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Pair of accelerated black holes in an anti–de Sitter background: The AdS C metric

Óscar J. C. Dias* and Jose´ P. S. Lemos†
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The anti–de SitterC metric ~AdS C metric! is characterized by a quite interesting new feature when
compared with theC metric in flat or de Sitter backgrounds. Indeed, contrary to what happens in these two last
exact solutions, the AdSC metric only describes a pair of accelerated black holes if the acceleration parameter
satisfiesA.1/,, where, is the cosmological length. The two black holes cannot interact gravitationally and
their acceleration is totally provided by the pressure exerted by a strut that pushes the black holes apart. Our
analysis is based on the study of the causal structure, on the description of the solution in the AdS
4-hyperboloid in a 5D Minkowski spacetime, and on the physics of the strut. We also analyze the casesA
51/, andA,1/, that represent a single accelerated black hole in the AdS background.
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I. INTRODUCTION

The original C metric was found by Levi-Civita in his
studies between 1917 and 1919. During the following
cades, many authors rediscovered it and studied its m
ematical properties~see@1# for references!. In 1963, Ehlers
and Kundt@2# classified degenerated static vacuum fields a
put this Levi-Civita solution into theC slot of the table they
constructed. From then onwards this solution has been ca
theC metric. This spacetime is stationary, axially symmetr
Petrov type D, and is an exact solution which includes
radiative term. Although theC metric had been studied from
a mathematical point of view along the years, its physi
interpretation remained unknown until 1970, when Kinne
ley and Walker@3#, in a groundbreaking work, showed th
the solution describes two uniformly accelerated black ho
in opposite directions. Indeed, they noticed that the origi
solution was geodesically incomplete, and by defining n
suitable coordinates they analytically extended it and stud
its causal structure. The solution has a conical singularity
one of its angular poles that was interpreted by them as
to the presence of a strut in between pushing the black h
away, or as two strings from infinity pulling in each one
the black holes. The strut or the strings lie along the symm
try axis and cause the acceleration of the black hole p
This work also included for the first time the charged vers
of the C metric. In an important development, Ernst in 19
@4#, through the employment of an appropriate transform
tion, removed all the conical singularities of the chargedC
metric by appending an external electromagnetic field. In
new exact Ernst solution, the acceleration of the pair of
positely charged black holes is provided by the Lorentz fo
associated with the external field. The geometric proper
of the C metric were further investigated by Farhoosh a
Zimmerman@5#, and the asymptotic properties of theC met-
ric were analyzed by Ashtekar and Dray@6#, who showed
that null infinity admits a conformal completion, has
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spherical section, and moreover that the causal diagr
drawn in @3# were not quite accurate. The issue of physic
interpretation of theC metric was recovered by Bonnor@7#,
but now following a different approach. He transformed t
C metric into the Weyl form in which the solution represen
a finite line source~that corresponds to the horizon of th
black hole!, a semi-infinite line mass~corresponding to a
horizon associated with uniform accelerated motion!, and a
strut keeping the line sources apart. By applying a furt
transformation that enlarges this solution, Bonnor confirm
the physical interpretation given in@3#. Bonnor’s procedure
was simplified by Cornish and Uttley and extended to
clude the massive charged solution@8#. More recently,
Yongcheng@9#, starting from the metric of two superpose
Schwarzschild black holes, derived theC metric under ap-
propriate conditions. The black hole uniqueness theorem
the C metric was proven by Wells@10# and the geodesic
structure of theC metric was studied by Pravda and Pra
dova@11#. The limit at which the acceleration goes to infini
was analyzed by Podolsky´ and Griffiths @12#, who showed
that in this limit the solution is analogous to the one whi
describes a spherical impulsive gravitational wave genera
by a snapping string. We note that theC metric is an impor-
tant and explicit example of a general class of asymptotic
flat radiative spacetimes with boost-rotation symmetry a
with hypersurface orthogonal axial and boost Killing vecto
The geometric properties of this general class of spaceti
were investigated by Bicˇák and Schmidt@13# and the radia-
tive features were analyzed by Bicˇák @14# ~see the recen
review of Pravda and Pravdova@15# on this class of space
times and the role of theC metric!.

Relevant generalizations to theC metric were made by
Pleban´ski and Demian´ski in 1976 @16# and by Dowker,
Gauntlett, Kastor, and Traschen in 1994@17#. Pleban´ski and
Demiański, in addition to the mass~m! and electromagnetic
charge (q), have included into the solution a Newman-Un
Tamburino~NUT! parameter, a rotation, and a cosmologic
constant term (L), and Dowkeret al.have further included a
dilaton field nonminimally coupled. Thus, the most generaC
metric has eight parameters so far, namely accelerat
mass, electric and magnetic charges, NUT parameter, r
©2003 The American Physical Society01-1
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tion, cosmological constant, and dilaton field. TheC metric
with mass and electromagnetic charges alone was ex
sively studied as shown above, and from now on we w
refer to it as the flatC metric~i.e.,C metric withL50). The
C metric with a NUT parameter has not been studied, as
as we know. The flat spinningC metric was studied by Far
hoosh and Zimmerman@18#, Letelier and Oliveira@19#, and
by Bičák and Pravda@20#. In particular, in@20# the flat spin-
ning C metric was transformed into the Weyl form and inte
preted as two uniformly accelerated spinning black ho
connected by a strut. This solution constitutes an exampl
a spacetime with axial and boost Killing vectors which a
not hypersurface-orthogonal. Dowkeret al. generalized the
flat C metric and flat Ernst solution to include a dilaton fie
and applied these solutions for the first time in the contex
quantum pair creation of black holes that once created,
celerate apart.

In what concerns the cosmologicalC metric introduced in
@16#, the de Sitter~dS! case (L.0) was analyzed by Pod
olský and Griffiths @21#, whereas the anti–de Sitter~AdS!
case (L,0) was studied, in special instances, by Empar
Horowitz, and Myers@22# and by Podolsky´ @23#. In general,
the C metric ~either flat, dS or AdS! describes a pair of ac
celerated black holes. Indeed, in the flat and dS backgrou
this is always the case. However, in an AdS background
situation is not so simple and depends on the relation
tween the accelerationA of the black holes and the cosmo
logical length,. Since the AdSC metric presents such pe
culiar features, it deserves a careful analysis. It is
intention in this paper to fully study, in its most general for
the AdSC metric with mass, charge, and cosmological co
stant. One can divide the study into three cases, nameA
,1/,, A51/, and A.1/,. The A,1/, case was the one
analyzed by Podolsky´ @23#, and theA51/, case was inves
tigated by Emparan, Horowitz, and Myers@22#, which has
acquired an important role since the authors showed tha
the context of a lower dimensional Randall-Sundrum mod
it describes the final state of gravitational collapse on
brane-world. The geodesic structure of this solution has b
studied by Chamblin@24#. Both cases,A,1/, andA51/,,
represent one single accelerated black hole. The casA
.1/, has not been fully studied and its physical interpre
tion is not yet firmly established, although it has been
plied, in addition to the flat and dS cases, in pair creation
black holes by Hawking, Horowitz, and Ross@25# and by
Mann @26# ~see@27# for a review!. The purpose of this pape
is to establish that theA.1/, AdS C metric describes a pai
of accelerated black holes in an AdS background. This
will be achieved through a thorough analysis of the cau
structure of the solution, together with the description of
solution in the AdS 4-hyperboloid, and the study of t
strut’s physics.

The plan of this paper is as follows. In Sec. II, we pres
the AdSC metric and analyze its curvature and conical s
gularities. In Sec. III, we study the causal diagrams of
solution. In Sec. IV, we give and justify a physical interpr
tation to the solution. The description of the solution in t
AdS 4-hyperboloid and the physics of the strut are analyz
These two sections, Secs. III and IV, are highly related,
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so, in order to fully understand both of them, the reading
each is required. Finally, in Sec. V concluding remarks
presented.

II. GENERAL PROPERTIES OF THE AdS C METRIC

A. The AdS C metric

The AdSC metric, i.e., theC metric with negative cos-
mological constantL, was obtained by Pleban´ski and Demi-
ański @16#. For zero rotation and zero NUT parameter it
given, according to@16# ~see also@26#!, by

ds251/~ x̃1 ỹ!2~2Fd t̃21F 21dỹ2

1G 21dx̃21Gdz̃2!, ~1!

where

F~ ỹ!52L/62Ã21 ỹ222mỹ31q2ỹ4,

G~ x̃!52L/61Ã22 x̃222mx̃32q2x̃4. ~2!

The meaning of parametersÃ, m, and q will be clarified
soon. For the benefit of comparison with the flatC metric,
we note that whenL vanishes we haveF( ỹ)52G(2 ỹ). It
is now convenient to redefine the parameterÃ as 2L/6
1Ã2[A2, together with the coordinate transformations:t̃

5t/A, ỹ5Ay, x̃5Ax, andz̃5z/A. With these redefinitions
the gravitational field of the AdSC metric is written as

ds25@A~x1y!#22~2Fdt21F 21dy2

1G 21dx21Gdz2!, ~3!

where

F~y!5S 1

,2A2
21D 1y222mAy31q2A2y4,

G~x!512x222mAx32q2A2x4, ~4!

and the nonzero components of the electromagnetic ve
potential,Amdxm, are given by

At52ey, Az5gx. ~5!

This solution depends on the following four parameters:A,
which is the acceleration of the black hole;m, which is in-
terpreted as the Arnowitt-Deser-Misner~ADM ! mass of the
nonaccelerated black hole;q, which is interpreted as the
ADM electromagnetic charge of the nonaccelerated bl
hole and, in general,q25e21g2, with e and g being the
electric and magnetic charges, respectively; and finally
cosmological length,2[3/uLu. The meaning attributed to
the parameterA will be understood in Sec. IV, while the
physical interpretation given to the parametersm and q is
justified in the Appendix. We will consider the caseA.0.

The coordinates used in Eqs.~3!–~5! to describe the AdS
C metric are useful to understand the geometrical proper
of the spacetime, but they hide the physical interpretation
1-2
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PAIR OF ACCELERATED BLACK HOLES IN AN . . . PHYSICAL REVIEW D67, 064001 ~2003!
the solution. In order to understand the physical propertie
the source and gravitational field, we will introduce progre
sively new coordinates more suitable to this purpose, follo
ing the approach of Kinnersley and Walker@3# and Ashtekar
and Dray@6#. Although the alternative approach of Bonn
simplifies the interpretation in a way, we cannot use it sin
the cosmological constant prevents such a coordinate tr
formation into the Weyl form.

B. Radial coordinate: Curvature singularities

We start by defining a coordinater as

r 5@A~x1y!#21. ~6!

In order to interpret this coordinate as being a radial coo
nate, we calculate a curvature invariant of the metric, nam
the Kretschmann scalar,

RmnabRmnab5
24

,2
1

8

r 8
@6m2r 2112mq2~2Axr21!r

1q4~7224Axr124A2x2r 2!#. ~7!

Clearly, this curvature invariant is equal to 24/,2 when the
massm and chargeq are both zero. When at least one
these parameters is not zero, the curvature invariant dive
at r 50, revealing the presence of a curvature singular
Moreover, when we take the limitr→`, the curvature sin-
gularity approaches the expected value for a spacetime w
is asymptotically AdS. Therefore, it is justified thatr is in-
terpreted as a radial coordinate.

C. Angular surfaces: Conical singularities

To gain more insight into the physical nature of the AdSC
metric we now turn our attention into the angular surfac
t5const andr 5const, hereafter labeled byS. In this sec-
tion, we follow @3#. In order to have the AdSC metric with
correct signature (2111), one must restrict the coordi
nate x to a domain on which the functionG(x) is non-
negative@see Eq.~3!#. The shape of this function depend
crucially on the three parametersA, m, andq. In this work,
we will select only the ranges of these three parameters
which G(x) has at least two real roots,xs andxn ~say!, and
require thatx belong to the range@xs ,xn#, whereG(x)>0.
This restriction has the important advantage of allowing us
endow the angular surfacesS with the topology of a com-
pact surface. In these surfaces, we now define two new
ordinates,

u5E
x

xnG 21/2dx,

f5z/k, ~8!

wheref ranges between@0,2p# andk is an arbitrary posi-
tive constant which will be needed later when regularity co
ditions at the poles are discussed. The coordinateu ranges
between the north pole,u5un50, and the south pole,u
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5us ~not necessarily atp). With these transformations th
metric restricted to the surfacesS, ds25r 2(G 21dx2

1Gdz2), takes the form

ds25r 2~du21k2Gdf2!. ~9!

WhenA50 or when bothm50 andq50, Eq. ~8! givesx
5cosu, G512x25sin2u, and if we use the freedom to pu
k[1, the metric restricted toS is given byds25r 2 (du2

1sin2udf2). This implies that in this case the angular surfa
is a sphere and justifies the label given to the new ang
coordinates defined in Eq.~8!. In this case, the north pole i
at un50 or xn511 and the south pole is atus5p or xs5
21. In the other casesx andAG can always be expressed a
elliptic functions ofu. The explicit form of these functions is
of no need in this work. All we need to know is that the
functions have a period given by 2us .

As we shall see, the regularity analysis of the metric in
region@0,us# will play an essential role in the physical inte
pretation of the AdSC metric. The functionG is positive and
bounded in ]0,us@ and thus the metric is regular in this re
gion between the poles. We must be more careful with
regularity analysis at the poles, i.e., at the roots ofG. Indeed,
if we draw a small circle around the north pole, in general,
the radius goes to zero, the limit circumference/radius is
2p. Therefore, in order to avoid a conical singularity at t
north pole one must require thatdn50, where

dn[2pS 12 lim
u→0

1

u
Agff

guu
D 52pS 12

k

2 UdG
dxU

xn

D . ~10!

Repeating the procedure, this time for the south pole,xs , we
conclude that the conical singularity at this pole can also
avoided if

ds[2pS 12
k

2 UdG
dxU

xs

D 50. ~11!

The as yet arbitrary parameterk introduced in Eq.~8! plays
an important role here. Indeed, if we choose

k215
1

2 UdG
dxU

x5xs

, ~12!

Equation ~11! is satisfied. However, since we only have
single constantk at our disposal and this has been fixed
remove the conical singularity at the south pole, we conclu
that the conical singularity will be present at the north po
There is another alternative. We can choose instead 2k21

5udxGux5xn
~wheredx means the derivative in order tox)

and by doing so we avoid the deficit angle at the north p
and leave a conical singularity at the south pole. In Sec.
we will see that in the extended Kruskal solution the no
pole points towards the other black hole, while the south p
points towards infinity. The first choice ofk corresponds to a
strut between the black holes while the alternative cho
corresponds to two strings from infinity into each black ho
We leave the discussion on the physical nature of the con
1-3
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Ó. J. C. DIAS AND J. P. S. LEMOS PHYSICAL REVIEW D67, 064001 ~2003!
singularities and on the two possible choices for the value
k to Sec. IV A 4. There is a small number of very spec
cases for which the very particular conditionudxGuxn

5udxGuxs
is verified. In these special cases, the solution

free of conical singularities. They will be mentioned belo
Since we have managed to putG(x) in a form equal to

@3#, we can now, following@3# closely, describe the behavio
of G(x) for different values of the parametersA, m, andq.
We can divide this discussion into three cases.

~i! Massless uncharged solution(m50, q50). In this
case, we havex5cosu, G512x25sin2u, and k51. The
angular surfaceS is a sphere and this is a particular case
which both the north and south poles are free of con
singularities.

~ii ! Massive uncharged solution(m.0, q50). The mas-
sive uncharged case must be divided intomA,323/2 and
mA>323/2. WhenmA,323/2, G(x) has three roots and, a
justified above, we requirex to lie between the two roots fo
which G(x)>0. In doing so, we maintain the metric with th
correct signature and have an angular surfaceS which is
compact. Setting the value ofk given in Eq.~12!, one avoids
the conical singularity at the south pole but leaves one at
north pole. WhenmA>323/2, S is an open angular surface
For this reason, hereafter we will analyze only the casemA
,323/2.

~iii ! Massive charged solution(m.0, q5” 0). For a gen-
eral massive charged solution, depending on the values o
parametersA, m, and q, G(x) can be positive in a single
compact interval, ]xs ,xn@ , or in two distinct compact inter-
vals, ]xs8 ,xn8@ and ]xs ,xn@ , say. In this latter case, we wil
work only with the interval@xs ,xn# ~say! for which the
charged solutions reduce to the uncharged solutions wheq
50. These solutions have a conical singularity at one of
poles. The only massive charged solutions that are tot
free of conical singularities are those which satisfy the p
ticular conditionsm5uqu and mA.1/4. This indicates tha
in this case the AdSC metric is an AdS black hole written in
an accelerated coordinate frame. In the massless charge
lution (m50 andq5” 0), G(x) is an even function, has two
symmetric roots, and is positive between them. The ang
surfaceS is therefore compact and there are no conical s
gularities at both poles. Once again, this suggests that
solution is written in an accelerated coordinate frame.

D. Coordinate ranges

In this section, we analyze the important issue of the
ordinate ranges. Rewritten in terms of the new coordina
introduced in Eq.~6! and Eq.~8!, the AdSC metric is given
by

ds25r 2@2F~y!dt21F 21~y!dy2

1du21k2G~x(u)!df2#, ~13!

whereF(y) andG(x(u)) are given by Eq.~4!. The time co-
ordinatet can take any value from the interval ]2`,1`@
andf ranges between@0,2p#. As we saw in Sec. II B, when
m or q are not zero, there is a curvature singularity ar
06400
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50. Therefore, we restrict the radial coordinate to the ran
@0,1`@ . On the other hand, in Sec. II C we have decided
consider only the values ofA, m, andq for whichG(x) has at
least two real roots,xs and xn ~say!, and we have required
thatx belong to the range@xs ,xn#, whereG(x)>0. By doing
this, we guarantee that the metric has the correct signa
(2111) and that the angular surfacesS (t5const andr
5const) are compact. FromAr5(x1y)21 we then con-
clude thaty must belong to the range2x<y,1`. Indeed,
y52x corresponds tor 51`, andy51` to r 50. Note,
however, that when bothm andq vanish, there are no restric
tions on the ranges ofr and y ~i.e., 2`,r ,1` and 2`
,y,1`) since in this case there is no curvature singular
at the origin ofr to justify the constraint on the coordinate

III. CAUSAL STRUCTURE OF THE AdS C METRIC

In this section we analyze the causal structure of the
lution. As occurs with the original flatC metric @3,6#, the
original AdS C metric, Eq. ~13!, is not geodesically com-
plete. To obtain the maximal analytic spacetime, i.e., to dr
the Carter-Penrose diagrams, we will introduce the usual
Kruskal coordinates.

We now look carefully to the AdSC metric, Eq.~13!, with
F(y) given by Eq.~4!. We first notice that, contrary to wha
happens in theL>0 background where the causal structu
and physical nature of the correspondingC metric is inde-
pendent of the relation between the accelerationA and ,
[A3/uLu, in theL,0 case we must distinguish and analy
separately the casesA.1/,, A51/,, andA,1/,. Later, in
Sec. IV, we will justify physically the reason for this distinc
tion. The mathematical reason for this difference is clea
identified by settingm50 and q50 in Eq. ~4!, giving
F(y)5y22@121/(,2A2)#. Since the horizons of the solu
tion are basically given by the real roots ofF(y), we con-
clude that we have to treat separately the cases~A! A
.1/,, for which F(y) can have two real roots,~B! A
51/,, for which y50 is a double root, and~C! A,1/,, for
which F(y) has no real roots~see the discussion in the tex
of Fig. 1!. We will consider each of these three cases se
rately in Secs. III A and IV A (A.1/, case!, III B and IV B
(A51/, case!, and III C and IV C (A,1/, case!. The de-
scription of the solution depends crucially on the values om
and q. In each subsection, we will consider the three m
relevant solutions, namely~i! the massless uncharged sol
tion (m50, q50), ~ii ! the massive uncharged solutio
(m.0, q50), and ~iii ! the massive charged solutio
(m.0, q5” 0).

A. Causal structure of the AÌ1Õø solutions

1. Massless uncharged solution (mÄ0, qÄ0)

In this case, we have

F~y!5y22y1
2 with y15A12

1

,2A2
, ~14!
1-4
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and xP@xs521,xn511#, x5cosu, G512x25sin2u, and
k51. The shapes ofF(y) and G(x) are represented in
Fig. 1.

The angular surfacesS (t5const and r 5const) are
spheres and both the north and south poles are free of co
singularities. The origin of the radial coordinate,r 50, has
no curvature singularity and therefore bothr andy are in the
range ]2`,1`@ . However, in the general case, wherem or
q are nonzero, there is a curvature singularity atr 50. Since
the discussion of the present section is only a preliminary
that of the massive general case, following@6#, we will treat
the origin r 50 as if it had a curvature singularity and thu
we admit thatr belongs to the range@0,1`@ andy lies in the
region2x<y,1`. We leave a discussion on the extensi
to negative values ofr to Sec. IV A.

The general procedure to draw the Carter-Penrose
grams is as follows. First, we make use of the null condit
gmnkmkn50 ~wherekm is a geodesic tangent! to introduce
the advanced and retarded Finkelstein-Eddington null co
dinates,

u5t2y* , v5t1y* , ~15!

where the tortoise coordinate is

y* 5E F 21dy5
1

2y1
lnUy2y1

y1y1
U ~16!

and bothu and v belong to the range ]2`,1`@ . In these
coordinates, the metric is given by

FIG. 1. Shape ofG(x) and F(y) for the A.1/,, m50, and
q50 C metric studied in Secs. III A 1 and IV A. The allowed rang
of x is betweenxs521 andxn511, whereG(x) is positive and
compact. The permitted range ofy depends on the angular directio
x(2x<y,1`) and is sketched for the five cases~a!–~e! dis-
cussed in the text. The presence of an accelerated horizon is
cated byhA . @For completeness, we comment here on two ot
cases not represented in the figure but analyzed in the text: fA
51/,, m50, andq50 ~this case is studied in Secs. III B 1 an
IV B !, F(y) is zero at its minimum and positive elsewhere. ForA
,1/,, m50, andq50 ~this case is studied in Secs. III C 1 an
IV C!, F(y) is always positive and only case~a! survives.#
06400
cal
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n
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ds25r 2@2Fdudv1du21sin2udf2#. ~17!

The metric still has coordinate singularities at the roots ofF.
To overcome this unwanted feature, we have to introd
Kruskal coordinates. Now, due to the lower restriction on
value of y (2x<y), the choice of the Kruskal coordinate
~and therefore the Carter-Penrose diagrams! depends on the
angular directionx we are looking at. In fact, depending o
the value ofx, the region accessible toy might contain two,
one, or zero roots ofF ~see Fig. 1! and so the solution may
have two, one, or zero horizons, respectively. This angu
dependence of the causal diagram is not new. The Schwa
child and Reissner-Nordstro¨m solutions being spherically
symmetric do not present this feature but, in the Kerr so
tion, the Carter-Penrose diagram along the pole directio
different from the diagram along the equatorial directio
Such a dependence occurs also in the flatC metric @3#. Back
again to the AdSC metric, we have to consider separate
five distinct sets of angular directions, namely~a! xs<x,
2y1 , ~b! x52y1 , ~c! 2y1,x,y1 , ~d! x51y1 , and
~e! y1,x<xn , wherexs521 andxn511 ~see Fig. 1!.

~a! xs<x,2y1 . Within this interval of the angular di-
rection, the restriction on the range ofy, 2x<y,1`, im-
plies that the functionF(y) is always positive in the acces
sible region ofy ~see Fig. 1!, and thus the solution has n
horizons. Introducing the null coordinates defined in Eq.~15!
followed by the Kruskal coordinatesu852e2y1u,0 and
v851e1y1v.0 gives u8v852e2y1y

* 52(y2y1)/(y
1y1),0, and Eq.~17! becomes

ds25r 2F2
~y1y1!2

y1
2

du8dv81du21sin2udf2G , ~18!

wherey and r 5A21(x1y)21 are regarded as functions o
u8 andv8,

y5y1

12u8v8

11u8v8
, r 5

1

A

11u8v8

~y11x!2u8v8~y12x!
.

~19!

Now, let us find the values of the productu8v8 at r 50 and
r 51`,

lim
r→0

u8v8521,

lim
r→1`

u8v85
y11x

y12x
,0 and finite. ~20!

So, for xs<x,2y1 , the original massless uncharged Ad
C metric is described by Eq.~18! subjected to the following
coordinates ranges:

0<f,2p, 21<x<11, u8,0,v8.0, ~21!

21<u8v8,
y11x

y12x
. ~22!

di-
r

1-5



o
he

h
a

-
he

he
re
d

-
h
th
.,
th
E
Fi

o
ne

i

-

-
nt

i

or-

t

e
t at

ty
e
le.
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This spacetime is, however, geodesically incomplete. To
tain the maximal analytical extension, one allows t
Kruskal coordinates to take also the valuesu8>0 and v8
<0 as long as Eq.~22! is satisfied.

Finally, to construct the Carter-Penrose diagram one
to define the Carter-Penrose coordinates by the usual
tangent functions ofu8 and v8—U5arctanu8 and V
5arctanv8—that bring the points at infinity into a finite po
sition. In general, to find what kind of curve describes t
lines r 50 or r 51`, one has to take the limit ofu8v8 as
r→0 ~in the case ofr 50) and the limit ofu8v8 as r→
1` ~in the case ofr 51`). If this limit is 0 or `, the
corresponding line is mapped into a curved null line. If t
limit is 21, or a negative and finite constant, the cor
sponding line is mapped into a curved timelike line an
finally, when the limit is11, or a positive and finite con
stant, the line is mapped into a curved spacelike line. T
asymptotic lines are drawn as straight lines, although in
coordinatesU and V they should be curved outwards, i.e
bulged. It is always possible to change coordinates so
the asymptotic lines are indeed straight lines. So, from
~20! we draw the Carter-Penrose diagram sketched in
2~a!. There are no horizons and bothr 50 andr 51` (I)
are timelike lines.

~b! x52y1 . For this particular angular direction,y is
restricted to be on1y1<y,1` andF(y) is always posi-
tive except aty51y1 ~which corresponds tor 51`),
where it is zero~see Fig. 1!. Therefore, the solution has n
horizon and the Kruskal construction is similar to the o
described above in case~a!. The only difference is that now
limr→1`u8v850 and thusr 51` (I) is represented by a
null line in the Carter-Penrose diagram, which is shown
Fig. 2~b!.

~c! 2y1,x,y1 . The demand thaty must belong to the
range@2x;1`@ implies, for this range of the angular direc
tion, that we have a region I,2x<y,1y1 , whereF(y) is
negative and a region II,1y1,y,1`, where F(y) is
positive ~see Fig. 1!. There is a single Rindler-like accelera
tion horizon (r A) at y51y1 , so called because it is abse
when A50 and present even whenm50 andq50. In re-
gion I, one sets the Kruskal coordinatesu851e2au and
v851e1av so thatu8v851e2ay

* . In region II, one defines
u852e2au and v851e1av in order thatu8v852e2ay

* .
We seta[y1 . Thus, in both regions the productu8v8 is
given by

u8v852
y2y1

y1y1
, ~23!

and Eq.~17! expressed in terms of the Kruskal coordinates
given by

ds25r 2F 1

y1
2

F
u8v8

du8dv81du21sin2u df2G ~24!

5r 2F2
~y1y1!2

y1
2

du8dv81du21sin2u df2G . ~25!
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The Kruskal coordinates in both regions were chosen in
der to obtain a negative value for the factorF/(u8v8), which
appears in the metric coefficientgu8v8 . The value of constan
a was selected in order that the limit ofF/(u8v8) as y
→y1 stays finite and different from zero. By doing this, w
have removed the coordinate singularity that was presen
the rooty1 of F @see Eq.~17!#. So, the metric is now well-
behaved in the whole range2x<y,1` or 0<r ,1`.
The coordinatesy andr are expressed as functions ofu8 and
v8 by Eq. ~19!, and at the edges of the interval allowed tor,
the productu8v8 takes the values

FIG. 2. Carter-Penrose diagrams of cases~a!–~e! discussed in
the text of Sec. III A 1 concerning theA.1/,, m50, and q
50 C metric. Case~a! describes the solution seen from the vicini
of the south pole, case~c! applies to the equatorial vicinity, and cas
~e! describes the solution seen from the vicinity of the north po
An accelerated horizon is represented byr A , andI 2 andI 1 rep-
resent, respectively, the past and future infinity (r 51`). r 50
corresponds toy51` and r 51` corresponds toy52x.
1-6
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lim
r→0

u8v8521,

lim
r→1`

u8v85
y11x

y12x
.0 and finite. ~26!

Once again, the maximal analytical extension is achieved
allowing the Kruskal coordinatesu8 and v8 to take all the
values on the range ]2`;1`@ , as soon as the condition
21<u8v8,(y11x)/(y12x) is satisfied. The Carter
Penrose diagram for this range of the angular direction
drawn in Fig. 2~c!. r 50 is represented by a timelike lin
while r 51` (I) is a spacelike line. The two mutual pe
pendicular straight null lines at 45 °,u8v850, represent the
accelerated horizon atyA51y1 or r A5@A(x1y1)#21.

~d! x51y1 . In this particular direction, the region ac
cessible toy is 2y1<y,1`. F(y) is negative in region I,
2y1,y,y1 , and positive in region II,y.y1 . It is zero at
y51y1 , where the only horizon (r A) of the solution is
located andF(y) vanishes again aty52y1 , which corre-
sponds tor 51` ~see Fig. 1!. The Kruskal construction fol-
lows directly the procedure described in case~c!. The only
difference is that now limr→1`u8v851` and thus ther 5
1` line (I) is now represented by a null line in the Carte
Penrose diagram, which is shown in Fig. 2~d!.

~e! y1,x<xn . The region accessible toy must be sepa-
rated into three regions~see Fig. 1!. In region I, 2x,y,
2y1 , F(y) is positive; in region II, 2y1,y,
1y1 , F(y) is negative; and finally in region III,y.
1y1 , F(y) is positive again. We have two Rindler-like a
celeration horizons, more specifically, an outer horizon ay
52y1 or r A

15@A(x2y1)#21 and an inner horizon aty5

1y1 or r A
25@A(x1y1)#21. Therefore, one must introduc

a Kruskal coordinate patch around each of the horizons.
first patch constructed around2y1 is valid for 2x<y,
1y1 ~thus, it includes regions I and II!. In region I, we
define u852e1a2u and v851e2a2v so that u8v85
2e22a2y

* . In region II, one definesu851ea2u and v85
1e2a2v in order thatu8v851e22a2y

* . We seta2[y1 .
Thus, in both regions I and II, the productu8v8 is given by

u8v852
y1y1

y2y1
, ~27!

and Eq.~17! expressed in terms of the Kruskal coordinates
given by

ds25r 2F2
~y2y1!2

y1
2

du8dv81du21sin2u df2G ,

~28!

which is regular in this patch2x<y,1y1 and, in particu-
lar, it is regular at the rooty52y1 of F(y). However, it is
singular at the second root,y51y1 , of F(y). To regularize
the metric aroundy51y1 , one has to introduce new
Kruskal coordinates for the second patch which is b
aroundy1 and is valid for2y1,y,1` ~thus, it includes
regions II and III!. In region II, we setu851e2a1u and
06400
y
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e
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v851e1a1v so thatu8v851e12a1y
* . In region III, one

definesu852e2a1u and v851e1a1v in order thatu8v8
52e12a1y

* . We seta1[y1 . Thus, in both regions II and
III, the productu8v8 is given by

u8v852
y2y1

y1y1
, ~29!

and, in this second Kruskal patch, Eq.~17! is given by

ds25r 2F2
~y1y1!2

y1
2

du8dv81du21sin2udf2G , ~30!

which is regular iny.2y1 and, in particular, at the secon
root y51y1 of F(y). Once again, in both patches, th
Kruskal coordinates were chosen in order to obtain a fac
F/(u8v8) negative@see Eq.~24!#. The values of constant
a2 anda1 were selected in order that the limit ofF/(u8v8)
asy→7y1 stays finite and different from zero. To end th
construction of the Kruskal diagram of this solution with tw
horizons, the two patches have to be joined together in
appropriate way first defined by Carter in the Reissn
Nordström solution.

From Eq.~29! and Eq.~27!, we find the values of produc
u8v8 at the edgesr 50 andr 51` of the radial coordinate,

lim
r→0

u8v8521,

lim
r→1`

u8v85
y12x

y11x
,0 and finite, ~31!

and we conclude that bothr 50 andr 51` (I) are repre-
sented by timelike lines in the Carter-Penrose diagr
sketched in Fig. 2~e!. The two accelerated horizons of th
solution are both represented as perpendicular straight
lines at 45 ° (u8v850).

2. Massive uncharged solution (mÌ0, qÄ0)

Now that the causal structure of the AdSC metric with
m50 and q50 has been studied, the construction of t
Carter-Penrose diagrams for them.0 case follows up di-
rectly. As was justified in detail in Sec. II C, we will conside
only the case with small mass or acceleration, i.e., we req
mA,323/2, in order to have compact angular surfaces~see
the discussion in the text of Fig. 3!. We also require thatx
belong to the range@xs ,xn# ~see Fig. 3!, whereG(x)>0 and
such thatxs→21 andxn→11 whenmA→0. By satisfying
the above two conditions, we endow thet5const andr
5const surfaces with the topology of a compact surface.

The technical procedure to obtain the Carter-Penrose
grams is similar to the one described along Sec. III A 1.
what concerns the physical conclusions, we will see that
essential difference is the presence of an extra horizo
Schwarzschild-like horizon (r 1), due to the nonvanishing
mass parameter, in addition to the accelerated Rindler-
horizon (r A), which is due to nonvanishingA. Another im-
portant difference, as stated in Sec. II B, is the presence
1-7
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curvature singularity atr 50 and the existence of a conic
singularity at the north pole~see Sec. II C!.

Once more the Carter-Penrose diagrams depend on
angular direction we are looking at~see Fig. 3!. We have to
analyze separately five distinct cases, namely~a! xs<x
,x2 , ~b! x5x2 , ~c! x2,x,x1 , ~d! x5x1 , and ~e! x1

,x<xn , which are the massive counterparts of cases~a!–
~e! that were considered in Sec. III A 1. Whenm→0, we
havexs→21, xn→11, x2→2y1 , andx1→1y1 .

~a! xs<x,x2 . The Carter-Penrose diagram@Fig. 4~a!#
for this range of the angular direction has a spacelike cu
ture singularity atr 50, a timelike line that representsr 5
1` (I), and a Schwarzschild-like horizon (r 1) that was not
present in them50 corresponding diagram Fig. 2~a!. The
diagram is similar to the one of the AdS-Schwarzschild
lution, although now the curvature singularity has an acc
erationA, as will be seen in Sec. IV.

~b! x5x2 . The curvature singularityr 50 is also a space
like line in the Carter-Penrose diagram@see Fig. 4~b!# and
there is a Schwarzschild-like horizon (r 1). The infinity, r
51` (I), is represented by a null line. The origin is bein
accelerated~see Sec. IV!.

~c! x2,x,x1 . The Carter-Penrose diagram@Fig. 4~c!#
has a more complex structure that can be divided into l
middle, and right regions. The middle region contains
spacelike infinity (I) and an accelerated Rindler-like hor
zon, r A5@A(x2x2)#21, that is already present in them

FIG. 3. Shape ofG(x) andF(y) for theA.1/,,mA,323/2, and
q50 C metric studied in Secs. III A 2 and IV A. The allowed rang
of x is betweenxs andxn , whereG(x) is positive and compact. The
permitted range ofy depends on the angular directionx(2x<y,
1`) and is sketched for the five cases~a!–~e! discussed in the text
The presence of an accelerated horizon is indicated byhA and the
Schwarzschild-like horizon byhm . @For completeness, we com
ment on two other cases not represented in the figure: forA51/,,
mA,323/2, and q50 ~this case is studied in Secs. III B 2 an
IV B !, F(y) is zero at its local minimum. ForA,1/,, mA
,323/2, andq50 ~this case is studied in Secs. III C 2 and IV C!,
the local minimum ofF(y) is positive and only case~a! survives.
For mA5323/2, G(x) is zero at its local minimum on the left an
for mA.323/2G(x) is positive between2` andxn . These two last
cases are not studied in the text.#
06400
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50 corresponding diagram@see Fig. 2~c!#. The left and right
regions both contain a spacelike curvature singularity an
Schwarzschild-like horizon,r 1 .

~d! x5x1 . The Carter-Penrose diagram@Fig. 4~d!# for
this particular value of the angular direction is similar to th
of case~c!. The only difference is thatr 51` (I) is repre-
sented by a null line rather than a spacelike line.

~e! x1,x<xn . The Carter-Penrose diagram@Fig. 4~e!#
can again be divided into left, middle, and right regions. T
middle region consists of a timelike line representingr 5
1` (I) and two accelerated Rindler-like horizons, an inn
one „r A

25@A(x2x2)#21
… and an outer one„r A

15@A(x
2x1)#21

…, that were already present in them50 corre-

FIG. 4. Carter-Penrose diagrams of cases~a!–~e! discussed in
the text of Sec. III A 2 concerning theA.1/,, mA,323/2, andq
50 C metric. Case~a! describes the solution seen from the vicini
of the south pole, case~c! applies to the equatorial vicinity, and cas
~e! describes the solution seen from the vicinity of the north po
The zigzag line represents a curvature singularity, an acceler
horizon is represented byr A , the Schwarzschild-like horizon is
sketched asr 1 , r 50 corresponds toy51`, and r 51` (I)
corresponds toy52x. The hatched region does not belong to t
solution. In diagrams~c!–~e! we have to glue indefinitely copies o
the represented figure in the left and right sides of it. In diagram~e!
a similar gluing must be done in the top and bottom regions.
1-8
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sponding diagram@Fig. 2~e!#. The left and right regions both
contain a spacelike curvature singularity and
Schwarzschild-like horizon (r 1).

3. Massive charged solution (mÌ0, qÄ” 0)

When both the mass and charge parameters are non
depending on the values of the parametersA, m, and
q, G(x) can be positive in a single compact interva
]xs ,xn@ , or in two distinct compact intervals, ]xs8 ,xn8@ and
]xs ,xn@ , say ~see Fig. 5!. In this latter case, we will work
only with the interval@xs ,xn# ~say! for which the charged
solutions are in the same sector of those we have analyze
the last two subsections whenq→0.

Depending also on the values ofA, m, andq, the function
F(y) can have four roots, three roots~one of them degener
ated!, or two roots~see the discussion in the text of Fig. 5!.
As will be seen, the first case describes a pair of acceler
AdS–Reissner-Nordstro¨m ~AdS-RN! black holes, the secon
case describes a pair of extremal AdS-RN black holes,
the third case describes a pair of naked AdS-RN singul
ties.

The essential differences between the Carter-Penrose
grams of the massive charged solutions and those of the
sive uncharged solutions are~i! the curvature singularity is
now represented by a timelike line rather than a space
line, and~ii ! excluding the extremal and naked cases, th
are now~in addition to the accelerated Rindler-like horizo
r A) not one but two extra horizons, the expected inner (r 2)

FIG. 5. Shape ofG(x) and F(y) for the nonextremal charge
massiveC-metric ~with A.1/,) studied in Secs. III A 3 and IV A.
The allowed range ofx is betweenxs andxn , whereG(x) is posi-
tive and compact. The permitted range ofy depends on the angula
directionx(2x<y,1`) and is sketched for the five cases~a!–~e!
discussed in the text. The presence of an accelerated horizo
indicated byhA and the inner and outer charged horizons byh2
and h1. In the extremal case,h2 and h1 superpose each othe
and in the naked caseF(y).0 in the local minimum on the right
@For completeness, we comment on two other cases not repres
in the figure: forA51/, ~this case is studied in Secs. III B 3 an
IV B !, F(y) is zero at its local minimum on the left. ForA,1/,
~this case is studied in Secs. III C 3 and IV C!, the local minimum
on the left ofF(y) is positive and only case~a! survives.#
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and outer (r 1) horizons associated to the charged charac
of the solution.

Below, we study the causal structure of the electric
magnetic counterparts of cases~a!–~e! discussed in the las
two sections~see Fig. 5!, namely ~a! xs<x,x28 , ~b! x
5x28 , ~c! x28 ,x,x18 , ~d! x5x18 and~e! x18 ,x<xn . When
q→0, we havex28 →x2 and x18 →x1 . The Carter-Penrose
diagrams are drawn in Fig. 6. In these diagrams, the
column represents the nonextremal case, the middle col
represents the extremal case, and the right column repres
the naked charged case. Row~a! describes the solution see
from the vicinity of the south pole, row~c! applies to the
equatorial vicinity, and row~e! describes the solution see
from the vicinity of the north pole. The zigzag line represen
a curvature singularity, an accelerated horizon is represe
by r A , and the inner and outer charge associated horizons
sketched asr 2 and r 1 . I 2 andI 1 represent, respectively
the past and future infinity (r 51`). r 50 corresponds to
y51` andr 51` corresponds toy52x. The hatched re-
gion does not belong to the solution. In diagrams~c!–~e!, we
have to glue indefinitely copies of the represented figure
the left and right sides of it. In some of the diagrams,
similar gluing must be done in the top and bottom region

~a! xs<x,x28 . Both the curvature singularity,r 50, and
r 51` (I) are represented by a spacelike line in the Car
Penrose diagram@Fig. 6~a!#. Besides, in the nonextrema
case, there is an inner horizon (r 2) and an outer horizon
(r 1) associated with the charged character of the solution
the extremal case, the two horizonsr 2 and r 1 become de-
generate and so there is a single horizon,r 1 ~say!, and in the
naked case there is no horizon. The diagram is similar to
of the AdS–Reissner-Nordstro¨m solution, although now the
curvature singularity has an accelerationA, as will be seen in
Sec. IV.

~b! x5x28 . The curvature singularityr 50 is a spacelike
line in the Carter-Penrose diagram@see Fig. 6~b!# and r 5
1` (I) is represented by a null line. Again, in the none
tremal case, there is an inner horizon (r 2) and an outer
horizon (r 1) associated to the charged character of the so
tion. In the extremal case, there is a single horizon,r 1 , and
in the naked case there is no horizon. The origin is be
accelerated~see Sec. IV!.

~c! x28 ,x,x18 . The Carter-Penrose diagram@Fig. 6~c!#
has a complex structure. As before@see Fig. 4~c!#, it can be
divided into left, middle, and right regions. The middle r
gion contains the spacelike infinity (I) and an accelerated
Rindler-like horizon,r A5@A(x2x28 )#21, that was already
present in them50, q50 corresponding diagram@see Fig.
2~c!#. The left and right regions both contain a timelike cu
vature singularity (r 50). In addition, in the nonextrema
case these left and right regions contain an inner hori
(r 2) and an outer horizon (r 1), in the extremal case the
contain a single horizon (r 1), and in the naked case the
have no horizon.

~d! x5x18 . The Carter-Penrose diagram@Fig. 6~d!# for
this particular value of the angular direction is similar that
case~c!. The only difference is thatr 51` (I) is repre-
sented by a null line rather than a spacelike line.
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FIG. 6. Carter-Penrose diagrams of cases~a!–~e! discussed in the text of Sec. III A 3 concerning the charged massiveC metric. The left
column represents the nonextremal case, the middle column represents the extremal case, and the right column represents the na
case. Row~a! describes the solution seen from the vicinity of the south pole, row~c! applies to the equatorial vicinity, and row~e! describes
the solution seen from the vicinity of the north pole.
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~e! x18 ,x<xn . The Carter-Penrose diagram@Fig. 6~e!#.
As before@see Fig. 4~e!#, it can be divided into left, middle
and right regions. The middle region consists of a timel
line representingr 51` (I) and two accelerated Rindler
like horizons,r A

25@A(x2x28 )#21 and r A
15@A(x2x18 )#21,

that were already present in them50 andq50 correspond-
ing diagram@see Fig. 2~e!#. The left and right regions both
contain a timelike curvature singularity (r 50). In addition,
in the nonextremal case these left and right regions con
an inner horizon (r 2) and an outer horizon (r 1), in the
extremal case they contain a single horizon (r 1), and in the
naked case they have no horizon~see, however, the physica
interpretation of this case as a black hole at the end of S
IV A 3 !.

B. Causal structure of theAÄ1Õø solutions

The A51/, case was studied in detail in@22#. In particu-
lar, the causal structure of the massive uncharged solu
was discussed. For completeness, we will also present
causal diagrams of the massless uncharged solution an
the massive charged solution.

Once more, due to the lower restriction on the value oy
(2x<y), the causal diagrams depend on the angular di
tion x we are looking at. We have to consider separately th
distinct sets of angular directions~see the discussion in th
text of Figs. 1, 3, and 5!, namely~a! xs<x,0, ~b! x50, and
~c! 0,x<xn , wherexs521 andxn511 whenm50 and
q50.

1. Massless uncharged solution (mÄ0, qÄ0)

In this case, we havexP@xs521,xn511#, x5cosu, G
512x25sin2u, k51, andF(y)5y2 ~see the discussion in
the text of Fig. 1!. The angular surfacesS (t5const andr
5const) are spheres free of conical singularities. The or
of the radial coordinater has no curvature singularity an
therefore bothr andy can lie in the range ]2`,1`@ . How-
ever, in the general case, wherem or q are nonzero, there is
a curvature singularity atr 50. Since the discussion of th
present section is only a preliminary to that of the mass
general case, following@6#, we will treat the originr 50 as if
it had a curvature singularity and thus we admit thatr be-
longs to the range@0,1`@ and y lies in the region2x<y
,1`. The Carter-Penrose diagrams are drawn in Fig. 7
case~c!, 0,x<xn , and only in this case is there an acce
erated horizon,r A5(Ax)21.

2. Massive uncharged solution (mÌ0, qÄ0)

The causal diagrams of this solution were first presen
in @22# and are drawn in Fig. 8. In the case~c!, 0,x<xn ,
and only in this case is there an accelerated horizon,r A
5(Ax)21 which is degenerated ~see @22#!. The
Schwarzschild-like horizon is atr 15A21@x11/(2mA)#21.

3. Massive charged solution (mÌ0, qÄ” 0)

The Carter-Penrose diagrams of the solution for this ra
of parameters are sketched in Fig. 9. In these diagrams
left column represents the nonextremal black hole,
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middle column represents the extremal black hole, and
right column represents the naked charged particle. Row~a!
describes the solution seen from an angle that is between
south pole~including! and the equator~excluding!, row ~b!
applies only to the equatorial direction, and row~c! describes
the solution seen from an angle between the equator~exclud-
ing! and the north pole~including!.

C. Causal structure of theAË1Õø solutions

The A,1/, case was first analyzed in@23#. We comple-
ment it with the analysis of the causal structure. Contrary
the casesA.1/, and A51/,, the causal diagrams of thi
spacetime do not depend on the angular direction we

FIG. 7. Carter-Penrose diagrams of cases~a!–~c! discussed in
the text of Sec. III B 1 concerning theA51/,, m50, andq50 C
metric. r A5(Ax)21. In diagrams~a! and ~c! we have to glue in-
definitely copies of the represented figure in the top and bot
regions of it.

FIG. 8. Carter-Penrose diagrams of cases~a!–~c! discussed in
the text of Sec. III B 2 concerning theA51/,, mA,323/2, andq
50 C metric. r A5(Ax)21 is a degenerated horizon~see@22#!. In
diagram~c! we have to glue indefinitely copies of the represen
figure in the top and bottom regions of it.
1-11
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looking at. The reason for this feature is clearly identifi
and explained in the discussion in the text of Figs. 1,
and 5.

1. Massless uncharged solution (mÄ0, qÄ0)

The Carter-Penrose diagram is identical to that of the A
solution (A50, m50, q50) and is sketched in Fig. 7~a!.
The origin has an accelerationA, as will be seen in Sec. IV

2. Massive uncharged solution (mÌ0, qÄ0)

The Carter-Penrose diagram is identical to that of
AdS-Schwarzschild solution (A50, m.0, q50) and is
drawn in Fig. 8~a!. The origin has an accelerationA, as will
be seen in Sec. IV.

3. Massive charged solution (mÌ0, qÄ” 0)

The Carter-Penrose diagrams are identical to those of
AdS–Reissner-Nordstro¨m solution (A50, m.0, q5” 0)

FIG. 9. Carter-Penrose diagrams of cases~a!–~c! discussed in
the text of Sec. III B 3 concerning the charged massiveC metric
with A51/,. The left column represents the nonextremal bla
hole, the middle column represents the extremal black hole, and
right column represents the naked charged particle.r A5(Ax)21 is
an accelerated horizon andr 2 and r 1 are charged associated hor
zons. In these diagrams we have to glue indefinitely copies of
represented figure in the top and bottom regions of it.
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and are represented in Fig. 9~a!. In this figure, the nonextre
mal black hole is represented in the left column, the extrem
black hole is represented in the middle column, and the
ked charged particle is represented in the right column. T
origin has an accelerationA, as will be seen in Sec. IV.

IV. PHYSICAL INTERPRETATION OF THE AdS C METRIC

The parameterA that is found in the AdSC metric is
interpreted as being an acceleration and the AdSC metric
with A.1/, describes a pair of black holes accelerati
away from each other in an AdS background, while the A
C metric with A<1/, describes a single accelerated bla
hole. In this section, we will justify this statement.

In the Appendix it is shown that, whenA50, the general
AdS C metric, Eq. ~13!, reduces to the AdS (m50, q
50), to the AdS-Schwarzschild (m.0, q50), and to the
AdS–Reissner-Nordstro¨m solutions (m50, q5” 0). There-
fore, the parametersm and q are, respectively, the ADM
mass and ADM electromagnetic charge of the nonacceler
black holes. Moreover, if we set the mass and charge par
eters equal to zero, even whenA5” 0, the Kretschmann scala
@see Eq.~7!# reduces to the value expected for the Ad
spacetime. This indicates that the massless uncharged AC
metric is an AdS spacetime in disguise.

A. AÌ1Õø: Pair of accelerated black holes

In this section, we will first interpret case 1.@Massless
uncharged solution (m50, q50)], which is the simplest,
and then with the acquired knowledge we interpret case
@massive uncharged solution (m.0, q50)] and 3. @mas-
sive charged solution (m.0, q5” 0)]. We will interpret the
solution following two complementary descriptions, the fo
dimensional~4D! one and the five dimensional~5D! one.

1. The four-dimensional description (mÄ0, qÄ0)

As we said in Sec. III A 1, whenm50 and q50, the
origin of the radial coordinater defined in Eq.~6! has no
curvature singularity and thereforer has the range ]2`,
1`@ . However, in the realistic general case, wherem or q
are nonzero, there is a curvature singularity atr 50 and since
the discussion of the massless uncharged solution was o
preliminary to that of the massive general case, followi
@6#, we have treated the originr 50 as if it had a curvature
singularity and thus we admitted thatr belongs to the range
@0,1`@ . In these conditions, we obtained the causal d
grams of Fig. 2. Note, however, that one can make a furt
extension to include the negative values ofr, enlarging in
this way the range accessible to the Kruskal coordinatesu8
and v8. By doing this procedure, we obtain the causal d
gram of the AdS spacetime. In Fig. 10, we show the ext
sion to negative values of coordinater ~so2`,y,1`) of
the Carter-Penrose diagrams of Fig. 2. This diagram in
cates that the origin of the AdS spacetime,r 50, is acceler-
ating. The situation is analogous to the one that occurs in
usual Rindler spacetime,ds252X2dT21dX2. If one re-
stricts the coordinateX to be positive, one obtains an acce
erated origin that approaches a Rindler accelerated hori

he

e
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However, by making an extension to negative values oX
one obtains the Minkowski spacetime.

Now, we want to clearly identify the parameterA that
appears in the AdSC metric with the acceleration of its ori
gin. To achieve this aim, we recover the massless uncha
AdS C metric defined by Eq.~3! and Eq.~4! ~with m50 and
q50), and after performing the following coordinate tran
formation:

t5
A,2A221

A
t, r5

A,2A221

A

1

y
,

u5arccosx, f5z, ~32!

we can rewrite the massless uncharged AdSC metric as

ds25
1

g2 F2~12r2/,2!dt21
dr2

12r2/,2
1r2dV2G ,

~33!

with dV25du21sin2udf2 and

g5A,2A2211Ar cosu. ~34!

The causal diagram of this spacetime is drawn in Fig.
Notice that the origin of the radial coordinater corresponds
to y51` and therefore tor 50, wherer has been intro-

FIG. 10. Extending the Carter-Penrose diagrams of Fig. 2
negative values ofr, we obtain the AdS spacetime with its origi
being accelerated.r A

15@A(x2y1)#21.0 andr A
25@A(x1y1)#21

.0. We have to glue indefinitely copies of the represented figur
the top and bottom regions.

FIG. 11. Carter-Penrose diagram of metric~33!. We have to glue
indefinitely copies of the represented figure in the top and bot
regions.
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duced in Eq.~6!. So, when we consider the massive AdSC
metric there will be a curvature singularity atr50 ~see Sec.
II B !.

To discover the meaning of parameterA we consider the
4D timelike worldlines described by an observer withr
5const, u50, and f50 ~see @28#!. These are given by
xm(l)5(g,l/A,22r2,r,0,0), wherel is the proper time
of the observer since the 4-velocityum5dxm/dl satisfies
umum521. The 4-acceleration of these observers,am

5(¹num)un, has a magnitude given by

ua4u5Aamam5
rA,2A2211,2A

,A,22r2
. ~35!

Sinceamum50, the valueua4u is also the magnitude of the
3-acceleration in the rest frame of the observer. From
~35! we achieve the important conclusion that the origin
the AdSC metric,r50 ~or r 50), is being accelerated with
a constant acceleration whose value is precisely given by
parameterA that appears in the AdSC metric. Moreover, at
radiusr5, @or y5y1 defined in Eq.~14!# the acceleration
is infinite, which corresponds to the trajectory of a null ra
Thus, observers held atr5const see this null ray as an a
celeration horizon and they will never see events beyond
null ray.

2. The five-dimensional description (mÄ0, qÄ0)

In order to improve and clarify the physical aspects of t
AdS C metric, we turn now to the 5D representation of t
solution.

The AdS spacetime can be represented as
4-hyperboloid,

2~z0!21~z1!21~z2!21~z3!22~z4!252,2, ~36!

in the 5D Minkowski ~with two timelike coordinates! em-
bedding spacetime,

ds252~dz0!21~dz1!21~dz2!21~dz3!22~dz4!2.
~37!

Now, the massless uncharged AdSC metric is an AdS space
time in disguise and therefore our next task is to underst
how the AdSC metric can be described in this 5D picture. T
do this, we first recover the massless uncharged AdSC met-
ric described by Eq.~33! and apply to it the coordinate trans
formation,

z05g21A,22r2 sinh~t/, !,

z15g21A,22r2 cosh~t/, !,

z25g21r sinu cosf,

z35g21r sinu sinf,

z45g21@A,2A221r cosu1,2A#, ~38!

whereg is defined in Eq.~34!. Transformations~38! define
an embedding of the massless uncharged AdSC metric into

o

in

m
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the 5D description of the AdS spacetime since they sat
Eq. ~36! and take directly Eq.~33! into Eq. ~37!.

So, the massless uncharged AdSC metric is an AdS
spacetime, but we can extract more information from this
analysis. Indeed, let us analyze with some detail the pro
ties of the origin of the radial coordinate,r50 ~or r 50).
This origin moves in the 5D Minkowski embedding spac
time according to@see Eq.~38!#

z250, z350, z45,2A/A,2A221.,,

and

~z1!22~z0!25~A221/,2!21[a5
22 . ~39!

These equations define two hyperbolic lines lying on the A
hyperboloid which result from the intersection of this hype
boloid surface defined by Eq.~36! and thez45const.,
plane~see Fig. 12!. They tell us that the origin is subjected
a uniform 5D acceleration,a5, and consequently move
along a hyperbolic worldline in the 5D embedding spa
describing a Rindler-like motion~see Figs. 12 and 13! that
resembles the well-known hyperbolic trajectory,X22T2

5a22, of an accelerated observer in Minkowski space. B
uniformly accelerated radial worldlines in the 5D Minkows
embedding space are also uniformly accelerated worldl
in the 4D AdS space@29#, with the 5D accelerationa5 being
related to the associated 4D accelerationa4 by a5

25a4
2

21/,2. Comparing this last relation with Eq.~39! we con-
clude thata4[A. Therefore, and once again, we conclu
that the origin of the AdSC metric is uniformly accelerating
with a 4D acceleration whose value is precisely given by
parameterA that appears in the AdSC metric, Eq.~3!, and
this solution describes an AdS space whose origin is no
rest as usual but is being accelerated. Note that the origi
the usual AdS spacetime describes the circle (z0)21(z4)2

5,2 in the AdS hyperboloid in contrast to the origin of th
AdS C metric with A.1/,, whose motion is described b

FIG. 12. AdS 4-hyperboloid embedded in the 5D Minkows
spacetime with two timelike coordinates,z0 andz4. The directions
z2 andz3 are suppressed. The two hyperbolic lines lying on the A
hyperboloid result from the intersection of the hyperboloid surfa
with thez45const., plane. They describe the motion of the orig
of the AdSC metric with A.1/,.
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Eq. ~39!. This discussion allowed us to find the physic
interpretation of parameterA and to justify its label. Notice
also that the original AdSC metric coordinates introduced i
Eq. ~3! cover only the half-spacez1.2z0. The Kruskal con-
struction done in Sec. III A extended this solution to inclu
also thez1,2z0 region and so, in the extended solution,r
50 is associated to two hyperbolas that represent two ac
erated points~see Fig. 13!. These two hyperbolas approac
asymptotically the Rindler-like acceleration horizon (r A), so
called because it is is absent whenA50 and present even
whenA5” 0, m50, andq50.

3. Pair of accelerated black holes (mÌ0, qÄ” 0)

Now, we are in position to interpret the massive a
charged solutions that describe two black holes accelera
away from each other. To see this clearly, let us look to
Carter-Penrose diagrams near the equator, Fig. 2~c!, Fig.
4~c!, and Fig. 6~c! @for the discussion that follows, we could
as well, look at the diagrams of case~d! in these figures#.
Looking at these figures, we can compare the different f
tures that belong to the massless uncharged case@Fig. 2~c!#,
to the massive uncharged case@Fig. 4~c!#, and ending in the
massive charged case@Fig. 6~c!#. In Fig. 2~c!, we identify the
two hyperbolasr 50 ~represented by two timelike lines! ap-
proaching asymptotically the Rindler-like acceleration ho
zon (r A). When we add a mass to the solution we conclu
that each of these two simple hyperbolasr 50 are replaced
by the more complex structure that represents a Schwa
child black hole with its spacelike curvature singularity a
its horizon@these are represented byr 1 in the left and right
regions of Fig. 4~c!#. So, the two accelerating pointsr 50
have been replaced by two Schwarzschild black holes
approach asymptotically the Rindler-like acceleration ho
zon@represented byr A in the middle region of Fig. 4~c!#. The
same interpretation can be assigned to the massive cha
solution. The two hyperbolasr 50 of Fig. 2~c! are replaced
by two Reissner-Nordstro¨m black holes@with its timelike
curvature singularity and its innerr 2 and outerr 1 horizons;
see the left and right regions of Fig. 6~c!# that approach

e

FIG. 13. Schematic diagram representing the 5D hyperbolic m
tion of two uniformly accelerating massive charged black ho
approaching asymptotically the Rindler-like accelerated horiz
(hA). The inner and outer charged horizons are represented bh
2 and h1. The strut that connects the two black holes is rep
sented by the zigzag lines. The north pole direction is represe
by N and the south pole direction byS.
1-14
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asymptotically the Rindler-like acceleration horizon alrea
present in them50 andq50 causal diagram.

The Carter-Penrose diagrams of cases~a! and~b! of Fig. 4
and Fig. 6 indicate that an observer that is looking throu
an angular direction which is in the vicinity of the south po
does not see the acceleration horizon and notices the p
ence of a single black hole. This is in agreement with F
13. Indeed, in this schematic figure, coordinatesz0 and z1

can be seen as Kruskal coordinates and we conclude th
observer, initially located at infinity (z15`) and moving
inwards into the black hole along the south pole, pas
through the black hole horizons and hits eventually its c
vature singularity. Therefore, he never has the opportunit
getting in contact with the acceleration horizon and with
second black hole. This is no longer true for an observer
moves into the black hole along an angular direction tha
in the vicinity of the north pole. In Fig. 13 this observ
would be between the two black holes, at one of the point
the z0,0 semiaxis~say! and moving into the black hole
Clearly, this observer passes through the acceleration hor
before crossing the black hole horizons and hitting its cur
ture singularity. This description agrees with cases~c!, ~d!,
and ~e! of Fig. 4 and Fig. 6, which describe the solutio
along an angular direction which includes the equato
plane@case~c!# as well as the north pole@case~e!#.

The diagrams of the third column of Fig. 6 concerning t
naked case of theA.1/, massive chargedC metric deserve
a comment. First, we stress that the term ‘‘naked’’ is e
ployed in this situation because the values of parameterm
and q are such that the solution has no charged associ
horizons, i.e., in the notation used in this paper,r 2 and r 1

are not present in these diagrams. However, these diag
present an interesting new feature. Indeed, looking at r
~a! and ~b! we have a single accelerated naked particle
rows ~c! and~d! we find two naked singularities approachin
asymptotically the acceleration horizonr A , but in row~e! we
no longer have two naked singularities. More precisely,
have a kind of single AdS-Reissner-Nordstro¨m black hole
with the curvature singularity being provided by the ma
and charge but with the horizons having their origin in t
acceleration and cosmological constant.

4. Source of acceleration: The strut

We can now ask, what entity is causing the accelera
and where is it localized? To achieve this aim, let us go b
to the massless uncharged AdSC metric and consider radia
worldlines motions withz250, z350, and z45const or,
equivalently, withu50, f5const, andr5const. These ob-
servers move along a Rindler-like hyperbola described
@see Eq.~38!#

~z1!22~z0!25
,22r2

~A,2A2211Ar!2
. ~40!

Since the right-hand side of Eq.~40! is smaller thana5
22

defined in Eq.~39!, the north poleun50 is localized be-
tween the hyperbolas (z1)22(z0)25a5

22 in the z0,z1 dia-
gram ~see Fig. 13!. What does this means? When we putm
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or q different from zero, each of the two hyperbolas assign
to r 50 represent the accelerated motion of a black ho
Thus, Eq.~40! tells us that theun50 axis points toward the
other black hole, i.e., it is in the region between the tw
black holes~see Fig. 13!. The south pole points along th
symmetry axis towards spatial infinity. Now, in Sec. II C, w
saw that parameterk has been chosen in order to avoid
conical singularity at the south pole@see Eq.~12!# and, by
doing so, at the north pole a conical singularity is localize
This is associated with a strut that joins the two black ho
and provides the acceleration of the black holes. To confi
this, recall that either a straight string or a strut has a me
described by@30,31#

ds252dt21dZ21d%21%2df̃2, ~41!

where f̃5@12d/(2p)#f and 0<f,2p. A string hasd
.0 and the geometry around it is conic, i.e., it is a pla
with a deficit angled, while a strut hasd,0. Their mass per
unit length is m5d/(8p) and their interior energy-
momentum tensor is

Ta
b5md~X!d~Y!diag~21,0,0,21!, ~42!

whereX5% cosf̃ andY5% sinf̃ are the directions norma
to the strut, andd(X) and d(Y) are Dirac delta functions
The pressure on the string or in the strut satisfiesp52m. If
m.0, we have a string; ifm,0, we have a strut. Now
turning to our case, the AdSC metric, Eq. ~13!, near the
north pole is given by

ds2;2r 2Fdt21r 2F 21dy2

1S r 2du21
k2

4 UdG

dxU
xn

r 2u2df2D , ~43!

where k is defined in Eq.~12! and the term between th
parentheses brackets is the induced metric in the plane
mal to the strut that connects the two black holes~along the
y direction! and will be labeled asdX21dY2. TheC-metric
strut has a mass per unit length given by

m5
1

4

dn

2p
5

1

4 S 12UdG
dxU

xs

21UdG
dxU

xn

D . ~44!

We haveudxGuxs
,udxGuxn

and som is negative. To obtain the
pressure of theC-metric strut, we write Eq.~43! in a
Minkowski frame, ds252u (0)21u (1)21u (2)21u (3)2, with
u (A)5e a

(A) dxa and e 0
(0) 5rAF, e 1

(1) 5r , e 2
(2)

5rukudxGuxn
/2, ande 3

(3) 5r /AF. In this Minkowski frame

the energy-momentum tensor,T(A)
(B) , of the C-metric strut

is given by Eq.~42!. In order to come back to the coordina
basis frame and write the energy-momentum tensor of
C-metric strut in this basis, we useTab5e(A)ae(B)

bT(A)
(B)

and obtain

Tab5m~r 2F!21d~X!d~Y!diag~1,0,0,2F 2!. ~45!
1-15
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Defining the unit vectorz5]/]y @so za5(0,0,0,1)], the
pressure along the strut isTabzazb and the pressure on th
C-metric strut is given by the integration over theX-Y plane
normal to the strut,

p5E dXdYA (2)gTabzazb52m. ~46!

So, the pressure and mass density of theC-metric strut sat-
isfy the relationp52m. Sincem is negative, at both ends o
the strut, one has a positive pressure pushing away the
black holes.

Alternatively, instead of Eq.~12!, we could have chosen
for k the valuek215(1/2)udxGuxn

. By doing so, we would

avoid the deficit angle at the north pole (dn50) and leave a
conical singularity at the south pole (ds.0). This option
would lead to the presence of a semi-infinite string extend
from each of the black holes towards infinity along the so
pole direction, which would furnish the acceleration. T
mass density of both strings is m5(1/4)(1
2udxGuxn

21udxGuxs
).0 and the pressure on the string,p5

2m, is negative, which means that each string is pulling
corresponding black hole towards infinity.

At this point, a remark is relevant. Israel and Khan@32#
have found a solution that represents two~or more! collinear
Schwarzschild black holes interacting with each other
such a way that allows dynamical equilibrium. In this so
tion, the two black holes are connected by a strut that ex
an outward pressure which cancels the inward gravitatio
attraction and so the distance between the two black h
remains fixed@32#. The solution@32# is valid for L50 but,
although it has not been done, it can be extended in princ
for genericL and so the present remark holds for genericL.
Now, the C-metric solution reduces to a single nonaccel
ated black hole free of struts or strings when the accelera
parameterA vanishes~see the Appendix and Sec. IV C!.
Thus, when we take the limitA50, theC metric does not
reduce to the static solution of Israel and Khan. The rea
for this behavior can be found in the Carter-Penrose d
grams of theC metric. For example, looking at Fig. 4~c!,
which represents the massive unchargedC metric along the
equator, we conclude that a null ray sent from the vicinity
one of the black holes can never cross the acceleration h
zon (r A) into the other black hole. So, if the two black hol
cannot communicate through a null ray, they cannot inte
gravitationally. The only interaction that is present in t
system is between the strut and each one of the black h
that suffer an acceleration, which is only furnished by t
strut’s pressure. That the limitA50 does not yield the solu
tion @32# can also be inferred from@9#, where theC metric is
obtained from the two black hole solution of@32# but
through a singular limit in which several quantities go app
priately to infinity.

Ernst@4# has employed a Harrison-type transformation
the L50 chargedC metric in order to append a suitab
chosen external electromagnetic field. With this procedu
the so called Ernst solution is free of conical singularities
both poles and the acceleration that drives away the
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oppositely charged Reissner-Nordstro¨m black holes is totally
provided by the external electromagnetic field. In the A
background, we cannot remove the conical singularit
through the application of the Harrison transformation@33#.
Indeed, the Harrison transformation does not leave invar
the cosmological term in the action. Therefore, applying
Harrison transformation to Eqs.~3!–~5! does not yield a new
solution of the Einstein-Maxwell-AdS theory.

5. Radiative properties

TheC metric ~either in the flat, de Sitter, or anti–de Sitte
background! is an exact solution that is radiative. As notice
in @3#, the gravitational radiation is present since the comp
scalar of the Newman-Penrose formalism,C45

2Cmnabnmm̄nnam̄b ~where Cmnab is the Weyl tensor and

$ l ,n,m,m̄% is the usual null tetrad of Newman-Penrose!, con-
tains a term proportional tor 21. Similarly, the charged ver-
sion of theC metric includes, in addition, electromagnet
radiation. In @6#, it has been shown that the Bondi new
functions of the flatC metric are indeed nonzero. Thes
Bondi news functions appear in the context of the Bon
method introduced to study gravitational radiative system
They are needed to determine the evolution of the radia
gravitational field since they carry the information conce
ing the changes of the system. When at least one of the
not zero, the total Bondi mass of the system decreases du
the emission of gravitational waves. The Bondi news fun
tions of the flatC metric have been explicitly calculated i
@14,15#. For a detailed review on the radiative properties
the C metric and other exact solutions, see@15#. In AdS
background, these calculations have not been carried yet
deed, AdS still lacks a peeling theorem.

B. AÄ1Õø: Single accelerated black hole

WhenA51/,, the AdSC metric describes a single acce
erated black hole. The absence of a second black hol
clearly indicated by the Carter-Penrose diagrams of Figs
and 9.

This case has been studied in detail in@22#, where the
Randall-Sundrum model in a lower dimensional scena
was analyzed. In this scenario, the brane-world is a 2-br
moving in a 4D asymptotically AdS background. They ha
shown that the AdSC metric with A51/, describes a black
hole bound to the Minkowski 2-brane. The brane tension
fine-tuned relative to the cosmological background accele
tion and thusA51/, is precisely the acceleration that th
black hole has to have in order to comove with the 2-bra
They concluded that the AdSC metric describes the fina
state of gravitational collapse on the brane-world. The cau
structure of the massive uncharged solution~Fig. 8! has been
first discussed in@22#. For completeness, we have also pr
sented the causal diagrams of the massless uncharged
tion in Fig. 7 and of the nonextremal, extremal, and nak
massive charged solutions in Fig. 9.

In @22#, the coordinate transformation that takes the ma
less uncharged AdSC metric with A51/, into the known
description of the AdS spacetime in Poincare´ coordinates is
1-16
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given. From there one can easily go to the 5D description
the AdS hyperboloid. This 5D description can also be und
stood directly from the limits on the solutionsA.1/, and
A,1/, whenA→1/,. Indeed, if we take the limitA→1/, in
Sec. IV A 2 ~where we have studied the 5D description
caseA.1/,), one sees that the cut that generates the
hyperbolic lines degenerates into two half circles which,
identifying the ends of the AdS hyperboloid at both infinitie
yields one full circle. This means that the trajectory of t
origin of the AdSC metric in theA51/, case is a circle
~which when one unwraps the hyperboloid to its univer
cover yields a straight accelerated line!. As we will see in the
next subsection, forA,1/, the trajectory of the origin is a
circle which, on taking the limitA→1/,, still yields a circle.
The two limits give the same result, as expected.

C. AË1Õø: Single accelerated black hole

The A,1/, case was first analyzed in@23#. We have
complemented this work with the analysis of the cau
structure. The causal diagrams of this spacetime are iden
to those of the AdS (m50, q50) @see Fig. 7~a!#, of the
AdS-Schwarzschild (m.0, q50) @see Fig. 8~a!#, and of the
AdS–Reissner-Nordstro¨m solutions (m.0, q5” 0) @see Fig.
9~a!#. However, the curvature singularity of the single bla
hole of the solution is not at rest but is being accelerat
with the accelerationA provided by an open string that ex
tends from the pole into asymptotic infinity.

As was done with theA.1/, case, it is useful to interpre
the solution following two complementary descriptions, t
4D one and the 5D one. One first recovers the massless
charged AdSC metric defined by Eq.~3! and Eq.~4! ~with
A,1/,, m50, andq50), and after performing the follow
ing coordinate transformation@23#:

T5
A12,2A2

A
t, R5

A12,2A2

A

1

y
,

u5arccosx, f5z, ~47!

we can rewrite the massless uncharged AdSC metric as

ds25
1

h2 F2~11R2/,2!dT21
dR2

11R2/,2
1R2dV2G ,

~48!

with h215A12,2A21ARcosu and dV25du2

1sin2udf2. A procedure similar to the one used to obtain E
~35! indicates that an observer describing 4D timelike wor
lines with R5const, u50, and f50 suffers a
4-acceleration with magnitude given by

ua4u5
,2A2RA12,2A2

,A,21R2
. ~49!

Therefore, the origin of the AdSC metric, R50, is being
accelerated with a constant acceleration whose value is
cisely given byA. The causal diagram of this spacetime
drawn in Fig. 14. Notice that when we setA50, Eq. ~48!
06400
n
r-

f
o
n
,

l

l
al

d,

n-

.
-

re-

reduces to the usual AdS spacetime written in static coo
nates. Now, to obtain the 5D description, one applies to
~48! the coordinate transformation@23#,

z05h21A,21R2 sin~T/, !,

z25h21R sinu cosf,

z45h21A,21R2 cos~T/, !,

z35h21R sinu sinf,

z15h21@A12,2A2R cosu2,2A#. ~50!

Transformations~50! define an embedding of the massle
uncharged AdSC metric withA,1/, into the 5D description
of the AdS spacetime since they satisfy Eq.~36! and take
directly Eq.~48! into Eq. ~37!.

The origin of the radial coordinate,R50, moves in the
5D Minkowski embedding spacetime according to@see Eq.
~50!#

z152,2A/A12,2A2, z250, z350,

and

~z0!21~z4!25~1/,22A2!21[a5
22 . ~51!

So, contrary to the caseA.1/,, where the origin described
Rindler-like hyperbolic trajectory@see Eq.~39!# that suggests
the presence of two black holes driving away from ea
other in the extended diagram, in theA,1/, case the origin
describes a circle~a uniformly accelerated worldline! in the
5D embedding space~see Fig. 15!, indicating the presence o
a single trapped black hole in the AdS background.

To summarize and conclude, we present the global
scription on the AdS hyperboloid of the AdSC metric origin
when the accelerationA varies from1` to zero. WhenA
51`, the origin of the solution is represented in the hyp
boloid by two mutual perpendicular straight null lines at 45
that result from the intersection of the hyperboloid surfa
defined by Eq.~36! and thez45, plane ~see Figs. 12 and
13!. WhenA belongs to ]1/,,1`@ , the origin of the solution
is represented by two hyperbolic lines@Eq. ~39!# lying on the
AdS hyperboloid and results from the intersection of E
~36! and thez45const., plane~see Fig. 12!. As the accel-
eration approaches the valueA51/,, the separation betwee
the two hyperbolic lines increases. WhenA51/,, the sepa-
ration between the two hyperbolic lines becomes infinite a
they collapse into two half circles which, on identifying th

FIG. 14. Carter-Penrose diagram of metric~48!.
1-17
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ends of the AdS hyperboloid at both infinities, yield one f
circle in thez0-z4 plane at infinitez1. At this point we see
again that the valueA51/, sets a transition stage betwee
A.1/, andA,1/,. WhenA belongs to ]0,1/,@ , the origin
of the solution is described again by a circle@Eq. ~51!# in the
z0-z4 plane but now at a constantz1,0. As the acceleration
approaches the valueA50, the radius of this circle de
creases and whenA50, the circle has a radius with value,
and is atz150 ~see Fig. 15! and we recover the usual Ad
solution whose origin is at rest.

V. CONCLUSIONS

The AdS C metric found by Pleban´ski and Demian´ski
@16# is characterized by a quite interesting new feature w
compared with theC metric in flat or de Sitter backgrounds
Indeed, contrary to what happens in these two last soluti
in the AdS background the solution only describes a pai
accelerated black holes if the acceleration parameter sati
A.1/,, where, is the cosmological length. The acceler
tion is caused by a strut that connects the black holes.
physical interpretation of the solutions has been essent
taken from the analysis of the Carter-Penrose diagrams~fol-
lowing the approach of Kinnersly and Walker@3# for the flat
C metric!, from the embedding of the massless uncharg
solution into the AdS 4-hyperboloid in a 5D Minkowsk
spacetime~with two timelike coordinates!, and from the
physics of the strut. The alternative approach of Bonnor@7#,
which puts the flatC metric into the Weyl form, cannot be
realized here, since the introduction of the cosmological c
stant prevents such a coordinate transformation.

For A.1/,, the embedding of the AdSC metric into 5D
Minkowski space clearly shows that the origin of the Ad
C-metric solution is subjected to a uniform acceleration, a
describes a hyperbolic Rindler-like worldline in the Ad
4-hyperboloid embedded in the 5D Minkowski space. To
more precise, the origin is represented by two hyperb
lines that approach asymptotically the Rindler-like acce
ated horizon, so called because it is absent whenA50 and
present even whenA5” 0, m50, andq50. When we add a

FIG. 15. AdS 4-hyperboloid embedded in the 5D Minkows
spacetime. The origin of the AdSC metric with A,1/, moves in
the hyperboloid along the circle withz15const,0. WhenA50
this circle is at the planez150 and has a radius,.
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mass or a charge to the system, the causal diagrams ind
that now we have two AdS-Schwarzschild or two AdS
Reissner-Nordstro¨m black holes approaching asymptotical
the Rindler-like accelerated horizon. We have proceeded
the localization of the conical singularity present in the s
lution and concluded that it is between the two black ho
and along the symmetry axis~or alternatively from the black
holes out to infinity!. When it is between the two black hole
it is associated to a strut satisfying the relationp52m.0,
wherep andm are, respectively, the pressure on the strut a
its mass density. The pressure is positive, so it points o
wards into infinity and pulls the black holes apart, furnishi
their acceleration~as in the flatC metric!. When the conical
singularity points from each of the black holes into infinity,
is associated to a string with negative pressure that pu
the black holes into infinity. From the analysis of the Cart
Penrose diagrams, we also concluded that the two b
holes cannot interact gravitationally. So, their acceleration
provided only by the pressure exerted by the strut. This is
reason why the limitA50 of theC metric does not reduce to
the static solution of Israel and Khan@32#. This solution
describes two collinear Schwarzschild black holes connec
by a strut that exerts an outward pressure which cancels
inward gravitational attraction and so the distance betw
the two black holes remains fixed.

For A<1/,, the above procedure indicates the absence
a second black hole and so the solution describes a si
black hole. In the AdS 4-hyperboloid, the origin of the
solutions describes a circle in the plane defined by the
timelike coordinates. In a lower dimensional Randa
Sundrum model, it has been shown that theA51/, AdS C
metric describes a black hole bound to a Minkowski 2-bra
moving in a 4D asymptotically AdS background@22#.

The C metric solution for genericL has been used
@17,25,26# to describe the final state of the quantum proc
of pair creation of black holes that once created, accele
apart by an external field. In this context, we expect that
black hole pair created in the AdS background must have
accelerationA.1/,. Indeed, the AdS background is global
contracting with an acceleration precisely equal to 1,.
Therefore, a pair of virtual black holes created in this ba
ground can only become real if the black hole acceleratio
greater than the contracting acceleration of the AdS ba
ground, otherwise the annihilation is inevitable. The qua
tum process that might create the pair would be the grav
tional analogue of the Schwinger pair production of charg
particles in an external electromagnetic field. This would
one possible scenario to create two exactly equal black h
with the same acceleration that are described by the A
C-metric solution withA.1/,.
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APPENDIX: MASS AND CHARGE PARAMETERS

In this appendix, one gives the physical interpretation
parametersm and q that appear in the AdSC metric. We
follow @23#.

Applying the coordinate transformations to Eq.~3!
~see@23#!,

T5A12,2A2A21t, R5A12,2A2~Ay!21,

u5E
x

xnG 21/2dx, f5z/k, ~A1!

and settingA50 ~andk51) one obtains
s

06400
f

ds252F~R!dT21F21~R!dR2

1R2~du21sin2udf2!, ~A2!

where F(R)511R2/,222m/R1q2/R2. So, when the ac-
celeration parameter vanishes, the AdSC metric, Eq. ~3!,
reduces to the AdS-Schwarzschild and AdS–Reissn
Nordström black holes and the parametersm andq that are
present in the AdSC metric are precisely the ADM mass an
ADM electromagnetic charge of these nonaccelerated b
holes. It should, however, be emphasized that the acceler
black holes lose mass through radiative processes and s
determination of the mass of the accelerated black ho
would require the calculation of the Bondi mass, which w
do not do here.
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