~4.12! are easily derived@15#, and are given by

dx

dt
5

u6D

16uD
~4.13!

where

D5AJm8/J8m, ~4.14!

where J8 and m8 denote the derivatives ofJ and m with
respect tor. On the two families of characteristic curve
signified by the6 signs in formula~4.13!, we have

1

12u2 du56
J8D

J
dr. ~4.15!

Note that for the two families of characteristic curves~4.13!,
the group velocitydx/dt equals the relativistic addition o
velocities,u and 6D, respectively. The velocity splitting is
6-9
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defined to be 2D. Substituting the expressions form and J
from formulas~4.7! and~4.10! into formula~4.14!, we derive
the following approximate formula for velocity splitting for
large Yang-Mills coupling constantg0 :

2D'Am0 /g0r. ~4.16!

Here and henceforth we will ignore nonsignificant facto
@e.g., 2/3 in formula~4.16!# in deriving approximate formu-
las.

Consider a fermion wave packet of lengthL0 , volumeL0
3,

and density 1/L0
3. For a wave packet of nearly uniform den

sity this impliesr'1/L0 @see formulas~2.7! and~2.10!#. To
minimally detect velocity splitting over the free path of th
fermion, the original wave packet must split into two wa
packets separated by a distance of at leastL0 . Thus, we must
haveL0'2t1D wheret15L1 /u is the time for the fermion
to travel the length of the free pathL1 at the fermion velocity
u. Hence 2D'uL0 /L1 .

Substituting 2D'uL0 /L1 and r'1/L0 into formula
~4.16!, we get approximately

g0'
m0L1

2

u2L0
. ~4.17!
,

06400
Then, substitutingg0 in formula ~4.17! into ~3.36! gives the
following approximate relation between the Kaluza-Klein r
dius d0 and experimentally determined parameters~the fer-
mion massm0 , fermion velocityu, wave packet lengthL0 ,
and free path lengthL1) for which velocity splitting is mini-
mally detectable:

d0

lP
'S u2L0

m0L1
2D 3/2

. ~4.18!

Consider a current experiment@17# where single electrons
are emitted at 100 km intervals in wave packets of len
1025 m, traveling a free path of 1 m at half the speed of
light. That is,L051025 m, L151 m, andu50.5. Assuming
that velocity splitting is not observed, and given that t
electron mass is 431011 m21, we deduce from formulas
~4.17! and ~4.18! that g0 must be greater than 1017, and
henced0 must be smaller than 10225 times the Planck length
lP . Since in formula~4.18! the estimate ofd0 is propor-
tional to the velocityu cubed and inversely proportional t
the 3/2 power of the massm0 , refined experiments using
slower electrons or~more massive! protons could improve
the bound ond0 by 20 orders of magnitude.
-
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