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We propose that, for every event in de Sitter space, thereCBTRconjugate event at its antipode. Such an
“elliptic” 7, identification of de Sitter space provides a concrete realization of observer complementarity:
every observer has complete information. It is possible to define the analogueSomatrix for quantum
gravity in elliptic de Sitter space that is measurable by all observers. In a holographic descBgtiatrjx
elements may be represented by correlation functions of a(doaformal field theory that lives on the single
boundary sphere. Smatrix elements are de Sitter invariant, but have different interpretations for different
observers. We argue that Hilbert states do not necessarily form representations of the full de Sitter group, but
just of the subgroup of rotations. As a result, the Hilbert space can be finite dimensional and still have a
positive norm. We also discuss the elliptic interpretation of de Sitter space in the context of t§pstriiii)
theory.
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I. INTRODUCTION also be applied to other types of event horizons, in particular
to cosmological event horizons. A better name therefore
In a monograph first published in 1956, Safimger[1]  would be “observer complementarity.” In its strongest form
describes a troubling consequence of the exponential expait- postulates that each observer has complete information,
sion of space in a de Sitter universe, namely, that differenaind can in principle describe everything that happens within
observers would be swept out of each other’s event horizongtis/her cosmological horizon using pure states. This informa-
“It does seem rather odd that two or more observers, evetion may appear to different observers in different—
such as ‘sat on the same school bench’ in the remote pasiomplementary—guises: one observer may pass smoothly
should in future, when they have ‘followed different paths inthrough the horizon, whereas another observer may see there
life,” experience different worlds, so that eventually certaina source of hot radiation. Although these drastically different
parts of the experienced world of one of them should remainealities may seem to be inconsistent, it is important to rec-
by principle inaccessible to the other and vice versa.” Theognize that paradoxes arise only when one takes the unphysi-
separation of spacetime into causally inaccessible regions tal perspective of a global superobserver.
not just unaesthetic, but conceptually problematic. It sug- The question now is, is there a way to implement observer
gests, for instance, that pure states could evolve into mixedomplementarity in de Sitter space? There is, as was already
states, as degrees of freedom disappear across the horizemted by Schidinger. In his “elliptic interpretation* of de
For an observer in de Sitter space this would manifest itselSitter space, Schdinger proposed a simpl&, identification
as quantum decoherence and a loss of information. of spacetime by declaring antipodes to represent the same
Similar issues arose in the study of the information lossevent. Schrdinger’s motivation was indeed to give all ob-
problem for black holes. Gedanken experiments in that conservers complete information about all events, and thus in a
text essentially led to the conclusion that unitarity could beway he argued already in 1956 in favor of observer comple-
preserved for all observers if one allowed for a duplication ofmentarity. In this paper, we consider the consequences of the
information on either side of the horizon. According to this elliptic interpretation. We find that elliptic de Sitter space has
“principle of black hole complementarity,[2—4] the freely = some rather remarkable properties. Indeed, not only does it
falling observer and the external observer would both be ablgad to a concrete realization of observer complementarity, it
to perform quantum mechanics experiments without any losalso improves the nature of many of the severe theoretical
of coherence, but their interpretation of the physics would bechallenges that de Sitter space presents. The main aim of this
quite different. paper therefore is to rediscuss, in the context of this elliptic
The arguments that led to black hole complementarity cainterpretation, the conceptual issues raised in the recent lit-

*Email address: mkp@phys.columbia.edu The term “elliptic” refers to the fact that identified points are
"Email address: savonije@phys.uu.nl related by elliptic, i.e., spacelike, generators, as distinct from hyper-
*Email address: erikv@feynman.princeton.edu bolic (timelike) or parabolic(null) generators.
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erature. In particular, we would like to readdress the problem This paper is organized as follows. In Sec. Il we briefly
of defining anSlike matrix in a quantum gravity theory in describe de Sitter space and point out, by way of motivation,
asymptotic de Sitter space. some facts about de Sitter space that support the profgsed
Let us briefly review the puzzles that arise in conventionaldentification. In Sec. Ill, we define Schiinger’s antipodal
de Sitter space. We have already mentioned observégentification, and refine it to includ€PT. We then discuss
complementarity. Another issue is that of holography. waeits classical properties and show that elliptic de Sitter space
would like to have a holographic dual description of gravity d0€s not suffer from any obvious problems, such as closed
for all of the various asymptotic geometries. Recently, welimelike curves. Next, in Sec. IV, we consider quantum fields
have learned to describe string theory in spacetimes that aBroPagating in this space. In particular, we discuss the
ymptotically approach an anti—de Sitter geometry. The Adg/acuum state in the Fock space of a free scalar field. In Sec.

conformal field theoryCFT) correspondence is by now well Y We consider holography. It is here that the advantages of
established, and in principle gives a nice holographic dethe elliptic interpretation are perhaps most evident; concep-

scription of string theory in these backgrounds. mf[ually, the _holographic theory seems to hav_e a more natural
Minkowski space too, there are reasons to believe that glterpret_atmn with th@? |c_ient|f|c§t|on than W|t_hout. In Sep.
holographic description may exist that involves holographicY!» We discuss how elliptic de Sitter space might be realized
screens at past and future null infinii$,6]. But de Sitter I String theory. We conclude in Sec. VII.
space requires yet another type of holography, because there
is no spatial or null infinity. Various authors have argued that Il. MIRROR IMAGES IN de SITTER SPACE
it should be a kind of timelike holography, for which the
holographic screens are spacelike surfaces in the asymptotiiﬁ
past or future of global de Sitter space. Strominger, mos;
notably, has proposed a dS/CFT correspondg¢taimilar
to AdS/CFT correspondence. D-1

A somewhat confusing aspect of holography in global de Rab="gzYan; 1)
Sitter space, however, is that it has two disconnected bound-

aries. If we think of the dual CFT as living on these bound-whereR is the radius of curvature of de Sitter space, and by
aries, then we have to somehow compute correlation funghe vanishing of the Wey! tensor. The cosmological constant
tions of operators some of which may be inserted on one s a function ofR. With the local geometry fixed, the only
boundary, while others may act on another boundary. Nofemaining freedom lies in choosing the global topology.
only is it unclear how to compute such correlation functions, |t is convenient to think of de Sitter space as a timelike

it is also unclear what their physical interpretation is. hyperboloid embedded inD(+ 1)-dimensional Minkowski
A related problem arises in trying to define the analoguespace. The embedding equation is

of anSmatrix. In quantum field theory, asymptotic incoming

and outgoing states are properly defined only in the —X(2,+ X§+---+X2D: R?, 2
asymptotic regions of spacetime. But for de Sitter space

these regions are spacelike, and there is no single observehere X, are Cartesian coordinates in Minkowski space.
who can determine the states both at past infinity as well aEquation(2) makes the O(D)) isometry group of de Sitter

at future infinity. Consequently, the matrix elementsSdike ~ space manifest. Note that OQI), the Lorentz group irD
matrices in de Sitter space are not measurable quantities;1 spacetime dimensions, has four disconnected compo-
they are mere metaobservables, rather than observablg®nts. These are the proper orthochronous Lorentz group and
When one considers quantum gravity in asymptotically dets composition with the discrete symmetriesPoandT, i.e.,
Sitter space, the situation becomes even more serious. As hagth parity and time reversal. By parity we will always mean
been pointed out by Witten, the only available pairing be-a reflection in a hyperplane of one spatial codimension rather
tween in states and out stat€&PT, is used to obtain an inner than spatial inversion through the origin; the discussion is
product for the Hilbert spack8]. There does not seem to be therefore unaffected by whether the spacetime dimension is
an additional pairing between in and out states that could bedd or even.

Empty de Sitter space is the unique spacetime with maxi-
al symmetry and constant positive curvatureDirspace-
me dimensions, it is locally characterized by

used to arrive at as matrix. As the conventional formula- For a given point on de Sitter space at embedding coor-
tion of string theory is based on the existence ofsanatrix,  dinate X, we define theantipodal pointto be the point ob-
the lack of an analogue of @ matrix is worrisome. tained by reflection through the origin of Minkowski space,

Finally, we come to the question of the de Sitter entropyi.e., the point with embedding coordinateX. We then de-
[9]. Conventional global de Sitter space makes it hard tdine elliptic de Sitter spac¢o be the spacetime in which for
understand the finiteness of the entropy, for, in the far pasgvery physical event at any point on de Sitter space there is a
the asymptotic geometry is that of an enormous sphereCPT-conjugate event at the antipodal point. Hence we are
which can be perturbed in very many ways. The vast majorusing our freedom of topology to imposeZa identification
ity of these perturbations do not lead to a spacetime that isf de Sitter space. Note that the connected part of the isom-
asymptotically de Sitter in the future; instead, singularitiesetry group remains unchanged after the identification;Zthe
and black holes form. How the finite number of states that dadentification mods out by a center of the de Sitter group.
lead to asymptotically de Sitter in the future are characterThe preservation of all local isometries justifies the appella-
ized is still a mystery. tion “de Sitter space.”
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In the remainder of this section, we consider various propin pairs. The mirror singularity along the antipodal light
erties of global de Sitter space that suggest that informationones is our first example of duplication in de Sitter space.
on one side of the horizon is mirrored on the other side. We
do not claim that de Sitter spaceustbe antipodally identi- B. Mirror black holes
fied; rather, the examples should be seen as circumstantial
evidence that elliptic de Sitter space may be more natura|
than global de Sitter space. For a detailed description of th
classical properties of de Sitter space, EE@; for a recent

As a second example, consider a Schwarzschild—de Sitter
lack hole inD=d+ 1 spacetime dimensions. The line ele-
ment has the form

review, seq11]. ds?=—F(NdE+F{(ndr2+r2%d03,, ()
A. Mirror singularities oM r2
The great circles, or geodesics, of a sphere are determined F(r)=1- rd-27 RZ- ©®

by the intersection of the sphere with planes that pass
through the origin. Similarly, the spatial geodesics of de Sit- If 0 <M <M ..’ there are two horizons: a cosmological
ter space can be obtained by intersecting it with spacelikéorizon atr=r and a black hole horizon at=r gy, where
planes through the origin of Minkowski space. It is clear thenr .>rg,,. We will show that, when the solution is analytically
that everyspatial geodesic that passes through a point muséxtended, there is a mirror black hole on the other side of the
also pass through its antipode, becaus¥ ifes in a plane cosmological horizon. Let us introduce Kruskal-Szekeres-
through the origin then so doesX. These geodesics form type coordinates and analytically continue the metric beyond
ellipses which are related to each other by de Sitter transfothe cosmological horizon. Note thatpriori the coordinates
mations. If we think of null rays as degenerate spatial geoin Eq. (5) are only valid forrgy<r<r,.
desics, and if we allow them to “bounce off” null infinity, In terms of its roots, the functioR(r) can be written as
thenall light rays leaving a point converge on the antipodal
point. This last fact affects the singularity structure of 1 d
Green’s functions of quantum fields. F(r)=—gzya2(r—roJ(r- rew [ (r=10), (@
. ! . . . . n=3

Consider a scalar field in de Sitter space. It is convenient
to express de.Sitte.r—inv.ariant e_quations in terms of a dime"\ivhererc andrg, are the only real positive roots. Hence
sionless de Sitter—invariant variale We can define such a

variable by . ¢ c, d c,
r =

+ + , (8)
1 I'—I'c I’—rBH n:3r_rn
Z(X,Y)Z ?X'Y, (3)
for certain constantg,. We define Eddington-Finkelstein

where the dot product is given by the Minkowski metric. coordinates through

Obviously Z is Lorentz invariant inD+1 dimensions, and

therefore de Sitter invariant iD dimensions. For points that dx* =dtii 9)
are connected by geodesid®arccosZ corresponds to the F(r)’

geodesic distance. In particular, for any giveif Y is on the ] . ) o .

light cone ofX, thenY=X+N with N2=0. SinceX andY  Which, using Eq(8), is easily integrated to give

must both lie on the same de Sitter hypersurfaxés Y2 d

=R?, and therefor&=+ 1. On the other hand, ¥ is on the

*

light cone of the antipodal poin¥, = — X+ N, and so her& x==tZ) cqIn(r—re)+cain(r rBH)+r]§=:3 Coln(r—ry) (.
takes the value-1. (10)
The wave equation for a massive scalar field written in
terms ofZ is In terms of these coordinates, the metric takes the form
d2 d ds’=—F(r)dx"dx +r2dQ3_,. (11
(1—22)3— DZ 5~ m?/R? | $(Z)=0. (4

Finally, we introduce Kruskal-Szekeres coordinates through
The Wightman functions obey this equation. The precise

form of the solution, a hypergeometric function, is immate- U=e ™ /%,
rial; the key point is that it is singular &= 1. This is analo- (12
gous to the usual short-distance singularityrat0 that one V= _ex+/201,

has in Minkowski space along the light cones. But now the

wave equation is symmetric und&r— —Z. Therefore in de where it is clear thaU>0 andV<0. The metric becomes
Sitter space there is a second solution to &g.with a sin-

gularity atZ=—1, i.e., on the light cones of the antipode.

Hence we see that, in contrast to Minkowski space, singu-2M,,.,.=(1/d)[(d—2)(d—1)/2A ]~ 2" is the maximal mass. At
larities of Green’s functions in de Sitter space seem to comehis value the black hole and cosmological horizons coincide.
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ds?=—dT?+R?cosH(T/R)(d6?+sir? 6dQ3_,). s
15

In these coordinates the antipodal map is given by
T—-T, 6—m—0, Q—Q" (16)

whereQ” are the angular coordinates of the point antipodal
on the © — 2)-dimensional sphere to the point labeled(by
and time is reversed,— —T. In the rest of this section, we
show that elliptic de Sitter space is nevertheless classically
consistent, with no problems of causality or closed timelike
curves. We will also demonstrate that the map between a
particle and its antipodal image is CPT.

FIG. 1. The antipodal map reverses the local arrow of time. .
A. Causality
F(r) The antipodal map identifies points at positifewith
d32=4c§WdU dV+r2(U,V)dQ3_,. (13)  points at negative, and so one may wonder whether there
are problems with causality or closed timelike curves. That
such problems do not arise was explained by Sdimger
[1]. We just give here our version of the argument.
First, let us go to the embedding space. It is easily seen
; ; that two antipodal points & and — X are always spacelike
=r(UV) and thusF(r) =F(UV). Hence, ifF(UV) is zero separated, sinc&?=R?>0. Moreover, the intersection of
for certain nonzero values ¢f andV, e.g., at the black hole g 5 |ight cones that start at antipodal points never inter-

horizon, then it will also be zero atU and —V. This sec- ot the de Sitter hypersurfaces, becauséiif the embed-
ond horizon is antipodal from the first and thus we find thatding coordinate of a common point on the light cones ema-
black holes in de Sitter space come in antipodal pairs. ACtuhating fromX and — X. then

ally this is a choice: instead of extending the metric analyti-

In terms of these coordinates the metric is regular=at
and we can analytically continue to the full rangex»
<U,V<ew. Note from Egs.(10) and (12) that r(U,V)

cally entirely to the other side, we could have replaced the (Y+X)2=(Y—X)2=0=Y%=—-R?, (17)
antipodal black hole by a static, spherically symmetric mass
distribution with the same total mass. so Y does not lie on the de Sitter hypersurface. This means

Now consider adding charge to the de Sitter black holehat the light cones of two antipodal points within de Sitter
[12]. de Sitter space cannot support Noether charges becauspace do not intersect. Therefore a pair of events that take
its spatial sections are compact. The total charge has to aqslace at antipodal points cannot both influence the same
up to zero; the antipodal black hole therefore necessarilgvent in their past and future. In particular, there are no
carries equal but opposite charge. Moreover, for the samelosed timelike curves aftét, identification.
reason there cannot be any net angular momentum. This What about closed null curves? A point @i is con-
leads us to propose that the antipodal map must be combinegcted by a lightlike trajectory to its antipodal imageZh.

with charge conjugation C. So at first this appears to give rise to an infinity of closed

lightlike trajectories. However, these light rays do not con-

IIl. THE ELLIPTIC INTERPRETATION OF de SITTER stitute closed trajectories in de Sitter space for three impor-
SPACE tant reasons. First of all, “points” af ©* and Z~ are not

really points in de Sitter space. They have to be added as
The eIIiptiC interpretation of de Sitter Space consists Ofpoints at "infinity,” and so they are on|y part of a formal
identifying points that are related by the antipodal map  compactification of de Sitter space. de Sitter space itself is
noncompact and does not include these points. A second,
X'— =X, (14)  related reason is that the affine parameter along the seem-
ingly closed lightlike trajectory is actually infinite, essen-
with 1=0,1,...D, together with charge conjugation C. We tially because the points are At Finally, a third reason that
will see that this means that particles and/or evend$' @nd  the lightlike trajectory is not really closed is that one cannot
— X" are related by CPT. We thus have an involutiorf,a continue along the trajectory a second time, third time, etc.,
map. The fixed point of the magx'=0, is not itself in de  without reversing direction each time one is at the end points
Sitter space, so this is a freely acting symmetry. The quotiendbn Z* or Z . This is not what happens on a usual closed
spaced /7, is therefore a homogeneous space with no spetrajectory, such as on a timelike'.
cial points. It is also useful to analyze the antipodal identification
Note that the antipodal map also inverts the direction offrom the point of view of inertial observers. All points inside
time; see Fig. 1. For example, consider global coordinateghe casual diamond of an observer have antipodal points out-
The line element reads side the casual diamond. The antipodal points belong to the
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it come back to him precisely dt=«. Hence, if we exclude
the points at infinity, there is no way that the observer can
communicate(sending a question and getting a replvith
points on the equator. Events that happen right on the equator
are identified with the events that happen at the antipode of
. the equator itself. But this fact only becomes apparent to the
() (b) observer at the north pol@r sogth po_lae atT=o (or T=
—©). We conclude that at no finite time can any observer
FIG. 2. These Penrose diagrams of de Sitter space have be@ver directly detect the duplication of events in elliptic de
opened up to make all antipodal points distinct. The left and rightSitter space.
edges of a diagram are identified, and every point in the interior Finally, note that the asymptotic geometry of elliptic de
(except on the central vertical lin@ow signifies anRPP 2, in- Sitter space consists of a sing® !, since theZ, identifi-
stead of anS”~2. The antipode of a given point is reached by cation mapsZ * andZ ~ to each other. This property will be

reflecting about the dashed horizontal line, and moving horizontallyseful when we consider the holographic theory.
by half the width of the diagram. Two antipodes, markedndp,

are shown. In(@) an observer traveling froi toi* hasp but not
P in his causal pastshaded, while in (b) an observer with a dif-
ferent worldline can se@ but notp. The antipodal image of a Any two antipodal points can be mapped to the north and
shaded region is the unshaded region, giving every observer consouth poles corresponding tX°=+R, X*=0 for k
plete information after thé&, identification. =0,1,..b—-1. V\/Iithout loss of generality, consider a particle
E:ausal Qiamond of the entipodal observer, on the inaccessjb It;;%?ﬁ:g%ﬁ EQ, nlortﬂ';a'el)éplg_ t|rt]se air:i]sc?ggllri]r?lasgpeaicse
dark §|de of the moon. Therefore exgctly one of every pair _ X'(7) and passes through the south pole. Let us apply time
of antipodal events is observable. Which event of each pair '%a\versal to the antipodal image:

observed depends on the location of the observer; see Fig. 2. '

For example, the observer living at the south pole will see T —X(9—-—-X'(=7). (18
precisely all antipodal images of the events that his colleague

at the north pole sees. Other observers will see something ifihe relativistic momentum of the particle at the north pole is
between, namely, for some part “northern” events, and forp!= X! Note thatp®=0 at7=0. At the south pole the mo-
the rest “southern” events, but every event is observed onCghentum is also given bp' since it is—X'(— 7) differenti-

and no more than once. . _ated with respect te at 7=0. So in the embedding space the
What about events that take place outside the causal dignomentum is pointing in the same direction. However, in
monds of the observer at the south and the north polesgrger to compare this to the momentum at the north pole, we
These are the events that take place at the upper and lIowggve to parallel transport the vector from the south pole to
parts of the Penrose diagram near past and future infinity. Ifhe north pole. There are many ways of doing this because
the elliptic interpretation of de Sitter space these upper anghere are an infinite number of spatial geodesics passing
lower regions are identified. The usual square Penrose di‘%hrough both the north and the south poles. Let us pick one
gram for de Sitter space is somewhat misleading in the sensg them, say the one that appears when we intersect de Sitter
that it seems to indicate that all points in the upper regionspace with the two-dimensional plan¥™=0 for m
are in the causal future of points of the lower region. But_g 1 p—2. This gives as a geodesi® '=Rsing, X°
one has to remember that every point represents a Rcosg. At 6=0 we are at the north pole, &=  at the

(D —2)-dimensional sphere, and points that are identified byoth pole. Parallel transport of the momentphalong this
the antipodal map are on opposite sides of these Spheres-tﬁ;\jectory gives a momentunp()' which satisfies
clearer way to see the causal structure of elliptic de Sitter

B. CPT

space is to represent thB (- 2)-dimensional spheres as two (p")™=p™, m=0,..D-2,
points, each of which is a real projective sphere; see Fig. 2. (19)
Now one can see that a geodesic that connects two identified (p/)P~t=—pP-1

points in the upper and lower regions has to travel forward in
time, but also has to go around the sphere. Since all antipod&Ve see that one of the spatial components of the momentum
points are spacelike separated, the resulting geodesic is ihas changed sign. That is the result of a reflection iDa (
deed spacelike. —2)-spatial-dimensional hyperplane. Thus it corresponds to
Next consider the horizon itself. Without loss of general-parity, even though in the embedding spa¢e- — X' corre-
ity we may consider an observer at the “north poe=0 of  sponds to an inversion. The plane of reflection in this case is
the spatial D—1)-dimensional spher&®~1. His past and the planeX® 1=0. Had we chosen a different geodesic it
future event horizons are given =2 arg{+e“""®), and  would have been another plane. Note that this is consistent,
intersect afT=0 at the equator of his{— 1)-dimensional because parallel transport along two different geodesics dif-
sphere, described by theD( 2)-dimensional sphere a2  fers by a rotation equal to the integrated curvature between
=/2. The intersection takes place at the midpoint of thethe geodesics. This is precisely what one finds if one com-
square Penrose diagram. Therefore only by sending a signpbses the two reflections in the planes associated with those
at T=—o can he contact the equator in time for a signal togeodesics.
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Therefore going around from a point in de Sitter space tacosmological scenaridd 3] that can be built out of elliptic
its antipodal point has the effect of acting on the tangentie Sitter space.
space byPT. Since ourZ, map also requires that we act with  An alternate and quite different viewpoint is to argue that
charge conjugatioi€, the cumulative effect is to relate an- before one can even assign events in spacetime, one should
tipodal points byCPT. first choose an observer. Indeed, even classically, different
observers can have rather different interpretations of local
physics, as happens in the membrane paradigm for black
holes[2,14,15. Then for a given observer one can always

The antipodal ma'— — X' changes the sign of the time arrange events to be consistent with the observer’s preferred
coordinate of the embedding space, and also that of the diarrow of time. One only runs into trouble if one tries to
rection of time in de Sitter space. The resulting quotientconsider many observers, who all choose a preferred time
spacedSZ, is as a consequence not time orientable: al-gjrection. But such considerations are against the notion of
though one can locally distinguish past and future, there is Nngpserver complementarity, which forbids simultaneous con-

global direction of time. This fact clearly changes many stanwjgeration of observers on opposite sides of an event horizon.
dard notions about space and time that we are accustomed to.

For instance, it is impossible to choose a Cauchy surface for
elliptic de Sitter space that divides spacetime into a future
and a past region. An interesting limit of de Sitter space is the limit in which
Since the microscopic laws of physics are generally timghe cosmological constant is sent to zero, so that spacetime
reversible, that iSCPT invariant, there is no problem with locally becomes Minkowski space. This limit has to be
time unorientability at a microscopic level. It is more subtle, treated with care; the quantities of interest should vary
however, to formulate macroscopic laws of physics on a timgmoothly asA —0. For elliptic de Sitter space, th&—0
unorientable spacetime. For example, the evolution of stargmit seems sensible. The causal properties ofAhguotient
clearly shows a direction of time; one never observes a nelspace for any finiteA are similar to those of Minkowski
tron star turning into a massive star through the enormougpace, in the sense that every observer who waits long
implosion of a stellar envelope, yet this is what the antipoda[anough has the chance to obsefaad emit signals toany
image of a type Il supernova would look like. event in spacetime, just as in Minkowski space. The main
For sufficiently simple situations, a single observer canyifierence is that elliptic de Sitter space is not time orient-
always choose a preferred direction of time in the observablgp e However, as the cosmological constant goes to zero this
part of the universe, consistent with the second law of theryitference disappears to the null boundaries.
modynamics. Consider an isolated thermodynamic system in o, if elliptic de Sitter space goes to Minkowski space
configurationA, with antipodal imageA’, which evolves jy thjs limit, it seems to imply that global de Sitter space,
into systemB, with antipodal imageB’. If the entropies are peing jts twofold cover, in fact goes towo copies of
such thaS(B)>S(A), an observer who observed batrand  \jinkowski space, where the second copy is the CPT conju-
B would say thatA precededB. Since the primed and gate of the first. The significance of these remarks will be
unprimed systems have the same entropy, this would megfore clear once we discuss the de Sitter analogue @ an
that an observer who observed bath andB’ would say  matrix which, we will argue, exists in elliptic de Sitter space
thatA’ preceded’, and would therefore have time flowing put does not appear to exist in global de Sitter space.
in the opposite direction. Finally, an observer who saw, say,
A andB’ would see them as two distant,_spa_celike-separatedlv_ QUANTUM FIELDS IN ELLIPTIC de SITTER SPACE
systems, rather than one system evolving into another. For
this observer the choice of the arrow of time is independent In this section, we study the quantization properties of a
of the relative entropies of the two systems. In this simplescalar field propagating in elliptic de Sitter space. Some as-
scenario, no problems arise for any observer. pects of the quantum field theory of a free scalar field in
However, now consider a second thermodynamic systeralliptic de Sitter space have previously been discussed in
in statesC andD. For exampleA, B andC, D could describe  [16,17.
the configurations before and after two supernova explo- Elliptic de Sitter space is not simply connected; there are
sions. It is easy to check that, if bothandD are outside the closed spacelike curves going from a point to the antipodal
past light cone of8, then there is always at least one ob- point that are noncontractible. Therefore tensor fields on el-
server who witnesses a dramatic violation of the second lawjptic de Sitter space can be sections of a twisted bundle over
irrespective of the choice of time arrow. This is not fatal spacetime. Since the first homotopy groupig(dS,/Z,)
because, after all, the underlying dynamics do enj@yPd’  =7,, we can essentially choose a sign for the phase of a
symmetry. Rather, the issue is of what the allowable initialtensor field as the field is carried around a noncontractible
conditions are. One consistent treatment is to say that theleop. Consider then a complex scalar field. We can choose
are simply no highly ordered systems preséiihis would  either periodic or antiperiodic boundary conditions. If we
include, unfortunately, realistic observerkideed, there are
reasons to believe that our observed macroscopic arrow of —
time may be related to boundary conditions at cosmological SAfter this work had been posted, a pagés8] related to this
singularities. It would be very interesting to see if there aresection appeared on the archive.

C. The arrow of time

D. The A—0 limit
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choose periodic conditions, the condition a complex field
must satisfy takes the form

O (%)== D% (), (20

wherex denotes the antipodal point ¥pand the subscript
indicates whether we have chosen periodic or antiperiodic
boundary conditions. If we writ@® . (X)=®1(X) +id,(x),
then the real and imaginary parts have peridditiperiodig
and antiperiodic (periodig boundary conditions, respec-
tively, for the plus(minug subscript.

Globally, one can expand a scalar field in terms of “Eu-
clidean” modes.. Thesg are field configqrgtions that satisfy 5 3 penrose diagram of de Sitter space. Regigh kcorre-
the wave equation, with bou_ndary condltlons that are SUConnds to the static patch of an observer on the spuhth) pole.
that the modes can be analytically continued from the spherirpe soiid lines indicate equal time slices in the static time; they are
cal harmonics on a sphere. A property of the Euclideancaychy surfaces for region I. The dotted lines are their antipodal

modes is that they can be chosen to obey images, and constitute Cauchy surfaces for region Il. When a solid
e £ line is continued through the horizon, onto its antipodal image, it
dr(X)=; (X), (21 constitutes a Cauchy surface for the whole space.
and we will assume that our modes satisfy this condition. [ _
fy allvag=0, V >0, (25

Normally, one expands the field in terms of its modes as
and a Fock space can be constructed. The antipodal map

D)=, [an-d5(0)+al .5 (0] (22  Identifies
0 Al g 26

In elliptic de Sitter space, however, the field must addition- !
ally obey the periodicity condition Eq20). This implies that  i-€., creationannihilatior) operators in region | are identified
with annihilation (creation operators in region II; cf. Eq.
§,¢=ian,¢, (23 (23). It would be interesting to work out the behavior of
higher spin fields and, in particular, fermions in elliptic de
indicating that the global quantization scheme breaks downgitter space.
As a result, a global Fock space no longer exists; any cre- Different observers are related by Bogoliubov transforma-
ation operator acting on a vacuum state would annihilate ittions. These are invertible, mapping pure states onto pure
Intuitively, this happens because the identified spacetime istates. We expect no de Sitter—invariant pure states; in par-
not time orientable. Creation and annihilation operators creticular the vacuum state is not invariant, as is obvious by
ate and destroy quanta of positive energy, but if the spacesonsidering observers that are antipodal to each other. There
time is not time orientable positive energy cannot be definedre nevertheless de Sitter—invariant mixed states. These
globally. For essentially the same reason, the inner produditates correspond to de Sitter—invariant pure states in the
of modes over a spatial slicg through elliptic de Sitter global Fock space, traced over the modes behind the horizon.
space always gives zero. This is because the Klein-Gordom particular, there is a state that is observed as a thermal

a

inner product state by any observer moving along a timelike geodesic
x(7). To see this, consider a real scalar field on the identified
(s ) = —i f (bmdrd* — & dybm) (24) spacetime, given in terms of a scalar field on the unidentified

s space as

vanishes as a consequence of the flipping of the direction of 1

time. Q. (X)= —[P(xX)=P(X)]. (27)
The vanishing of the norm and the lack of a nontrivial v2

FO_Ck_ space may seem l'_ke, serious afflictions, buF actually "®rhis field satisfies the condition ERO) for a real field. The

elliptic dg Sltte'r space |t.|s more natu_ral to build a FOCKWightman function takes the forii7]

space with oscillators defined on a static patch. To see this,

note that under the antipodal identification Cauchy surfaces GO (x(7),x(7'))=GOx(7),x(7")) = GO(x( T),M),

for the static patch constitute Cauchy surfaces for the whole - (29)

space, as shown in Fig. 3. Consider the static patch associ-

ated with an observer at the south pole, region | in Fig. 3. Invhere G%(x,x’) is the Euclidean Green’s function on the

this region there is a well-defined direction of tifexcept unidentified de Sitter space. In obtaining this we have used

precisely at the horizgnand Fock space operataag)' can the fact thalG(x,x") =G(X,x"), which holds because, under

consequently be defined. The vacuum is then defined in the—Xx andx’ —X’, the de Sitter—invariant quanti/remains

usual way, unchanged, an@°(x,x’) is a function only ofZ(x,x’) (see
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Sec. Il A) since the Wightman functions are de Sitter invari- V. HOLOGRAPHY IN ELLIPTIC de SITTER SPACE
ant. Assuming, without loss of generality, that the observer
remains static on the south pol&(x(7),x(7")) is given in
terms of static coordinates by céh-7')/R] when 7 is the
proper time. The Green'’s function thus takes the form

Now we turn to the theory on the boundary. An immediate
consequence of taking & quotient is that every observer
now has access to all of elliptic de Sitter space. Moreover,
the antipodal identification implies that the spacetime now
has only a single spacelike boundary. Hence the holographic
G (X(7),x(7"))=G (cost(r— )/R]) dual theory is a Euclidean conformal field theory osiragle
N o sphere. In the spirit of the dS/CFT correspondence we shall
=G (= cosli(r=)/R]). (29 consider first the general features of the holographic CFT,
o ) independent of the details of the theory. The discussion does
This is a thermal Green's function at a temperaturerB2 1ot need the corresponding bulk fields to be free; indeed, it
So even though every observ_er in elliptic de Sitter space haépplies also to gravity. We will find that the holographic
complete information, one still has thermal states at the dgroperties of elliptic de Sitter space are very good, with sat-
Sitter temperature. This is because thermal emission of pajsfying implications for observer complementarity, the exis-

ticles (which can be viewed as quanta that have tunneledence of arSmatrix, and a possible explanation of the finite-
through the horizonis a process which only requires half of ess of the de Sitter entropy.

global de Sitter spadel9—21. Unlike the unidentified case,
however, there is no frame for which this Green’s function o )
corresponds to a pure vacuum state. A. Holographic time evolution

As discussed ih22-29, there is a one-parameter family  Even though we do not know what the interior of quan-
of de Sitter—invariant Green’s functions in unidentified detum de Sitter space looks like, we can still say the following.
Sitter space, parametrized by with the Euclidean Green’s Classically, the past and future light cones of an observer
function correspondingin the parametrization of26]) to  intersect the D —1)-dimensional spheres at asymptotic in-
a=0. The existence of such a family stems from the fact thatinity on (D —2)-dimensional spheres. In fact, after identifi-
on de Sitter space one can add an antipodal source, as Wgtion both light cones intersect tsamesphere. The polar
saw in Sec. IlA. The corresponding modes are related byngle at which the light cones emanating from tim@t the

Bogoliubov transformations: north polé intersect theS? 2 at 7 is given by
a _ E . E T n
¢n(X)=cosha ¢, (x) +sinha g, (X). (30 o(T)=2 arctaré tanhz | + = (33)

By Eq. (21), the new modes mix the old positive and nega-

tive energy modes and therefore define a new, inequivalert T= —x this is zero. AtT=0, = /2, and atT = it is
vacuum. Thea vacua |a), called Mottola-Allen states . So by choosing as® 2 at a certain radius off we are
[26,27], form a one-parameter family of de Sitter—invariant basically taking the point of view of an observer who is in
vacua. Presumably, they correspond (fmonthermal de  the middle of de Sitter space at a certain tifieThis is
Sitter—invariant states on the elliptically identified space.holography at work: we do not need to go to the interior of

The a vacua have Green’s functions given by de Sitter space to describe time evolution, we do it at the
boundary. Even in quantum theory, since the metric near the
GY(x,x")=(a|P(X)D(x")|a). (31) boundary still looks like classical de Sitter space, and we

have the SO(D) de Sitter group acting, we can use the

i . . lobal time T to measure the distance from tie to the
Substituting the mode expansion and the Bogoliubov trans9

. . e . poles.
formation for a field satisfying Eq(20), the « Wightman : - - - ;
function on the identified space takes the fd] Now, time translations increase the distance with respect

to the north pole, and decrease the distance to the south pole.

In fact, this is precisely what scale transformations do. To see
Gi(x,x')=e"2*GY (x,x'), (32 this, map the north pole patch to flat Euclidean space, and

similarly for a neighborhood of the south pole. Then the

whereG2 (x,x') is given by Eq.(28), which corresponds to tfan§iti(1n tupction th_at glues the two together is_ the inversion

a=0. In elliptic de Sitter space the Green’s functions for theX—¥=X/|X|*, which is a conformal transformation. But now

differenta vacua differ by an overall normalizatigignoring ~ Note that scaling up im is equivalent to scaling down ip,

subtleties involving e prescriptions We regard the Mottola-  €Xactly like time translations in the bulk.

Allen states fore# 0 as unphysical, since their Green’s func- . 1hat time evolution in the bulk leads to scale transforma-

tions do not have the short-distance singularities that we exions in the boundary was already emphasized by Strominger

pect from Minkowski space. The Green’s function on elliptic L7}- In planar lcoordlnateg covering, say, the causal past, the

de Sitter space has singularities on the light cone as well di1€ element isds’= — dt*+exp(-20/R)dx’, and it follows

on the light cone of the antipode, even fo= 0. The singu- that

larities have equal strength but can have a relative plus or

minus sign due to the double-valuedness of the phase. t—tn, x—eMRx, (34
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FIG. 4. In the far past, an observer at the south pole might
describe the state of the world by an initial stéifeon Z ~. This t
evolves in time until it becomes a final stdféonZ *. The antipo-
dal map relates this again to a state dn. In and out states are FIG. 5. Radial quantization on &P ~1. In states and out states
therefore associated with a single surface, as in a conventional CFare at antipodal points. The Hamiltonian is the dilation operator.

Each surface corresponding to constant time for the observer in the

is an isometry of the metric. Alternatively, one can use statidoulk is anS°~2.
coordinates in the upper or lower region of the Penrose dia-

gram. The line element is B. The existence of ars matrix and holography
5 Defining anS matrix for quantum gravity in global de
de?=(r/R?—1)dt2— , dr2 +r2dQ% ,, (35 Sitter space is tricky. The problem is that, having defined in
° riR°-1 - and out states on two disconnected surfacgs éndZ "),

the only available pairing between ther@PT, is used

and the “Hamiltonian”d/dts is manifestly a Killing vector. merely to define an inner product. Since in quantum gravity
In fact, it generates the same isometry as B¢), as can be the spacetime between these two boundaries fluctuates, there
seen by transforming tor=|X|exp(-t/R) and ts=t does not seem to be another way to map states oo Z .
+1/2RIn(r¥R?—1). From the metric it is clear that this is Hence it is not obviously clear how to define Smatrix. If
now a spacelike vector, as indeed it should be since it nowe consider only the quantum field theory of mattand
corresponds to dilations of the boundary sphere. We note ineglect back reactiohsvith the geometry fixed, then we are
passing that there is, however, an important difference beable to define as matrix, but even then its matrix elements
tween the patches covered by these coordinates and elliptare not physically measurable, since no observer can deter-
de Sitter space: the boundary of the inflationary patch has theine the state at boti~ andZ ", even in the far future.
topology RP~1, while elliptic de Sitter space hasP !, In elliptic de Sitter space the situation is different. The
which contains an extra point. past and future asymptotic regions have been identified, so

This leads to a nice picture of how an observer wouldinitial and final states can be defined in the same asymptotic
view the CFT. Consider an observer in elliptic de Sitterregion, where the fluctuations of the metric are set to zero. It
space. By means of de Sitter transformations, the worldlinés useful to think about the initial and final states in terms of
of any inertial observer can be mapped to the time axis, sathe asymptotic boundary conditions of various fields, includ-
at the south pole. In the far past, such an observer woulthg the metric, in this single asymptotic region. As discussed
characterize the world by an in stdtg As in conventional in the previous subsection, an observer positioned at the
CFT with radial quantization, we would like to assign incom- north pole will use the asymptotic data on the northern hemi-
ing states to the origin. Here we choose the origin as thephere to define the in state and the data on the southern
point where the observer’s worldline interse@s. Corre- hemisphere to define the out state. First, to define an inner
spondingly, we associate an in state at the south pole of theroduct one can use the canonical map from the north to the
boundary sphere. As time passes, the observer moves versieuth pole which associates to a stakg) its CPT conjugate
cally along the Penrose diagram. As we have seen this costate(V;|. Next, to define theS matrix one uses the com-
responds to a dilation on the sphere. Finally, in the far futurebined asymptotic data provided in the in and out st{ies
the observer describes the world by an out stfteThis is  and (W;| as boundary conditions for the “functional inte-
where the elliptic interpretation comes in: the out state isgral” over all fields in the bulk of the quantum de Sitter
mapped to the antipodal point on the saB ! as the in  space. This produces a number that can then be identified
state; see Fig. 4. For an inertial observer, the out state iwith the S matrix elemen{ | ¥;).
inserted precisely at the extra poifthe north pol¢ that We will now discuss how thes® matrix elements would
SP~1 has compared witk® 2. In a stereographic projection possibly be described in a holographic description of de Sit-
of the sphere to flat Euclidean space, the outgoing stateer space. So let us suppose that elliptic de Sitter space al-
would be at infinity. lows a holographic description in terms of a dual theory,

The corresponding situation on the boundary is depictedvhich for concreteness we assume to be a conformal field
in Fig. 5. In conclusion, th&, identification implies that the theory. Since there is only one asymptotic region one is deal-
holographic CFT is simply a theory with conventional radial ing with a single Euclidean CFT living on &(— 1),-sphere,
quantization on an ordinary sphere. We will see, howeverwhich one can think of as th8® * atZ* orZ~. In a CFT
that the Hermiticity conditions of the theory are somewhatstates can be defined using radial quantization. They are cre-
unusual. ated by the action of somi@ocal) operator at the origin:
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liY=0;(0)|vag, (36) .\ Y
where we have used the operator-state correspondence. Tra) 7 ¢ }\ Pair annihilation
state|vao is the “vacuum,” by which we mean not neces- e~
sarily the state of lowest energgince energy is harder to e~ et
define in de Sitter spagebut rather a de Sitter—invariant et e~
state. Similarly, we can define a final state as e~
b) ¥ Pair creation
|j)=(vadOj (). (37 et
. . . . . . 7
Notice that this also involves complex conjugation, since our
7, map includes charge conjugati@ Now we can define e~ €
an inner product via c) 7 >--’Y Photon emission
e -_—
(OF (%) 0}(0))x0-1=8; (39) ©

FIG. 6. Complementarity in action: the same correlation func-

This pairing of an operator with it€PT conjugate provides tion as interpreted by an observ@ at the south pole(b) at the
an inner product in the sense of being a mépg H— C that  north pole, andc) at an intermediate point. The circle denotes the
is linear in one argument and antilinear in the other. sphere on which the dual theory lives, the dots are operator inser-

If indeed there is a CFT dual délliptic) de Sitter space tions, the arrow indicates the observer’s direction of time, and the
then, intuitively, one expects that interactiof@d henceS  equator divides the in states from the out states. On the right are the
matrix elements are encoded in the correlation functions corresponding processes in spacetime.
and/or the operator product expansion. It is important to note
that a CFT by itself does not have &matrix. Therefore, infinite number of states. It may very well be that there are
instead of studying just the asymptotic states, let us considetdditional requirements that one has to impose, but without a
operator insertions at points other than the origin and infinitymore definite and concrete theoretical foundation one can
There are an infinite number of such operators since we ca@nly guess what these requirements could be.
associate an operator with every point on the sphere. So in The most specific proposal that we have for the de Sitter
principle one could define an infinite set of in states by con- Smatrix”is that it is given by the overlap of the initial and
sidering strings of operators acting on the in vacuum, final states:

[Wi)= 0, (1)~ Oj (xn)|vag, (39 Sri= (W4 W), (41

where both|¥;) and (V| are expressed as in E9) in
ét_arms of(quasjprimary operators with restricted conformal
imensions. Hence th8 matrix elements are just given by

and similarly for the out state$ matrix elements are then
expressed as correlation functions where part of the oper
tors, those on the northern hemisphere, represent the in sta b lation functi f the bound ; | field
while the other operators on the southern hemisphere repre- correlation functions ot the boundary conformai hie
sent the out state. Note, however, that not all of these stat geory. Th_|s proposal is truly hplographlc, since the correla-
are independent, because there are operator product relatio ign f(;mctmns are computed in terms of the CFT at the
For example, two operatoi®; and O; inserted at different oundary.

points have an operator product relation of the form _
C. Observer complementarity

k . . .
i How do different observers interpret theSamatrix ele-

ij
Oix)0;(%)= 2k" |xi—xj|5i*31*3k0k(xi)' 40 ents? In fact, the same operator insertions at the boundary
are interpreted differently by different observers in the bulk.

Here the sum on the right hand side includesasjprimary  This is because the physical states defined above depend on
operators as well as their descendants. If one allows descethie choice of origin. For any observer, the incoming states
dants of arbitrary conformal dimension, then all operatorsare those that correspond to insertions made on the hemi-
can be moved to one preferred point by simply using thesphere closest to the origin, while outgoing states are created
Taylor expansion. One natural way to reduce the redundandyy operator insertions in the hemisphere nearest to the anti-
in the states is to consider only quasiprimary operators. Notpode of the origin, i.e., at infinity. Different observers have
that, since the conformal dimension of an operator corredifferent origins so this leads to different interpretations of a
sponds to the energy as seen by an observer in de Sittgiven set of operator insertions. This is observer complemen-
space, it is physically reasonable to consider only operator&rity.
with conformal dimensions that are below a certain thresh- Consider, for example, the situation indicated in Fig. 6. A
old. The number of(quasjprimary fields below a certain south pole observer would describe this as pair annihilation:
conformal dimension is finite. It is natural to conjecture thatan electron and a positron come in, and annihilate to give a
this fact is related to the finiteness of the de Sitter entropyphoton. On the other hand, a north pole observer, being an-
However, note that when one allows the operators to be intipodal to the south pole observer, would see the same events
serted at arbitrary points on the sphere, this still gives arfappening in a CPT mirror. In this case, it would describe the
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CPT-conjugate process of pair creation: an incoming photowof any statdi). Here the idea is that the scaling weight is the

decays into an electron and a positron. A different observeeigenvalue of the CFT Hamiltonian, but we know that energy

in between these two poles would see yet another situatior de Sitter space is bounded by the mass of the largest black

for example, an incoming electron emitting a photon. All hole that can fit within the de Sitter horizon. This suggests

these processes have the same amplitude. that we should only consider those states that have scaling
dimension below some maximum.

D. A little group theory

A striking consequence of the preceding discussion is E. Hermiticity

that, although thé& matrix itself is de Sitter invariant, the in It is usually accepted that the holographic dual to de Sitter
states themselves are not. de Sitter transformations that takpace must be a nonunitary theory. The argument considers
one observer into another generically transform in states intfields propagating in the bulk spacetime. We can take the
out states, and vice versa. Hence the asymptotic Hilbeffield to be a massive scalar field; higher spin fields are quali-
space does not decompose into irreducible representations titively similar. In planar coordinates valid near, the line

the de Sitter group. This is important because there is a welkelement is

known theorem which states thatontrivial) unitary repre-

sentations of noncompact groups must be infinite dimen- ds’= —dt?+e2Rdxj, (44)
sional. This theorem is in tension with the finiteness of the de o

Sitter entropy. If the de Sitter entropy enumerates the micro@nd the scalar wave equation is

scopic degrees of freedom underlying a quantum description d

of de Sitter space, then we would expect it to forrtpassi- — P+ = dip+e?RV2¢p—m2p=0. (45)
bly reducible representation of some group. Were that group R

to be the noncompact de Sitter group @}, then the ho-
lographic theory could not be unitary. For elliptic de Sitter
space, the entropy is presumably also given by th
Bekenstein-Hawking formula:

NearZ~, ast— —o the field asymptotically behaves like
e<;S(t,x)~eh+”Rf(x)+eh*”Rg(x), where

hi=%(di Jd?—4n?R?). (46)

A 4(D-12RD-2

S (42

"4 4r(D-1)/2)° ) Notice that for sufficiently high mass this is complex. In
terms of the boundary theory, there seem to be operators with
complex scaling dimension in the CFT. This would suggest

—2Y.di i it D-2 g .
how a 0O-2) dw_nensmngl real projective sph_eFEP ' that the theory contains states of negative norm. Let us re-
The important point here is that this is again finite. But as W&iaw the reasoning that leads to this conclusion

saw, the states in elliptic de Sitter space do not transform Consider, first, three-dimensional de Sitter space. The
under representations of the full de Sitter group. Instead, the¥onformal field theory lives on a two-sphere, or the complex

only tran_sform_ _under the subgroup that Preserves th lane. Recall that with radial quantization on the complex
asymptotic position of an observer. Since asymptotically arhane  the in and out states are related by Belavin-Polyakov-

observer is a point on @)— 1)-dimensional spher@nd in Zamolodchikov (BPZ) coniugation. a purelv analvticor
the future, a possibly different point on the same sphéehe purely antialma\lly(tN: rri)ap: jugation, & purely ytie

relevant group is actually SO(—1). We propose that the
entropy of de Sitter space is related to representations of this z——1/2. (47
compact group.

Another way to make the same point is as follows. TheThe BPZ map takes the origin to complex infinity while
Bekenstein-Hawking entropy refers to the area of a holopreserving the upper half plane, allowing us to define a rela-
graphic screen bounding a given region of spacetime. For déon between bras and kets:

Sitter space, a horizon is actually the holographic screen of a Ut

particular observer in the far future. But the screen accessible |#)=(0,0[0)— (0 (>, %) =(B[=[h)". (48)

to any single observer must furnish a representation of th
little group of that observer. This is precisely the rotation
group SOP—1).

A given physical state is therefore labeled by its confor- Lf=|L =L (49)

i i n —n» n -n-
mal weight, its angular momenta, and the quantum numbers

of any internal symmetries. Nevertheless it is still a greata gjrect consequence of this is that primary fields with com-

challenge to show that the number of such states is precisefylex conformal weights lead to descendants with complex
exp@4). In principle, the conformal weights and angular norm:

momenta could be arbitrarily high, leading to representations
that would be too big. One possibility might be to restrict the [L_1|n)||2=(h|LiL_4|n)y=2h(h|h). (50
maximum scaling dimension

where the “area’A is the volume of the horizon which is

fh other words, the BPZ map motivates the usual choice of
Hermitian conjugation for the Virasoro generators:

Thus a sufficiently massive scalar field in de Sitter space
Ai=Amax (43)  seems to lead to a nonunitary conformal field theory.
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Now consider the antipodal identification. We can express ) ) dx?
the line element in global coordinates as ds?= —dt*+4R? cosi(t/R) e (55)
dzdz 2 1202 .
ds?= — dt?+ 4R? cosK(t/R) e (51  Wherer®=[x|* the antipodal map takes
1+|z|9)7"
i
The antipodal map is t——t, X—-— = (56)
t——t, z—-—-1z, z——1/z. (52

The conformal generators in higher dimensions Rrethe
Holomorphic and antiholomorphic coordinates are inter—d”ata“on operatorK,, the special conformal transforma-

changed. Incoming states created by holomorphic fields attions, as well as the rotationk,, and the translation®,.
ged. 9 . oy P The antipodal map suggests that the Hermiticity properties
=—oo are taken to antiholomorphic final statestat+ o,
. should be
and vice versa. Hence
D'=D, Jl,=J.,, Pl=K,, Kl=P,. 5
LE:L—nr F=L_n. (53) ab ab a a a a ( 7)

n
) . L . . . . Once again, the translations and special conformal transfor-
Wlth this definition of Hermitian conjugation, certain states mations do not preserve the set of physical states. The physi-
with complex conformal weights now have positive norm. c5| states are labeled by the Hermitian operators which are

Such a Hermiticity condition was also proposed [B8].  |5peled by the simultaneous eigenvaluesDofd,,, and a
Consider a primary field with complex conjugate weightscgtan set of any internal symmetry group.

h.. . Acting on the corresponding state with L, gives a

state of the form¢)=L_,L_,. Its norm is VI. ON A STRING REALIZATION
S c2 5 , C 4, — Our discussion of the elliptic interpretation of de Sitter
(¢l¢p)=|4n?|h| + () F g (n*=n%)(h+h) space and its holographic implementation has been rather
intuitive. Clearly, to make things more precise one needs a
x(h,h|h,h), (54)  concrete realization of these ideas in a working theory of

quantum gravity, such as string thedoy perhaps loop grav-

which is real and positive, even thoughmay be complex. ity [29)). It has been surprisingly hard to find a realization of
The rule is that to have positive norm, the total leveLafnd  de Sitter space in string theory. One obstacle to a satisfactory
L must be the same. States for which the levels ahdL do string-theoretic description of de Sitter space is the lack of
not match have zero norm. These include states likSUPErsymmetry. Intuitively, de Sitter space cannot be super-

— . . symmetric because it is thermal; at finite temperature bosons
L _4|h,h), which would have had positive nortfor realh, and fermions have different statistics. More formally, there is

h) W|th the ConVentionaI deﬁnition Of Hel’mitian Conjugation. no Supera|gebra that Contains the de Sltter isometry group
However, linear combinations of zero norm states can stilhnd is represented by Hermitian supercharges. The known
lead to states of negative norm. So there is still the dangesfuperextensions of the de Sitter isometry grp8@ involve
that the dual CFT is nonunitary. nonpositive quadratic forms and have no unitary representa-
We note, however, that nonunitarity in the spectrum oftjons. This difficulty can be traced back to the fact that there
descendants of the CFT may not necessarily be a problem fgg no globally defined timelike Killing vector in de Sitter
its use as a dual for elliptic de Sitter space. This is becausgpace, and hence there is no positive-definite HamiltoHian
as we discussed above, states that have a physical meaningfifis same non-positive-definite nature shows up in attempts
this context may have to satisfy additional requirementsio construct de Sitter space using timelikeduality and/or
such as that they are quasiprimary. In this case, states likompactifications on noncompact Euclidean manifolds
L_,L_,/h,h) are not physical states. For example, the fac{31,32. The resulting gauged supergravity theories allow de
thatL _; acting on a physical state does not lead to a physicabitter space as a solution but have ghosts, i.e., fields with
state could be a consequence of the fact that translations &fetic terms of the wrong sign.
the entire state of the universe are not represented in the The nature of these problems changes in elliptic de Sitter
Hilbert space of a single observer, since such translationspace, mainly because it is not a time-orientable space. In
also change the location of the observer. If one considerfact, we would like to believe that the only possible realiza-
only the highest weight statéthose created by quasiprimary tion of de Sitter space in string theory is in its elliptic form.
operators acting on the vacuynthen there is no problem of The failure to find a de Sitter solution in string theory may
negative norm states. Note that restriction to the highestvell be that one should perhaps have been looking at string
weight states reduces the number of states: it effectively sulisackgrounds that are not time orientable. Clearly, time un-
tracts 1 from the total central charge. But since we expecorientability poses new challenges for string theory, and it is
c>1 this does not change the counting of states significantlynot immediately obvious how it can be defined consistently
The generalization of this discussion to higher dimension$33]. In this respect, it is interesting that de Sitter space arises
is straightforward. Writing the de Sitter line element as in type 1IB* string theory after a timelikd duality, which
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can be thought of as a change of sign of the Idér dop? 2

right-)moving part of the worldsheet scalé corresponding ds?| Vama'?gN - 2p + P = dxﬁ

to time. Hence, after & duality it is as if the right(or left) p 4ma’“gN

movers go forward in time, while the lefor right) movers v

go backward in time. Perhaps this means that type* 1B +V4ma'2gNds)s. (64)

string theory has to be quantized in a different way so that

. . 5 .
worldsheets and/or the spacetime background have to bEIS 100 isdSsX H”. So again we get the same local geom-
time unorientable. This may change the problem with ghost-etry' However, there are some important differences between

H 5
like fields and perhaps solve it. We hope to report on thigh® two. For spacelike, the branes are part ¢1°, and de
issue in the future. Sitter space is part of the transverse space; that. is not what
Now let us make some observations on the candidate corfv€ Want. For timelikep, the branes are part of de Sitter space

5 . . .
formal field theory dual of five-dimensional elliptic de Sitter 2ndH” is transverse. So we should chogseo be timelike.
space as suggested by its realization in*li&ring theory. The E4-branes are now on the boundary of de Sitter space, at

Type IIB* theory can be thought of as arising through aI. But now note that there are two disconnected branches

timelike T duality of type IIA theory{31,32. The low energy becfause in foliating Min_kow_ski space into spacelike slices
limit of I1B* theory is IIB* supergravity which has Dirichlet (Which corresponds to timelikp) one can have>0 or t

brane solutions that have purely spatial extent: they ar&-O-Inorder to have a connected geometry, we should really

called Bp-branes when their worldvolume sdimensional. !dentify these two branches by making’gidentification. In
Following Hull we consider the near-horizon geometry of athat case the metric that we just described must be modded
stack ofN E4-branes, which are the Euclidean analogues 019‘,Jt by aZ, th{ﬂ maps— —t. Since the I|n'e element on de
the D3-branes of type IIB theory. The metric resembles thap/tt€l space in Eq(64) covers one inflationary patch, an

of the D3-brane identification oft and —t suggests that the near-horizon ge-
’ ometry becomesdS;x H®. A 7, identification of the trans-

ds’=H""%(p)dx;+H"(p)dx], (58  verse geometry implies that the E4-branes are dnoaien-

tifold, the purely spatial counterpart of a conventional

whereH(p) is the usual harmonic function, orientifold. Indeed, elliptic de Sitter space is the analytic
continuation of theRP® that ariseginstead of ars®) in the

4ma'’gN transverse geometry of D3-branes on an orientifold plane.

Hp)=1+ —pE (59) The theory on the worldvolume of the E4-brane is Euclid-

ean '=4 Super Yang-Mills(SYM) theory. This theory is
except that, because the branes are Euclidean, the transverdgained fromA'=1 SYM theory inD=9+1 by dimen-

“radius” also includes time: sional reduction, where one of the compactification direc-
) tions is time. So one of the six scalars in the E4 worldvolume
p?=x;=X*—t2, (60)  theory comes from the timelike component of the

(9+1)-dimensional gauge field. This becomes a scalar with
The horizon is ap=0. Now we would like to take the near- the wrong sign kinetic operator, and therefore we are dealing
horizon limit. Sincep depends on time, there are two ways with a conformal field theory with a ghost. In fact, there are
we can approach the horizon, wherés timelike and where  several reasons to expect such ghost fields to be present in a
p is spacelike. For spacelikethe transverse geometry is  CFT dual to de Sitter space. First, the six scalars form a

vector (¢0,<Z) of the SA1,5 R symmetry of the Euclidean
theory; invariance under tHe symmetry already implies that
one scalar has the wrong sign kinetic term. A second reason

wheredsﬁSS is the line element of five-dimensional de Sitter g the following.

dx} =—dt*+d¥=dp’+p’dsjg, (61)

space. For timelike we get instead Just as in AAS/CFT correspondence one expects the holo-
) 5. 22 graphic direction to correspond to the renormalization group
dxi =—dp“+p“dsys, (62 (RG) scale of the dual field theory. But unlike in AdS/CFT

correspondence, the holographic direction is timelike in de
whereH? is the five-dimensional hyperbolitobachevsky  Sitter space. This timelike nature of the RG scale is directly
plane (i.e., Euclidean anti—de Sitter spacdn the near- related to the presence of the ghost scalar; namely, the energy
horizon limit we drop the 1 iH(p) to obtain, for spacelike scaleu of the theory can be defined in terms of the values of
P, the scalar fields as

2 2 -
d< md_ngp—de (%= o)== . (65)
p 4ma’’gN
Let us now fix the energy scaje. The scalar fields are then
+V4ma’ gNdﬁ%. (63  restricted to a five-dimensional scalar manifold. Here we
have a choice: for the- sign the resulting scalar manifold is
The geometry is therefore locally thatldPxdS;. For time-  the Lobachevsky plane, while for the sign it is de Sitter
like p we obtain space. If we take the- sign the¢, field still has fluctuations
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with the wrong sign. However, if we take the sign, all the  plete information, but have different interpretations, &by
fluctuations of the scalar field have the correct sign in theithe realization of holography: for every observer time evolu-
kinetic terms. tion and theS matrix are naturally described in terms of a
The parameteru becomes the renormalization group dual theory on a single boundary. The most serious challenge
scale, and in fact is the same as the holographic time coote elliptic de Sitter space is the issue of possible closed time-
dinatep: together with the four Euclidean coordinates on thelike curves after including the back reaction. Once gravita-
E4-brane, it leads to de Sitter space. As we noted, the scaléional back reaction is taken into account, the Penrose dia-
manifold has two disconnected branches, corresponding tgram of perturbed de Sitter space becomes a “tall” rectangle
¢o>0 and ¢y<0. Now here there is a difference between[34,35. This implies that certain antipodal points come into
U(N) and SO(N) SYM theory. In the latter case one can usecausal contact. The resulting closed timelike curves are con-
the gauge symmetry to mapto —¢. This identifies the two tained in the bulk of de Sitter space, and therefore it is not
branches of the scalar manifold. A S®)(gauge group arises immediately obvious how it would affect the theory on the
if we put N coincident E4-branes on top of Rorientifold ~ boundary. One point of view is that the perturbation of de
plane. This is precisely what we argued for earlier. In theSitter space should be described by an appropriately per-
near-horizon limit we get antipodally identified de Sitter turbed CFT, for which the holographic reconstruction breaks
space. So finally we come to the following conjecture: thedown at some point in the bulk. The prescriptions for the
largeN limit of SO(N) SYM theory, with conformal group time evolution of a single observer and for his/her observable
SQ(1,5 and R-symmetry group S, 5), in the phase de- Smatrix are, however, defined purely in terms of the bound-
scribed by the— sign in the scalar equation, is the holo- ary and could still make sense. Clearly this issue needs fur-
graphic dual oledS;x H®, or elliptic de Sitter space times a ther study.
hyperbolic five-plane. There is now only one boundary, an Finally, the most pressing open issue is whether one can

S* and that is the boundary on which the CFT lives. find a consistent description of de Sitter space in string
theory, or perhaps in some other working theory of quantum
VII. CONCLUSION gravity. There are many reasons to believe that such a de-

scription would be holographic and will incorporate a ver-

In this paper we studied de Sitter space in its elliptic in-sjon of observer complementarity. We are hopeful that the

terpretation with antipodal points identified. We discusseddeas presented in this paper will then be fully realized in
several conceptual issues in the context of the elliptic intersome form.

pretation, especially questions regarding holography and the

definition of anS matrix. Our conclusions support the view
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