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Elliptic de Sitter space: dSÕZ2
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We propose that, for every event in de Sitter space, there is aCPT-conjugate event at its antipode. Such an
‘‘elliptic’’ Z2 identification of de Sitter space provides a concrete realization of observer complementarity:
every observer has complete information. It is possible to define the analogue of anS matrix for quantum
gravity in elliptic de Sitter space that is measurable by all observers. In a holographic description,S-matrix
elements may be represented by correlation functions of a dual~conformal field! theory that lives on the single
boundary sphere.S-matrix elements are de Sitter invariant, but have different interpretations for different
observers. We argue that Hilbert states do not necessarily form representations of the full de Sitter group, but
just of the subgroup of rotations. As a result, the Hilbert space can be finite dimensional and still have a
positive norm. We also discuss the elliptic interpretation of de Sitter space in the context of type IIB* string
theory.
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I. INTRODUCTION

In a monograph first published in 1956, Schro¨dinger @1#
describes a troubling consequence of the exponential ex
sion of space in a de Sitter universe, namely, that differ
observers would be swept out of each other’s event horiz
‘‘It does seem rather odd that two or more observers, e
such as ‘sat on the same school bench’ in the remote p
should in future, when they have ‘followed different paths
life,’ experience different worlds, so that eventually certa
parts of the experienced world of one of them should rem
by principle inaccessible to the other and vice versa.’’ T
separation of spacetime into causally inaccessible region
not just unaesthetic, but conceptually problematic. It s
gests, for instance, that pure states could evolve into m
states, as degrees of freedom disappear across the ho
For an observer in de Sitter space this would manifest it
as quantum decoherence and a loss of information.

Similar issues arose in the study of the information lo
problem for black holes. Gedanken experiments in that c
text essentially led to the conclusion that unitarity could
preserved for all observers if one allowed for a duplication
information on either side of the horizon. According to th
‘‘principle of black hole complementarity,’’@2–4# the freely
falling observer and the external observer would both be a
to perform quantum mechanics experiments without any
of coherence, but their interpretation of the physics would
quite different.

The arguments that led to black hole complementarity
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also be applied to other types of event horizons, in particu
to cosmological event horizons. A better name theref
would be ‘‘observer complementarity.’’ In its strongest for
it postulates that each observer has complete informat
and can in principle describe everything that happens wit
his/her cosmological horizon using pure states. This inform
tion may appear to different observers in different
complementary—guises: one observer may pass smoo
through the horizon, whereas another observer may see t
a source of hot radiation. Although these drastically differe
realities may seem to be inconsistent, it is important to r
ognize that paradoxes arise only when one takes the unph
cal perspective of a global superobserver.

The question now is, is there a way to implement obser
complementarity in de Sitter space? There is, as was alre
noted by Schro¨dinger. In his ‘‘elliptic interpretation’’1 of de
Sitter space, Schro¨dinger proposed a simpleZ2 identification
of spacetime by declaring antipodes to represent the s
event. Schro¨dinger’s motivation was indeed to give all ob
servers complete information about all events, and thus
way he argued already in 1956 in favor of observer comp
mentarity. In this paper, we consider the consequences o
elliptic interpretation. We find that elliptic de Sitter space h
some rather remarkable properties. Indeed, not only doe
lead to a concrete realization of observer complementarit
also improves the nature of many of the severe theoret
challenges that de Sitter space presents. The main aim of
paper therefore is to rediscuss, in the context of this ellip
interpretation, the conceptual issues raised in the recen

1The term ‘‘elliptic’’ refers to the fact that identified points ar
related by elliptic, i.e., spacelike, generators, as distinct from hyp
bolic ~timelike! or parabolic~null! generators.
©2003 The American Physical Society05-1
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erature. In particular, we would like to readdress the prob
of defining anS-like matrix in a quantum gravity theory in
asymptotic de Sitter space.

Let us briefly review the puzzles that arise in conventio
de Sitter space. We have already mentioned obse
complementarity. Another issue is that of holography. W
would like to have a holographic dual description of grav
for all of the various asymptotic geometries. Recently,
have learned to describe string theory in spacetimes tha
ymptotically approach an anti–de Sitter geometry. The A
conformal field theory~CFT! correspondence is by now we
established, and in principle gives a nice holographic
scription of string theory in these backgrounds.
Minkowski space too, there are reasons to believe tha
holographic description may exist that involves holograp
screens at past and future null infinity@5,6#. But de Sitter
space requires yet another type of holography, because
is no spatial or null infinity. Various authors have argued t
it should be a kind of timelike holography, for which th
holographic screens are spacelike surfaces in the asymp
past or future of global de Sitter space. Strominger, m
notably, has proposed a dS/CFT correspondence@7# similar
to AdS/CFT correspondence.

A somewhat confusing aspect of holography in global
Sitter space, however, is that it has two disconnected bou
aries. If we think of the dual CFT as living on these boun
aries, then we have to somehow compute correlation fu
tions of operators some of which may be inserted on
boundary, while others may act on another boundary.
only is it unclear how to compute such correlation functio
it is also unclear what their physical interpretation is.

A related problem arises in trying to define the analog
of anSmatrix. In quantum field theory, asymptotic incomin
and outgoing states are properly defined only in
asymptotic regions of spacetime. But for de Sitter sp
these regions are spacelike, and there is no single obse
who can determine the states both at past infinity as we
at future infinity. Consequently, the matrix elements ofS-like
matrices in de Sitter space are not measurable quant
they are mere metaobservables, rather than observa
When one considers quantum gravity in asymptotically
Sitter space, the situation becomes even more serious. A
been pointed out by Witten, the only available pairing b
tween in states and out states,CPT, is used to obtain an inne
product for the Hilbert space@8#. There does not seem to b
an additional pairing between in and out states that could
used to arrive at anS matrix. As the conventional formula
tion of string theory is based on the existence of anSmatrix,
the lack of an analogue of anS matrix is worrisome.

Finally, we come to the question of the de Sitter entro
@9#. Conventional global de Sitter space makes it hard
understand the finiteness of the entropy, for, in the far p
the asymptotic geometry is that of an enormous sph
which can be perturbed in very many ways. The vast ma
ity of these perturbations do not lead to a spacetime tha
asymptotically de Sitter in the future; instead, singularit
and black holes form. How the finite number of states that
lead to asymptotically de Sitter in the future are charac
ized is still a mystery.
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This paper is organized as follows. In Sec. II we brie
describe de Sitter space and point out, by way of motivati
some facts about de Sitter space that support the proposeZ2
identification. In Sec. III, we define Schro¨dinger’s antipodal
identification, and refine it to includeCPT. We then discuss
its classical properties and show that elliptic de Sitter sp
does not suffer from any obvious problems, such as clo
timelike curves. Next, in Sec. IV, we consider quantum fie
propagating in this space. In particular, we discuss
vacuum state in the Fock space of a free scalar field. In S
V, we consider holography. It is here that the advantage
the elliptic interpretation are perhaps most evident; conc
tually, the holographic theory seems to have a more nat
interpretation with theZ2 identification than without. In Sec
VI, we discuss how elliptic de Sitter space might be realiz
in string theory. We conclude in Sec. VII.

II. MIRROR IMAGES IN de SITTER SPACE

Empty de Sitter space is the unique spacetime with ma
mal symmetry and constant positive curvature. InD space-
time dimensions, it is locally characterized by

Rab5
D21

R2 gab , ~1!

whereR is the radius of curvature of de Sitter space, and
the vanishing of the Weyl tensor. The cosmological const
L is a function ofR. With the local geometry fixed, the onl
remaining freedom lies in choosing the global topology.

It is convenient to think of de Sitter space as a timeli
hyperboloid embedded in (D11)-dimensional Minkowski
space. The embedding equation is

2X0
21X1

21¯1XD
2 5R2, ~2!

where XI are Cartesian coordinates in Minkowski spac
Equation~2! makes the O(1,D) isometry group of de Sitter
space manifest. Note that O(1,D), the Lorentz group inD
11 spacetime dimensions, has four disconnected com
nents. These are the proper orthochronous Lorentz group
its composition with the discrete symmetries ofP andT, i.e.,
with parity and time reversal. By parity we will always mea
a reflection in a hyperplane of one spatial codimension ra
than spatial inversion through the origin; the discussion
therefore unaffected by whether the spacetime dimensio
odd or even.

For a given point on de Sitter space at embedding co
dinateX, we define theantipodal pointto be the point ob-
tained by reflection through the origin of Minkowski spac
i.e., the point with embedding coordinate2X. We then de-
fine elliptic de Sitter spaceto be the spacetime in which fo
every physical event at any point on de Sitter space there
CPT-conjugate event at the antipodal point. Hence we
using our freedom of topology to impose aZ2 identification
of de Sitter space. Note that the connected part of the is
etry group remains unchanged after the identification; theZ2
identification mods out by a center of the de Sitter grou
The preservation of all local isometries justifies the appe
tion ‘‘de Sitter space.’’
5-2
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In the remainder of this section, we consider various pr
erties of global de Sitter space that suggest that informa
on one side of the horizon is mirrored on the other side.
do not claim that de Sitter spacemustbe antipodally identi-
fied; rather, the examples should be seen as circumsta
evidence that elliptic de Sitter space may be more nat
than global de Sitter space. For a detailed description of
classical properties of de Sitter space, see@10#; for a recent
review, see@11#.

A. Mirror singularities

The great circles, or geodesics, of a sphere are determ
by the intersection of the sphere with planes that p
through the origin. Similarly, the spatial geodesics of de S
ter space can be obtained by intersecting it with space
planes through the origin of Minkowski space. It is clear th
that everyspatial geodesic that passes through a point m
also pass through its antipode, because ifX lies in a plane
through the origin then so does2X. These geodesics form
ellipses which are related to each other by de Sitter trans
mations. If we think of null rays as degenerate spatial g
desics, and if we allow them to ‘‘bounce off’’ null infinity
thenall light rays leaving a point converge on the antipod
point. This last fact affects the singularity structure
Green’s functions of quantum fields.

Consider a scalar field in de Sitter space. It is conven
to express de Sitter–invariant equations in terms of a dim
sionless de Sitter–invariant variableZ. We can define such a
variable by

Z~X,Y!5
1

R2 X•Y, ~3!

where the dot product is given by the Minkowski metr
Obviously Z is Lorentz invariant inD11 dimensions, and
therefore de Sitter invariant inD dimensions. For points tha
are connected by geodesics,R arccosZ corresponds to the
geodesic distance. In particular, for any givenX if Y is on the
light cone ofX, thenY5X1N with N250. SinceX and Y
must both lie on the same de Sitter hypersurface,X25Y2

5R2, and thereforeZ511. On the other hand, ifY is on the
light cone of the antipodal point,Y52X1N, and so hereZ
takes the value21.

The wave equation for a massive scalar field written
terms ofZ is

S ~12Z2!
d2

dZ22DZ
d

dZ
2m2/R2Df~Z!50. ~4!

The Wightman functions obey this equation. The prec
form of the solution, a hypergeometric function, is imma
rial; the key point is that it is singular atZ51. This is analo-
gous to the usual short-distance singularity ats50 that one
has in Minkowski space along the light cones. But now
wave equation is symmetric underZ→2Z. Therefore in de
Sitter space there is a second solution to Eq.~4! with a sin-
gularity at Z521, i.e., on the light cones of the antipod
Hence we see that, in contrast to Minkowski space, sin
larities of Green’s functions in de Sitter space seem to co
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in pairs. The mirror singularity along the antipodal lig
cones is our first example of duplication in de Sitter spac

B. Mirror black holes

As a second example, consider a Schwarzschild–de S
black hole inD5d11 spacetime dimensions. The line el
ment has the form

ds252F~r !dt21F21~r !dr21r 2dVd21
2 , ~5!

F~r !512
2M

r d222
r 2

R2 . ~6!

If 0 ,M,Mmax,
2 there are two horizons: a cosmologic

horizon atr 5r c and a black hole horizon atr 5r BH , where
r c.r BH . We will show that, when the solution is analytical
extended, there is a mirror black hole on the other side of
cosmological horizon. Let us introduce Kruskal-Szeker
type coordinates and analytically continue the metric beyo
the cosmological horizon. Note thata priori the coordinates
in Eq. ~5! are only valid forr BH,r ,r c .

In terms of its roots, the functionF(r ) can be written as

F~r !52
1

R2r d22 ~r 2r c!~r 2r BH!)
n53

d

~r 2r n!, ~7!

wherer c and r BH are the only real positive roots. Hence

F21~r !5
c1

r 2r c
1

c2

r 2r BH
1 (

n53

d
cn

r 2r n
, ~8!

for certain constantscn . We define Eddington-Finkelstein
coordinates through

dx65dt6
dr

F~r !
, ~9!

which, using Eq.~8!, is easily integrated to give

x65t6H c1 ln~r 2r c!1c2 ln~r 2r BH!1 (
n53

d

cn ln~r 2r n!J .

~10!

In terms of these coordinates, the metric takes the form

ds252F~r !dx1dx21r 2dVd21
2 . ~11!

Finally, we introduce Kruskal-Szekeres coordinates throu

U5e2x2/2c1,
~12!

V52ex1/2c1,

where it is clear thatU.0 andV,0. The metric becomes

2Mmax5(1/d)@(d22)(d21)/2L# (d22)/2 is the maximal mass. At
this value the black hole and cosmological horizons coincide.
5-3
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ds254c1
2 F~r !

UV
dU dV1r 2~U,V!dVd21

2 . ~13!

In terms of these coordinates the metric is regular atr 5r c
and we can analytically continue to the full range2`
,U,V,`. Note from Eqs. ~10! and ~12! that r (U,V)
5r (UV) and thusF(r )5F(UV). Hence, ifF(UV) is zero
for certain nonzero values ofU andV, e.g., at the black hole
horizon, then it will also be zero at2U and2V. This sec-
ond horizon is antipodal from the first and thus we find th
black holes in de Sitter space come in antipodal pairs. Ac
ally this is a choice: instead of extending the metric anal
cally entirely to the other side, we could have replaced
antipodal black hole by a static, spherically symmetric m
distribution with the same total mass.

Now consider adding charge to the de Sitter black h
@12#. de Sitter space cannot support Noether charges bec
its spatial sections are compact. The total charge has to
up to zero; the antipodal black hole therefore necessa
carries equal but opposite charge. Moreover, for the sa
reason there cannot be any net angular momentum.
leads us to propose that the antipodal map must be comb
with charge conjugation C.

III. THE ELLIPTIC INTERPRETATION OF de SITTER
SPACE

The elliptic interpretation of de Sitter space consists
identifying points that are related by the antipodal map

XI→2XI , ~14!

with I 50,1,...,D, together with charge conjugation C. W
will see that this means that particles and/or events atXI and
2XI are related by CPT. We thus have an involution, aZ2
map. The fixed point of the map,XI50, is not itself in de
Sitter space, so this is a freely acting symmetry. The quot
spacedS/Z2 is therefore a homogeneous space with no s
cial points.

Note that the antipodal map also inverts the direction
time; see Fig. 1. For example, consider global coordina
The line element reads

FIG. 1. The antipodal map reverses the local arrow of time.
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ds252dT21R2 cosh2~T/R!~du21sin2 u dVD22
2 !.

~15!

In these coordinates the antipodal map is given by

T→2T, u→p2u, V→VA, ~16!

whereVA are the angular coordinates of the point antipo
on the (D22)-dimensional sphere to the point labeled byV,
and time is reversed,T→2T. In the rest of this section, we
show that elliptic de Sitter space is nevertheless classic
consistent, with no problems of causality or closed timel
curves. We will also demonstrate that the map betwee
particle and its antipodal image is CPT.

A. Causality

The antipodal map identifies points at positiveT with
points at negativeT, and so one may wonder whether the
are problems with causality or closed timelike curves. T
such problems do not arise was explained by Schro¨dinger
@1#. We just give here our version of the argument.

First, let us go to the embedding space. It is easily s
that two antipodal points atX and2X are always spacelike
separated, sinceX25R2.0. Moreover, the intersection o
the two light cones that start at antipodal points never in
sect the de Sitter hypersurfaces, because ifY is the embed-
ding coordinate of a common point on the light cones em
nating fromX and2X, then

~Y1X!25~Y2X!250⇒Y252R2, ~17!

so Y does not lie on the de Sitter hypersurface. This me
that the light cones of two antipodal points within de Sitt
space do not intersect. Therefore a pair of events that
place at antipodal points cannot both influence the sa
event in their past and future. In particular, there are
closed timelike curves afterZ2 identification.

What about closed null curves? A point onI 2 is con-
nected by a lightlike trajectory to its antipodal image onI 1.
So at first this appears to give rise to an infinity of clos
lightlike trajectories. However, these light rays do not co
stitute closed trajectories in de Sitter space for three imp
tant reasons. First of all, ‘‘points’’ atI 1 and I 2 are not
really points in de Sitter space. They have to be added
points at ‘‘infinity,’’ and so they are only part of a forma
compactification of de Sitter space. de Sitter space itse
noncompact and does not include these points. A sec
related reason is that the affine parameter along the se
ingly closed lightlike trajectory is actually infinite, esse
tially because the points are atI. Finally, a third reason tha
the lightlike trajectory is not really closed is that one cann
continue along the trajectory a second time, third time, e
without reversing direction each time one is at the end po
on I 1 or I 2. This is not what happens on a usual clos
trajectory, such as on a timelikeS1.

It is also useful to analyze the antipodal identificati
from the point of view of inertial observers. All points insid
the casual diamond of an observer have antipodal points
side the casual diamond. The antipodal points belong to
5-4
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causal diamond of the antipodal observer, on the inacces
‘‘dark side of the moon.’’ Therefore exactly one of every pa
of antipodal events is observable. Which event of each pa
observed depends on the location of the observer; see F
For example, the observer living at the south pole will s
precisely all antipodal images of the events that his collea
at the north pole sees. Other observers will see somethin
between, namely, for some part ‘‘northern’’ events, and
the rest ‘‘southern’’ events, but every event is observed o
and no more than once.

What about events that take place outside the causal
monds of the observer at the south and the north po
These are the events that take place at the upper and l
parts of the Penrose diagram near past and future infinity
the elliptic interpretation of de Sitter space these upper
lower regions are identified. The usual square Penrose
gram for de Sitter space is somewhat misleading in the se
that it seems to indicate that all points in the upper reg
are in the causal future of points of the lower region. B
one has to remember that every point represents
(D22)-dimensional sphere, and points that are identified
the antipodal map are on opposite sides of these sphere
clearer way to see the causal structure of elliptic de Si
space is to represent the (D22)-dimensional spheres as tw
points, each of which is a real projective sphere; see Fig
Now one can see that a geodesic that connects two ident
points in the upper and lower regions has to travel forward
time, but also has to go around the sphere. Since all antip
points are spacelike separated, the resulting geodesic i
deed spacelike.

Next consider the horizon itself. Without loss of gener
ity we may consider an observer at the ‘‘north pole’’u50 of
the spatial (D21)-dimensional sphereSD21. His past and
future event horizons are given byu52 arg(i1e6T/R), and
intersect atT50 at the equator of his (D21)-dimensional
sphere, described by the (D22)-dimensional sphere atu
5p/2. The intersection takes place at the midpoint of
square Penrose diagram. Therefore only by sending a si
at T52` can he contact the equator in time for a signal

FIG. 2. These Penrose diagrams of de Sitter space have
opened up to make all antipodal points distinct. The left and ri
edges of a diagram are identified, and every point in the inte
~except on the central vertical line! now signifies anRPD22, in-
stead of anSD22. The antipode of a given point is reached b
reflecting about the dashed horizontal line, and moving horizont
by half the width of the diagram. Two antipodes, markedp and p̄,
are shown. In~a! an observer traveling fromi 2 to i 1 hasp but not
p̄ in his causal past~shaded!, while in ~b! an observer with a dif-
ferent worldline can seep̄ but not p. The antipodal image of a
shaded region is the unshaded region, giving every observer c
plete information after theZ2 identification.
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come back to him precisely atT5`. Hence, if we exclude
the points at infinity, there is no way that the observer c
communicate~sending a question and getting a reply! with
points on the equator. Events that happen right on the equ
are identified with the events that happen at the antipod
the equator itself. But this fact only becomes apparent to
observer at the north pole~or south pole! at T5` ~or T5
2`). We conclude that at no finite time can any observ
ever directly detect the duplication of events in elliptic
Sitter space.

Finally, note that the asymptotic geometry of elliptic d
Sitter space consists of a singleSD21, since theZ2 identifi-
cation mapsI 1 andI 2 to each other. This property will be
useful when we consider the holographic theory.

B. CPT

Any two antipodal points can be mapped to the north a
south poles corresponding toXD56R, Xk50 for k
50,1,...,D21. Without loss of generality, consider a partic
with trajectoryXI(t), I 50,1,...,D, in the embedding spac
passing through the north pole att50. Its antipodal image is
2XI(t) and passes through the south pole. Let us apply t
reversal to the antipodal image:

T: 2XI~t!→2XI~2t!. ~18!

The relativistic momentum of the particle at the north pole
pI5ẊI . Note thatpD50 at t50. At the south pole the mo
mentum is also given bypI since it is2XI(2t) differenti-
ated with respect tot at t50. So in the embedding space th
momentum is pointing in the same direction. However,
order to compare this to the momentum at the north pole,
have to parallel transport the vector from the south pole
the north pole. There are many ways of doing this beca
there are an infinite number of spatial geodesics pas
through both the north and the south poles. Let us pick
of them, say the one that appears when we intersect de S
space with the two-dimensional planeXm50 for m
50,1,...,D22. This gives as a geodesicXD215R sinu, XD

5R cosu. At u50 we are at the north pole, atu5p at the
south pole. Parallel transport of the momentumpI along this
trajectory gives a momentum (p8) I which satisfies

~p8!m5pm, m50,...,D22,
~19!

~p8!D2152pD21.

We see that one of the spatial components of the momen
has changed sign. That is the result of a reflection in aD
22)-spatial-dimensional hyperplane. Thus it corresponds
parity, even though in the embedding spaceXI→2XI corre-
sponds to an inversion. The plane of reflection in this cas
the planeXD2150. Had we chosen a different geodesic
would have been another plane. Note that this is consist
because parallel transport along two different geodesics
fers by a rotation equal to the integrated curvature betw
the geodesics. This is precisely what one finds if one co
poses the two reflections in the planes associated with th
geodesics.
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Therefore going around from a point in de Sitter space
its antipodal point has the effect of acting on the tang
space byPT. Since ourZ2 map also requires that we act wit
charge conjugationC, the cumulative effect is to relate an
tipodal points byCPT.

C. The arrow of time

The antipodal mapXI→2XI changes the sign of the tim
coordinate of the embedding space, and also that of the
rection of time in de Sitter space. The resulting quotie
spacedS/Z2 is as a consequence not time orientable:
though one can locally distinguish past and future, there is
global direction of time. This fact clearly changes many st
dard notions about space and time that we are accustome
For instance, it is impossible to choose a Cauchy surface
elliptic de Sitter space that divides spacetime into a fut
and a past region.

Since the microscopic laws of physics are generally ti
reversible, that is,CPT invariant, there is no problem with
time unorientability at a microscopic level. It is more subt
however, to formulate macroscopic laws of physics on a ti
unorientable spacetime. For example, the evolution of s
clearly shows a direction of time; one never observes a n
tron star turning into a massive star through the enorm
implosion of a stellar envelope, yet this is what the antipo
image of a type II supernova would look like.

For sufficiently simple situations, a single observer c
always choose a preferred direction of time in the observa
part of the universe, consistent with the second law of th
modynamics. Consider an isolated thermodynamic system
configurationA, with antipodal imageA8, which evolves
into systemB, with antipodal imageB8. If the entropies are
such thatS(B)@S(A), an observer who observed bothA and
B would say thatA precededB. Since the primed and
unprimed systems have the same entropy, this would m
that an observer who observed bothA8 and B8 would say
thatA8 precededB8, and would therefore have time flowin
in the opposite direction. Finally, an observer who saw, s
A andB8 would see them as two distant, spacelike-separa
systems, rather than one system evolving into another.
this observer the choice of the arrow of time is independ
of the relative entropies of the two systems. In this sim
scenario, no problems arise for any observer.

However, now consider a second thermodynamic sys
in statesC andD. For example,A, B andC, D could describe
the configurations before and after two supernova exp
sions. It is easy to check that, if bothC andD are outside the
past light cone ofB, then there is always at least one o
server who witnesses a dramatic violation of the second
irrespective of the choice of time arrow. This is not fa
because, after all, the underlying dynamics do enjoy aCPT
symmetry. Rather, the issue is of what the allowable ini
conditions are. One consistent treatment is to say that t
are simply no highly ordered systems present.~This would
include, unfortunately, realistic observers.! Indeed, there are
reasons to believe that our observed macroscopic arrow
time may be related to boundary conditions at cosmolog
singularities. It would be very interesting to see if there a
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cosmological scenarios@13# that can be built out of elliptic
de Sitter space.

An alternate and quite different viewpoint is to argue th
before one can even assign events in spacetime, one sh
first choose an observer. Indeed, even classically, diffe
observers can have rather different interpretations of lo
physics, as happens in the membrane paradigm for b
holes @2,14,15#. Then for a given observer one can alwa
arrange events to be consistent with the observer’s prefe
arrow of time. One only runs into trouble if one tries
consider many observers, who all choose a preferred t
direction. But such considerations are against the notion
observer complementarity, which forbids simultaneous c
sideration of observers on opposite sides of an event hori

D. The L\0 limit

An interesting limit of de Sitter space is the limit in whic
the cosmological constant is sent to zero, so that space
locally becomes Minkowski space. This limit has to b
treated with care; the quantities of interest should v
smoothly asL→0. For elliptic de Sitter space, theL→0
limit seems sensible. The causal properties of theZ2 quotient
space for any finiteL are similar to those of Minkowsk
space, in the sense that every observer who waits l
enough has the chance to observe~and emit signals to! any
event in spacetime, just as in Minkowski space. The m
difference is that elliptic de Sitter space is not time orie
able. However, as the cosmological constant goes to zero
difference disappears to the null boundaries.

Now, if elliptic de Sitter space goes to Minkowski spa
in this limit, it seems to imply that global de Sitter spac
being its twofold cover, in fact goes totwo copies of
Minkowski space, where the second copy is the CPT con
gate of the first. The significance of these remarks will
more clear once we discuss the de Sitter analogue of aS
matrix which, we will argue, exists in elliptic de Sitter spa
but does not appear to exist in global de Sitter space.

IV. QUANTUM FIELDS IN ELLIPTIC de SITTER SPACE

In this section, we study the quantization properties o
scalar field propagating in elliptic de Sitter space. Some
pects of the quantum field theory of a free scalar field
elliptic de Sitter space have previously been discussed
@16,17#.3

Elliptic de Sitter space is not simply connected; there
closed spacelike curves going from a point to the antipo
point that are noncontractible. Therefore tensor fields on
liptic de Sitter space can be sections of a twisted bundle o
spacetime. Since the first homotopy group isp1(dSn /Z2)
5Z2 , we can essentially choose a sign for the phase o
tensor field as the field is carried around a noncontract
loop. Consider then a complex scalar field. We can cho
either periodic or antiperiodic boundary conditions. If w

3After this work had been posted, a paper@18# related to this
section appeared on the archive.
5-6
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choose periodic conditions, the condition a complex fi
must satisfy takes the form

F6~ x̄!56F6* ~x!, ~20!

wherex̄ denotes the antipodal point tox, and the subscript6
indicates whether we have chosen periodic or antiperio
boundary conditions. If we writeF6(x)5F1(x)1 iF2(x),
then the real and imaginary parts have periodic~antiperiodic!
and antiperiodic ~periodic! boundary conditions, respec
tively, for the plus~minus! subscript.

Globally, one can expand a scalar field in terms of ‘‘E
clidean’’ modes. These are field configurations that sat
the wave equation, with boundary conditions that are s
that the modes can be analytically continued from the sph
cal harmonics on a sphere. A property of the Euclide
modes is that they can be chosen to obey

fn
E~ x̄!5fn

E* ~x!, ~21!

and we will assume that our modes satisfy this conditi
Normally, one expands the field in terms of its modes as

F6~x!5(
n

@an,6fn
E~x!1an,6

† fn
E* ~x!#. ~22!

In elliptic de Sitter space, however, the field must additio
ally obey the periodicity condition Eq.~20!. This implies that

an,6
† 56an,6 , ~23!

indicating that the global quantization scheme breaks do
As a result, a global Fock space no longer exists; any
ation operator acting on a vacuum state would annihilate
Intuitively, this happens because the identified spacetim
not time orientable. Creation and annihilation operators c
ate and destroy quanta of positive energy, but if the spa
time is not time orientable positive energy cannot be defi
globally. For essentially the same reason, the inner prod
of modes over a spatial sliceS through elliptic de Sitter
space always gives zero. This is because the Klein-Gor
inner product

~fm ,fn!52 i E
S
~fm] tfn* 2fn* ] tfm! ~24!

vanishes as a consequence of the flipping of the directio
time.

The vanishing of the norm and the lack of a nontriv
Fock space may seem like serious afflictions, but actuall
elliptic de Sitter space it is more natural to build a Fo
space with oscillators defined on a static patch. To see
note that under the antipodal identification Cauchy surfa
for the static patch constitute Cauchy surfaces for the wh
space, as shown in Fig. 3. Consider the static patch ass
ated with an observer at the south pole, region I in Fig. 3
this region there is a well-defined direction of time~except
precisely at the horizon! and Fock space operatorsav

(†)I can
consequently be defined. The vacuum is then defined in
usual way,
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and a Fock space can be constructed. The antipodal
identifies

av
I~ II !↔av

†II~ I! , ~26!

i.e., creation~annihilation! operators in region I are identifie
with annihilation ~creation! operators in region II; cf. Eq.
~23!. It would be interesting to work out the behavior o
higher spin fields and, in particular, fermions in elliptic d
Sitter space.

Different observers are related by Bogoliubov transform
tions. These are invertible, mapping pure states onto p
states. We expect no de Sitter–invariant pure states; in
ticular the vacuum state is not invariant, as is obvious
considering observers that are antipodal to each other. T
are nevertheless de Sitter–invariant mixed states. Th
states correspond to de Sitter–invariant pure states in
global Fock space, traced over the modes behind the hori
In particular, there is a state that is observed as a ther
state by any observer moving along a timelike geode
x(t). To see this, consider a real scalar field on the identifi
spacetime, given in terms of a scalar field on the unidentifi
space as

F6~x!5
1

&
@F~x!6F~ x̄!#. ~27!

This field satisfies the condition Eq.~20! for a real field. The
Wightman function takes the form@17#

G6
0
„x~t!,x~t8!…5G0

„x~t!,x~t8!…6G0
„x~t!,x~t8!…,

~28!

where G0(x,x8) is the Euclidean Green’s function on th
unidentified de Sitter space. In obtaining this we have u
the fact thatG(x,x8)5G( x̄,x̄8), which holds because, unde
x→ x̄ andx8→ x̄8, the de Sitter–invariant quantityZ remains
unchanged, andG0(x,x8) is a function only ofZ(x,x8) ~see

FIG. 3. Penrose diagram of de Sitter space. Region I~II ! corre-
sponds to the static patch of an observer on the south~north! pole.
The solid lines indicate equal time slices in the static time; they
Cauchy surfaces for region I. The dotted lines are their antipo
images, and constitute Cauchy surfaces for region II. When a s
line is continued through the horizon, onto its antipodal image
constitutes a Cauchy surface for the whole space.
5-7
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Sec. II A! since the Wightman functions are de Sitter inva
ant. Assuming, without loss of generality, that the obser
remains static on the south pole,Z„x(t),x(t8)… is given in
terms of static coordinates by cosh@(t2t8)/R# whent is the
proper time. The Green’s function thus takes the form

G6„x~t!,x~t8!…5G0
„cosh@~t2t8!/R#…

6G0
„2cosh@~t2t8!/R#…. ~29!

This is a thermal Green’s function at a temperature 1/2pR.
So even though every observer in elliptic de Sitter space
complete information, one still has thermal states at the
Sitter temperature. This is because thermal emission of
ticles ~which can be viewed as quanta that have tunne
through the horizon! is a process which only requires half o
global de Sitter space@19–21#. Unlike the unidentified case
however, there is no frame for which this Green’s functi
corresponds to a pure vacuum state.

As discussed in@22–25#, there is a one-parameter fami
of de Sitter–invariant Green’s functions in unidentified
Sitter space, parametrized bya, with the Euclidean Green’s
function corresponding~in the parametrization of@26#! to
a50. The existence of such a family stems from the fact t
on de Sitter space one can add an antipodal source, a
saw in Sec. II A. The corresponding modes are related
Bogoliubov transformations:

fn
a~x!5coshafn

E~x!1sinhafn
E~ x̄!. ~30!

By Eq. ~21!, the new modes mix the old positive and neg
tive energy modes and therefore define a new, inequiva
vacuum. The a vacua ua&, called Mottola-Allen states
@26,27#, form a one-parameter family of de Sitter–invaria
vacua. Presumably, they correspond to~nonthermal! de
Sitter–invariant states on the elliptically identified spa
The a vacua have Green’s functions given by

Ga~x,x8!5^auF~x!F~x8!ua&. ~31!

Substituting the mode expansion and the Bogoliubov tra
formation for a field satisfying Eq.~20!, the a Wightman
function on the identified space takes the form@17#

G6
a ~x,x8!5e62aG6

0 ~x,x8!, ~32!

whereG6
0 (x,x8) is given by Eq.~28!, which corresponds to

a50. In elliptic de Sitter space the Green’s functions for t
differenta vacua differ by an overall normalization~ignoring
subtleties involvingi e prescriptions!. We regard the Mottola-
Allen states foraÞ0 as unphysical, since their Green’s fun
tions do not have the short-distance singularities that we
pect from Minkowski space. The Green’s function on ellip
de Sitter space has singularities on the light cone as we
on the light cone of the antipode, even fora50. The singu-
larities have equal strength but can have a relative plus
minus sign due to the double-valuedness of the phase.
06400
r

as
e
r-
d

t
we
y

-
nt

t

.

s-

x-

as

or

V. HOLOGRAPHY IN ELLIPTIC de SITTER SPACE

Now we turn to the theory on the boundary. An immedia
consequence of taking aZ2 quotient is that every observe
now has access to all of elliptic de Sitter space. Moreov
the antipodal identification implies that the spacetime n
has only a single spacelike boundary. Hence the hologra
dual theory is a Euclidean conformal field theory on asingle
sphere. In the spirit of the dS/CFT correspondence we s
consider first the general features of the holographic C
independent of the details of the theory. The discussion d
not need the corresponding bulk fields to be free; indeed
applies also to gravity. We will find that the holograph
properties of elliptic de Sitter space are very good, with s
isfying implications for observer complementarity, the ex
tence of anSmatrix, and a possible explanation of the finit
ness of the de Sitter entropy.

A. Holographic time evolution

Even though we do not know what the interior of qua
tum de Sitter space looks like, we can still say the followin
Classically, the past and future light cones of an obser
intersect the (D21)-dimensional spheres at asymptotic i
finity on (D22)-dimensional spheres. In fact, after identi
cation both light cones intersect thesamesphere. The polar
angle at which the light cones emanating from timeT ~at the
north pole! intersect theSD22 at I is given by

u~T!52 arctanS tanh
T

2D1
p

2
. ~33!

At T52` this is zero. AtT50, u5p/2, and atT5` it is
p. So by choosing anSD22 at a certain radius onI we are
basically taking the point of view of an observer who is
the middle of de Sitter space at a certain timeT. This is
holography at work: we do not need to go to the interior
de Sitter space to describe time evolution, we do it at
boundary. Even in quantum theory, since the metric near
boundary still looks like classical de Sitter space, and
have the SO(1,D) de Sitter group acting, we can use th
global time T to measure the distance from theI 6 to the
poles.

Now, time translations increase the distance with resp
to the north pole, and decrease the distance to the south
In fact, this is precisely what scale transformations do. To
this, map the north pole patch to flat Euclidean space,
similarly for a neighborhood of the south pole. Then t
transition function that glues the two together is the invers
xW→yW5xW /uxW u2, which is a conformal transformation. But no
note that scaling up inx is equivalent to scaling down iny,
exactly like time translations in the bulk.

That time evolution in the bulk leads to scale transform
tions in the boundary was already emphasized by Stromin
@7#. In planar coordinates covering, say, the causal past,
line element isds252dt21exp(22t/R)dx2, and it follows
that

t→tl, x→el/Rx, ~34!
5-8
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ELLIPTIC de SITTER SPACE:dS/Z2 PHYSICAL REVIEW D 67, 064005 ~2003!
is an isometry of the metric. Alternatively, one can use sta
coordinates in the upper or lower region of the Penrose
gram. The line element is

ds25~r 2/R221!dts
22

dr2

r 2/R221
1r 2dVD22

2 , ~35!

and the ‘‘Hamiltonian’’]/]ts is manifestly a Killing vector.
In fact, it generates the same isometry as Eq.~34!, as can be
seen by transforming tor 5uxW uexp(2t/R) and ts5t
11/2R ln(r2/R221). From the metric it is clear that this i
now a spacelike vector, as indeed it should be since it n
corresponds to dilations of the boundary sphere. We not
passing that there is, however, an important difference
tween the patches covered by these coordinates and el
de Sitter space: the boundary of the inflationary patch has
topology RD21, while elliptic de Sitter space hasSD21,
which contains an extra point.

This leads to a nice picture of how an observer wo
view the CFT. Consider an observer in elliptic de Sit
space. By means of de Sitter transformations, the world
of any inertial observer can be mapped to the time axis,
at the south pole. In the far past, such an observer wo
characterize the world by an in stateui&. As in conventional
CFT with radial quantization, we would like to assign incom
ing states to the origin. Here we choose the origin as
point where the observer’s worldline intersectsI 2. Corre-
spondingly, we associate an in state at the south pole of
boundary sphere. As time passes, the observer moves v
cally along the Penrose diagram. As we have seen this
responds to a dilation on the sphere. Finally, in the far futu
the observer describes the world by an out state^f u. This is
where the elliptic interpretation comes in: the out state
mapped to the antipodal point on the sameSD21 as the in
state; see Fig. 4. For an inertial observer, the out stat
inserted precisely at the extra point~the north pole! that
SD21 has compared withRD21. In a stereographic projectio
of the sphere to flat Euclidean space, the outgoing s
would be at infinity.

The corresponding situation on the boundary is depic
in Fig. 5. In conclusion, theZ2 identification implies that the
holographic CFT is simply a theory with conventional rad
quantization on an ordinary sphere. We will see, howev
that the Hermiticity conditions of the theory are somewh
unusual.

FIG. 4. In the far past, an observer at the south pole mi
describe the state of the world by an initial stateui& on I 2. This
evolves in time until it becomes a final state^f u on I 1. The antipo-
dal map relates this again to a state onI 2. In and out states are
therefore associated with a single surface, as in a conventional
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B. The existence of anS matrix and holography

Defining anS matrix for quantum gravity in global de
Sitter space is tricky. The problem is that, having defined
and out states on two disconnected surfaces (I 2 and I 1),
the only available pairing between them,CPT, is used
merely to define an inner product. Since in quantum grav
the spacetime between these two boundaries fluctuates,
does not seem to be another way to map states onI 2 to I 1.
Hence it is not obviously clear how to define anS matrix. If
we consider only the quantum field theory of matter~and
neglect back reactions! with the geometry fixed, then we ar
able to define anS matrix, but even then its matrix elemen
are not physically measurable, since no observer can d
mine the state at bothI 2 andI 1, even in the far future.

In elliptic de Sitter space the situation is different. Th
past and future asymptotic regions have been identified
initial and final states can be defined in the same asympt
region, where the fluctuations of the metric are set to zero
is useful to think about the initial and final states in terms
the asymptotic boundary conditions of various fields, inclu
ing the metric, in this single asymptotic region. As discuss
in the previous subsection, an observer positioned at
north pole will use the asymptotic data on the northern he
sphere to define the in state and the data on the sout
hemisphere to define the out state. First, to define an in
product one can use the canonical map from the north to
south pole which associates to a stateuC i& its CPTconjugate
state^C i u. Next, to define theS matrix one uses the com
bined asymptotic data provided in the in and out statesuC i&
and ^C f u as boundary conditions for the ‘‘functional inte
gral’’ over all fields in the bulk of the quantum de Sitte
space. This produces a number that can then be ident
with the S matrix element̂ C f uC i&.

We will now discuss how theseS matrix elements would
possibly be described in a holographic description of de
ter space. So let us suppose that elliptic de Sitter space
lows a holographic description in terms of a dual theo
which for concreteness we assume to be a conformal fi
theory. Since there is only one asymptotic region one is d
ing with a single Euclidean CFT living on a (D21),-sphere,
which one can think of as theSD21 at I 1 or I 2. In a CFT
states can be defined using radial quantization. They are
ated by the action of some~local! operator at the origin:

t

T.
FIG. 5. Radial quantization on anSD21. In states and out state

are at antipodal points. The Hamiltonian is the dilation opera
Each surface corresponding to constant time for the observer in
bulk is anSD22.
5-9
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u j &5Oj~0!uvac&, ~36!

where we have used the operator-state correspondence
stateuvac& is the ‘‘vacuum,’’ by which we mean not neces
sarily the state of lowest energy~since energy is harder t
define in de Sitter space!, but rather a de Sitter–invarian
state. Similarly, we can define a final state as

u j &5^vacuOj* ~`!. ~37!

Notice that this also involves complex conjugation, since
Z2 map includes charge conjugationC. Now we can define
an inner product via

^Oi* ~`!Oj~0!&XD21[d i j . ~38!

This pairing of an operator with itsCPT conjugate provides
an inner product in the sense of being a mapH3H→C that
is linear in one argument and antilinear in the other.

If indeed there is a CFT dual of~elliptic! de Sitter space
then, intuitively, one expects that interactions~and henceS
matrix elements! are encoded in the correlation function
and/or the operator product expansion. It is important to n
that a CFT by itself does not have anS matrix. Therefore,
instead of studying just the asymptotic states, let us cons
operator insertions at points other than the origin and infin
There are an infinite number of such operators since we
associate an operator with every point on the sphere. S
principle one could define an infinite set of in states by c
sidering strings of operators acting on the in vacuum,

uC i&5Oj 1
~x1!¯Oj n

~xn!uvac&, ~39!

and similarly for the out states.S matrix elements are the
expressed as correlation functions where part of the op
tors, those on the northern hemisphere, represent the in s
while the other operators on the southern hemisphere re
sent the out state. Note, however, that not all of these st
are independent, because there are operator product rela
For example, two operatorsOi and Oj inserted at different
points have an operator product relation of the form

Oi~xi !Oj~xj !5(
k

ci j
k

uxi2xj uD i1D j 2Dk
Ok~xj !. ~40!

Here the sum on the right hand side includes~quasi!primary
operators as well as their descendants. If one allows des
dants of arbitrary conformal dimension, then all operat
can be moved to one preferred point by simply using
Taylor expansion. One natural way to reduce the redunda
in the states is to consider only quasiprimary operators. N
that, since the conformal dimension of an operator co
sponds to the energy as seen by an observer in de S
space, it is physically reasonable to consider only opera
with conformal dimensions that are below a certain thre
old. The number of~quasi!primary fields below a certain
conformal dimension is finite. It is natural to conjecture th
this fact is related to the finiteness of the de Sitter entro
However, note that when one allows the operators to be
serted at arbitrary points on the sphere, this still gives
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infinite number of states. It may very well be that there a
additional requirements that one has to impose, but witho
more definite and concrete theoretical foundation one
only guess what these requirements could be.

The most specific proposal that we have for the de Si
‘‘ Smatrix’’ is that it is given by the overlap of the initial an
final states:

Sf i5^C f uC i&, ~41!

where bothuC i& and ^C f u are expressed as in Eq.~39! in
terms of ~quasi!primary operators with restricted conform
dimensions. Hence theS matrix elements are just given b
the correlation functions of the boundary conformal fie
theory. This proposal is truly holographic, since the corre
tion functions are computed in terms of the CFT at t
boundary.

C. Observer complementarity

How do different observers interpret theseS matrix ele-
ments? In fact, the same operator insertions at the boun
are interpreted differently by different observers in the bu
This is because the physical states defined above depen
the choice of origin. For any observer, the incoming sta
are those that correspond to insertions made on the h
sphere closest to the origin, while outgoing states are cre
by operator insertions in the hemisphere nearest to the a
pode of the origin, i.e., at infinity. Different observers ha
different origins so this leads to different interpretations o
given set of operator insertions. This is observer complem
tarity.

Consider, for example, the situation indicated in Fig. 6
south pole observer would describe this as pair annihilat
an electron and a positron come in, and annihilate to giv
photon. On the other hand, a north pole observer, being
tipodal to the south pole observer, would see the same ev
happening in a CPT mirror. In this case, it would describe

FIG. 6. Complementarity in action: the same correlation fun
tion as interpreted by an observer~a! at the south pole,~b! at the
north pole, and~c! at an intermediate point. The circle denotes t
sphere on which the dual theory lives, the dots are operator in
tions, the arrow indicates the observer’s direction of time, and
equator divides the in states from the out states. On the right are
corresponding processes in spacetime.
5-10
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CPT-conjugate process of pair creation: an incoming pho
decays into an electron and a positron. A different obser
in between these two poles would see yet another situa
for example, an incoming electron emitting a photon. A
these processes have the same amplitude.

D. A little group theory

A striking consequence of the preceding discussion
that, although theS matrix itself is de Sitter invariant, the in
states themselves are not. de Sitter transformations that
one observer into another generically transform in states
out states, and vice versa. Hence the asymptotic Hil
space does not decompose into irreducible representatio
the de Sitter group. This is important because there is a w
known theorem which states that~nontrivial! unitary repre-
sentations of noncompact groups must be infinite dim
sional. This theorem is in tension with the finiteness of the
Sitter entropy. If the de Sitter entropy enumerates the mic
scopic degrees of freedom underlying a quantum descrip
of de Sitter space, then we would expect it to form a~possi-
bly reducible! representation of some group. Were that gro
to be the noncompact de Sitter group O(1,D), then the ho-
lographic theory could not be unitary. For elliptic de Sitt
space, the entropy is presumably also given by
Bekenstein-Hawking formula:

S5
A

4
5

p~D21!/2RD22

4G„~D21!/2…
, ~42!

where the ‘‘area’’A is the volume of the horizon which i
now a (D22)-dimensional real projective sphereRPD22.
The important point here is that this is again finite. But as
saw, the states in elliptic de Sitter space do not transfo
under representations of the full de Sitter group. Instead, t
only transform under the subgroup that preserves
asymptotic position of an observer. Since asymptotically
observer is a point on a (D21)-dimensional sphere~and in
the future, a possibly different point on the same sphere!, the
relevant group is actually SO(D21). We propose that the
entropy of de Sitter space is related to representations of
compact group.

Another way to make the same point is as follows. T
Bekenstein-Hawking entropy refers to the area of a ho
graphic screen bounding a given region of spacetime. Fo
Sitter space, a horizon is actually the holographic screen
particular observer in the far future. But the screen access
to any single observer must furnish a representation of
little group of that observer. This is precisely the rotatio
group SO(D21).

A given physical state is therefore labeled by its conf
mal weight, its angular momenta, and the quantum numb
of any internal symmetries. Nevertheless it is still a gr
challenge to show that the number of such states is prec
exp(A/4). In principle, the conformal weights and angul
momenta could be arbitrarily high, leading to representati
that would be too big. One possibility might be to restrict t
maximum scaling dimension

D i<Dmax ~43!
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of any stateui&. Here the idea is that the scaling weight is t
eigenvalue of the CFT Hamiltonian, but we know that ene
in de Sitter space is bounded by the mass of the largest b
hole that can fit within the de Sitter horizon. This sugge
that we should only consider those states that have sca
dimension below some maximum.

E. Hermiticity

It is usually accepted that the holographic dual to de Si
space must be a nonunitary theory. The argument consi
fields propagating in the bulk spacetime. We can take
field to be a massive scalar field; higher spin fields are qu
tatively similar. In planar coordinates valid nearI 2, the line
element is

ds252dt21e22t/Rdxd
2, ~44!

and the scalar wave equation is

2] t
2f1

d

R
] tf1e2t/R¹2f2m2f50. ~45!

Near I 2, as t→2` the field asymptotically behaves lik
f(t,x);eh1t/Rf (x)1eh2t/Rg(x), where

h65
1

2
~d6Ad224m2R2!. ~46!

Notice that for sufficiently high mass this is complex.
terms of the boundary theory, there seem to be operators
complex scaling dimension in the CFT. This would sugg
that the theory contains states of negative norm. Let us
view the reasoning that leads to this conclusion.

Consider, first, three-dimensional de Sitter space. T
conformal field theory lives on a two-sphere, or the comp
plane. Recall that with radial quantization on the comp
plane, the in and out states are related by Belavin-Polyak
Zamolodchikov ~BPZ! conjugation, a purely analytic~or
purely antianalytic! map:

z→21/2. ~47!

The BPZ map takes the origin to complex infinity whi
preserving the upper half plane, allowing us to define a re
tion between bras and kets:

uf&5f~0,0!u0&→^0uf~`,`!5^fu[uf&†. ~48!

In other words, the BPZ map motivates the usual choice
Hermitian conjugation for the Virasoro generators:

Ln
†5L2n , L̄n

†5L̄2n . ~49!

A direct consequence of this is that primary fields with co
plex conformal weights lead to descendants with comp
norm:

iL21uh&i25^huL1L21uh&52h^huh&. ~50!

Thus a sufficiently massive scalar field in de Sitter spa
seems to lead to a nonunitary conformal field theory.
5-11
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Now consider the antipodal identification. We can expr
the line element in global coordinates as

ds252dt214R2 cosh2~ t/R!
dz dz̄

~11uzu2!2 . ~51!

The antipodal map is

t→2t, z→21/z̄, z̄→21/z. ~52!

Holomorphic and antiholomorphic coordinates are int
changed. Incoming states created by holomorphic fieldst
52` are taken to antiholomorphic final states att51`,
and vice versa. Hence

Ln
†5L2n , L̄n

†5L2n . ~53!

With this definition of Hermitian conjugation, certain stat
with complex conformal weights now have positive nor
Such a Hermiticity condition was also proposed in@28#.
Consider a primary field with complex conjugate weigh
h6 . Acting on the corresponding state withL2nL̄n gives a
state of the formuf&5L2nL̄2n . Its norm is

^fuf&5S 4n2uhu21
c2

144
~n32n!21

c

6
~n42n2!~h1h̄! D

3^h,h̄uh,h̄&, ~54!

which is real and positive, even thoughh may be complex.
The rule is that to have positive norm, the total level ofL and
L̄ must be the same. States for which the levels ofL andL̄ do
not match have zero norm. These include states
L21uh,h̄&, which would have had positive norm~for real h,
h̄) with the conventional definition of Hermitian conjugatio
However, linear combinations of zero norm states can
lead to states of negative norm. So there is still the dan
that the dual CFT is nonunitary.

We note, however, that nonunitarity in the spectrum
descendants of the CFT may not necessarily be a problem
its use as a dual for elliptic de Sitter space. This is beca
as we discussed above, states that have a physical mean
this context may have to satisfy additional requiremen
such as that they are quasiprimary. In this case, states
L2nL̄2nuh,h̄& are not physical states. For example, the f
thatL21 acting on a physical state does not lead to a phys
state could be a consequence of the fact that translation
the entire state of the universe are not represented in
Hilbert space of a single observer, since such translat
also change the location of the observer. If one consid
only the highest weight states~those created by quasiprimar
operators acting on the vacuum!, then there is no problem o
negative norm states. Note that restriction to the high
weight states reduces the number of states: it effectively s
tracts 1 from the total central charge. But since we exp
c@1 this does not change the counting of states significan

The generalization of this discussion to higher dimensi
is straightforward. Writing the de Sitter line element as
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ds252dt214R2 cosh2~ t/R!
dx2

~11r 2!2 , ~55!

wherer 25uxW u2, the antipodal map takes

t→2t, xi→2
xi

r 2 . ~56!

The conformal generators in higher dimensions areD, the
dilatation operator,Ka , the special conformal transforma
tions, as well as the rotationsJab and the translationsPa .
The antipodal map suggests that the Hermiticity proper
should be

D†5D, Jab
† 5Jab , Pa

†5Ka , Ka
†5Pa . ~57!

Once again, the translations and special conformal trans
mations do not preserve the set of physical states. The ph
cal states are labeled by the Hermitian operators which
labeled by the simultaneous eigenvalues ofD, Jab , and a
Cartan set of any internal symmetry group.

VI. ON A STRING REALIZATION

Our discussion of the elliptic interpretation of de Sitt
space and its holographic implementation has been ra
intuitive. Clearly, to make things more precise one need
concrete realization of these ideas in a working theory
quantum gravity, such as string theory~or perhaps loop grav-
ity @29#!. It has been surprisingly hard to find a realization
de Sitter space in string theory. One obstacle to a satisfac
string-theoretic description of de Sitter space is the lack
supersymmetry. Intuitively, de Sitter space cannot be su
symmetric because it is thermal; at finite temperature bos
and fermions have different statistics. More formally, there
no superalgebra that contains the de Sitter isometry gr
and is represented by Hermitian supercharges. The kn
superextensions of the de Sitter isometry group@30# involve
nonpositive quadratic forms and have no unitary represe
tions. This difficulty can be traced back to the fact that the
is no globally defined timelike Killing vector in de Sitte
space, and hence there is no positive-definite HamiltonianH.
This same non-positive-definite nature shows up in attem
to construct de Sitter space using timelikeT duality and/or
compactifications on noncompact Euclidean manifo
@31,32#. The resulting gauged supergravity theories allow
Sitter space as a solution but have ghosts, i.e., fields w
kinetic terms of the wrong sign.

The nature of these problems changes in elliptic de Si
space, mainly because it is not a time-orientable space
fact, we would like to believe that the only possible realiz
tion of de Sitter space in string theory is in its elliptic form
The failure to find a de Sitter solution in string theory m
well be that one should perhaps have been looking at st
backgrounds that are not time orientable. Clearly, time
orientability poses new challenges for string theory, and i
not immediately obvious how it can be defined consisten
@33#. In this respect, it is interesting that de Sitter space ar
in type IIB* string theory after a timelikeT duality, which
5-12
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can be thought of as a change of sign of the left-~or
right-!moving part of the worldsheet scalarX0 corresponding
to time. Hence, after aT duality it is as if the right~or left!
movers go forward in time, while the left~or right! movers
go backward in time. Perhaps this means that type II*
string theory has to be quantized in a different way so t
worldsheets and/or the spacetime background have to
time unorientable. This may change the problem with gho
like fields and perhaps solve it. We hope to report on t
issue in the future.

Now let us make some observations on the candidate
formal field theory dual of five-dimensional elliptic de Sitt
space as suggested by its realization in IIB* string theory.
Type IIB* theory can be thought of as arising through
timelike T duality of type IIA theory@31,32#. The low energy
limit of IIB * theory is IIB* supergravity which has Dirichle
brane solutions that have purely spatial extent; they
called Ep-branes when their worldvolume isp dimensional.
Following Hull we consider the near-horizon geometry o
stack ofN E4-branes, which are the Euclidean analogues
the D3-branes of type IIB theory. The metric resembles t
of the D3-brane,

ds25H21/2~r!dxi
21H1/2~r!dx'

2 , ~58!

whereH(r) is the usual harmonic function,

H~r!511
4pa82gN

R4 , ~59!

except that, because the branes are Euclidean, the trans
‘‘radius’’ also includes time:

r25x'
2 5xW22t2. ~60!

The horizon is atr50. Now we would like to take the near
horizon limit. Sincer depends on time, there are two wa
we can approach the horizon, wherer is timelike and where
r is spacelike. For spaceliker the transverse geometry is

dx'
2 52dt21dxW25dr21r2dsdS5

2 , ~61!

wheredsdS5

2 is the line element of five-dimensional de Sitt

space. For timeliker we get instead

dx'
2 52dr21r2dsH5

2 , ~62!

whereH5 is the five-dimensional hyperbolic~Lobachevsky!
plane ~i.e., Euclidean anti–de Sitter space!. In the near-
horizon limit we drop the 1 inH(r) to obtain, for spacelike
r,

ds2S A4pa82gN
dr2

r2 1
r2

A4pa82gN
dxi

2D
1A4pa82gNdsdS5

2 . ~63!

The geometry is therefore locally that ofH53dS5 . For time-
like r we obtain
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ds2S A4pa82gN
2dr2

r2 1
r2

A4pa82gN
dxi

2D
1A4pa82gNdsH5

2 . ~64!

This too isdS53H5. So again we get the same local geom
etry. However, there are some important differences betw
the two. For spaceliker, the branes are part ofH5, and de
Sitter space is part of the transverse space; that is not w
we want. For timeliker, the branes are part of de Sitter spa
andH5 is transverse. So we should chooser to be timelike.
The E4-branes are now on the boundary of de Sitter spac
I. But now note that there are two disconnected branc
because in foliating Minkowski space into spacelike slic
~which corresponds to timeliker! one can havet.0 or t
,0. In order to have a connected geometry, we should re
identify these two branches by making aZ2 identification. In
that case the metric that we just described must be mod
out by aZ2 that mapst→2t. Since the line element on d
Sitter space in Eq.~64! covers one inflationary patch, a
identification oft and2t suggests that the near-horizon g
ometry becomesedS53H5. A Z2 identification of the trans-
verse geometry implies that the E4-branes are on aT orien-
tifold, the purely spatial counterpart of a convention
orientifold. Indeed, elliptic de Sitter space is the analy
continuation of theRP5 that arises~instead of anS5) in the
transverse geometry of D3-branes on an orientifold plane

The theory on the worldvolume of the E4-brane is Eucl
ean N54 Super Yang-Mills~SYM! theory. This theory is
obtained fromN51 SYM theory in D5911 by dimen-
sional reduction, where one of the compactification dire
tions is time. So one of the six scalars in the E4 worldvolu
theory comes from the timelike component of th
(911)-dimensional gauge field. This becomes a scalar w
the wrong sign kinetic operator, and therefore we are dea
with a conformal field theory with a ghost. In fact, there a
several reasons to expect such ghost fields to be presen
CFT dual to de Sitter space. First, the six scalars form
vector (f0 ,fW ) of the SO~1,5! R symmetry of the Euclidean
theory; invariance under theR symmetry already implies tha
one scalar has the wrong sign kinetic term. A second rea
is the following.

Just as in AdS/CFT correspondence one expects the h
graphic direction to correspond to the renormalization gro
~RG! scale of the dual field theory. But unlike in AdS/CF
correspondence, the holographic direction is timelike in
Sitter space. This timelike nature of the RG scale is direc
related to the presence of the ghost scalar; namely, the en
scalem of the theory can be defined in terms of the values
the scalar fields as

^fW 22f0
2&56m2. ~65!

Let us now fix the energy scalem. The scalar fields are the
restricted to a five-dimensional scalar manifold. Here
have a choice: for the2 sign the resulting scalar manifold i
the Lobachevsky plane, while for the1 sign it is de Sitter
space. If we take the1 sign thef0 field still has fluctuations
5-13
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with the wrong sign. However, if we take the2 sign, all the
fluctuations of the scalar field have the correct sign in th
kinetic terms.

The parameterm becomes the renormalization grou
scale, and in fact is the same as the holographic time c
dinater: together with the four Euclidean coordinates on t
E4-brane, it leads to de Sitter space. As we noted, the sc
manifold has two disconnected branches, correspondin
f0.0 andf0,0. Now here there is a difference betwe
U(N) and SO(N) SYM theory. In the latter case one can u
the gauge symmetry to mapf to 2f. This identifies the two
branches of the scalar manifold. A SO(N) gauge group arise
if we put N coincident E4-branes on top of aT-orientifold
plane. This is precisely what we argued for earlier. In
near-horizon limit we get antipodally identified de Sitt
space. So finally we come to the following conjecture: t
large-N limit of SO(N) SYM theory, with conformal group
SO~1,5! and R-symmetry group SO~1, 5!, in the phase de-
scribed by the2 sign in the scalar equation, is the hol
graphic dual ofedS53H5, or elliptic de Sitter space times
hyperbolic five-plane. There is now only one boundary,
S4, and that is the boundary on which the CFT lives.

VII. CONCLUSION

In this paper we studied de Sitter space in its elliptic
terpretation with antipodal points identified. We discuss
several conceptual issues in the context of the elliptic in
pretation, especially questions regarding holography and
definition of anS matrix. Our conclusions support the vie
that the antipodal identification does make sense and in
may even be required to arrive at a consistent descriptio
de Sitter quantum gravity. The arguments presented in fa
of the antipodal identification range from suggestive to rat
compelling; they are not yet sufficient to claim that antipod
identification is the only way to view quantum de Sitt
space.

From our point of view the most convincing argumen
supporting the elliptic de Sitter space are~a! the implemen-
tation of observer complementarity: all observers have co
um

’’

e-
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plete information, but have different interpretations, and~b!
the realization of holography: for every observer time evo
tion and theS matrix are naturally described in terms of
dual theory on a single boundary. The most serious challe
to elliptic de Sitter space is the issue of possible closed tim
like curves after including the back reaction. Once gravi
tional back reaction is taken into account, the Penrose
gram of perturbed de Sitter space becomes a ‘‘tall’’ rectan
@34,35#. This implies that certain antipodal points come in
causal contact. The resulting closed timelike curves are c
tained in the bulk of de Sitter space, and therefore it is
immediately obvious how it would affect the theory on th
boundary. One point of view is that the perturbation of
Sitter space should be described by an appropriately
turbed CFT, for which the holographic reconstruction brea
down at some point in the bulk. The prescriptions for t
time evolution of a single observer and for his/her observa
Smatrix are, however, defined purely in terms of the boun
ary and could still make sense. Clearly this issue needs
ther study.

Finally, the most pressing open issue is whether one
find a consistent description of de Sitter space in str
theory, or perhaps in some other working theory of quant
gravity. There are many reasons to believe that such a
scription would be holographic and will incorporate a ve
sion of observer complementarity. We are hopeful that
ideas presented in this paper will then be fully realized
some form.
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