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Gravitational leakage into extra dimensions: Probing dark energy using local gravity

Arthur Lue* and Glenn Starkman†

Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106-7079
~Received 11 December 2002; published 13 March 2003!

The braneworld model of Dvali, Gabadadze, and Porrati~DGP! is a theory where gravity is modified at large
distances by the arrested leakage of gravitons off our four-dimensional universe. Cosmology in this model has
been shown to support both ‘‘conventional’’ and exotic explanations of the dark energy responsible for today’s
cosmic acceleration. We present new results for the gravitational field of a clustered matter source on the
background of an accelerating universe in DGP braneworld gravity, and articulate how these results differ from
those of general relativity. In particular, we show that orbits nearby a mass source suffer a universal anomalous
precession as large as65 mas/year, dependent only on the graviton’s effective linewidth and the global
geometry of the full, five-dimensional universe. Thus, this theory offers a local gravity correction sensitive to
factors that dictate cosmological history.
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I. INTRODUCTION

The gravity theory of Dvali, Gabadadze, and Porr
~DGP! is a braneworld theory with a metastable fou
dimensional graviton@1#. The graviton is pinned to a four
dimensional braneworld by intrinsic curvature terms induc
by quantum matter fluctuations; but as it propagates o
large distances, the graviton eventually evaporates off
brane into an infinite volume, five-dimensional Minkows
bulk. There exists a single free parameter in the DGP bra
world gravity, the crossover scaler 0. This scale dictates tha
distance below which gravity is controlled by brane effec
but larger than which gravity assumes a five-dimensional
havior. As a result, the DGP braneworld theory is a mode
a class of theories in which gravity deviates from conve
tional Einstein gravity not at short distances~as in more fa-
miliar braneworld theories!, but rather at long distances
Such a model has both intriguing phenomenological@2,3# as
well as cosmological consequences@4–10#. A braneworld
model of the sort where gravity is modified at extreme
large scales is motivated by the desire to ascertain how
understanding of cosmology may be refined by the prese
of extra dimensions. Indeed, there exist novel cosmologie
this theory that provide an alternative explanation of the c
mic dark energy@4#.

Recovery of Einstein gravity at short distance scales
DGP theory@11#, especially for static sources@12–15#, is a
subtle effect. Even though gravity is four-dimensional at d
tances less thanr 0, it is not always Einstein gravity. For
point source whose Schwarzschild radius isr g , general rela-
tivity is only recovered for distances shorter than

r * 5~r 0
2r g!1/3. ~1.1!

For distances larger thanr * , gravity is four-dimensional lin-
earized Brans-Dicke gravity, with a parameterv50. Thus, a
marked departure from conventional physics continues do
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to distances much smaller thanr 0, the distance at which the
extra dimension is naively hidden. That departure is w
characterized and provides a possible signature for the e
tence of extra dimensions.

There is, however, a catch. The cosmological solutio
that drive interest in DGP gravity indicate thatr 0 should be
close to today’s Hubble radius. Localized matter sources
embedded in a cosmological spacetime. Far enough a
from a given source, the motion of observers and test p
ticles is dominated by the cosmology, rather than the grav
of the matter source. However, ifr 0 is today’s Hubble radius,
then the distance away from a source at which cosmol
dominates the metric is alsor * . So, the DGP departure from
Einstein gravity that was calculated in a static Minkows
background is only significant on length scales where
background cannot actually be approximated as Minkow
The calculations need to be refined if we are to have
correct new physics signature.

The subject of this paper is to look at corrections to E
stein gravity for the DGP braneworld theory in a cosmolo
cal background.1 We begin by laying out the necessary d
tails of the model as well as the particular background
interest. We then solve for the metric of a spherically sy
metric, static matter source in that background. We ind
find that the corrections to Einstein are sensitive to the ba
ground cosmology, even in the region insider * where the
cosmological flow is ostensibly irrelevant. We discuss p
sible tests for the detection of new physics at astronom
scales and suggest that it is possible for such tests of l
gravity to reveal information about global features of the f
five-dimensional cosmology, and ultimately shed light on t
nature of dark energy and today’s cosmic expansion.

1The work in this paper, as well as that in Refs.@12–14#, ad-
dresses issues similar to those studied in Refs.@16,17#. Our results
differ from those in the latter work because we are only concer
with solutions that asymptotically approach well-behaved, fami
solutions~e.g., Minkowski space or de Sitter expansion! far away
from the matter source, including far away from the source in
direction into the bulk.
©2003 The American Physical Society02-1
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II. PRELIMINARIES

A. The model

Consider a braneworld theory of gravity with an infinit
volume bulk and a metastable brane graviton@1#. We take a
four-dimensional braneworld embedded in a fiv
dimensional Minkowski spacetime. The bulk is empty; e
ergy momentum is isolated on the brane. The action is

S(5)52
1

16p
M3E d5xA2gR1E d4xA2g(4)Lm1SGH .

~2.1!

The quantityM is the fundamental five-dimensional Plan
scale. The first term in Eq.~2.1! corresponds to the Einstein
Hilbert action in five dimensions for a five-dimensional me
ric gAB ~bulk metric! with Ricci scalarR. The termSGH is
the Gibbons-Hawking action. In addition, we consider
intrinsic curvature term which is generally induced by rad
tive corrections by the matter density on the brane@1#:

2
1

16p
M P

2E d4xA2g(4)R(4). ~2.2!

Here,M P is the observed four-dimensional Planck scale~see
@1–3# for details!. Similarly, Eq.~2.2! is the Einstein-Hilbert
action for the induced metricgmn

(4) on the brane,R(4) being its
scalar curvature. The induced metric is2

gmn
(4)5]mXA]nXBgAB , ~2.3!

whereXA(xm) represents the coordinates of an event on
brane labeled byxm. The action given by Eqs.~2.1! and~2.2!
leads to the following equations of motion:

1

2r 0
GAB1d~brane!GAB

(4)5
8p

M P
2 TABubrane, ~2.4!

whereGAB is the bulk Einstein tensor,GAB
(4) is the intrinsic

brane Einstein tensor, andTABubrane is the matter energy
momentum tensor on the brane, and we have defined a c
over scale

r 05
M P

2

2M3 . ~2.5!

This scale characterizes that distance over which metric fl
tuations propagating on the brane dissipate into the bulk@1#.

B. Field equations

We are interested in finding the metric for static, compa
spherical sources. We are interested in looking at these s
tions in a cosmological background rather than a Minkow
background @13,14# to ascertain what affects cosmolog

2Throughout this paper, we useA,B, . . . 5$0,1,2,3,5% as bulk
indices, m,n, . . . 5$0,1,2,3% as brane spacetime indices, an
i , j , . . . 5$1,2,3% as brane spatial indices.
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might have on the observability of corrections to Einste
gravity. We restrict ourselves to a background de Sitter c
mology. Not only is such a background the simplest a
most convenient, but observations suggest that we are
rently undergoing de Sitter–like cosmic acceleration. If t
Hubble scale of such an acceleration is varying slowly,
results obtained here would apply. They will also shed lig
on the technical van Dam–Veltman–Zakharov problem a
how one recovers Einstein gravity in a de Sitter backgrou

Under this circumstance of a static spherical source i
de Sitter background, one can choose a coordinate syste
which the cosmological metric is static~i.e., has a timelike
Killing vector! while still respecting the spherical symmet
of the matter source. Let the line element be

ds25N2~r ,z!dt22A2~r ,z!dr22B2~r ,z!

3@du21sin2udf2#2dz2. ~2.6!

This is the most general static metric with spherical symm
try on the brane. The bulk Einstein tensor for this metric

Gt
t5

1

B22
1

A2 F2B9

B
22

A8

A

B8

B
1

B82

B2 G2F Ä

A
1

2B̈

B

12
Ȧ

A

Ḃ

B
1

Ḃ2

B2G ,

Gr
r5

1

B22
1

A2 F2
N8

N

B8

B
1

B82

B2 G2F N̈

N
1

2B̈

B
12

Ṅ

N

Ḃ

B
1

Ḃ2

B2G ,

Gu
u5Gf

f52
1

A2 FN9

N
1

B9

B
2

N8

N

A8

A
1

N8

N

B8

B
2

A8

A

B8

B G
2F N̈

N
1

Ä

A
1

B̈

B
1

Ṅ

N

Ȧ

A
1

Ṅ

N

Ḃ

B
1

Ȧ

A

Ḃ

B
G , ~2.7!

Gz
z5

1

B22
1

A2 FN9

N
1

2B9

B
2

N8

N

A8

A
12

N8

N

B8

B

22
A8

A

B8

B
1

B82

B2 G2F Ṅ

N

Ȧ

A
12

Ṅ

N

Ḃ

B
12

Ȧ

A

Ḃ

B
1

Ḃ2

B2G ,

Gzr52F Ṅ8

N
1

2Ḃ8

B
G1

Ȧ

A S N8

N
1

2B8

B D .

The prime denotes partial differentiation with respect tor,
whereas the dot represents partial differentiation with resp
to z.

We wish to solve the five-dimensional field equations, E
~2.4!. This implies that all components of the Einstein tens
Eqs.~2.7!, vanish in the bulk but satisfy the following mod
fied boundary relationships on the brane. Fixing the resid
gaugeBuz505r , when z50 and imposingZ2 symmetry
across the brane
2-2
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2S Ȧ

A
1

2Ḃ

B
D 5

r 0

A2 F2
2

r

A8

A
1

1

r 2 ~12A2!G1
8pr 0

M P
2 r~r !,

2S Ṅ

N
1

2Ḃ

B
D 5

r 0

A2 F2

r

N8

N
1

1

r 2 ~12A2!G2
8pr 0

M P
2 p~r !,

~2.8!

2S Ṅ

N
1

Ȧ

A
1

Ḃ

B
D 5

r 0

A2 FN9

N
2

N8

N

A8

A
1

1

r S N8

N
2

A8

A D G
2

8pr 0

M P
2 p~r !,

from Gtt , Grr , andGuu , respectively.

C. Background cosmology

The de Sitter solution with Hubble scaleH has the fol-
lowing metric components:3

N~r ,z!5~17Huzu!~12H2r 2!1/2, ~2.9!

A~r ,z!5~17Huzu!~12H2r 2!21/2, ~2.10!

B~r ,z!5~17Huzu!r . ~2.11!

The brane energy-momentum tensor required for a gi
Hubble parameter is

TB
Aubrane5d~z!diag~rH ,2pH ,2pH ,2pH ,0!, ~2.12!

with

rH52pH5
3M P

2H

8pr 0
~r 0H61!. ~2.13!

For physical reasons, we restrict ourselves to both n
negativerH as well as non-negativeH. Under these circum-
stances, one can see thatH>r 0

21 in the self-accelerating
phase. One can show that the solution equations~2.9!–~2.13!
correspond to a coordinate transformation of the de S
solution in homogeneous cosmological coordinates foun
Ref. @4#.

3The upper and lower signs in Eqs.~2.9!–~2.11! correspond to the
two distinct cosmological phases that may exist for this theory@4#.
The upper sign corresponds to the choice of Friedmann-Lemaˆtre-
Robertson-Walker~FLRW! cosmological phase, where a bulk o
server views the braneworld as a relativistically expanding bub
from the interior; the lower sign corresponds to the self-accelera
cosmological phase, where the bulk observer views the branew
as a relativistically expanding bubble from the exterior@4,10#.
These phases are vastly different geometrically and may have
tically different cosmological histories. We use this sign convent
throughout the paper.
06400
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III. SPACETIME GEOMETRY

We have chosen a coordinate system, Eq.~2.6!, in which
a compact spherical matter source may have a static me
yet still exist within a background cosmology that is no
trivial ~i.e., de Sitter expansion!. Let us treat the matter dis
tribution to be that required for the background cosmolo
Eqs. ~2.12!,~2.13!, and add to that a compact spherica
symmetric matter source, located on the brane around
origin (r 50,z50),

TB
Aubrane5d~z!diag@rg~r !1rH ,2pg~r !1rH ,2pg~r !1rH ,

2pg~r !1rH,0#, ~3.1!

whererg(r ) is some given function of interest andpg(r ) is
chosen to ensure the matter distribution and metric are st

We are interested only in weak matter sources,rg(r ).
Moreover, we are most interested in those parts of space
where deviations of the metric from Minkowski are sma
Then, it is convenient to define the function
$n(r ,z),a(r ,z),b(r ,z)% such that

N~r ,z!511n~r ,z!, ~3.2!

A~r ,z!511a~r ,z!, ~3.3!

B~r ,z!5r @11b~r ,z!#. ~3.4!

We may rewrite Eqs.~2.7! and ~2.8! using the functions
$n(r ,z),a(r ,z),b(r ,z)%.

In order to determine the metric on the brane, we w
implement the approximation

ṅuz5057H, ~3.5!

even in the presence of a compact matter source. Equa
~3.5! presumes that the contribution toṅuz50 from the matter
source is negligible compared to other terms in the br
boundary conditions, Eqs.~2.8!. With this one specification a
complete set of equations, represented by the brane boun
conditions Eqs.~2.8! andGz

z50, exists on the brane so tha
the metric functions may be solved on that surface with
reference to the bulk. We justify this assumption by exam
ing the full bulk metric in detail in the Appendix.

The brane boundary conditions, Eqs.~2.8!, now take the
form

2~ ȧ12ḃ!5r 0F2
2a8

r
2

2a

r 2 G1
r 0

r 2 Rg8~r !13H~r 0H61!,

22ḃ5r 0F2n8

r
2

2a

r 2 G1H~3r 0H62!, ~3.6!

2~ ȧ1ḃ!5r 0Fn91
n8

r
2

a8

r G1H~3r 0H62!,

where we have defined an effective Schwarzschild rad
Rg(r ) for the matter source inside a given distancer,

le
g

rld

as-
n

2-3
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Rg5
8p

M P
2E

0

r

drr 2rg~r !, ~3.7!

and where we have neglected second-order contributions~in-
cluding those from the pressure necessary to keep the so
static!. Covariant conservation of the source on the bra
allows one to ascertain the source pressurep(r ) given the
source densityr(r ):

pg852n8rg . ~3.8!

One can show that theGzr component of the bulk is identi
cally zero on the brane when covariant conservation of
matter source and the brane boundary conditions, Eqs.~2.8!,
are satisfied. This observation is a restatement of one of
Bianchi identities.

From the brane boundary conditions Eqs.~3.6!, one may
eliminateȧ and ḃ, and arrive at an equation which may b
integrated imediately with respect to ther coordinate. The
result yields

r 2n81ra1
1

2
r 3H25Rg , ~3.9!

where we have imposed a boundary condition requiring
the metric not be singular at the origin. Applying Eqs.~3.9!
and ~3.6! to theGzz component of the bulk metric, one ca
again arrive at an equation that is dependent only on v
ables on the brane itself which is integrable with respec
the r coordinate. Defining the quantity

f ~r !5rn82
Rg8

2r
1

r 2H

2r 0
~2r 0H61!, ~3.10!

the integral of the equationsGzz50 on the brane yields

4r 0
2

r
f 21r f ~362r 0H !2F1

2
Rg1r 3S 2H26

3H

2r 0
D G50,

~3.11!

where we have applied a second spatial boundary cond
requiring that the metric not have spurious cusps at the
gin. Equation~3.11! has two solutions forf (r ). We select the
solution that matches onto the proper background de S
behavior for larger. Then,

f ~r !5
r 2

8r 0
2 F2~362r 0H !13~162r 0H !

3A11
8r 0

2Rg~r !

9r 3

1

~162r 0H !2G . ~3.12!

Substituting this back into Eq.~3.10! and Eq.~3.9!, we may
articulate expressions forn(r ) anda(r ),

rn85
Rg

2r
@11d~r !#2H2r 2, ~3.13!
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Rg

2r
@12d~r !#1

1

2
H2r 2, ~3.14!

where we have defined the quantityd(r ) such that

d~r !5
3r 3

4r 0
2Rg

~162r 0H !FA11
8r 0

2Rg

9r 3

1

~162r 0H !221G .

~3.15!

These expressions are valid on the brane whenr !r 0 ,H21.
In both expressions, the first term represent the us
Schwarzschild contribution with a correction governed
d(r ) resulting from brane dynamics, whereas the seco
term represents the leading cosmological contribution. Le
try to understand the character of the corrections.

IV. GRAVITATIONAL REGIMES

There are important asymptotic limits of physical re
evance for the metric on the brane Eqs.~3.13!,~3.14!. We
have two system parameters, the crossover scaler 0 and the
cosmological horizon radius,H21, and we wish to under-
stand how spacetime geometry differs when each is m
larger than the other, as well as when they are the same o
of magnitude.

Whenr 0H!1, we recover familiar results for a compa
source in a Minkowski background@13,14#. The de Sitter
background becomes irrelevant at scalesr !r 0. A character-
istic distance (r 0

2Rg)1/3 demarks an Einstein phase close
the source from a Brans-Dicke (v50) phase farther away.

A. Einstein phase

Cosmological effects become important to the metric E
~3.13!,~3.14! when r 0H;1 or r 0H@1. Typically, we are
concerned with the details of the metric when the influen
of a given compact matter source dominates the local ge
etry. The competition between the leading Schwarzsch
term, ;Rg /r , versus the leading cosmological contributio
;H2r 2, implies that when

r !S Rg

H2D 1/3

, ~4.1!

the local source dominates the metric over the contributi
from the cosmological flow. In this region, Eqs.~3.13!,~3.14!
reduce to

n52
Rg

2r
6ARgr

2r 0
2, ~4.2!

a5
Rg

2r
7ARgr

8r 0
2. ~4.3!

Notice that, indeed, there is no explicit dependence on
parameter governing cosmological expansionH. However,
the sign of the correction to the Schwarzschild solution
dependent on the global properties of the cosmolog
phase. The FLRW phase has a potential steeper than Ein
2-4



n
in
v

ne
or
s
e
e

ric
h

n
e
it

,
er
-
ne

q

a
s

-
d

la
r t
-
a
ew
f

ive

ale
the

nt
on-
er
en-

ount
and

ting
is

en-
n-

is

et-
l
is

-

di-

GRAVITATIONAL LEAKAGE INTO EXTRA . . . PHYSICAL REVIEW D 67, 064002 ~2003!
gravity, whereas the self-accelerating phase has a pote
shallower than Einstein gravity. Thus, we may ascertain
formation about bulk, five-dimensional cosmological beha
ior from testing details of the metric where naively o
would not expect cosmological contributions to be imp
tant. Indeed, for example, one can use local gravity test
distinguish whether some local brane vacuum energy or s
acceleration is the cause of today’s cosmic accelerated
pansion.

B. Weak brane phase

Even when the cosmological flow dominates the met
one can still examine the perturbed effect a matter source
in this region. Whenr @(RgH22)1/3, while still in a region
well within the cosmological horizon (r !H21),

n52
Rg

2r F11
1

3~162r 0H !G2
1

2
H2r 2 ~4.4!

a5
Rg

2r F12
1

3~162r 0H !G1
1

2
H2r 2. ~4.5!

This is the direct analog of the weak-brane phase one fi
for compact sources in Minkowski space. The residual eff
of the matter source is a linearized scalar-tensor gravity w
Brans-Dicke parameter

v563r 0H. ~4.6!

Notice that asr 0H→`, we recover the Einstein solution
corroborating results found for linearized cosmological p
turbations @18,19#. Moreover, note that in the self
accelerating cosmological phase, the scalar compo
couples repulsively, though recall from Eq.~2.13! that H
>r 0

21 in this phase.

C. The picture

One can consolidate these results and show from E
~3.13!–~3.15!, that there exists a scale,

r * 5F r 0
2Rg

~162r 0H !2G1/3

, ~4.7!

inside of which the metric is dominated by Einstein but h
corrections which depend on the global cosmological pha
i.e., Eqs. ~4.2!,~4.3!. Outside this radius~but at distances
much smaller than both the crossover scaler 0 and the cos-
mological horizonH21) the metric is weak brane and re
sembles a scalar-tensor gravity in the background of a
Sitter expansion, i.e., Eqs.~4.4!,~4.5!.

The picture one develops is that the metric is a sca
tensor, but with a radially dependent coupling of the scala
matter. As one gets closer to a source~as gravity gets stron
ger!, the scalar coupling gets suppressed. There are two b
tests that we can pose. First, small corrections to the N
tonian potential using Eq.~4.2! and second, comparison o
the ratio of the gravitomagnetic to gravitoelectric~Newton-
06400
tial
-
-

-
to
lf-
x-

,
as

ds
ct
h

-

nt

s.

s
e,

e

r-
o

sic
-

ian! forces. This latter may be encoded by the effect
Brans-Dicke parameter, Eq.~4.6!.

V. PHYSICAL CONSIDERATIONS

A. Constraints on r 0

It is useful to review the constraints on the crossover sc
r 0. The constraint may be written as a constraint on
fundamental Planck scale:

1023 eV&M&1 GeV. ~5.1!

If M is too small, quantum gravity effects become importa
at short distances. The lower bound is provided by c
straints from millimeter tests of Newtonian gravity and oth
constraints coming from loss of energy into the extra dim
sion @3#. Cosmology provides the upper bound forM. If M is
too large, the crossover scale becomes too small to acc
for the relationship between the observed Hubble scale
the independently measured matter density@5,6#. These
bounds on the fundamental Planck scale correspond to

1 Gpc&r 0&1034 Gpc. ~5.2!

An even more stringent case applies to the self-accelera
cosmological phase. In this phase, the Hubble scale
bounded from belowH(t).r 0

21, where at late times, the
universe is de Sitter andH→r 0

21. If one goes further and
postulates that the current cosmic acceleration is caused
tirely by this late-time self-acceleration, then, using co
straints from type 1A supernovae@6#, the best fit forr 0 is

r 051.2120.09
10.09H0

21 , ~5.3!

where H0 is today’s Hubble scale. Taking H0
'70 km s21Mpc21,

r 0'5 Gpc. ~5.4!

We are particularly interested in this possibility and in th
section taker 0 to have this value.

B. Gravitational lensing

The lensing of light by a compact matter source with m
ric equations~3.13!,~3.14! may be computed in the usua
way. The angle of deflection of a massless test particle
given by

Df5E dr
J

r 2

A

AE2

N2 2
J2

r 2

, ~5.5!

whereE5N2dt/dl and J5r 2df/dl are constants of mo
tion resulting from the isometries, anddl is the differential
affine parameter. Then for any metric respecting the con
tion Eq. ~3.9!, the angle of deflection is

Df5p12bE
b

r max
dr

Rg~r !2H2r 3/2

r 2Ar 22b2
, ~5.6!
2-5
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whereb is the impact parameter. This result is equivalent
Einstein, so we see that light deflection is unaffected by D
corrections. This is consistent with the idea that DGP corr
tions correspond to an anomalous spatially-dependent s
coupling. Since scalars do not couple to light, the traject
of light in a gravitational field should remain unaffecte
Then, lensing measurements probe the true mass of a g
matter distribution. One can then compare that mass to
mass taken from assuming the gravitational force is Newt
ian.

The mass discrepancy between the lensing mass~the ac-
tual mass! and that determined from the Newtonian for
may be read directly from Eqs.~3.13! and ~3.15!,

dM5
M lens

MNewt
215

1

11d~r !
21. ~5.7!

This ratio is depicted in Fig. 1 for both cosmological phas
When the mass is measured deep within the Einstein reg
the mass discrepancy simplifies to

dM57S r 3

2r 0
2Rg

D 1/3

. ~5.8!

Solar system measurements are too coarse to be able t
solve the DGP discrepancy between the lensing mass o
Sun and its Newtonian mass. The discrepancydM for the
Sun atO(AU) scale distances is approximately 10211. Lim-
its on this discrepancy for the solar system as character
by the post-Newtonian parameter,g21, are only con-
strained to be,331024.

A possibly more promising regime may be found in g
axy clusters. For 1014→1015M ( clusters, the scale (r 0

2Rg)1/3

has the range 6→14 Mpc. For masses measured at the cl
ter virial radii of roughly 1→3 Mpc, this implies mass dis

FIG. 1. Mass discrepancydM for a static point source whos
Schwarzschild radius isr g . The solid curve is for a self-
accelerating background withH5r 0

21. The dashed curve is for a
FLRW background withH5r 0

21.
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crepancies of roughly 5–8 %. X-ray or Sunyaev-Zeldovi
~SZ! measurements are poised to map the Newtonian po
tial of the galaxy clusters, whereas weak lensing meas
ments can directly measure the cluster mass profile. Un
tunately, these measurements are far from achieving
desired precisions. If one can extend mass measuremen
distances on the order ofr 0, Fig. 1 suggests discrepancie
can be as large as210% for the FLRW phase or even 50%
for the self-accelerating phase.

C. Orbit precession

Imagine a body orbiting a mass source whereRg(r )5r g
5const. The perihelion precession per orbit may be de
mined in the usual way

Df5E dr
J

r 2

AN

AE22N2S 11
J2

r 2D
, ~5.9!

whereE5N2dt/ds and J5r 2df/ds are again constants o
motion resulting from the isometries, and nowds is the dif-
ferential proper time of the orbiting body. Assuming a nea
circular orbit and that we are deep within the Einstein regi
@so that we may use Eqs.~4.2!,~4.3!#, then

Df52p1
3pr g

r
7

3p

2 S r 3

2r 0
2r g

D 1/2

. ~5.10!

The second term is the usual Einstein precession. The
term is the new anomalous precession due to DGP br
effects. Note that this correction is the same as one would
if one assumed a purely Newtonian potential, Eq.~4.2!, with-
out spatial metric effects. The correction to the precess
rate one expects from DGP gravity is

d

dt
DfDGP57

3

8r 0
575 mas/year. ~5.11!

Note that this result is independent of the source mass,
plying that this precession rate is a universal quantity dep
dent only on the graviton’s effective linewidth (r 0

21) and the
overall cosmological phase. Compare Eq.~5.11! to the clas-
sic Einstein precession correction for nearly circular orbit

d

dt
DfEinstein5

3

2 S r g
3

2r 5D 1/2

. ~5.12!

For increasingr, the distance from the Sun at which the DG
correction begins to overtake the first Einstein correction
37 AU.

Nordtvedt@20# quotes precision for perihelion precessio
at 430mas/year for Mercury and 10mas/year for Mars. Im-
provements in lunar ranging measurements@21,22# suggest
that the Moon will be sensitive to the DGP correction, E
~5.11!, in the near future. Also, BepiColombo, an ESA sat
lite being sent to Mercury at the end of the decade, will a
be sensitive to this correction@23#. Incidentally, it is interest-
ing to contrast these numbers with a precision of
2-6



ar
o-
lou

ra
x-
n
i
t

o

ca
fo
x

pe
ls

te
re
lo
to

a
f
e
rs

u
ne
os
sh

ita

al
rly
.
ho
P.
rk
th

-
in

tio

nts

eful

e

of

ity
rms
lu-

e
-

an-

s.

GRAVITATIONAL LEAKAGE INTO EXTRA . . . PHYSICAL REVIEW D 67, 064002 ~2003!
3104 mas/year for the rate of periastron advance in Bin
Pulsar PSR 1913116 @24#. The solar system seems to pr
vide the most promising means to constrain this anoma
precession from DGP gravity.

VI. CONCLUDING REMARKS

The braneworld theory of Dvali, Gabadadze, and Por
~DGP! is an intriguing extension of Einstein gravity that e
ploits the possible existence of infinite volume, extra dime
sions. It is a theory where the four-dimensional graviton
effectively metastable, and provides a novel alternative
conventional explanations of the dark energy that is resp
sible for today’s cosmic acceleration.

In this paper we detailed the solution of static, spheri
matter sources in the background of de Sitter cosmology
DGP gravity. The gravitational field of a matter source e
hibits important dependences on cosmology. Residual de
dences on the full five-dimensional cosmological phase a
exist in the regime deep in the gravity well of the mat
source where the effects of cosmology are ostensibly ir
evant. These residual dependences allow one to use
~e.g., solar system! measurements of the gravitational field
ascertain details of the global cosmology.

In DGP gravity, we find that massless test particles c
probe the true mass of a matter source, whereas tests o
source’s Newtonian force leads to discrepancies with gen
relativity. These discrepancies translate into a unive
anomalous precession, as large as65 mas/year, suffered by
all orbiting bodies. The numerical value of this anomalo
precession is dependent only on the graviton’s effective li
width and the global geometry of the five-dimensional c
mology. Current constraints on Mars’ orbit are on the thre
old of being sensitive to this anomaly@20#. Future
improvements in lunar ranging@22# as well as data from
satellite missions at the end of the decade@23# should be
sensitive to possible corrections due to DGP and grav
tional leakage into extra dimensions.
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APPENDIX

In order to see why Eq.~3.5! is a reasonable approxima
tion, we need to explore the full solution to the bulk Einste
equations,

GAB~r ,z!50, ~A1!

satisfying the brane boundary conditions, Eqs.~2.8!, as well
as specifying that the metric approach the de Sitter solu
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Eqs. ~2.9!–~2.11! for large values ofr and z, i.e., far away
from the compact matter source.

First, it is convenient to consider not only the compone
of the Einstein tensor Eqs.~2.7!, but also the following com-
ponents of the bulk Ricci tensor~which also vanishes in the
bulk!:

Rt
t5

1

A2 FN9

N
2

N8

N

A8

A
12

N8

N

B8

B G1F N̈

N
1

Ṅ

N

Ȧ

A
12

Ṅ

N

Ḃ

B
G ,

~A2!

Rz
z5

N̈

N
1

Ä

A
1

2B̈

B
. ~A3!

We wish to takeGzr50, Gz
z50, andRz

z50 and derive ex-
pressions forA(r ,z) and B(r ,z) in terms ofN(r ,z). Only
two of these three equations are independent, but it is us
to use all three to ascertain the desired expressions.

Since we are only interested in metric whenr ,z
!r 0 ,H21 for a weak matter source, we may rewrite th
necessary field equations using the expressions Eqs.~3.4!.
Since the functions,$n(r ,z),a(r ,z),b(r ,z)% are small, we
need only keep nonlinear terms that includez-derivatives.
The brane boundary conditions, Eqs.~2.8!, suggest thatȧ
andḃ terms may be sufficiently large to warrant inclusion
their subleading contributions. It is thesez-derivative nonlin-
ear terms that are crucial to the recovery of Einstein grav
near the matter source. If one neglected these bilinear te
as well, one would revert to the linearized, weak-brane so
tion ~cf. Ref. @13#!.

Integrating Eq.~A3! twice with respect to thez coordi-
nate, we get

n1a12b5zg1~r !1g2~r !, ~A4!

where g1(r ) and g2(r ) are to be specified by the bran
boundary conditions, Eqs.~2.8!, and the residual gauge free
domdb(r )uz5050, respectively. Integrating theGzr compo-
nent of the bulk Einstein tensor Eqs.~2.7! with respect to the
z coordinate yields

r ~n12b!822~a2b!5g3~r !. ~A5!

The functionsg1(r ), g2(r ), andg3(r ) are not all indepen-
dent, and one can ascertain their relationship with one
other by substituting Eqs.~A4! and ~A5! into the Gz

z bulk

equation. If one can approximateṅ57H for all z, then one
can see thatGzr50, Gz

z50, andRz
z50 are all consistently

satisfied by Eqs.~A4! and ~A5!, where the functionsg1(r ),
g2(r ), and g3(r ) are determined at the brane using Eq
~3.13! and ~3.14! and the residual gauge freedomb(r )uz50
50:

g1~r !574H2
r 0

r 2 ~Rgd!8, ~A6!

g2~r !5
Rg

2r
~12d!1E

0

r

dr
Rg

r 2 ~11d!, ~A7!
2-7



io

n
.

u

o
rm
he

e-

f
fol-

tric
de

A. LUE AND G. STARKMAN PHYSICAL REVIEW D 67, 064002 ~2003!
g3~r !5
Rg

2r
~123d!22H2r 2, ~A8!

where we have used the functiond(r ), defined in Eq.~3.15!.
Using Eqs.~A4!–~A8!, we now have expressions fora(r ,z)
andb(r ,z) completely in terms ofn(r ,z) for all (r ,z).

Now we wish to findn(r ,z) and to confirm thatṅ57H
is a good approximation everywhere of interest. Equat
~A2! becomes

n91
2n8

r
1n̈56H@g1~r !6H#, ~A9!

where again we have neglected contributions if we are o
concerned withr ,z!r 0 ,H21. Using the expression Eq
~A6!, we find

n91
2n8

r
1n̈523H27

r 0H

r 2 @Rgd~r !#8. ~A10!

Then, if we let

n517Hz2
1

2
H2r 27r 0HE

0

r

dr
1

r 2 Rg~r !d~r !1dn~r ,z!,

~A11!

wheredn(r ,z) satisfies the equation

dn91
2dn8

r
1 d̈n50, ~A12!

we can solve Eq.~A12! by requiring thatdn vanish asr ,z
→` and applying the condition

rdn8uz505
Rg

2r
@11~162r 0H !d~r !#, ~A13!

on the brane as an alternative to the appropriate brane bo
ary condition fordn(r ,z) coming from a linear combination
of Eqs.~2.8!. We can write the solution explicitly:

dn~r ,z!5E
0

`

dkc~k!e2kz sinkr, ~A14!
s

s

P

06400
n

ly

nd-

where

c~k!5
2

pE0

`

drr sinkrdnuz50~r !. ~A15!

We can then computeḋnuz50, arriving at the bound

ḋnuz50&
1

r E0

r

dr
Rg~r !

r 2 , ~A16!

for all r !r 0 ,H21. Then,

ṅuz5057H1 ḋnuz50 . ~A17!

When the first term in Eq.~A17! is much larger than the
second, Eq.~3.5! is a good approximation. When the tw
terms in Eq.~A17! are comparable or when the second te
is much larger than the first, neither term is important in t
determination of Eqs.~3.13! and ~3.14!. Thus, Eq.~3.5! is
still a safe approximation.

One can confirm that all the components of the fiv
dimensional Einstein tensor, Eqs.~2.7!, vanish in the bulk
using field variables satisfying the relationships Eqs.~A4!,
~A5!, and~A11!. The field variablesa(r ,z) andb(r ,z) both
have terms that grow withz, stemming from the presence o
the matter source. However, one can see that with the
lowing redefinition of coordinates:

R5r 2zr0

Rgd

r 2 , ~A18!

Z5z1E
0

r

dr
Rgd

r 2 , ~A19!

that to leading order asz→H21, the desiredZ dependence is
recovered fora(R,Z) and b(R,Z) ~i.e., 7HZ), and the
Newtonian potential takes the form

n~R,Z!57HZ2
1

2
H2R21•••. ~A20!

Thus, we recover the desired asymptotic form for the me
of a static, compact matter source in the background of a
Sitter expansion.
in,
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