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Pair of accelerated black holes in an anttde Sitter background: The AdS C metric
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The anti—de SitteiC metric (AdS C metrio is characterized by a quite interesting new feature when
compared with th& metric in flat or de Sitter backgrounds. Indeed, contrary to what happens in these two last
exact solutions, the AdS metric only describes a pair of accelerated black holes if the acceleration parameter
satisfiesA>1/¢, wheref is the cosmological length. The two black holes cannot interact gravitationally and
their acceleration is totally provided by the pressure exerted by a strut that pushes the black holes apart. Our
analysis is based on the study of the causal structure, on the description of the solution in the AdS
4-hyperboloid in a 5D Minkowski spacetime, and on the physics of the strut. We also analyze thé cases
=1/t andA<1/¢ that represent a single accelerated black hole in the AdS background.
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[. INTRODUCTION spherical section, and moreover that the causal diagrams
drawn in[3] were not quite accurate. The issue of physical
The original C metric was found by Levi-Civita in his interpretation of theC metric was recovered by Bonnfr],
studies between 1917 and 1919. During the following debut now following a different approach. He transformed the
cades, many authors rediscovered it and studied its matts metric into the Weyl form in which the solution represents
ematical propertiegsee[1] for references In 1963, Ehlers a finite line sourcethat corresponds to the horizon of the
and Kund{ 2] classified degenerated static vacuum fields andlack holg, a semi-infinite line masscorresponding to a
put this Levi-Civita solution into the& slot of the table they horizon associated with uniform accelerated moti@and a
constructed. From then onwards this solution has been callestrut keeping the line sources apart. By applying a further
the C metric. This spacetime is stationary, axially symmetric,transformation that enlarges this solution, Bonnor confirmed
Petrov type D, and is an exact solution which includes ahe physical interpretation given {18]. Bonnor’s procedure
radiative term. Although th€ metric had been studied from was simplified by Cornish and Uttley and extended to in-
a mathematical point of view along the years, its physicaklude the massive charged solutid8]. More recently,
interpretation remained unknown until 1970, when Kinners-Yongcheng[9], starting from the metric of two superposed
ley and Walker{3], in a groundbreaking work, showed that Schwarzschild black holes, derived temetric under ap-
the solution describes two uniformly accelerated black holepropriate conditions. The black hole uniqueness theorem for
in opposite directions. Indeed, they noticed that the originathe C metric was proven by Well§10] and the geodesic
solution was geodesically incomplete, and by defining newstructure of theC metric was studied by Pravda and Prav-
suitable coordinates they analytically extended it and studiedova[11]. The limit at which the acceleration goes to infinity
its causal structure. The solution has a conical singularity irwas analyzed by Podolskgnd Griffiths[12], who showed
one of its angular poles that was interpreted by them as duthat in this limit the solution is analogous to the one which
to the presence of a strut in between pushing the black holedescribes a spherical impulsive gravitational wave generated
away, or as two strings from infinity pulling in each one of by a snapping string. We note that tGemetric is an impor-
the black holes. The strut or the strings lie along the symmetant and explicit example of a general class of asymptotically
try axis and cause the acceleration of the black hole paiflat radiative spacetimes with boost-rotation symmetry and
This work also included for the first time the charged versionwith hypersurface orthogonal axial and boost Killing vectors.
of the C metric. In an important development, Ernst in 1976 The geometric properties of this general class of spacetimes
[4], through the employment of an appropriate transformawere investigated by Bak and Schmid{13] and the radia-
tion, removed all the conical singularities of the charged tive features were analyzed by Bic[14] (see the recent
metric by appending an external electromagnetic field. In thiseview of Pravda and Pravdoya5] on this class of space-
new exact Ernst solution, the acceleration of the pair of optimes and the role of th€ metric).
positely charged black holes is provided by the Lorentz force Relevant generalizations to th@ metric were made by
associated with the external field. The geometric propertie®lebamski and Demiaski in 1976 [16] and by Dowker,
of the C metric were further investigated by Farhoosh andGauntlett, Kastor, and Traschen in 1994]. Plebawski and
Zimmerman[5], and the asymptotic properties of tBemet-  Demiarski, in addition to the masén) and electromagnetic
ric were analyzed by Ashtekar and Dr§§], who showed charge (1), have included into the solution a Newman-Unti-
that null infinity admits a conformal completion, has a Tamburino(NUT) parameter, a rotation, and a cosmological
constant term4), and Dowkeret al. have further included a
dilaton field nonminimally coupled. Thus, the most gen€ral
*Electronic address: oscar@fisica.ist.utl.pt metric has eight parameters so far, namely acceleration,
"Electronic address: lemos@kelvin.ist.utl.pt mass, electric and magnetic charges, NUT parameter, rota-
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tion, cosmological constant, and dilaton field. TBemetric  so, in order to fully understand both of them, the reading of
with mass and electromagnetic charges alone was extegach is required. Finally, in Sec. V concluding remarks are
sively studied as shown above, and from now on we willpresented.

refer to it as the fla€ metric(i.e., C metric with A =0). The

C metric with a NUT parameter has not been studied, as far 1l. GENERAL PROPERTIES OF THE AdS C METRIC

as we know. The flat spinninG metric was studied by Far- .

hoosh and ZimmermaE?LS], Lgtelier and OIiveird19],yand A. The AdS C metric
by Bicak and Pravd#20]. In particular, in[20] the flat spin- The AdSC metric, i.e., theC metric with negative cos-
ning C metric was transformed into the Weyl form and inter- mological constant\, was obtained by Plebaki and Demi-
preted as two uniformly accelerated spinning black holesinski [16]. For zero rotation and zero NUT parameter it is
connected by a strut. This solution constitutes an example diven, according t¢16] (see alsd26]), by

a spacetime with axial and boost Killing vectors which are

not hypersurface-orthogonal. Dowket al. generalized the ds?=1U(x+y)?(— Fdt>+ 7~ *dy?
flat C metric and flat Ernst solution to include a dilaton field 1o ~
and applied these solutions for the first time in the context of +Gtdx®+gd?), 1)

guantum pair creation of black holes that once created, ac-
Where
celerate apart.
In what concerns the cosmologidalimetric introduced in ~_ K272 ~ 74
. =—AI6—A°+y —2my>+ ,
[16], the de Sitter(dS) case (\>0) was analyzed by Pod- FY) y my*+a’y
olsky and Griffiths[21], whereas the anti—de SittéAdS)
case (\<0) was studied, in special instances, by Emparan,
Horowitz, and Myer§22] and by Podolsky23]. In general, The meaning of paramete’, m, and q will be clarified

the C metric (either flat, dS or Adsdescribes a pair of ac- ) : s ;
celerated black holes. Indeed, in the flat and dS backgroundC" FOr the benefit of comparison with the Gmetric,

this is always the case. However, in an AdS background th@€ note that when\. vanishes we havé(y)=—g(-y). It
situation is not so simple and depends on the relation bgs now convenient to redefine the parameferas —A/6
tween the acceleratioA of the black holes and the cosmo- +A?=A?, together with the coordinate transformations:
logical length¢. Since the AdSC metric presents such pe- =t/A, }sz, X=Ax, andz=z/A. With these redefinitions

culiar features, it deserves a careful analysis. It is OUkhe gravitational field of the AJE metric is written as
intention in this paper to fully study, in its most general form,

G(X)=— AI6+A%2=x?—2mx—gx*. 2

the AdSC metric with mass, charge, and cosmological con- ds?=[A(x+Yy)] ?(— Fdt®+ Fdy?
stant. One can divide the study into three cases, namely 1o 2
<1/¢, A=1/¢ and A>1/¢. The A<1l/{ case was the one +g dxt+4dz), 3

analyzed by Podolskf23], and theA=1/¢ case was inves-

tigated by Emparan, Horowitz, and Myef82], which has

acquired an important role since the authors showed that, in

the context of a lower dimensional Randall-Sundrum model, ]-‘(y):(

it describes the final state of gravitational collapse on the

brane-world. The geodesic structure of this solution has been

studied by Chambli24]. Both casesA<1/¢ andA=1/¢, G(x)=1—x*=2mAx—g?A**, (4

represent one single accelerated black hole. The éase and the nonzero components of the electromagnetic vector

>1/¢ has not been fully studied and its physical interpreta- tential A dx* are given b

tion is not yet firmly established, although it has been ap-po R 9 y

plied, in addition to the flat and dS cases, in pair creation of A=—ey, A=gx (5)

black holes by Hawking, Horowitz, and Rog25] and by

Mann[26] (see[27] for a review. The purpose of this paper This solution depends on the following four parametéys:

is to establish that th&>1/¢ AdS C metric describes a pair which is the acceleration of the black hole; which is in-

of accelerated black holes in an AdS background. This ainterpreted as the Arnowitt-Deser-Misn@DM) mass of the

will be achieved through a thorough analysis of the causahonaccelerated black holg, which is interpreted as the

structure of the solution, together with the description of theADM electromagnetic charge of the nonaccelerated black

solution in the AdS 4-hyperboloid, and the study of thehole and, in generalg®=e?+g?, with e and g being the

strut’'s physics. electric and magnetic charges, respectively; and finally the
The plan of this paper is as follows. In Sec. I, we presenicosmological length??=3/|A|. The meaning attributed to

the AdSC metric and analyze its curvature and conical sin-the parameteA will be understood in Sec. IV, while the

gularities. In Sec. Ill, we study the causal diagrams of thephysical interpretation given to the parametersand q is

solution. In Sec. IV, we give and justify a physical interpre- justified in the Appendix. We will consider the case-0.

tation to the solution. The description of the solution in the The coordinates used in Eq8)—(5) to describe the AdS

AdS 4-hyperboloid and the physics of the strut are analyzedC metric are useful to understand the geometrical properties

These two sections, Secs. lll and IV, are highly related, an@f the spacetime, but they hide the physical interpretation of

where

— 1| +y?—2mAy*+q?A%y*,

€2A?
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the solution. In order to understand the physical properties of 65 (not necessarily atr). With these transformations the
the source and gravitational field, we will introduce progres-metric restricted to the surface®, do?=r?(G dx?
sively new coordinates more suitable to this purpose, follow-+ Gdz?), takes the form

ing the approach of Kinnersley and WalK&] and Ashtekar
and Dray[6]. Although the alternative approach of Bonnor

do?=r?(d6°+ k?Gd ¢?). 9

simplifies the interpretation in a way, we cannot use it since

the cosmological constant prevents such a coordinate tran

formation into the Weyl form.

B. Radial coordinate: Curvature singularities

We start by defining a coordinateas
r=[A(x+y)] " (6)

In order to interpret this coordinate as being a radial coordi
nate, we calculate a curvature invariant of the metric, namel
the Kretschmann scalar,

24 8
RM,,aﬁR”V“ﬁ=ﬁ+ r—8[6m2r2+ 12ma?(2Axr—1)r

()

Clearly, this curvature invariant is equal to 24iwhen the
massm and chargeg are both zero. When at least one of
these parameters is not zero, the curvature invariant diverg

+q*(7— 24AXr+24A%%?r?)].

at r=0, revealing the presence of a curvature singularity.

Moreover, when we take the limit—c, the curvature sin-

gularity approaches the expected value for a spacetime which

is asymptotically AdS. Therefore, it is justified thafs in-
terpreted as a radial coordinate.

C. Angular surfaces: Conical singularities

To gain more insight into the physical nature of the AdS

metric we now turn our attention into the angular surfaces

t=const andr =const, hereafter labeled y. In this sec-
tion, we follow[3]. In order to have the AdE€ metric with
correct signature { + + +), one must restrict the coordi-
nate x to a domain on which the functiog(x) is non-
negative[see Eq.(3)]. The shape of this function depends
crucially on the three parametefs m, andg. In this work,

we will select only the ranges of these three parameters for

which G(x) has at least two real rootg, andx, (say), and
require thatx belong to the ranggxs,x,], whereG(x)=0.

WhenA=0 or when bothm=0 andq=0, Eq.(8) givesx
=cosd, G=1—x2=sirf6, and if we use the freedom to put
k=1, the metric restricted t& is given bydo?=r? (d6?
+ sirfédg¢?). This implies that in this case the angular surface
is a sphere and justifies the label given to the new angular
coordinates defined in E@8). In this case, the north pole is
at 6,=0 or x,=+1 and the south pole is &= or x;=
—1. In the other casesand+/G can always be expressed as
elliptic functions of#. The explicit form of these functions is

f no need in this work. All we need to know is that these
unctions have a period given by62.

As we shall see, the regularity analysis of the metric in the
region[ 0,65] will play an essential role in the physical inter-
pretation of the AdSC metric. The functiorg is positive and
bounded in J094 and thus the metric is regular in this re-
gion between the poles. We must be more careful with the
regularity analysis at the poles, i.e., at the root§.ofndeed,
if we draw a small circle around the north pole, in general, as
the radius goes to zero, the limit circumference/radius is not
2. Therefore, in order to avoid a conical singularity at the

es

north pole one must require that=0, where

o

K
Repeating the procedure, this time for the south palewe
conclude that the conical singularity at this pole can also be
avoided if
XS)

The as yet arbitrary parameterintroduced in Eq(8) plays
an important role here. Indeed, if we choose

dg
dx

1
1 lim=~/ 3¢
9—of YV Qoo

K
1——

5n5277( 5

) . (10

n

1 x|dg
2|dx

0. (12)

555277(

1
2

K (12

X:Xs

This restriction has the important advantage of allowing us td&Equation(11) is satisfied. However, since we only have a

endow the angular surfacés with the topology of a com-

single constank at our disposal and this has been fixed to

pact surface. In these surfaces, we now define two new caemove the conical singularity at the south pole, we conclude

ordinates,
Xn
0= f G Y,
X

d=12lk, (8)

where ¢ ranges betweef0,27] and « is an arbitrary posi-

that the conical singularity will be present at the north pole.
There is another alternative. We can choose instead'2
=|dyGlx=x, (whered, means the derivative in order t)

and by doing so we avoid the deficit angle at the north pole
and leave a conical singularity at the south pole. In Sec. IV,
we will see that in the extended Kruskal solution the north
pole points towards the other black hole, while the south pole
points towards infinity. The first choice a&f corresponds to a

tive constant which will be needed later when regularity con-strut between the black holes while the alternative choice

ditions at the poles are discussed. The coordiatanges
between the north poled=6,=0, and the south poled

corresponds to two strings from infinity into each black hole.
We leave the discussion on the physical nature of the conical
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singularities and on the two possible choices for the value o=0. Therefore, we restrict the radial coordinate to the range
x to Sec. IVA4. There is a small number of very special[0,+«[. On the other hand, in Sec. Il C we have decided to
cases for which the very particular conditiohdxg|Xn consider only the values @, m, andq for which G(x) has at

=|dyGly, is verified. In these special cases, the solution igéast two real rootsxs andx, (say, and we have required
free of conical singularities. They will be mentioned below. thatx belong to the ranggxs x,, vyhereg(x)BO. By do!ng
Since we have managed to p@tx) in a form equal to this, we guarantee that the metric has the correct signature

[3], we can now, followind 3] closely, describe the behavior (__ +++) and that the angulazsurfac%sft=coast andr
of G(x) for different values of the parametefs m, andg. ~ — cOoNst) are compact. Fromr=(x+y) = we then con-
We can divide this discussion into three cases. clude thaty must belong to the range x<y<+. Indeed,

(i) Massless uncharged solutigm=0, q=0). In this Y= —X corresponds to =+, andy=+x= tor=0. Note,
case, we have=cosf, G=1—x2=sin26, and k=1. The however, that when botim andq. vanish, there are no restric-
angular surfac&, is a sphere and this is a particular case forioS on the ranges afandy (i.e.,, —ee<r<+ and -

which both the north and south poles are free of conical<y<+°<?)_Since in _this_ case there is no curvature sin_gularity
singularities at the origin ofr to justify the constraint on the coordinates.

(ii) Massive uncharged solutiqmn>0, g=0). The mas-
sive uncharged case must be divided ima#<3~%? and
mA=3"%2 WhenmA<3~%2 G(x) has three roots and, as
justified above, we requireto lie between the two roots for | this section we analyze the causal structure of the so-
which G(x)=0. In doing so, we maintain the metric with the |ution. As occurs with the original fla€ metric [3,6], the
correct signature and have an angular surfacevhich is  original AdS C metric, Eq.(13), is not geodesically com-
compact. Setting the value afgiven in Eq.(12), one avoids  plete. To obtain the maximal analytic spacetime, i.e., to draw
the conical singularity at the south pole but leaves one at théhe Carter-Penrose diagrams, we will introduce the usual null
north pole. WhemA=3"%2 3 isan open angular surface. Kruskal coordinates.

For this reason, hereafter we will analyze only the aage We now look carefully to the Ad€ metric, Eq.(13), with
<3792 F(y) given by Eq.(4). We first notice that, contrary to what

(iii) Massive charged solutiofm>0, q+0). For a gen- happens in the\=0 background where the causal structure
eral massive charged solution, depending on the values of thend physical nature of the correspondi@gmetric is inde-
parametersA, m, andq, G(x) can be positive in a single pendent of the relation between the accelerattoand ¢
compact interval, ¥s,X,[, or in two distinct compact inter- = /3/A|, in the A<0 case we must distinguish and analyze
vals, Jx¢ . xp[ and s, X[, say. In this latter case, we will separately the cases>1/¢, A=1/¢, andA<1/(. Later, in
work only with the interval[xs,X,] (say for which the  Sec. IV, we will justify physically the reason for this distinc-
charged solutions reduce to the uncharged solutions when tion. The mathematical reason for this difference is clearly
=0. These solutions have a conical singularity at one of thédentified by settingm=0 and q=0 in Eq. (4), giving
poles. The only massive charged solutions that are totallyr(y)=y?—[1— 1/(¢?A?)]. Since the horizons of the solu-
free of conical singularities are those which satisfy the partion are basically given by the real roots &{y), we con-
ticular conditionsm=|g| and mA>1/4. This indicates that clude that we have to treat separately the cages A
in this case the A€ metric is an AdS black hole written in  >1/¢, for which F(y) can have two real roots(B) A
an accelerated coordinate frame. In the massless charged se4/¢, for whichy=0 is a double root, an¢tC) A<1/¢, for
lution (m=0 andq+#0), G(x) is an even function, has two which F(y) has no real rootésee the discussion in the text
symmetric roots, and is positive between them. The angulasf Fig. 1). We will consider each of these three cases sepa-
surface, is therefore compact and there are no conical sinrately in Secs. IllA and IVA A>1/¢ case, |lIB and IVB
gularities at both poles. Once again, this suggests that theA=1/¢ case, and IlIC and IVC @A<1/¢ casg. The de-

Ill. CAUSAL STRUCTURE OF THE AdS C METRIC

solution is written in an accelerated coordinate frame. scription of the solution depends crucially on the valuemof
andg. In each subsection, we will consider the three most
D. Coordinate ranges relevant solutions, namelff) the massless uncharged solu-

. . , . tion (m=0, g=0), (ii) the massive uncharged solution
In this section, we analyze the important issue of the cor,~ q=0), and (iii) the massive charged solution
ordinate ranges. Rewritten in terms of the new coordinate%m>o’ qqéo)i

introduced in Eq(6) and Eq.(8), the AdSC metric is given
by
d32=r2[—]-'(y)dt2+.7-"_1(y)dy2 A. Causal structure of the A>1/¢ solutions

_ 5 1. Massless uncharged solution @D, g=0)
+d0 + K Q(X((,))dqﬁ ], (13)

In this case, we have

where F(y) andG(xy) are given by Eq(4). The time co-

ordinatet can take any value from the intervat-pe, + o[ 1

and ¢ ranges betweef0,27]. As we saw in Sec. || B, when Fy)=y2—y2  with y,=A [1— —— (14)
. . . + + 272!

m or q are not zero, there is a curvature singularityrat €A
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Case (a) [x,,-y,[

G(x) y Case (b) x = -y, Y
Case(c) 1-y,, y,[ _°

YT Case (d) x= y, Y

Case(®) 1 y,.x,1 Y

v=x ’

FIG. 1. Shape ofj(x) and F(y) for the A>1/¢, m=0, and
g=0 C metric studied in Secs. lll A1 and IV A. The allowed range
of x is betweerx,=—1 andx,=+1, whereg(x) is positive and
compact. The permitted range ptlepends on the angular direction
X(—x<y<+w) and is sketched for the five casém—(e) dis-
cussed in the text. The presence of an accelerated horizon is in

cated byh,. [For completeness, we comment here on two other

cases not represented in the figure but analyzed in the texA for
=1/, m=0, andq=0 (this case is studied in Secs. IlIB1 and
IVB), F(y) is zero at its minimum and positive elsewhere. Por
<1/, m=0, andq=0 (this case is studied in Secs. IlIC1 and
IV C), F(y) is always positive and only caga) survives]

andxe[Xs=—1x,=+1], x=cos6, G=1—x?=sir’d, and
x=1. The shapes off(y) and G(x) are represented in
Fig. 1.

The angular surfaceg (t=const andr=const) are

spheres and both the north and south poles are free of conical

singularities. The origin of the radial coordinates 0, has
no curvature singularity and therefore baotandy are in the
range }-o0,+[. However, in the general case, wheneor
g are nonzero, there is a curvature singularityai0. Since

the discussion of the present section is only a preliminary to

that of the massive general case, follow(itd, we will treat

the originr=0 as if it had a curvature singularity and thus

we admit that belongs to the range,+ o[ andy lies in the

PHYSICAL REVIEW D67, 064001 (2003

ds?=r?[ — Fdudv + d 6%+ sirf6d ¢?]. a7

The metric still has coordinate singularities at the rootgof

To overcome this unwanted feature, we have to introduce
Kruskal coordinates. Now, due to the lower restriction on the
value ofy (—x=y), the choice of the Kruskal coordinates
(and therefore the Carter-Penrose diaghadepends on the
angular directiork we are looking at. In fact, depending on
the value ofx, the region accessible omight contain two,
one, or zero roots aof (see Fig. 1 and so the solution may
have two, one, or zero horizons, respectively. This angular
dependence of the causal diagram is not new. The Schwarzs-
child and Reissner-Nordstm solutions being spherically
symmetric do not present this feature but, in the Kerr solu-
tion, the Carter-Penrose diagram along the pole direction is
different from the diagram along the equatorial direction.
Such a dependence occurs also in theGlanetric[3]. Back
again to the AdSC metric, we have to consider separately
five distinct sets of angular directions, namély x;<x<
=Y, () x==y,, (€) —y,<x<y,, (d) x=+y,, and

d@ Y. <X=<X,, wWherexs=—1 andx,=+1 (see Fig. 1

(@ Xs=<x<-—y, . Within this interval of the angular di-
rection, the restriction on the rangeyf —x<sy<+w, im-
plies that the functiorf(y) is always positive in the acces-
sible region ofy (see Fig. ], and thus the solution has no
horizons. Introducing the null coordinates defined in @6&)
followed by the Kruskal coordinates’=—e Y+Y<0 and
v'=+e"V+'>0 gives u'v'=—ePVr=—(y—y,)I/(y
+vy,)<0, and Eq.(17) becomes

r2 _ (y+y+)2

y3

ds’= du’dv’ +d6@>+sirfad¢?|, (18

wherey andr=A"1(x+y) ! are regarded as functions of
u’ andov’,

1+u'v’

1
Ay +x)—u'v'(y.—x)
(19

1-u'v’

+
1+u'v’

y=y

region—x<y<+«. We leave a discussion on the extensionNow, let us find the values of the producty’ atr=0 and

to negative values af to Sec. IV A.

r=-+oo,

The general procedure to draw the Carter-Penrose dia-

grams is as follows. First, we make use of the null condition

9,.,K"k"=0 (wherek” is a geodesic tangento introduce

the advanced and retarded Finkelstein-Eddington null coor-

dinates,
u=t-y,, v=t+y,, (19
where the tortoise coordinate is
1 Y=Y+
= | F ldy==—1In 16
Y f oy Myrys (10

and bothu andv belong to the range-} oo, +[. In these
coordinates, the metric is given by

limu'v’'=—-1,

r—0

. Yy tX .

limu'v'= <0 and finite. (20
r—+ow y+_X

So, forxg=x<-y,, the original massless uncharged AdS
C metric is described by Eq18) subjected to the following
coordinates ranges:

O=s¢p<2m, —1sx=+1, u'<0p’'>0, (21)
+X

C=up <X (22)
Yi—X
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This spacetime is, however, geodesically incomplete. To ob- (a)
tain the maximal analytical extension, one allows the
Kruskal coordinates to take also the valug€s=0 andv’ South " T

<0 as long as Eq(22) is satisfied.

Finally, to construct the Carter-Penrose diagram one has
to define the Carter-Penrose coordinates by the usual arc-
tangent functions ofu’ and v'—U=arctanu’ and V T+
=arctarv’'—that bring the points at infinity into a finite po- (b) .
sition. In general, to find what kind of curve describes the
linesr=0 orr=+c, one has to take the limit ai’v’ as -
r—0 (in the case off=0) and the limit ofu’v’ asr—

I+
-
I+
-
A
NG

+o (in the case off = +x). If this limit is 0 or «, the
corresponding line is mapped into a curved null line. If the

limit is —1, or a negative and finite constant, the corre- (¢)
sponding line is mapped into a curved timelike line and, o o
finally, when the limit is+1, or a positive and finite con- " "

T=

<

stant, the line is mapped into a curved spacelike line. The
asymptotic lines are drawn as straight lines, although in the
coordinated/ and V they should be curved outwards, i.e.,

bulged. It is always possible to change coordinates so that

)

the asymptotic lines are indeed straight lines. So, from Eq. (d)
(20) we draw the Carter-Penrose diagram sketched in Fig.

T
2(a). There are no horizons and batk-0 andr =+« (7)
are timelike lines. < }
(b) x=—y, . For this particular angular directiory, is H
restricted to be onry, <y<+o andF(y) is always posi-
tive except aty=+y, (which corresponds ta = +x),
where it is zero(see Fig. 1L Therefore, the solution has no I-
horizon and the Kruskal construction is similar to the one
described above in caga). The only difference is that now
lim,_,.u'v'=0 and thusr=+0o (Z) is represented by a
null line in the Carter-Penrose diagram, which is shown in (e)
Fig. 2(b). T
(c) —y,<x<y, . The demand that must belong to the North
range[ —x; + oo implies, for this range of the angular direc-
tion, that we have a region K x<y<+vy,, whereF(y) is
negative and a region Iy, <y<+o, where Fy) is ulr
positive (see Fig. 1 There is a single Rindler-like accelera-
tion horizon ¢,) aty=+y, , so called because it is absent

whenA=0 and present even when=0 andq=q.mljn re- FIG. 2. Carter-Penrose diagrams of caéas-(e) discussed in
gion I, one sets the Kruskal coordinatas=+e"“" and  the text of Sec. lA1 concerning thé>1/¢, m=0, and q

ot — a2 : : . . . 1
v'=+e"* sothatu'v'=+e“+. Inregion Il, one defines —0 C metric. Casda) describes the solution seen from the vicinity

I.+

I

+
A

u'=—e “ andv’'=+e"* in order thatu’v’'=—€’"*.  ofthe south pole, case) applies to the equatorial vicinity, and case
We seta=y, . Thus, in both regions the produatv’ is  (e) describes the solution seen from the vicinity of the north pole.
given by An accelerated horizon is representedry andZ ~ andZ* rep-
resent, respectively, the past and future infinity=(+®). r=0
Y=Y corresponds tg =+ andr =+ corresponds ty= —X.
uv'=-— , (23
ytys

The Kruskal coordinates in both regions were chosen in or-

and Eq.(17) expressed in terms of the Kruskal coordinates isd€" {0 obtain a negative value for the facti(u’v "), which

appears in the metric coefficiegy., . The value of constant

iven b
d 4 a was selected in order that the limit of/(u’v’) asy
1 —Y, stays finite and different from zero. By doing this, we
ds?=r2 — du’do’ +d 6+ sinf6 d¢? (24)  have removed the coordinate singularity that was present at
Ly; u'v’ the rooty, of F [see Eq(17)]. So, the metric is now well-

behaved in the whole range x<y<+o or 0<r<+oo,
The coordinatey andr are expressed as functionsiwdf and

du'dv’ +d@?+sirfe d¢zl. (250 v’ by Eq.(19), and at the edges of the interval allowed to
the productu’v’ takes the values

[ (yty)?
o 2
2

N
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limu'v'=-1,

r—0

. Yy +X -

lim u'v’'= >0 and finite. (26)
—+o y+_X

Once again, the maximal analytical extension is achieved by

allowing the Kruskal coordinates’ andv’ to take all the
values on the range-e;+ o[, as soon as the condition
—1lsu’v'<(y.+x)/(y;,—x) is satisfied. The Carter-

Penrose diagram for this range of the angular direction is

drawn in Fig. Zc). r=0 is represented by a timelike line
while r=+0 (Z) is a spacelike line. The two mutual per-
pendicular straight null lines at 45°y’v’ =0, represent the

accelerated horizon gty=+y, orra=[A(x+y.)]

(d) x=+y, . In this particular direction, the region ac-
cessible toy is —y, <y<-+«, F(y) is negative in region I,
-y, <y<y,, and positive in region lly>y, . Itis zero at
y=+y,, where the only horizonr(,) of the solution is
located andF(y) vanishes again at=—y,, which corre-
sponds ta = +« (see Fig. 1 The Kruskal construction fol-
lows directly the procedure described in cdsg The only
difference is that now lim, ,,u’v' =+ and thus the =
+ line (Z) is now represented by a null line in the Carter-
Penrose diagram, which is shown in FigdR

(e) y. <x=x,. The region accessible fomust be sepa-
rated into three regiongsee Fig. L In region |, —x<y<
—-vy., Fly) is positive; in region I, —y,<y<
+y,., F(y) is negative; and finally in region Illy>
+vy., F(y) is positive again. We have two Rindler-like ac-
celeration horizons, more specifically, an outer horizoy at
=—y, orrx=[A(x—y,)] ! and an inner horizon at=
+y, orry=[A(x+y,)] L Therefore, one must introduce

PHYSICAL REVIEW D67, 064001 (2003

v'=+e" %+ so thatu'v'=+e"2*Y«, In region Ill, one
definesu’=—e “+"Y andv’'=+e**+ in order thatu'v’
=—e"2%Yx We seta, =y, . Thus, in both regions Il and
[1l, the productu’v’ is given by

_y_Y+
y+y.'

! [

uv

(29

and, in this second Kruskal patch, EG7) is given by

o (Ytyy)?
r P —

4

ds’= du’dv’ +d6@?+sirfede?|, (30)

which is regular iny>—vy, and, in particular, at the second
root y=+y, of F(y). Once again, in both patches, the
Kruskal coordinates were chosen in order to obtain a factor
Fl(u'v") negative[see Eq.(24)]. The values of constants
a_ anda, were selected in order that the limit &7(u'v’)
asy— Yy, stays finite and different from zero. To end the
construction of the Kruskal diagram of this solution with two
horizons, the two patches have to be joined together in an
appropriate way first defined by Carter in the Reissner-
Nordstran solution.

From Eq.(29) and Eq.(27), we find the values of product
u’'v’ at the edges=0 andr =+« of the radial coordinate,

limu'v'=-1,

r—0

: , o, Y+ X -

lim u'v'= <0 and finite, (31
—+® y++x

and we conclude that both=0 andr= +« (Z) are repre-

a Kruskal coordinate patch around each of the horizons. Theented by timelike lines in the Carter-Penrose diagram

first patch constructed aroundy, is valid for —xsy<
+y, (thus, it includes regions | and)IllIn region I, we
define u'=—e**-" and v'=+e *Y so thatu'v'=
—e 2% Y« _|n region I, one defines’=+e*Y andv’'=
+e %V in order thatu'v'=+e~ 2% Y+, We seta_=y, .
Thus, in both regions | and I, the produetv’ is given by

o —

YTY+
uv -

Y=y

(27)

and Eq.(17) expressed in terms of the Kruskal coordinates is,, n.-3-3/2

given by

o (Y—y)?
e ————
Y+

ds’= du’dv’+d02+sin20d¢2],

(28)
which is regular in this patch-x<y<+y, and, in particu-
lar, it is regular at the roogy=—y, of F(y). However, it is

singular at the second root= +vy. , of #(y). To regularize
the metric aroundy=+y,, one has to introduce new

sketched in Fig. @). The two accelerated horizons of the
solution are both represented as perpendicular straight null
lines at 45° ('v'=0).

2. Massive uncharged solution (m0, g=0)

Now that the causal structure of the AdSmetric with
m=0 andq=0 has been studied, the construction of the
Carter-Penrose diagrams for the>0 case follows up di-
rectly. As was justified in detail in Sec. Il C, we will consider
only the case with small mass or acceleration, i.e., we require
, In order to have compact angular surfa¢ese
the discussion in the text of Fig,).3We also require that
belong to the rangexs,x,] (see Fig. 3 whereG(x)=0 and
such thatx;— — 1 andx,— +1 whenmA— 0. By satisfying
the above two conditions, we endow the const andr
=const surfaces with the topology of a compact surface.

The technical procedure to obtain the Carter-Penrose dia-
grams is similar to the one described along Sec. IIIA1. In
what concerns the physical conclusions, we will see that the
essential difference is the presence of an extra horizon, a
Schwarzschild-like horizonr(.), due to the nonvanishing

Kruskal coordinates for the second patch which is builtmass parameter, in addition to the accelerated Rindler-like

aroundy, and is valid for—y, <y<+x (thus, it includes
regions Il and 1l). In region Il, we setu’=+e *+" and

horizon (»), which is due to nonvanishing. Another im-
portant difference, as stated in Sec. Il B, is the presence of a
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(a)

I T
/\] South o =X |F
r=0

Case (a) [ x,.,x[
Case(b) x= x_
Case (¢) Jx_,x,[
Case (d) x=x,
Case(e) ] x, ., x,]

- e < <

Y=,

FIG. 3. Shape ofj(x) andF(y) for theA>1/¢,mA<3~%2 and
g=0 C metric studied in Secs. Ill A2 and IV A. The allowed range
of x is betweerxg andx, , whereG(x) is positive and compact. The
permitted range of depends on the angular directigi—x<y<
+0) and is sketched for the five cades—(e) discussed in the text.
The presence of an accelerated horizon is indicateti ognd the
Schwarzschild-like horizon by,,. [For completeness, we com-
ment on two other cases not represented in the figureAfol /¢,

r=0 =0
mA<3~%2 and q=0 (this case is studied in Secs. IlIB2 and (e) 7//: A 1-7///
! . ini . < :
IVB), F(y) is zero at its local minimum. FOA<1/¢, mA North /A a %
pa r=0

<3732 andqg=0 (this case is studied in Secs. IIIC2 and IY,C
the local minimum ofF(y) is positive and only casé) survives.
FormA=3"%2G(x) is zero at its local minimum on the left and
for mA>3"%%G(x) is positive betweer-» andx, . These two last

cases are not studied in the taxt. %I A : 7//{%

curvature singularity at=0 and the existence of a conical

singularity at the north polésee Sec. Il ¢ FIG. 4. Carter-Penrose diagrams of caéas-(e) discussed in

Once more the Carter-Pe_nrose dlagrams depend on thge text of Sec. II1A 2 concerning tha>1/¢, mA<3~32 andq
angular direction we are looking éee Fig. 3. We have to  —o C metric. Casda) describes the solution seen from the vicinity
analyze separately five distinct cases, nam@y Xs<X  of the south pole, cade) applies to the equatorial vicinity, and case
<xX_, (b) x=x_, (¢) x_<x<x,, (d) x=x,, and(e) x, (e) describes the solution seen from the vicinity of the north pole.
<X=X,, which are the massive counterparts of ca@s  The zigzag line represents a curvature singularity, an accelerated
(e) that were considered in Sec. lllA1. When—O0, we  horizon is represented by,, the Schwarzschild-like horizon is
havexs——1, X,—+1, x_——y,, andx, —+y, . sketched ag,, r=0 corresponds toy=+®, andr=+x (7)

(@ Xssx<x_. The Carter-Penrose diagrajfig. 4(a)] corresponds ty= —x. The hatched region does not belong to the
for this range of the angular direction has a spacelike curvasolution. In diagramgc)—(e) we have to glue indefinitely copies of
ture singularity ar =0, a timelike line that represents= the.re.presen.ted figure in the Ieft and right sides of it. In d.iag(rla)m
+ (7), and a Schwarzschild-like horizon () that was not & similar gluing must be done in the top and bottom regions.
present in them=0 corresponding diagram Fig(&. The
diagram is similar to the one of the AdS-Schwarzschild so-=0 corresponding diagrafisee Fig. 2)]. The left and right
lution, although now the curvature singularity has an accel¥egions both contain a spacelike curvature singularity and a
erationA, as will be seen in Sec. IV. Schwarzschild-like horizor,, .

(b) x=x_. The curvature singularity=0 is also a space- (d) x=x, . The Carter-Penrose diagrafig. 4(d)] for
like line in the Carter-Penrose diagrdisee Fig. 4o)] and  this particular value of the angular direction is similar to that
there is a Schwarzschild-like horizom (). The infinity, r  of case(c). The only difference is that=+« (Z) is repre-
=+ (7), is represented by a null line. The origin is being sented by a null line rather than a spacelike line.
acceleratedsee Sec. V. (e) x,<x<x,. The Carter-Penrose diagrafRig. 4(e)]

(c) x_<x<x, . The Carter-Penrose diagrdaig. 4c)]  can again be divided into left, middle, and right regions. The
has a more complex structure that can be divided into leftmiddle region consists of a timelike line representirrg
middle, and right regions. The middle region contains thet (Z) and two accelerated Rindler-like horizons, an inner
spacelike infinity £) and an accelerated Rindler-like hori- one (r,=[A(x—x_)]"%) and an outer one(r, =[A(x
zon, ra=[A(x—x_)]"%, that is already present in the -x,)]™ Y, that were already present in tme=0 corre-

A + + T X, LoX ty
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G(x) F(y) and outer () horizons associated to the charged character

AT

B E of the solution.
o %/ Below, we study the causal structure of the electric or
h+ h-

/J \\\ hA
A xE Xs/\/dhA X=X\ M magnetic counterparts of cases—(e) discussed in the last
/ N \
AN R0 e

x

two sections(see Fig. 5, namely (a) xs=x<x', (b) x

- Case(a) [x,, x'[
Case (b) x = x'
Case (c) 1x'_, x',[
Case (d) x = x',
Case (e) 1x', , x,]

column represents the nonextremal case, the middle column
represents the extremal case, and the right column represents
the naked charged case. Ré& describes the solution seen
from the vicinity of the south pole, rovc) applies to the
equatorial vicinity, and row(e) describes the solution seen
y=-X, from the vicinity of the north pole. The zigzag line represents
a curvature singularity, an accelerated horizon is represented
by r 5, and the inner and outer charge associated horizons are
sketched as_ andr, . Z~ andZ™ represent, respectively,
the past and future infinityrE +). r=0 corresponds to
y=+0o0 andr = +o0 corresponds tg = —x. The hatched re-
discussed in the text. The presence of an accelerated horizon gon does nOt, be'o_”g to the Somt'on' In d'agra(ms'(e)'_we
indicated byh, and the inner and outer charged horizonshby ~ Nave to glue indefinitely copies of the represented figure on
andh+. In the extremal caséy— andh+ superpose each other the left and right sides of it. In some of the diagrams, a
and in the naked casg(y)>0 in the local minimum on the right. ~Similar gluing must be done in the top and bottom regions.
[For completeness, we comment on two other cases not represented (&) Xs<X<Xx' . Both the curvature singularity=0, and
in the figure: forA=1/¢ (this case is studied in Secs. IlIB3 and r=+o (Z) are represented by a spacelike line in the Carter-
IVB), F(y) is zero at its local minimum on the left. Fér<1/¢ Penrose diagraniFig. 6(a)]. Besides, in the nonextremal
(this case is studied in Secs. lIIC 3 and IY,@e local minimum  case, there is an inner horizon_() and an outer horizon
on the left of 7(y) is positive and only cas&) survives] (r,) associated with the charged character of the solution. In
the extremal case, the two horizons andr . become de-
sponding diagrarfiFig. 2(e)]. The left and right regions both generate and so there is a single horizon{say, and in the
contain a spacelike curvature singularity and ahaked case there is no horizon. The diagram is similar to that
Schwarzschild-like horizonr(, ). of the AdS_—Relss_ner-Nordstmsolutlon, althqugh now the
curvature singularity has an acceleratiyras will be seen in
_ _ Sec. IV.
3. Massive charged solution (%0, +0) (b) x=x". The curvature singularity=0 is a spacelike

When both the mass and charge parameters are nonzeftiie in the Carter-Penrose diagrdsee Fig. €b)] andr=
depending on the values of the parametésm, and + (Z) is represented by a null line. Again, in the nonex-
q, G(x) can be positive in a single compact interval,treméﬂ case, therg is an inner horizon_J and an outer
1Xs.%,[, or in two distinct compact intervalsx] ,x;[ and honzon () associated to the chargeq charactgr of the solu-
1xs.X,[, say(see Fig. 5. In this latter case, we will work fuon. In the extremal case, there is a single horlgrqn,, _and _
only with the interval[xs,x,] (say for which the charged N the naked case there is no horizon. The origin is being
solutions are in the same sector of those we have analyzed fifceleratedsee Sec. 1V. ' .
the last two subsections whep—0. (c) x_<x<x! . The Carter-Penrose diagrarhig. 6(c)]

Depending also on the values Afm, andg, the function has a complex structure. As befdee Fig. 4c)], it can be
F(y) can have four roots, three rodisne of them degener- divided into left, middle, and right regions. The middle re-
ated, or two roots(see the discussion in the text of Fig. 5 gion contains the spacelike infinityZ) and an accelerated
As will be seen, the first case describes a pair of accelerate@indler-like horizon,r ,=[A(x—x_)]*, that was already
AdS—Reissner-Nordstno (AdS-RN) black holes, the second present in then=0, q=0 corresponding diagraisee Fig.
case describes a pair of extremal AdS-RN black holes, and(c)]. The left and right regions both contain a timelike cur-
the third case describes a pair of naked AdS-RN singularivature singularity (=0). In addition, in the nonextremal
ties. case these left and right regions contain an inner horizon

The essential differences between the Carter-Penrose dié-—) and an outer horizonr(.), in the extremal case they
grams of the massive charged solutions and those of the magentain a single horizonr(.), and in the naked case they
sive uncharged solutions af® the curvature singularity is have no horizon.
now represented by a timelike line rather than a spacelike (d) x=x'.. The Carter-Penrose diagrafig. 6(d)] for
line, and(ii) excluding the extremal and naked cases, therehis particular value of the angular direction is similar that of
are now(in addition to the accelerated Rindler-like horizon, case(c). The only difference is that=+c (Z) is repre-

r,) not one but two extra horizons, the expected inmer)(  sented by a null line rather than a spacelike line.

; %\_/ \/(L y =x", (c) x_<x<x/, (d) x=x/, and(e) x. <x<x, . When
! . i ‘.\\ Ay N -G(-y) g—0, we havex” —x_ andx/, —x, . The Carter-Penrose
" N y=' x diagrams are drawn in Fig. 6. In these diagrams, the left
|
|

< W < <

FIG. 5. Shape ofj(x) and F(y) for the nonextremal charged
massiveC-metric (with A>1/¢) studied in Secs. A3 and IV A.
The allowed range of is betweernxg andx,,, wheregG(x) is posi-
tive and compact. The permitted rangeyadepends on the angular
directionx(—x<y<+=) and is sketched for the five cades—(e)

<))
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Non-extremal charged Black Hole Extremal charged Black Hole Naked Particle
@
South <IN
u
+ |z T r
i
|z
(b)
T
- T+
i
o -
‘Il
(C) o 5 o %// =3 - =)
L 4 LA L
’ % ’ I+
I+ .
< A <
l‘A l’+ l‘+ l‘A l‘A l‘+ r+ l‘A 1} 1}
- rA -
P
r / r -
G 7// N
)
(e
North

FIG. 6. Carter-Penrose diagrams of ca&@s(e) discussed in the text of Sec. IIl A 3 concerning the charged massivetric. The left
column represents the nonextremal case, the middle column represents the extremal case, and the right column represents the naked charge
case. Row(a) describes the solution seen from the vicinity of the south pole,(mwpplies to the equatorial vicinity, and ras) describes
the solution seen from the vicinity of the north pole.
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(e) X\, <x=x,. The Carter-Penrose diagrdig. 6e)]. (a)

As before[see Fig. 4e)], it can be divided into left, middle, =)
and right regions. The middle region consists of a timelike South I z
line representing =+ (Z) and two accelerated Rindler-
like horizons,ry =[A(x—x")]"* andrx =[A(x—x})]" 1%,
that were already present in the=0 andq=0 correspond-
ing diagram[see Fig. 2e)]. The left and right regions both (b) v
contain a timelike curvature singularity €0). In addition, 5
in the nonextremal case these left and right regions contain Equator = _
an inner horizon _) and an outer horizonr(.), in the z
extremal case they contain a single horizon);, and in the
naked case they have no horiz@ee, however, the physical ‘
interpretation of this case as a black hole at the end of Sec. () oz
IVA3). North n

A

B. Causal structure of the A=1/¢ solutions

_ iad ; : FIG. 7. Carter-Penrose diagrams of ca&@s-(c) discussed in
The A=1/¢ case was studied in detail j22]. In particu-
22] P OWe text of Sec. IlIB 1 concerning thd=1/¢, m=0, andg=0 C

lar, the causal structure of the massive uncharged soluti . -1 X ;

was discussed. For completeness, we will also present tHRetre. ra=(Ax) . In diagrams(a) and (c) we have to glue in-
. : P ’ pr éafinitely copies of the represented figure in the top and bottom

causal diagrams of the massless uncharged solution and of . .
) . egions of it.

the massive charged solution.

Once more, due to Fhe lower resriction on the valug F’f middle column represents the extremal black hole, and the
(—x=y), the causal diagrams depend on the angular diréGsgnt ¢ojymn represents the naked charged particle. Rw
tion x we are looking at. We have to consider separately thre§agrines the solution seen from an angle that is between the
distinct sets of angular directiorisee the discussion in the south pole(including and the equatofexcluding, row (b)
text of Figs. 1, 3, andynamely(a) x,;<x<0, (b) x=0, and  55jies only to the equatorial direction, and résydescribes
(€) 0<x=x,, wherex;=—1 andx,=+1 whenm=0 and  he so|ution seen from an angle between the equatalud-
q=0. ing) and the north poléincluding).

1. Massless uncharged solution @0, g=0) )
C. Causal structure of the A<1/€ solutions

In this case, we havee[xs=—1x,=+1], x=cos6, G
=1-x°=sir, k=1, andF(y)=y? (see the discussion in
the text of Fig. 1. The angular surfaces (t=const andr
=const) are spheres free of conical singularities. The origi
of the radial coordinate has no curvature singularity and
therefore bothr andy can lie in the range} o, + o[ . How-
ever, in the general case, whereor q are nonzero, there is (a)
a curvature singularity at=0. Since the discussion of the
present section is only a preliminary to that of the massive South | z
general case, followinpps], we will treat the origir =0 as if
it had a curvature singularity and thus we admit thdte- r=0
longs to the rangg0,+«[ andy lies in the region—x<y
< +o. The Carter-Penrose diagrams are drawn in Fig. 7. In (b)
case(c), 0<x=x,, and only in this case is there an accel-
erated horizong o= (Ax) 1. Equator

The A<1/f case was first analyzed [23]. We comple-
ment it with the analysis of the causal structure. Contrary to
r]ihe caseA>1/¢ and A=1/¢, the causal diagrams of this
spacetime do not depend on the angular direction we are

r=0

2. Massive uncharged solution (m0, g=0)

The causal diagrams of this solution were first presented
in [22] and are drawn in Fig. 8. In the cagg), 0<x<Xx,, ©
and only in this case is there an accelerated horizgn,
=(Ax)"! which is degenerated (see [22]). The
Schwarzschild-like horizon is at, =A™ x+1/(2mA)] L.

FIG. 8. Carter-Penrose diagrams of ca&ms-(c) discussed in
the text of Sec. Il B2 concerning the=1/¢, mA<3~%?2 andq
The Carter-Penrose diagrams of the solution for this range-0 ¢ metric.r,=(Ax) ! is a degenerated horizasee[22]). In
of parameters are sketched in Fig. 9. In these diagrams, thi#tagram(c) we have to glue indefinitely copies of the represented
left column represents the nonextremal black hole, thdigure in the top and bottom regions of it.

3. Massive charged solution (m0, g#0)
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Non-extremal Extremal charged Naked and are represented in Figi@® In this figure, the nonextre-
charged Black Hole Black Hole Particle mal black hole is represented in the left column, the extremal
(@) black hole is represented in the middle column, and the na-
RAVEE ked charged particle is represented in the right column. The
South . >< - . ) r origin has an acceleratioh, as will be seen in Sec. IV.
| =Y |z z i z IV. PHYSICAL INTERPRETATION OF THE AdS C METRIC
i b The parameteA that is found in the AASC metric is
° v ° A 2 interpreted as being an acceleration and the Aietric
“§ = with A>1/¢ describes a pair of black holes accelerating
away from each other in an AdS background, while the AdS
b) . C metric with A<1/¢ describes a single accelerated black
5 § hole. In this section, we will justify this statement.
Equator - >< - ° z- In the Appendix it is shown that, whek=0, the general
sy I+ . I+ T+ AdS C metric, Eq. (13), reduces to the AdSn{=0, g
MG > ‘ i =0), to the AdS-Schwarzschildh{(>0, q=0), and to the
- f e - T- AdS—Reissner-Nordstno solutions (=0, g+#0). There-
r. 8 bl fore, the parameterm and g are, respectively, the ADM
I > I * mass and ADM electromagnetic charge of the nonaccelerated
| black holes. Moreover, if we set the mass and charge param-
eters equal to zero, even whar: 0, the Kretschmann scalar
(c) . r - [see Eq.(7)] reduces to the value expected for the AdS
North . A " z spacetime. This indicates that the massless unchargedAdS
" ° )4 I } metric is an AdS spacetime in disguise.
[AVEN z H g Iz
A - - A. A>1/¢: Pair of accelerated black holes
- >< - . b \ : - - In this section, we will first interpret case fIMassless
. A . ot v uncharged solutionn=0, g=0)], which is the simplest,
and then with the acquired knowledge we interpret cases 2

[massive uncharged solutiom{0, q=0)] and 3.[mas-
: ; = . i
the text of Sec. Il B3 concerning the charged massvenetric sive _charged S.OIUtloan 0, g#0)]. We will _|nt_erpret the
solution following two complementary descriptions, the four

with A=1/¢. The left column represents the nonextremal black™,. . . . .
hole, the middle column represents the extremal black hole, and th%'mensmnaMD) one and the five dimensionédD) one.

right column represents the naked charged partigles(Ax) ! is

an accelerated horizon amd andr , are charged associated hori-

zons. In these diagrams we have to glue indefinitely copies of the As we said in Sec. IllA1, whetm=0 andq=0, the

represented figure in the top and bottom regions of it. origin of the radial coordinate defined in Eq.(6) has no
curvature singularity and therefome has the range e,

looking at. The reason for this feature is clearly identified+«[. However, in the realistic general case, wharer q

and explained in the discussion in the text of Figs. 1, 3.are nonzero, there is a curvature singularity-aD and since

and 5. the discussion of the massless uncharged solution was only a
preliminary to that of the massive general case, following

1. Massless uncharged solution (D0, g=0) [6], we have treated the origin=0 as if it had a curvature

The Carter-Penrose diagram is identical to that of the AdSingularity and thus we admitted thabelongs to the range
solution A=0, m=0, q=0) and is sketched in Fig.(&. [0,=[. In these conditions, we obtained the causal dia-

The origin has an acceleratigy as will be seen in Sec. Iv. grams of Fig. 2. Note, however, that one can make a further
extension to include the negative valuesrpfenlarging in
2. Massive uncharged solution (0, g=0) this way the range accessible to the Kruskal coordinates

The Carter-Penrose diagram is identical to that of theandv,' By doing this procedure, we obtain the causal dia-
AdS-Schwarzschild solutionA=0, m>0, q=0) and is gram of the AdS spacetime. In Fig. 10, we show the exten-

S - . . sion to negative values of coordinatéso — o <y<+ =) of
g;a\év;ewiﬁlgeia)ivThe origin has an acceleratiéy as will the Carter-Penrose diagrams of Fig. 2. This diagram indi-

cates that the origin of the AdS spacetime;0, is acceler-
ating. The situation is analogous to the one that occurs in the
usual Rindler spacetimals’=—X?dT2+dX?. If one re-
The Carter-Penrose diagrams are identical to those of thstricts the coordinat& to be positive, one obtains an accel-
AdS—Reissner-Nordstno  solution @A=0, m>0, g#0) erated origin that approaches a Rindler accelerated horizon.

FIG. 9. Carter-Penrose diagrams of ca&ass-(c) discussed in

1. The four-dimensional description (m0, g=0)

3. Massive charged solution (0, g+0)
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r=+00 r=+00

FIG. 10. Extending the Carter-Penrose diagrams of Fig. 2 to
negative values of, we obtain the AdS spacetime with its origin

being accelerated. =[A(x—y,)] >0 andr, =[A(x+y,)]?

>0. We have to glue indefinitely copies of the represented figure in

the top and bottom regions.

However, by making an extension to negative values<of
one obtains the Minkowski spacetime.

Now, we want to clearly identify the parametérthat
appears in the A€ metric with the acceleration of its ori-

PHYSICAL REVIEW D67, 064001 (2003

duced in Eq(6). So, when we consider the massive AGS
metric there will be a curvature singularity @& 0 (see Sec.
B).

To discover the meaning of parametemwe consider the
4D timelike worldlines described by an observer with
=const, =0, and $=0 (see[28]). These are given by
X*(N) = (yENI\€% = p?,p,0,0), where\ is the proper time
of the observer since the 4-velocity*=dx*/d\ satisfies
u,u“=—1. The 4-acceleration of these observees;
=(V,u*)u”, has a magnitude given by

= VA aF= pVEPAZ— 1+ €A 35
A PNz

Sincea, u*=0, the valuela,| is also the magnitude of the
3-acceleration in the rest frame of the observer. From Eq.
(35 we achieve the important conclusion that the origin of
the AdSC metric,p=0 (or r=0), is being accelerated with

a constant acceleration whose value is precisely given by the
parametetA that appears in the AdS metric. Moreover, at

gin. To achieve this aim, we recover the massless unchargd@diusp= ¢ [or y=y. defined in Eq.(14)] the acceleration

AdS C metric defined by Eq3) and Eq.(4) (with m=0 and

is infinite, which corresponds to the trajectory of a null ray.

q=0), and after performing the following coordinate trans- Thus, observers held at=const see this null ray as an ac-

formation:
B \/€2A2—1t B VEPA -1 1
T= A 1 p_ A yu
f=arccox, ¢=z, (32

we can rewrite the massless uncharged Aietric as

1 dp?
ds?=—| —(1—p2£?)dr2+—— + p?d02|,
,)/2 1_p2/€2

(33
with dQ?=d#?+ sirfed¢? and
y=€?A%—1+ Ap cosf. (34)

celeration horizon and they will never see events beyond this
null ray.

2. The five-dimensional description (#0, g=0)

In order to improve and clarify the physical aspects of the
AdS C metric, we turn now to the 5D representation of the
solution.

The AdS spacetime can be
4-hyperboloid,

represented as the

—(29%+(2H?+ ()2 +(2P)? = (2H?=—¢* (39

in the 5D Minkowski(with two timelike coordinatesem-
bedding spacetime,

ds?’=—(d2%)?+(dz})?+ (d %)%+ (d )% — (d 2*)2.
37

Now, the massless uncharged A@3netric is an AdS space-

The causal diagram of this spacetime is drawn in Fig. 11time in disguise and therefore our next task is to understand

Notice that the origin of the radial coordingtecorresponds
to y=+0o and therefore ta =0, wherer has been intro-

FIG. 11. Carter-Penrose diagram of met38). We have to glue

how the AdSC metric can be described in this 5D picture. To
do this, we first recover the massless uncharged Gdfet-
ric described by Eq33) and apply to it the coordinate trans-
formation,

0=y~ 1eZ— pZsinh(1/¢),
zt=y~1JeZ—pZcosh 7/ (),
=y 1psinfcose,
2=y 1psindsing,

4=y J€°A?—1p cos+ ¢2A], (38)

indefinitely copies of the represented figure in the top and bottonwhere y is defined in Eq(34). Transformationg38) define

regions.

an embedding of the massless uncharged &d8etric into
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Zl

hyperbolic lines FIG. 13. Schematic diagram representing the 5D hyperbolic mo-
A>1 tion of two uniformly accelerating massive charged black holes
approaching asymptotically the Rindler-like accelerated horizon

FIG. 12. AdS 4-hyperboloid embedded in the 5D Minkowski (h,). The inner and outer charged horizons are representeu by
spacetime with two timelike coordinate, andz*. The directions — andh+. The strut that connects the two black holes is repre-
z? andz® are suppressed. The two hyperbolic lines lying on the AdSsented by the zigzag lines. The north pole direction is represented
hyperboloid result from the intersection of the hyperboloid surfaceby N and the south pole direction &
with the z*= const> ¢ plane. They describe the motion of the origin
of the AdSC metric with A>1/¢. Eq. (39). This discussion allowed us to find the physical

interpretation of parametek and to justify its label. Notice
the 5D description of the AdS spacetime since they satisfyalso that the original Ad€ metric coordinates introduced in
Eq. (36) and take directly Eq(33) into Eq. (37). Eq. (3) cover only the half-spacg> — z°. The Kruskal con-

So, the massless uncharged A@Smetric is an AdS struction done in Sec. Il A extended this solution to include
spacetime, but we can extract more information from this 5Dalso thez'< —z° region and so, in the extended solution,
analysis. Indeed, let us analyze with some detail the proper=0 is associated to two hyperbolas that represent two accel-
ties of the origin of the radial coordinatp=0 (or r=0). erated pointgsee Fig. 13 These two hyperbolas approach
This origin moves in the 5D Minkowski embedding space-asymptotically the Rindler-like acceleration horizan), so
time according tdsee Eq(38)] called because it is is absent whAr=0 and present even

whenA+#0, m=0, andq=0.
72=0, 22=0, Z*=02AIJ(?°A?—1>¢, a
3. Pair of accelerated black holes (0, g#0)

Now, we are in position to interpret the massive and
(24)2—(2°)%=(A2—1/t?) " ‘=a; 2. (399  charged solutions that describe two black holes accelerating
away from each other. To see this clearly, let us look to the
These equations define two hyperbolic lines lying on the AdSCarter-Penrose diagrams near the equator, Fig), Fig.
hyperboloid which result from the intersection of this hyper-4(c), and Fig. 6c) [for the discussion that follows, we could,
boloid surface defined by Eq36) and thez*=const>¢  as well, look at the diagrams of cag®) in these figure
plane(see Fig. 12 They tell us that the origin is subjected to Looking at these figures, we can compare the different fea-
a uniform 5D accelerationas, and consequently moves tures that belong to the massless uncharged [dgge 2(c)],
along a hyperbolic worldline in the 5D embedding spaceto the massive uncharged cd$ég. 4(c)], and ending in the
describing a Rindler-like motiofsee Figs. 12 and )J3hat  massive charged caBEig. 6(c)]. In Fig. 2c), we identify the
resembles the well-known hyperbolic trajectory?—T?  two hyperbolag =0 (represented by two timelike linpap-
=a~?, of an accelerated observer in Minkowski space. Butproaching asymptotically the Rindler-like acceleration hori-
uniformly accelerated radial worldlines in the 5D Minkowski zon (r,). When we add a mass to the solution we conclude
embedding space are also uniformly accelerated worldlineghat each of these two simple hyperbotas0 are replaced
in the 4D AdS spac§29], with the 5D acceleratioas being by the more complex structure that represents a Schwarzs-
related to the associated 4D acceleratimn by aZ=a3  child black hole with its spacelike curvature singularity and
—1/¢?. Comparing this last relation with E¢39) we con- its horizon[these are represented by in the left and right
clude thata,=A. Therefore, and once again, we concluderegions of Fig. 4c)]. So, the two accelerating points=0
that the origin of the AdSC metric is uniformly accelerating have been replaced by two Schwarzschild black holes that
with a 4D acceleration whose value is precisely given by theapproach asymptotically the Rindler-like acceleration hori-
parametetA that appears in the AdS metric, Eq.(3), and  zon[represented by, in the middle region of Fig. &)]. The
this solution describes an AdS space whose origin is not atame interpretation can be assigned to the massive charged
rest as usual but is being accelerated. Note that the origin afolution. The two hyperbolas=0 of Fig. 2c) are replaced
the usual AdS spacetime describes the cird®3+ (z*)2 by two Reissner-Nordstro black holes[with its timelike
=¢2 in the AdS hyperboloid in contrast to the origin of the curvature singularity and its inner. and outer . horizons;
AdS C metric with A>1/¢, whose motion is described by see the left and right regions of Fig(dp] that approach

and

064001-14



PAIR OF ACCELERATED BLACK HOLES INAN . .. PHYSICAL REVIEW D67, 064001 (2003

asymptotically the Rindler-like acceleration horizon alreadyor g different from zero, each of the two hyperbolas assigned
present in then=0 andq=0 causal diagram. to r=0 represent the accelerated motion of a black hole.
The Carter-Penrose diagrams of ca@sand(b) of Fig. 4  Thus, Eq.(40) tells us that thed,=0 axis points toward the
and Fig. 6 indicate that an observer that is looking througlother black hole, i.e., it is in the region between the two
an angular direction which is in the vicinity of the south pole black holes(see Fig. 13 The south pole points along the
does not see the acceleration horizon and notices the presymmetry axis towards spatial infinity. Now, in Sec. Il C, we
ence of a single black hole. This is in agreement with Fig.saw that parametex has been chosen in order to avoid a
13. Indeed, in this schematic figure, coordinat®sandz!  conical singularity at the south poJsee Eq.(12)] and, by
can be seen as Kruskal coordinates and we conclude that @oing so, at the north pole a conical singularity is localized.
observer, initially located at infinity £=%) and moving This is associated with a strut that joins the two black holes
inwards into the black hole along the south pole, passeand provides the acceleration of the black holes. To confirm
through the black hole horizons and hits eventually its curthis, recall that either a straight string or a strut has a metric
vature singularity. Therefore, he never has the opportunity oflescribed by30,31]
getting in contact with the acceleration horizon and with the
second black hole. This is no longer true for an observer that ds?=—dt>+dZ%+dp?+ 02d¢?, (41)
moves into the black hole along an angular direction that is
in the vicinity of the north pole. In Fig. 13 this observer ynere $=[1-8/(27m)]¢ and 0<p<2. A string hasd
would be between the two black holes, at one of the points of. g and the geometry around it is conic, i.e., it is a plane
the 2°<0 semiaxis(say and moving into the black hole. yjith a deficit angles, while a strut ha$<0. Their mass per

Clearly, this observer passes through the acceleration horizqg;t length is u=06/(87) and their interior energy-
before crossing the black hole horizons and hitting its curvas,omentum tensor is

ture singularity. This description agrees with cages (d),
and (e) of Fig. 4 and Fig. 6, which describe the solution T B=us(X)8(Y)diag —1,0,0—1), (42)
along an angular direction which includes the equatorial “

plane[case(c)] as well as the north polease(e)]. whereX= o cos¢ andY = sin are the directions normal

The diagrams of the third column of Fig. 6 concerning the . .
naked case of th&>1/¢ massive charge@ metric deserve to the strut, and5(X) ar_ld 5(\0 are Dirac de.'t"’? functions.
The pressure on the string or in the strut satigfies— w. If

a comment. First, we stress that the term “naked” is em- >0, we have a string: iflz<0, we have a strut. Now
ployed in this situation because the values of parameters K= hg,Ads ' tric. Eq. (13 ' th '
and g are such that the solution has no charged r:xssociatetarnlng to our case, the metric, Eq.(13), near the
horizons, i.e., in the notation used in this paper,andr , horth pole is given by
are not present in these diagrams. However, these diagrams
present an interesting new feature. Indeed, looking at rows
(a) and (b) we have a single accelerated naked particle, in P
rows (c) and(d) we find two naked singularities approaching + ( r4d 92+Z
asymptotically the acceleration horizog, but in row(e) we
no longer have two naked singularities. More precisely, we
have a kind of single AdS-Reissner-Nordstrolack hole ~ Where « is defined in Eq.(12) and the term between the
with the curvature singu|arity being pro\/ided by the massparentheses brackets is the induced metric in the plane nor-
and charge but with the horizons having their origin in themal to the strut that connects the two black hdleieng the
acceleration and Cosmo|ogica| constant. Yy direction and will be labeled asgX?+dY?. The C-metric

strut has a mass per unit length given by

d~ — r2Fd 2+ r2F tdy?

21 L2924 42
dx‘xr 0°do ) (43

n

4. Source of acceleration: The strut .

We can now ask, what entity is causing the acceleration
and where is it localized? To achieve this aim, let us go back
to the massless uncharged A@Smetric and consider radial
worldlines motions withz=0, z®=0, andz'=const or, ~We haveld,d|, <|dGl and sou is negative. To obtain the
equivalently, with¢=0, ¢=const, ancp=const. These ob- pressure of theC-metric strut, we write Eq.(43) in a
servers move along a Rindler-like hyperbola described by inkowski frame. ds2= — (024 g2 (224 g(32  With
[see Eq(38)] oPW=e® dxe  and e =ryF eM,=r, &2,
=1 6k|d.Gly /2, ande®;=r/\F. In this Minkowski frame

p . (40)  the energy-momentum tensd’rQA)(B), of the C-metric strut
(VE*A*—=1+Ap)? is given by Eq.(42). In order to come back to the coordinate
basis frame and write the energy-momentum tensor of the
Since the right-hand side of Eq40) is smaller thanag®>  C-metric strut in this basis, we us-éaﬁze(A)ae(B)BT(A)(B)
defined in Eq.(39), the north poled,=0 is localized be- and obtain
tween the hyperbolaszt)?—(z°)?=a5? in the 2°,z* dia-
gram (see Fig. 13 What does this means? When we put TeB= p(r2F)~16(X)8(Y)diag 1,0,0~ F2). (45

146, 1 dg
“=2am 4| Y [dx

dg
el ) (44)

2 2
(21)2_(20)2=
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Defining the unit vector¢=d/dy [so {*=(0,0,0,1)], the oppositely charged Reissner-Nordstrblack holes is totally

pressure along the strut Ts“Bg’agB and the pressure on the provided by the external electromagnetic field. In the AdS

C-metric strut is given by the integration over theY plane  background, we cannot remove the conical singularities

normal to the strut, through the application of the Harrison transformati@a].
Indeed, the Harrison transformation does not leave invariant
the cosmological term in the action. Therefore, applying the

p= f dXdYy®gT L p=— . (46)  Harrison transformation to Eq&3)—(5) does not yield a new

solution of the Einstein-Maxwell-AdS theory.

So, the pressure and mass density of Ghametric strut sat-
isfy the relationp= — u. Sinceu is negative, at both ends of
the strut, one has a positive pressure pushing away the two The C metric (either in the flat, de Sitter, or anti—de Sitter
black holes. backgrounglis an exact solution that is radiative. As noticed
Alternatively, instead of Eq(12), we could have chosen in [3], the gravitational radiation is present since the complex
for k the valuex‘1:(1/2)|dxg|xn. By doing so, we would scalar of the Newman-Penrose formalismy*=
avoid the deficit angle at the north polé,&0) and leave a —Cwaﬁn”“mVn"mﬁ (whereC,,, .5 is the Weyl tensor and
conical singularity at the south poled{>0). This option  {| n,m,m} is the usual null tetrad of Newman-Penrpsmn-
would lead to the presence of a semi-infinite String extendingains aterm proportiona| to~ L. S|m||ar|y' the Charged ver-
from each of the black holes towards infinity along the southsion of the C metric includes, in addition, electromagnetic
pole direction, which would furnish the acceleration. Theradiation. In[6], it has been shown that the Bondi news
mass density of both strings is u=(1/4)(1 functions of the flatC metric are indeed nonzero. These

5. Radiative properties

—1d,Glx '|d«Gl)>0 and the pressure on the string=  Bondi news functions appear in the context of the Bondi
— u, is negative, which means that each string is pulling themethod introduced to study gravitational radiative systems.
corresponding black hole towards infinity. They are needed to determine the evolution of the radiative

At this point, a remark is relevant. Israel and KH&2] gravitational field since they carry the information concern-
have found a solution that represents t@o more collinear  ing the changes of the system. When at least one of them is
Schwarzschild black holes interacting with each other innot zero, the total Bondi mass of the system decreases due to
such a way that allows dynamical equilibrium. In this solu-the emission of gravitational waves. The Bondi news func-
tion, the two black holes are connected by a strut that exertéons of the flatC metric have been explicitly calculated in
an outward pressure which cancels the inward gravitationd/14,15. For a detailed review on the radiative properties of
attraction and so the distance between the two black hole§e C metric and other exact solutions, sEE5]. In AdS
remains fixed32]. The solution[32] is valid for A=0 but, background, these calculations have not been carried yet. In-
although it has not been done, it can be extended in principldeed, AdS still lacks a peeling theorem.
for genericA and so the present remark holds for gendric
Now, the C-metric solution reduces to a single nonacceler-
ated black hole free of struts or strings when the acceleration
parameterA vanishes(see the Appendix and Sec. IJC WhenA=1/¢, the AdSC metric describes a single accel-
Thus, when we take the limh=0, theC metric does not erated black hole. The absence of a second black hole is
reduce to the static solution of Israel and Khan. The reasonlearly indicated by the Carter-Penrose diagrams of Figs. 8
for this behavior can be found in the Carter-Penrose diaand 9.
grams of theC metric. For example, looking at Fig.(@, This case has been studied in detail[#2], where the
which represents the massive unchar@ethetric along the Randall-Sundrum model in a lower dimensional scenario
equator, we conclude that a null ray sent from the vicinity ofwas analyzed. In this scenario, the brane-world is a 2-brane
one of the black holes can never cross the acceleration honmoving in a 4D asymptotically AdS background. They have
zon (r ) into the other black hole. So, if the two black holes shown that the A€ metric with A=1/¢ describes a black
cannot communicate through a null ray, they cannot interadbole bound to the Minkowski 2-brane. The brane tension is
gravitationally. The only interaction that is present in thefine-tuned relative to the cosmological background accelera-
system is between the strut and each one of the black hol¢®n and thusA=1/¢ is precisely the acceleration that the
that suffer an acceleration, which is only furnished by theblack hole has to have in order to comove with the 2-brane.
strut’s pressure. That the limi=0 does not yield the solu- They concluded that the AdE metric describes the final
tion [32] can also be inferred frofi®], where theC metricis  state of gravitational collapse on the brane-world. The causal
obtained from the two black hole solution ¢82] but  structure of the massive uncharged soluiibig. 8) has been
through a singular limit in which several quantities go appro-first discussed ii22]. For completeness, we have also pre-
priately to infinity. sented the causal diagrams of the massless uncharged solu-

Ernst[4] has employed a Harrison-type transformation totion in Fig. 7 and of the nonextremal, extremal, and naked
the A=0 chargedC metric in order to append a suitably massive charged solutions in Fig. 9.
chosen external electromagnetic field. With this procedure, In[22], the coordinate transformation that takes the mass-
the so called Ernst solution is free of conical singularities aless uncharged Ad€ metric with A=1/¢ into the known
both poles and the acceleration that drives away the twdescription of the AdS spacetime in Poincaaordinates is

B. A=1/€: Single accelerated black hole
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given. From there one can easily go to the 5D description on
the AdS hyperboloid. This 5D description can also be under-
stood directly from the limits on the solutios>1/¢ and
A<1/¢ whenA—1/¢. Indeed, if we take the limi— 1/¢ in R=-00 I R=+ 00
Sec. IVA2 (where we have studied the 5D description of R~

caseA>1/{), one sees that the cut that generates the two
hyperbolic lines degenerates into two half circles which, on
identifying the ends of the AdS hyperboloid at both infinities,
yields one full circle. This means that the trajectory of the
origin of the AdSC metric in theA=1/¢ case is a circle

(which when one unwraps the hyperboloid 1o its universal,oq,ces to the usual AdS spacetime written in static coordi-

cover yields a straight accelerated Jin&s we will see in the nates. Now, to obtain the 5D description, one applies to Eq.
next subsection, foA<<1/¢ the trajectory of the origin is a (48) the coérdinate transformatida3] ’

circle which, on taking the limiA— 1/¢, still yields a circle.

FIG. 14. Carter-Penrose diagram of meid®).

The two limits give the same result, as expected. 2= 5~ LJEZ+ RZsin(T/¢),
C. A<1/¢: Single accelerated black hole 72= 7" Rsind cose,

The A<1/¢ case was first analyzed if23]. We have
complemented this work with the analysis of the causal
structure. The causal diagrams of this spacetime are identical
to those of the AdSi=0, q=0) [see Fig. Ta)], of the
AdS-Schwarzschildro>0, q=0) [see Fig. 8], and of the 1_ _—1f [T 72A2 )2
AdS—Reissner-Nordstno solutions (>0, g+#0) [see Fig. z=n NI PAR coso— (A 50
9(a)]. However, the curvature singularity of the single black Transformationg50) define an embedding of the massless
hole of the solution is not at rest but is being acceleratedyncharged AdE metric with A< 1/¢ into the 5D description
with the acceleratiorA provided by an open string that ex- of the AdS spacetime since they satisfy Eg6) and take
tends from the pole into asymptotic infinity. directly Eq.(48) into Eq. (37).

As was done with thé\>1/¢ case, it is useful to interpret The origin of the radial coordinaté®®=0, moves in the
the solution following two complementary descriptions, thesp Minkowski embedding spacetime according[see Eq.
4D one and the 5D one. One first recovers the massless ufs()]
charged AdSC metric defined by Eq(3) and Eq.(4) (with
A<1/¢, m=0, andg=0), and after performing the follow- Z'=—(2A11-¢°A?%, 7°=0, 2°=0,
ing coordinate transformatidr23]:

J1—¢2A2 J1-+¢2a2 1
T= — & R= —a Y

y

4= 12+ R?cogT/),

2= 7" 'Rsinégsing,

and
: (2%)2+(2%)?= (12— A?)"t=a; 2. (51)

So, contrary to the cage> 1/¢, where the origin described a
Rindler-like hyperbolic trajectorjsee Eq(39)] that suggests
the presence of two black holes driving away from each
other in the extended diagram, in tAe<1/¢ case the origin

f=arccox, ¢=z, (47)

we can rewrite the massless uncharged Afetric as

1 dR2 describes a circléa uniformly accelerated worldlinen the
ds?=—| — (1+R¥¢?)dT?+ ——— + R%dQ?|, 5D embedding spadsee Fig. 15 indicating the presence of
7° 1+R%/¢? a single trapped black hole in the AdS background.
(48) To summarize and conclude, we present the global de-

) B scription on the AdS hyperboloid of the AdSmetric origin
with 7 '=\1-(?A*+ARcosé and  dQ*=d6®  \yhen the acceleratioA varies from+= to zero. WhenA

+sin’édg?. A procedure similar to the one used to obtain Eq.— 4« the origin of the solution is represented in the hyper-
(39) indicates that an observer describing 4D timelike world-p50id by two mutual perpendicular straight null lines at 45 °

lines with R=const, =0, and #=0 suffers a inat result from the intersection of the hyperboloid surface

4-acceleration with magnitude given by defined by Eq(36) and thez*=¢ plane(see Figs. 12 and
13). WhenA belongs to ] 14, + [, the origin of the solution
la,|= (?A—Ry1-(?A7 (49) is represented by two hyperbolic lingsq. (39)] lying on the
4 {2+ R? AdS hyperboloid and results from the intersection of Eq.

(36) and thez*=const>¢ plane(see Fig. 12 As the accel-
Therefore, the origin of the A€ metric, R=0, is being eration approaches the valde= 1/¢, the separation between
accelerated with a constant acceleration whose value is préhe two hyperbolic lines increases. Whaes-1/¢, the sepa-
cisely given byA. The causal diagram of this spacetime isration between the two hyperbolic lines becomes infinite and
drawn in Fig. 14. Notice that when we s&t=0, Eq.(48)  they collapse into two half circles which, on identifying the
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z0 mass or a charge to the system, the causal diagrams indicate

?f(l;eofradiusﬂ that now we have two AdS-Schwarzschild or two AdS—

Reissner-Nordstra black holes approaching asymptotically
the Rindler-like accelerated horizon. We have proceeded to
the localization of the conical singularity present in the so-
lution and concluded that it is between the two black holes
and along the symmetry ax{sr alternatively from the black
holes out to infinity. When it is between the two black holes,

it is associated to a strut satisfying the relatps — u>0,
wherep andu are, respectively, the pressure on the strut and
its mass density. The pressure is positive, so it points out-
wards into infinity and pulls the black holes apart, furnishing
their acceleratiorfas in the flatC metric. When the conical

_ _ _ _singularity points from each of the black holes into infinity, it

FIG. 15. AdS 4-hyperboloid embedded in the SD Minkowski js associated to a string with negative pressure that pushes
spacetime. The origin of the AdS metric with A<1/ moves in e piack holes into infinity. From the analysis of the Carter-
the hyperboloid along the circle with'=const<0. WhenA=0  pgnrose diagrams, we also concluded that the two black
this circle is at the plane”=0 and has a radiué. holes cannot interact gravitationally. So, their acceleration is

provided only by the pressure exerted by the strut. This is the
ends of the AdS hyperboloid at both infinities, yield one full yegson why the limiA=0 of theC metric does not reduce to
circle in thez%-z* plane at infinitez". At this point we see the static solution of Israel and Khd82]. This solution
again that the valud=1/{ sets a transition stage between describes two collinear Schwarzschild black holes connected
A>1/¢ andA<1/¢. WhenA belongs to ]0,1[, the origin  py a strut that exerts an outward pressure which cancels the
of the solution is described again by a cirfleg. (51)] inthe  jnward gravitational attraction and so the distance between
2°-7* plane but now at a constant<0. As the acceleration the two black holes remains fixed.
approaches the valua=0, the radius of this circle de-  ForA<1/¢, the above procedure indicates the absence of
creases and wheh=0, the circle has a radius with valde 3 second black hole and so the solution describes a single
and is atz'=0 (see Fig. 15and we recover the usual AdS plack hole. In the AdS 4-hyperboloid, the origin of these
solution whose origin is at rest. solutions describes a circle in the plane defined by the two
timelike coordinates. In a lower dimensional Randall-
Sundrum model, it has been shown that #we 1/¢ AdS C
metric describes a black hole bound to a Minkowski 2-brane

The AdS C metric found by Plebaski and Demiaski ~ moving in a 4D asymptotically AdS backgroup2?].

[16] is characterized by a quite interesting new feature when The C metric solution for genericA has been used
compared with the€ metric in flat or de Sitter backgrounds. [17,25,2§ to describe the final state of the quantum process
Indeed, contrary to what happens in these two last So|ution§),f pair creation of black holes that once created, accelerate
in the AdS background the solution only describes a pair ofpart by an external field. In this context, we expect that the
accelerated black holes if the acceleration parameter satisfi®4ack hole pair created in the AdS background must have an
A>1/¢, where( is the cosmological length. The accelera- acceleratiorA>1/¢. Indeed, the AdS background is globally
tion is caused by a strut that connects the black holes. Theontracting with an acceleration precisely equal td.1/
physical interpretation of the solutions has been essentialljherefore, a pair of virtual black holes created in this back-
taken from the analysis of the Carter-Penrose diagrdots ~ ground can only become real if the black hole acceleration is
lowing the approach of Kinnersly and Walkg] for the flat ~ greater than the contracting acceleration of the AdS back-
C metrig, from the embedding of the massless uncharge@round, otherwise the annihilation is inevitable. The quan-
solution into the AdS 4-hyperboloid in a 5D Minkowski tum process that might create the pair would be the gravita-
spacetime(with two timelike coordinates and from the tional analogue of the Schwinger pair production of charged
physics of the strut. The alternative approach of Borjiigr ~ particles in an external electromagnetic field. This would be
which puts the flaiC metric into the Weyl form, cannot be ©ne possible scenario to create two exactly equal black holes
realized here, since the introduction of the cosmological conwith the same acceleration that are described by the AdS
stant prevents such a coordinate transformation. C-metric solution withA>1/¢.

For A>1/¢, the embedding of the A8 metric into 5D
Minkowski space clearly shows that the origin of the AdS
C-metric solution is subjected to a uniform acceleration, and
describes a hyperbolic Rindler-like worldline in the AdS  This work was partially funded by Fundaxpara a Cia-
4-hyperboloid embedded in the 5D Minkowski space. To becia e TecnologiaFCT) through project CERN/FIS/43797/
more precise, the origin is represented by two hyperboli@001 and PESO/PR0O/2000/4014. OJCD also acknowledges
lines that approach asymptotically the Rindler-like accelerfinancial support from the portuguese FCT through PRAXIS
ated horizon, so called because it is absent wherD and ~ XXI program. J.P.S.L. thanks ObservetoNacional do Rio
present even wheA+#0, m=0, andg=0. When we add a de Janeiro for hospitality.

circle of radius > ,Q
A<1/ Q
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APPENDIX: MASS AND CHARGE PARAMETERS ds2= —F(R)dT2+F L{(R)dR?

In this appendix, one gives the physical interpretation of +R2(d 6%+ sirfod ¢?)

parametersm and q that appear in the A€ metric. We
follow [23].

Applying the coordinate transformations to ER)
(see[23)),

(A2)

where F(R) =1+ R?/¢?—2m/R+q?/R?. So, when the ac-
celeration parameter vanishes, the A@Smetric, Eq.(3),
reduces to the AdS-Schwarzschild and AdS-Reissner-
Nordstran black holes and the parametensand g that are
present in the A€ metric are precisely the ADM mass and
ADM electromagnetic charge of these nonaccelerated black
holes. It should, however, be emphasized that the accelerated
black holes lose mass through radiative processes and so the
determination of the mass of the accelerated black holes

T=\1-€?A’A" 1, R=\1-¢?A%(Ay) 1,

0= fx"gfl’zdx, b=7lx, (A1)

and settingA=0 (and x=1) one obtains

would require the calculation of the Bondi mass, which we
do not do here.
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