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Gravitational leakage into extra dimensions: Probing dark energy using local gravity
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The braneworld model of Dvali, Gabadadze, and PofExBP) is a theory where gravity is modified at large
distances by the arrested leakage of gravitons off our four-dimensional universe. Cosmology in this model has
been shown to support both “conventional” and exotic explanations of the dark energy responsible for today’s
cosmic acceleration. We present new results for the gravitational field of a clustered matter source on the
background of an accelerating universe in DGP braneworld gravity, and articulate how these results differ from
those of general relativity. In particular, we show that orbits nearby a mass source suffer a universal anomalous
precession as large as5 uas/year, dependent only on the graviton's effective linewidth and the global
geometry of the full, five-dimensional universe. Thus, this theory offers a local gravity correction sensitive to
factors that dictate cosmological history.
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[. INTRODUCTION to distances much smaller thag, the distance at which the
extra dimension is naively hidden. That departure is well
The gravity theory of Dvali, Gabadadze, and Porraticharacterized and provides a possible signature for the exis-
(DGP) is a braneworld theory with a metastable four-tence of extra dimensions.
dimensional gravitoj1]. The graviton is pinned to a four-  There is, however, a catch. The cosmological solutions
dimensional braneworld by intrinsic curvature terms inducedhat drive interest in DGP gravity indicate that should be
by quantum matter fluctuations; but as it propagates oveg|ose to today’'s Hubble radius. Localized matter sources are
large distances, the graviton eventually evaporates off thgmpedded in a cosmological spacetime. Far enough away
brane into an infinite volume, five-dimensional Minkowski fom a given source, the motion of observers and test par-
bulk. There exists a single free parameter in the DGP brangjc|es is dominated by the cosmology, rather than the gravity,
world gravity, the crossover scaig. This scale dictates that ¢ he matter source. However,rif is today’s Hubble radius,
distance below which gravity is controlled by brane effectshan the distance away from a source at which cosmology
but larger than which gravity assumes a five-dimensional begominates the metric is alsq . So, the DGP departure from
havior. As a result, the DGP braneworld theory is a model ingjngtein gravity that was calculated in a static Minkowski
a class of theories in which gravity deviates from CONVeNyackground is only significant on length scales where the

tional Einstein gravity not at short distanc@s in more fa-  pacyaround cannot actually be approximated as Minkowski.
miliar braneworld theorigs but rather at long distances. g cajculations need to be refined if we are to have the
Such a model has both intriguing phenomenologi2a] as ., rrect new physics signature.

well as cosmological consequendes-10. A braneworld The subject of this paper is to look at corrections to Ein-

model of the sort where gravity is modified at extremely g¢oin gravity for the DGP braneworld theory in a cosmologi-
large scales is motivated by the desire _to ascertain how oy, background.We begin by laying out the necessary de-
understanding of cosmology may be refined by the presencgis of the model as well as the particular background of

of extra dimensions. Indeed, there exist novel cosmologies ithiarest. We then solve for the metric of a spherically sym-
this theory that provide an alternative explanation of the COSmetric, static matter source in that background. We indeed

mic dark energy4]. _ _find that the corrections to Einstein are sensitive to the back-

DGP theory[11], especially for static sourc§d2-19, is &  cogmpological flow is ostensibly irrelevant. We discuss pos-

subtle effect. Even though gravity is four-dimensional at dis-gjp e tests for the detection of new physics at astronomical
tances less thany, it is not always Einstein gravity. For a

X ) S scales and suggest that it is possible for such tests of local
point source whose Schwarzschild radiusgs general rela-  gravity to reveal information about global features of the full
tivity is only recovered for distances shorter than five-dimensional cosmology, and ultimately shed light on the
TN nature of dark energy and today’s cosmic expansion.
re=(rorg)™"~ (1.2

For distances larger than , gravity is four-dimensional lin- 1114 work in this paper, as well as that in Refé2—14, ad-
earized Brans-Dicke gravity, with a parameier 0. Thus, &  gresses issues similar to those studied in Rdf,17). Our results
marked departure from conventional physics continues dowgjtter from those in the latter work because we are only concerned
with solutions that asymptotically approach well-behaved, familiar
solutions(e.g., Minkowski space or de Sitter expangidar away
*Email address: lue@bifur.cwru.edu from the matter source, including far away from the source in the
"Email address: starkman@balin.cwru.edu direction into the bulk.
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Il. PRELIMINARIES might have on the observability of corrections to Einstein
gravity. We restrict ourselves to a background de Sitter cos-
mology. Not only is such a background the simplest and
Consider a braneworld theory of gravity with an infinite- most convenient, but observations suggest that we are cur-
volume bulk and a metastable brane gravifdh We take a  rently undergoing de Sitter—like cosmic acceleration. If the
four-dimensional braneworld embedded in a five-Hubble scale of such an acceleration is varying slowly, the
dimensional Minkowski spacetime. The bulk is empty; en-results obtained here would apply. They will also shed light
ergy momentum is isolated on the brane. The action is  on the technical van Dam—Veltman—Zakharov problem and
how one recovers Einstein gravity in a de Sitter background.
Ss)="— —M f d5x\/_R+f d4x\/$—5£ +Say. Ur_lder this circumstance of a static spheric_al source in a
de Sitter background, one can choose a coordinate system in
(2.1)  which the cosmological metric is statice., has a timelike
Killing vector) while still respecting the spherical symmetry
of the matter source. Let the line element be

A. The model

The quantityM is the fundamental five-dimensional Planck
scale. The first term in Ed2.1) corresponds to the Einstein-

Hilbert action in five dimensions for a five-dimensional met- ds®=N2(r,z)dt>*— A?(r,z)dr>—B?(r,z2)
ric gag (bulk metrig with Ricci scalarR. The termSgy is ]
the Gibbons-Hawking action. In addition, we consider an X[d6*+sinfod¢?]—dz>. (2.6)
intrinsic curvature term which is generally induced by radia-
tive corrections by the matter density on the brahe This is the most general static metric with spherical symme-
try on the brane. The bulk Einstein tensor for this metric is
- —M J d*xy/—g™R®, 2.2 L
(2.2 1 2B" A'B' B’2 A 2B
T8 Al B ‘AB g| |ATB
Here,Mp is the observed four-dimensional Planck sdakee
[1-3] for detail9. Similarly, Eq.(2.2) is the Einstein-Hilbert AB B2
action for the induced metrig(;?) on the braneR™ being its yom — 4 2|
scalar curvature. The induced metrié is AB 2
(4)— A B . .. .

Gy = 9uX"0.X"Gne. 23 1o we B?| [N 28 NB B2
whereXA(x*) represents the coordinates of an event on the ' B° A?| "N B B2 [N' B “NB pg?
brane labeled by*. The action given by Eq$2.1) and(2.2)
leads to the following equations of motion: it 1IN B” N' A’ N' B A B

"G TR NTBE NA NB AB

1 @) 8
5—Gagt o(brangGLz= WTAB|branev (2.9
P

2rg N+A+B+NA+NB+AB} .
where G, is the bulk Einstein tensoG43 is the intrinsic N A B NA NB AB
brane Einstein tensor, antag|pane IS the matter energy-
momentum tensor on the brane, and we have definedacross- , 1 1N’ 2B" N'A" N’ B’
over scale "B ANTBE NANE
2 .o .. .
roz_MPS_ 2.5 A B’+B’2 NA NB A B+Bz
2M AB B |[NATNBTAB R
This scale characterizes that distance over which metric fluc-
tuations propagating on the brane dissipate into the Hilk N’ 2B’| A/N’' 2B’
"IN "B +K(W+?)

B. Field equations

We are interested in finding the metric for static, compact,The prime denotes partial differentiation with respect to
spherical sources. We are interested in looking at these soluvhereas the dot represents partial differentiation with respect
tions in a cosmological background rather than a Minkowskito z.
background[13,14 to ascertain what affects cosmology = We wish to solve the five-dimensional field equations, Eq.

(2.4). This implies that all components of the Einstein tensor,
Eqgs.(2.7), vanish in the bulk but satisfy the following modi-

2Throughout this paper, we us&,B, ...={0,1,2,3,3 as bulk fied boundary relationships on the brane. Fixing the residual
indices, u,v, ...={0,1,2,3 as brane spacetime indices, and gaugeB|,_o=r, when z=0 and imposingZ, symmetry
i,j,...={1,2,3 as brane spatial indices. across the brane
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A 2B g 2 A 1 , 87, I1l. SPACETIME GEOMETRY
“\atB/” AZ ot A Trz-A N+ M2 p(1), We have chosen a coordinate system, @cf), in which
a compact spherical matter source may have a static metric,
. . . , yet still exist within a background cosmology that is non-
_(EJF @) _ r_O E N_+ i(l—Az)} _ 87Tr0p(r) trivial (i.e., de Sitter expansignLet us treat the matter dis-
N B/ A*r N r° M5 ’ tribution to be that required for the background cosmology,
(2.8 Egs. (2.12,(2.13, and add to that a compact spherically
symmetric matter source, located on the brane around the
N+A+B ro[N” N A’ 1(Nr Ar” origin (r=0,z=0),
Nt =t o= —+ S —— — _
NoACBL AN NA TR A Telbrans= (2)diad pg(r)+ pr, = Py(r) + prt, —Py(F) + pa,
8mr
MZOp(r)1 _pg(r)+pH70]1 (31)
P

from Gy, G,,, andGy,, respectively.

C. Background cosmology

wherepgy(r) is some given function of interest apg(r) is
chosen to ensure the matter distribution and metric are static.
We are interested only in weak matter sourceg(r).
Moreover, we are most interested in those parts of spacetime
where deviations of the metric from Minkowski are small.

The de Sitter solution with Hubble scal¢ has the fol- Then, it is convenient to define the functions
lowing metric components: {n(r,2),a(r,z),b(r,z)} such that
N(r,z)=(1FH|z])(1-H?r?)*? (2.9 N(r,Z)=1+n(r,2), 3.2
A(r,z)=(1FH|z|)(1—H?r?)" 12 (2.10 A(r,z)=1+a(r,z), (3.3
B(r,z)=(1FH|z|)r. (2.11) B(r,z)=r[1+b(r,z)]. (3.4

The brane energy-momentum tensor required for a give

Hubble parameter is

with

T8l prane= 8(2)diag pry, — P, — P, — P ,0), (2.12)

3M2H

PH=—pH=m(foHil)- (213

e may rewrite Eqs(2.7) and (2.8 using the functions
n(r,z),a(r,z),b(r,z)}.

In order to determine the metric on the brane, we will
implement the approximation

(3.5

h|Z:O: IH,

even in the presence of a compact matter source. Equation
(3.5 presumes that the contributionnd,_, from the matter
source is negligible compared to other terms in the brane
boundary conditions, Eq$2.8). With this one specification a

For physical reasons, we restrict ourselves to both noncomplete set of equations,zreprese.nted by the brane boundary
negativepy as well as non-negativid. Under these circum- conditions Eqs(2.8) andG;=0, exists on the brane so that

stances, one can see thdesr,

-1

phase. One can show that the solution equatigréi—(2.13 ! - VA Y ,
correspond to a coordinate transformation of the de Sittefnd the full bulk metric in detail in the Appendix.

solution in homogeneous cosmological coordinates found in The brane boundary conditions, E¢8.8), now take the
Ref. [4].

in the self-accelerating the metric functions may be solved on that surface without

reference to the bulk. We justify this assumption by examin-

form

2a’

2a
v

r
— + g RU(r) +3H(rgH£1),

r2

3 o —(a+2b)=r,
The upper and lower signs in Eq2.9)—(2.11) correspond to the I
two distinct cosmological phases that may exist for this thé¢dty
The upper sign corresponds to the choice of Friedmann-tesnai
Robertson-WalkefFLRW) cosmological phase, where a bulk ob-
server views the braneworld as a relativistically expanding bubble
from the interior; the lower sign corresponds to the self-accelerating - , ,
cosmological phase, where the bulk observer views the braneworld _ (é+ b) =ro|n"+ n_ _ a_
as a relativistically expanding bubble from the exterfdr10]. L r r
These phases are vastly different geometrically and may have dras-

tically different cosmological histories. We use this sign conventionwhere we have defined an effective Schwarzschild radius
throughout the paper. Ry(r) for the matter source inside a given distamce

(2n’ 2a

—-= (3.6

—2b=r, +H(3ryH=*2),

+H(3rgH=2),
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R—SWfrd 2 3 —Rgl S 1H22 3.1
VS rrpg(r), (3.7 a=5 [1-a(n]+5H7? (3.19

and where we have neglected second-order contributions Where we have defined the quantifyr) such that
cluding those from the pressure necessary to keep the source >

: ; : 3r3 8rgR
statig. Covariant conservation of the source on the brane (r) (1%2rH) 142070

1

-1
allows one to ascertain the source presqufe given the 4r§Rg 9r3 (1%2ryH)?
source density(r): (3.195

. . -1
Py’ =—N'pg. (3.899  These expressions are valid on the brane wheng,H"™".

In both expressions, the first term represent the usual

One can show that th&,, component of the bulk is identi- Schwarzschild contribution with a correction governed by
cally zero on the brane when covariant conservation of th@(r) resulting from brane dynamics, whereas the second
matter source and the brane boundary conditions, @@,  €rm represents the leading cosmological contribution. Let us
are satisfied. This observation is a restatement of one of théy to understand the character of the corrections.
Bianchi identities.

From the brane boundary conditions E¢3.6), one may IV. GRAVITATIONAL REGIMES

eliminatea andb, and arrive at an equation which may be  There are important asymptotic limits of physical rel-
integrated imediately with respect to thecoordinate. The oy ance for the metric on the brane E8.13,(3.14. We

result yields have two system parameters, the crossover sgasnd the
cosmological horizon radiugd ~*, and we wish to under-

(3.9 stand how spacetime geometry differs when each is much
larger than the other, as well as when they are the same order
of magnitude.

where we have imposed a boundary condition requiring that Whenr,H<1, we recover familiar results for a compact

the metric not be singular at the origin. Applying E§3.9)  source in a Minkowski background3,14. The de Sitter

and(3.6) to the G,, component of the bulk metric, one can background becomes irrelevant at scales . A character-

again arrive at an equation that is dependent only on varistic distance (5Ry)"* demarks an Einstein phase close to

ables on the brane itself which is integrable with respect tqnhe source from a Brans-Dicken 0) phase farther away.
ther coordinate. Defining the quantity

1
2.1 32
r<n +ra+2r H —Rg,

R 24 A. Einstein phase
f(r)y=rm’— 2_? + o (2roH=1), (3.10 Cosmological effects become important to the metric Egs.
0 (3.13,(3.149 whenrgH~1 or roH>1. Typically, we are
concerned with the details of the metric when the influence
of a given compact matter source dominates the local geom-

etry. The competition between the leading Schwarzschild

the integral of the equatiorns,,=0 on the brane yields

2
Aﬂfzﬂf(:ﬁ 2r0H)—[ERg+r3 2H2i3_H> =0, term, ~R,/r, versus the leading cosmological contribution,
r 2 2rg ~H?2r2, implies that when
(3.1
Rg 1/3
where we have applied a second spatial boundary condition r<(gz) ) 4.7

requiring that the metric not have spurious cusps at the ori-

gin. Equation(3.11) has two solutions fof(r). We selectthe the |ocal source dominates the metric over the contributions
solution that matches onto the proper background de Sittefom the cosmological flow. In this region, Eq8.13,(3.14)

behavior for large. Then, reduce to
f(1)= | (3= 2rgH) +3(12210H s N 4.2
(r)_8_rg (3£2rgH)+3(1%2rpH) n=—5 = 22 (4.2)
BTSRg(r) 1 R R.r
g — g
X \/” o (Lzarn 312 =507 \ gz 43
Substituting this back into Eq3.10 and Eq.(3.9), we may  Npotice that, indeed, there is no explicit dependence on the
articulate expressions far(r) anda(r), parameter governing cosmological expansiénHowever,
R the sign of the correction to the Schwarzschild solution is
r—_9 _ 2.2 dependent on the global properties of the cosmological
M=% [1+6(r)]=H, (313 phase. The FLRW phase has a potential steeper than Einstein
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gravity, whereas the self-accelerating phase has a potentin) forces. This latter may be encoded by the effective
shallower than Einstein gravity. Thus, we may ascertain inBrans-Dicke parameter, E¢4.6).

formation about bulk, five-dimensional cosmological behav-

ior from testing details of the metric where naively one V. PHYSICAL CONSIDERATIONS

would not expect cosmological contributions to be impor-
tant. Indeed, for example, one can use local gravity tests to
distinguish whether some local brane vacuum energy or self- It is useful to review the constraints on the crossover scale
acceleration is the cause of today’s cosmic accelerated exy. The constraint may be written as a constraint on the
pansion. fundamental Planck scale:

A. Constraints onrg

B. Weak brane phase 10 2 eV=M=<1 GeV. (5.1
Even when the cosmological flow dominates the metric|f M is too small, quantum gravity effects become important
one can still examine the perturbed effect a matter source hag short distances. The lower bound is provided by con-
in this region. Wherr»(RgH*Z)m, while still in a region  straints from millimeter tests of Newtonian gravity and other
well within the cosmological horizonr&H 1), constraints coming from loss of energy into the extra dimen-
sion[3]. Cosmology provides the upper bound fdr If M is

_ Ry 14 1 3 EHZ ) 44 00 large, the crossover scale becomes too small to account
=T 3(1+2rgH)| 2 ' 49 for the relationship between the observed Hubble scale and
the independently measured matter deng#y6]. These
R 1 1 bounds on the fundamental Planck scale correspond to
a=—2|1— ——————|+ —H%2 (4.5
2r 3(1+2rH)| 2 1 Gpcsry=10* Gpc. (5.2

This is the direct analog of the weak-brane phase one finddn even more stringent case applies to the self-accelerating
for compact sources in Minkowski space. The residual effeccosmological phase. In this phase, the Hubble scale is
of the matter source is a linearized scalar-tensor gravity wittbounded from belowH(t)>r !, where at late times, the

Brans-Dicke parameter universe is de Sitter anbl—>r51. If one goes further and
postulates that the current cosmic acceleration is caused en-
w=7*3rgH. (4.6 tirely by this late-time self-acceleration, then, using con-

straints from type 1A supernov4é], the best fit forrg is
Notice that asroH—0o°, we recover the Einstein solution,
corroborating results found for linearized cosmological per- ro=1.2190H, ', (5.3
turbations [18,19. Moreover, note that in the self- i , )
accelerating cosmological phase, the scalar componedfnere le IS 71todays Hubble scale. TakingH,
couples repulsively, though recall from E@.13 thatH  ~/0 kms “Mpc™7,

71 . -
=r, " in this phase. ~
0 . .
=To ro~5 Gpc (5.4

C. The picture We are particularly interested in this possibility and in this

. section take y to have this value.
One can consolidate these results and show from Egs. 0

3.13—(3.15), that there exists a scale, o .
(313-(3.19 B. Gravitational lensing

2 U3
roRg

(1=x2rgH)?

@7 The lensing of light by a compact matter source with met-
' : ric equations(3.13,(3.14 may be computed in the usual
way. The angle of deflection of a massless test particle is

inside of which the metric is dominated by Einstein but hasgiven by
corrections which depend on the global cosmological phase,

M

i.e., Egs.(4.2),(4.3). Outside this radiugbut at distances A dri A 55
much smaller than both the crossover sageind the cos- b= r2 E2 32’ '
mological horizonH %) the metric is weak brane and re- NEa

sembles a scalar-tensor gravity in the background of a de

Sitter expansion, I.€., Eq(;4.4),(4.5). o where E=N?dt/d\ andJ=r?d¢/d\ are constants of mo-
The picture one develops is that the metric is a scalar-. . . X . : .

, . : tion resulting from the isometries, amth is the differential

tensor, but with a radially dependent coupling of the scalar tg

matter. As one gets closer to a soufes gravity gets stron- affine parameter. Then for any metric respecting the condi-

gen, the scalar coupling gets suppressed. There are two bastllcc:)n Eq. (3.9, the angle of deflection is

tests that we can pose. First, small corrections to the New- ,
tonian potential using Eq4.2) and second, comparison of A¢=7T+2bf me
the ratio of the gravitomagnetic to gravitoelecttNdewton- b

Ry(r)—H?r¥2

r2Jr?—p? '

(5.6
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0.5 , I , I , I - crepancies of roughly 5-8 %. X-ray or Sunyaev-Zeldovich
- . (S2) measurements are poised to map the Newtonian poten-

0.4 self-accelerating ~ — tial of the galaxy clusters, whereas weak lensing measure-
L _ ments can directly measure the cluster mass profile. Unfor-

03l | tunately, these measurements are far from achieving the

desired precisions. If one can extend mass measurements to
distances on the order @f, Fig. 1 suggests discrepancies

< N b can be as large as 10% for the FLRW phase or even 50%
© 0 i for the self-accelerating phase.
0.1 .
i i C. Orbit precession
o= _
| | Imagine a body orbiting a mass source whBgr)=r g
Sy FLAW =const. The perihelion precession per orbit may be deter-
L i N mined in the usual way
-0.2 1 | 1 | 1 | L J AN
0 05 1 15 2 A¢>=f drs , 5.9
e 2, )1/3 r JZ
0 g 2 2
E“—N- 1+ 2

FIG. 1. Mass discrepancyM for a static point source whose
Schwarzschild radius isy. The solid curve is for a self-
accelerating background wiﬂ=i=r51. The dashed curve is for a
FLRW background witiH=r*.

whereE=N?dt/ds and J=r?d¢/ds are again constants of
motion resulting from the isometries, and no\s is the dif-
ferential proper time of the orbiting body. Assuming a nearly

whereb is the impact parameter. This result is equivalent t circular orbit and that we are deep within the Einstein regime
. . . e that Eqg&t.2),(4.9)], th
Einstein, so we see that light deflection is unaffected by DG%SO atwe may use Eqet.2),(4.3], then

corrections. This is consistent with the idea that DGP correc- 37, 377( r3 )1/2

(5.10

tions correspond to an anomalous spatially-dependent scalar Ap=2m+ T

2
coupling. Since scalars do not couple to light, the trajectory 2rfg
of light in a gravitational field should remain unaﬁecteq. The second term is the usual Einstein precession. The last
Then, lensing measurements probe the true mass of a givgly, s the new anomalous precession due to DGP brane

matter distribution. One can then compare that mass 10 thggects Note that this correction is the same as one would get

mass taken from assuming the gravitational force is Newtonz one assumed a purely Newtonian potential, Eq2), with-

'an. h di b he lensi out spatial metric effects. The correction to the precession
The mass discrepancy between the lensing rtlmsac- rate one expects from DGP gravity is
tual mas$ and that determined from the Newtonian force

may be read directly from Eq$3.13 and(3.15), d 3
—Adpgp= Fo—=+5 uaslyear. (5.11
dt 8rg
SM— s g1 (5.7)
M Newt 1+6(r) ' Note that this result is independent of the source mass, im-

) o ) o ) plying that this precession rate is a universal quantity depen-
When the mass is measured deep within the Einstein regimeg,,erg)| cosmological phase. Compare Eg11) to the clas-

the mass discrepancy simplifies to sic Einstein precession correction for nearly circular orbits:
M= —2—r3 B (5.9 d 3 I’g 12
2rORg . ' aA¢Einstein:§ F . (5.12)

Solar system measurements are too coarse to be able to Ieor increasing, the distance from the Sun at which the DGP
solve the DGP discrepancy between the lensing mass of thsbrrection begins to overtake the first Einstein correction is
Sun and its Newtonian mass. The discrepanty for the 37 AU.
Sun atO(AU) scale distances is approximately 6. Lim- Nordtvedt[20] quotes precision for perihelion precession
its on this discrepancy for the solar system as characterizest 430 uas/year for Mercury and 1Qas/year for Mars. Im-
by the post-Newtonian parametey—1, are only con- provements in lunar ranging measuremdi®$,22 suggest
strained to be<3x 104, that the Moon will be sensitive to the DGP correction, Eq.
A possibly more promising regime may be found in gal- (5.11), in the near future. Also, BepiColombo, an ESA satel-
axy clusters. For 1§— 10"®M, clusters, the scalergRg) 13 lite being sent to Mercury at the end of the decade, will also
has the range 614 Mpc. For masses measured at the clusbe sensitive to this correctid23]. Incidentally, it is interest-
ter virial radii of roughly -3 Mpc, this implies mass dis- ing to contrast these numbers with a precision of 4
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x10* paslyear for the rate of periastron advance in BinaryEds. (2.9—(2.11) for large values of andz, i.e., far away
Pulsar PSR 191816 [24]. The solar system seems to pro- from the compact matter source.
vide the most promising means to constrain this anomalous First, it is convenient to consider not only the components

precession from DGP gravity. of the Einstein tensor Eq§2.7), but also the following com-
ponents of the bulk Ricci tensgwhich also vanishes in the
VI. CONCLUDING REMARKS bulk):

The braneworld theory of Dvali, Gabadadze, and Porrati . 1[N” N'A’ N'B'| [N NA NB
(D(_SP) is an intriguing extension of Einstein gravity that ex- Rt:ﬁ N N X+2W B + N + NA + ZN Bl
ploits the possible existence of infinite volume, extra dimen- A2)
sions. It is a theory where the four-dimensional graviton is
effectively metastable, and provides a novel alternative to N A 2B
conventional explanations of the dark energy that is respon- R§=N + a + B (A3)

sible for today’s cosmic acceleration.

In this paper we detailed the solution Qf static, sphenca\Ne wish to takeG, =0, GZ=0, andR?=0 and derive ex-
matter sources in the background of de Sitter cosmology for . z : z
DGP gravity. The gravitational field of a matter source ex-Pressions forA(r,2) and I_3(r,z) In terms OfN(r.2). _O_nly
hibits important dependences on cosmology. Residual depe@’-vo of these three equatlo_ns are md_ependent, bl_Jt it is useful
dences on the full five-dimensional cosmological phase als p use all three to ascerta!n the deswgd EXpressions.
exist in the regime deep in the gravity well of the matter Smc_el we are only interested in metric whe_mz
source where the effects of cosmology are ostensibly irrel—<r0'|_| fo_r a weak.matter_source, we may rewrite the
evant. These residual dependences allow one to use loc peessary f|eld'equat|ons using the expressions €a$.
(e.g., solar systejrmeasurements of the gravitational field to ince the functlons{n(r,z),a(r,z),b(r,;)} are small_, we
ascertain details of the global cosmology. need only keep nonlinear terms that mcqujelerlvatlve.s.

In DGP gravity, we find that massless test particles carfhe brane boundary conditions, Ed&.8), suggest thaa
probe the true mass of a matter source, whereas tests of thadb terms may be sufficiently large to warrant inclusion of
source’s Newtonian force leads to discrepancies with generdheir subleading contributions. It is theselerivative nonlin-
relativity. These discrepancies translate into a universatar terms that are crucial to the recovery of Einstein gravity
anomalous precession, as largetas upas/year, suffered by near the matter source. If one neglected these bilinear terms
all orbiting bodies. The numerical value of this anomalousas well, one would revert to the linearized, weak-brane solu-
precession is dependent only on the graviton’s effective linetion (cf. Ref.[13]).
width and the global geometry of the five-dimensional cos- Integrating Eq.(A3) twice with respect to the coordi-
mology. Current constraints on Mars’ orbit are on the threshnate, we get
old of being sensitive to this anomaly20]. Future
improvements in lunar ranginfR2] as well as data from n+a+2b=2zg(r)+gx(r), (A4)
satellite missions at the end of the decd@8] should be -~
sensitive to possible corrections due to DGP and gravita‘-"’here g1(r) ar!c_i g(r) are to be specm_ed by the brane
tional leakage into extra dimensions. boundary conditions, Eq$2.8), and the residual gauge free-
dom 8b(r)|,—o,=0, respectively. Integrating th®,, compo-
ACKNOWLEDGMENTS nent of 'the bul'k Einstein tensor Eq&.7) with respect to the

z coordinate yields
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insight into the Minkowski background case, particularly r(n+2b)’ —2(a—b)=gs(r). (A5)
those not found in Ref[13]. We are also grateful to L.
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Gondolo, and G. Kofinas for helpful discussions. This workOther by substituting EqsA4) and (AS5) into the G; bulk

is sponsored by DOE Grant DEFG0295ER40898 and thequation. If one can approximate= = H for all z, then one

(J#ﬁe functionsg(r), g»(r), andgs(r) are not all indepen-
e

CWRU Office of the Provost. can see thaG,,=0, G;=0, andR:=0 are all consistently
satisfied by Eqs(A4) and (A5), where the functiong(r),
APPENDIX g,(r), andgs(r) are determined at the brane using Egs.

) . (3.13 and (3.14 and the residual gauge freeddmir)|,—,
In order to see why Eq.3.5) is a reasonable approxima- —q-

tion, we need to explore the full solution to the bulk Einstein

equations, )
01(1)=F4H— 5(Ryd)’, (A6)
Gag(r,2)=0, (A1)
satisfyinlg Fhe brane boundgry conditions, E(qBS),.as well ' g,(r)= &(1_ 5)+ frdrR_g(1+ 5), (A7)
as specifying that the metric approach the de Sitter solution 2r o T

064002-7



A. LUE AND G. STARKMAN PHYSICAL REVIEW D 67, 064002 (2003

Ry where
g3(r)=§(1—35)—2H2r2, (A8) )
c(k)= —f drr sinkrén|,_o(r). (A15)
where we have used the functidfr), defined in Eq(3.15. mJo
Using Egs.(A4)—(A8), we now have expressions fa(r,z) . o
andb(r,z) completely in terms of(r,z) for all (r,z). We can then computén|,—o, arriving at the bound
Now we wish to findn(r,z) and to confirm thah=FH . 1(r, Ry(r)
is a good approximation everywhere of interest. Equation onl,_o= FJ dr iz (A16)
(A2) becomes 0
on’ for all r<ry,H L. Then,
n"+—+n=*H[gy(r)=H], A9 : -
r [aa(r)=H] (A9) N|y—o=FH+8n|,0. (AL7)

where again we have neglected contributions if we are onlyWhen the first term in Eq(A17) is much larger than the
concerned withr,z<ry,H 1. Using the expression Eq. second, Eq(3.5 is a good approximation. When the two
(A6), we find terms in Eq.(A17) are comparable or when the second term
) is much larger than the first, neither term is important in the
n" + 21+h=—3H21$[R95(r)]’. (A10) dgtermination of Eqs(3.13) and (3.14). Thus, Eq.(3.5 is
r r still a safe approximation.
One can confirm that all the components of the five-
dimensional Einstein tensor, EqR.7), vanish in the bulk
1 — using field variables satisfying the relationships E@s4),
n=1¥Hz— —HZrZIrOHJ dr—Ry(r)8(r)+ én(r,2), (A5), and(A11). The field variables(r,z) andb(r,z) both
2 o T have terms that grow with, stemming from the presence of
(All)  the matter source. However, one can see that with the fol-
lowing redefinition of coordinates:

Then, if we let

where én(r,z) satisfies the equation

/ Ry
26 . R=r—zr0—2, (A18)
éon” + - +6n=0, (A12) r
- . r Ryo
we can solve Eq(A12) by requiring thatén vanish asr,z Z=z+f drr—z, (A19)
0

—oo and applying the condition

R that to leading order as—H ~ %, the desired dependence is
r5n’|Z=0=2—g[1+(1i2r0H)5(r)], (A13)  recovered fora(R,Z) and b(R,Z) (i.e., ¥HZ), and the
r Newtonian potential takes the form

on the brane as an alternative to the appropriate brane bound- 1
ary condition forén(r,z) coming from a linear combination n(R,2)=HZ- §H2R2+ e (A20)
of Egs.(2.8). We can write the solution explicitly:
. Thus, we recover the desired asymptotic form for the metric
5n(r,z)=f dko(k)e ¥ sinkr, (A14) of a static, co'mpact matter source in the background of a de
0 Sitter expansion.
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