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Inflaton and time in the matter-gravity system

A. Tronconi,* G. P. Vacca,† and G. Venturi‡

Dipartimento di Fisica, Universita` di Bologna and INFN, Sezione di Bologna, via Irnerio 46, 40126 Bologna, Italy
~Received 7 November 2002; published 27 March 2003!

The emergence of time in the matter-gravity system is addressed within the context of the inflationary
paradigm. A quantum minisuperspace-homogeneous minimally coupled inflaton system is studied with suitable
initial conditions leading to inflation and the system is approximately solved in the limit for a large scale factor.
Subsequently normal matter~either nonhomogeneous inflaton modes or lighter matter! is introduced as a
perturbation and it is seen that its presence requires the coarse averaging of a gravitational wave function
~which oscillates at trans-Planckian frequencies! having suitable initial conditions. Such a wave function,
which is common for all types of normal matter, is associated with a ‘‘time density’’ in the sense that its
modulus is related to the amount of time spent in a given interval~or the rate of flow of time!. One is then
finally led to an effective evolution equation~Schrödinger Schwinger-Tomonaga! for ‘‘normal’’ matter. An
analogy with the emergence of a temperature in statistical mechanics is also pointed out.

DOI: 10.1103/PhysRevD.67.063517 PACS number~s!: 98.80.Cq, 04.60.Kz
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I. INTRODUCTION

A fundamental property of the interaction of matter a
gravity is its spacetime reparametrization invariance. In p
ticular invariance under time reparametrization leads to
constraint that the sum of the matter and gravitational Ham
tonians is zero. This implies that time does not appear in
Hamiltonian formulation of the matter-gravity action. How
ever, this does not mean that time does not appear at a
the classical equations of motion, since they involve ti
derivatives of the dynamical parameters, but rather that th
is no absolute time and no clock external to the universe

Such a feature is maintained and becomes even more
dent in the canonical quantization of gravity within the s
perspace approach@1#. In such an approach the spacetim
dynamical variables are the three geometries of space
surfaces with their conjugate momenta, while matter is
scribed by the corresponding fields and their conjugate
menta. As a consequence the classical equations corres
to geodesic equations in the manifold of all three geomet
@1,2# ~superspace! modified by the presence of a force term
Canonical quantization then leads to a Schro¨dinger-like
equation@Wheeler-DeWitt~WDW!# without any time deriva-
tives and a corresponding wave function satisfying it.

Clearly, if one considers as a starting point the compl
quantum system, it must be possible to reobtain the u
classical Einstein and quantum matter~Schwinger-
Tomonaga! equations. This last step, however, does not
pear to be immediate and has raised considerable intere
particular the introduction of time has been examined wit
the Born-Oppenheimer approximation and the semiclass
approximation to gravity both without@3# and with@4,5# the
back reaction of matter. Further it has also been discusse
quite diverse contexts such as through an examination
transition matrix elements of radiative processes occurrin
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the cosmos@6# or through interaction with the environmen
@7,8# or decoherence@9#.

The scope of this paper is to examine the above prob
by studying the matter-gravity quantum system within t
context of a mini-superspace model containing a minima
coupled homogeneous scalar field~inflaton! which is known
to lead to inflation@10–14# together with normal matte
~which could be the non-homogeneous modes of the infla
field or generic inflaton decay products appearing as ligh
matter fields!.

In Sec. II we shall study the general minisuperspa
homogeneous inflaton system and obtain for it an appro
mate solution for a large scale factor~inflation!, suitable for
some analytic considerations. Subsequently in Sec. III
shall illustrate the way the presence of normal matter lead
the requirement of an evolution~or time! which is obtained
through a coarse graining and relating a gravitational par
the wave function to a measure of temporal density. Las
in Sec. IV, our results are summarized and discussed.

II. THE GRAVITY-MATTER SYSTEM

As we have anticipated in the Introduction we consid
the gravity-matter interaction and work with a simple mod
having an approximate high degree of symmetry. To be d
nite we shall consider an inflationary cosmology driven
an homogeneous inflaton scalar field, with the presence
extra matter degrees of freedom, which will be treated a
small perturbation. Our goal is to study the effective qua
tum behavior of these latter degrees of freedom in the ba
ground of the homogeneous inflaton-gravity system. Af
having given the classical description of the full system
shall consider the quantized system described by the co
sponding WDW equation. The study of the consequence
taking an approximate quantum solution will be of intere
for our purposes.

A. The classical system

We start with a real massive scalar field~inflaton! and
other unspecified matter fields minimally coupled to grav
©2003 The American Physical Society17-1
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which is described by a Robertson-Walker minisuperspa
The scalar field of massm is the homogeneous inflaton fiel
f, typical of chaotic inflation models, while matter fields a
generally inhomogeneous, and of typical massm<m.

On taking ds252dt21a2(t)drW2, the line element in a
flat 3-space, we write the total action with\5c51:

S5
1

2E dt$2M2aȧ21a3~ḟ22m2f2!1Lm% ~1!

whereM is the Plank mass andLm is the matter Lagrangian
which depends on the scale factora. Let us note that the
volume factor has been absorbed by the scalinga→aV1/3.
Sincea acquires the dimension of a length, therW variable is
dimensionless just as any momentakW arising from a Fourier
analysis, and further, the scalar fieldf has the dimension o
a mass.

The classical Hamiltonian is

H52
1

2

pa
2

M2a
1

1

2a3
~pf

2 1m2f2a6!1Hm[HG1HI1Hm

~2!

with pa52M2aȧ, pf5a3ḟ.

B. The quantum system

The starting point of all our considerations is the qua
tized matter-gravity system. We shall consider in this sect
only the homogeneous inflaton degree of freedom minim
coupled to gravity, leaving to Sec. III the discussion of t
quantum effects on the other matter fields. At the quant
level there is no time in the description of the system sin
the Hamiltonian, generating the dynamics, is a constr
which annihilates the physical states. The latter can be w
ten as wave functions on considering, for example, the (a,f)
representation. The dynamics is described by a second o
partial differential equation which can be interpreted as g
ing a flow in a of some distribution inf given for an initial
a0.

Physically we shall be interested in configurations w
largea, typical of a situation which belongs to an advanc
stage of the inflationary phase. At the same time we s
have a constraint on the kind of inflaton field quantum d
tribution which must be compatible with such an inflationa
regime.

We therefore start from the quantum~WDW! Einstein
equation in the (a,f) representation:

^au ^ ^fu~ĤG1ĤI !uC&

[S 1

2M2

]2

]a2

1

a
2

1

2a3

]2

]f2
1

m2a3

2
f2D C~a,f!

50 ~3!

where, for convenience, we have taken a particular orde
for the first term@(pa

2/a)→p̂a
2(1/â)# and C(a,f) is the

total scale factor-inflaton wave function. Let us note th
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different orderings, for example, manifestly Hermitian one
will differ by terms of the form (i /a2)p̂a or p̂a( i /a2) which,
as we shall later verify, are irrelevant~non-leading! for a
large.

It is clear that for a positive definite inflaton Hamiltonia
the wave functionC will tend to have a strongly oscillatory
dependence ona. The oscillatory period will be so small tha
natural scales for the matter dynamics ina will be much
longer and a coarse graining, which can be, for exam
chosen as an averaging over a period of oscillation ina, will
be necessary to study the effective matter dynamics. A
tistical interpretation as given in studies of the probabil
distributions in the hydrogen atom@15# gives further insight.
We shall develop this idea in Sec. III and concentrate in
following on studying the oscillatory behavior of the ‘‘un
verse’’ wave function.

It is convenient to write an expansion on a complete ba
of the Hilbert space of the states of the inflaton field asso
ated with the HamiltonianĤI :

C~a,f!5a(
n

cn~a!un~a,f!

[ac~a!(
n

cn~a!un~a,f!

[ac~a!u~a,f!; ~4!

on using the eigenstates of the inflaton HamiltonianĤI one
has

ĤI uun&5mS n1
1

2D uun&. ~5!

Substitution of Eq.~4! into Eq. ~3! leads to~henceforth]a
[]/]a)

u~a,f!]a
2c~a!12]au~a,f!]ac~a!1c~a!]a

2u~a,f!

12M2c~a!S 2
1

2a2

]2

]f2
1

m2a4

2
f2D u~a,f!50. ~6!

Let us comment on the expansion in Eq.~4!, and its sta-
tistical interpretation in quantum mechanics. We note t
ucnu2 is the probability that a state ofn quanta is created
~observed! and thecn arose through the extraction of a com
mon factorc(a) from the cn(a). That is the superposition
of the differentn quantum number configurations which o
curred after extracting the common factor from the sum
the products of eachn quantum state with its correspondin
universe wave functioncn(a). Furthermore, we expect th
homogeneous inflatonic matter initial state to be such a
lead to inflation. Thus we assume that the initial conditio
are associated with the creation~considered as the inverse o
a decay process! of a large average numbern̄ of quanta in an
initial interval of a. This can then be imagined as occurrin
through a Poisson process so that the initial state assoc
with the interval ofa is related to a Poisson distribution.
7-2



s
of

o
itio
th

il-
rg
l
e
-

x
a
e

ta
tte
is

ar
ial

fo

an
-

y

f
a-
-
aly-

r

. In

y

or

i-

to

INFLATON AND TIME IN THE MATTER-GRAVITY SYSTEM PHYSICAL REVIEW D 67, 063517 ~2003!
Thus, instead of having a sequence of random creation
n quanta~with averagen̄) corresponding to a sequence
inflationary processes in successive infinitesimal intervals
a, we consider a statistical average, which is a superpos
of the different possible quanta numbers that can occur in
interval of a leading to inflation. Subsequentlya will un-
dergo a rapid change due to inflation.

This distribution is familiar in quantum mechanical osc
lators. It is associated with coherent states which, for la
average occupation numbers, describe an almost classica
havior. We shall discuss the above assumption in the n
section and find that for largea it is a reasonable one, inde
pendently of any possible interpretation of its origin.

C. Approximating the quantum inflaton-gravity system

This section is devoted to the construction of an appro
mate solution of the WDW which corresponds to an infl
tionary situation. As a next step, in the following section, w
shall make use of the results of this section in order to ob
some analytical insights on the dynamics of other ma
degrees of freedom and show how a concept of time ar
naturally, a phenomenon which in any case appears to
independent of the approximation employed.

To extract an approximate solution two procedures
possible: either try to solve directly the partial different
equation~6! or make an ansatz foru(a,f) and show that it
leads to an approximate solvable differential equation
c(a). We shall choose the latter approach.

For convenience we rewrite the inflaton Hamiltoni
ĤI(a)[^auĤI ua& in terms of inflaton creation and annihila
tion operators:

ĤI~a![
p̂f

2

2a3
1

m2a3

2
f̂25mS b†b1

1

2D , ~7!

where

b5Ama3

2 S f̂1
i

ma3
p̂fD , b†5Ama3

2 S f̂2
i

ma3
p̂fD

~8!

and the ansatz foru(a,f) will be

u~a,f!5^fua~a!&, ~9!

whereua(a)& is a coherent state of the inflaton, defined b

bua~a!&5a~a!ua~a!&, ~10!

with a(a)5Amf0
2a3/2. From Eqs.~9! and ~10! u(a,f)

must satisfy the differential equation:

S 1

ma3

]

]f
1f2f0D u~a,f!50, ~11!

wheref0 is a free parameter. Equation~11! has the familiar
normalized solution:
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u~a,f!5S ma3

p D 1/4

expF2
ma3

2
~f2f0!2G , ~12!

which is a simple Gaussian peaked aroundf0 with a width
which decreases as the scale factora increases. The values o
the parameterf0 are constrained in order to lead to an infl
tionary regime@13# @ n̄5a(a)2#, since such a quantum co
herent state description can be related to the classical an
sis of the inflaton system.

Let us now study the consequences of such a choice fou.
If we substitute the expression~12! into Eq.~6! and calculate
the contributions of the different derivatives, we obtain

]au~a,f!5F 3

4a
2

3ma2

2
~f2f0!2Gu~a,f!, ~13!

]a
2 u~a,f!5F2

3

16a2
2

21ma

4
~f2f0!2

1
9m2a4

4
~f2f0!4Gu~a,f!, ~14!

]2

]f2
u~a,f!5@2ma31m2a6~f2f0!2#u~a,f!. ~15!

A key point is that we are interested in solutions of Eq.~3!,
describing an advanced stage of inflation (a@1), since in
this phase we wish to study how normal matter behaves
this limit all the terms in the expressions~13!–~15!, which
are of the form (f2f0)nu(a,f) with n.0, are non-leading
by powers ofa with respect tou(a,f) since

max@ uf2f0unu~a,f!#;S n

ma3D n/2

expF2
n

2Gmax@u~a,f!#;

~16!

in other words one has

]au~a,f!5O~a21!u~a,f!, ~17!

]a
2u~a,f!5O~a22!u~a,f!, ~18!

]2

]f2
u~a,f!5O~a3!u~a,f!. ~19!

On just retaining the leading contributions in Eq.~6! one has

@]a
2c~a!1m2M2f2 a4c~a!#u~a,f!50 ~20!

whereu(a,f) has support in a tiny region aroundf0, due to
the large values ofa. We have also used the fact that an
term ofO(1/a)c(a) is negligible with respect to]ac(a) for
large a, as can be verified on using the solution found f
c(a). Further additional terms, such as]a(1/a2) or
(1/a2)]a , due to different orderings in the gravitational k
netic term, are non-leading when acting onau(a,f) @see
Eqs. ~17! and ~18!# and are also negligible with respect
7-3
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]a
2c when acting on the solution found forc(a). Therefore

the choice of ordering is irrelevant for largea. Finally one
may rewrite Eq.~20! as

]a
2c~a!1m2M2f0

2 a4c~a!50 ~21!

or on changing to the variabley5a2 ~again apart from a
non-leading term fora large!,

]2

]y2
c~y!1

m2M2f0
2

4
yc~y!50. ~22!

A general solution, in terms of the Airy functionsAi andBi ,
for Eq. ~22! is

c~y!5C1Ai~y!1C2Bi~y!

→y21/4FD1sin
mMf0

3
y3/21D2cos

mMf0

3
y3/2G

~23!

asy→`, or

c~a!;a21/2FD1sin
mMf0

3
a31D2cos

mMf0

3
a3G

~24!

for a@1 whereD1 andD2 are complex numbers. The osci
latory behavior is encoded inc, even if at an approximate
level ~the solution is not exact!. Let us note that theDi (Ci)
in Eq. ~23! can be determined by the initial conditions. F
example,C152 i and C251 corresponds to the Vilenkin
initial wave function of the universe, while ifC151 and
C250 one has the Hartle-Hawking choice.

One may ask what would be the effect of a perturbat
such as the addition of a small contribution ofn inflaton
quanta. Because of the rapid oscillatory behavior of
gravitational wave function and the fast increase ofn̄ as a
→` such a contribution will be quickly washed out. Thu
our ‘‘coherent’’ state will remain dominant during inflation
Nonetheless some correction are certainly expected. For
ample, in the classical limit~one has the classical Einste
equation! there are nonleading non-power-like corrections
the oscillatory phase which are expected to be of a logar
mic nature. We shall comment more on this in the followi
section.

III. THE APPEARANCE OF TIME IN THE DESCRIPTION
OF MATTER

Let us at this point discuss the dynamics of ‘‘norma
matter fields. The quanta of these fields, associated with m
ter particles, are assumed to contribute as a small pertu
tion in the total Hamiltonian where the inflaton~homoge-
neous mode condensate! and gravity are dominant an
whose classical expression was given in Eq.~2!. In order to
study this quantum problem one has to enlarge the co
sponding Hilbert space of the physical states, in which
inflaton-gravity quantum state is only negligibly affected
06351
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the presence of ‘‘normal’’ matter, and consider the followin
extended quantum equation for the factorized wave funct

F 1

2M2

]2

]a2

1

a
2

1

2a3

]2

]f2
1

m2a3

2
f21ĤmGCx

[^au ^ ^fu ^ ^wu~ĤG1ĤI1Ĥm!uC& ^ ux&50, ~25!

where we have collectively denoted withw all the matter
fields ~bosonic and fermionic! and x(w,a) describes their
quantum state in some representation.

The first term in Eq.~25! ĤG acts on bothC(a,f) and
x(w,a), the last (Ĥm) only on x and ĤI only on C. On
using Eq.~3! for C we can obtain an equation for the ‘‘nor
mal’’ matter wave functionx:

2 ]aS C

a D ]ax1
C

a
]a

2x12M2CĤm~w,a!x50 ~26!

where, for the sake of compactness,Ĥm(w,a)
[^au ^ ^wuĤmua& ^ uw&. Further, on defining c̃(a,f)
[c(a)u(a,f) and bearing in mind Eq.~4!, one has

2
]ac̃

c̃
]ax12aM2Ĥm~w,a!x1]a

2x50. ~27!

Let us now examine the different terms in Eq.~27! while
assuming the presence of a finite numberN of quanta of
normal matter. It is convenient to consider a free mat
~bosonic or fermionic! field. Then it is clear that the eigen
values of the Hamiltonian will be independent ofa as a
→`. For example, a state onN bosonic quanta of momen
tum k leads to a contribution;vk(N1 1

2 ) where vk
2

5k2/a2 1m2 ~apart from a normal ordering subtraction!.
The last term is then proportional to

S (
L

^Nu]Qa
2uL&^Lu]Wa

2uN& D 1/2

}
N2

a2
~28!

and is negligible with respect to the second for largea.
The first term in Eq.~27! contains all the information

related to the behavior of the gravity-inflaton wave functi
which is highly oscillatory ina with a typical period much
less than a Planck time~length! ~see below!. Since any
physical phenomena of interest for matter are related
scales above~or at least not below! the Planck timeM 21, it
is very natural to obtain an effective equation by means o
course graining. In particular, we shall implement it by a
eraging over an oscillation period ina.

A. Approximate analysis

In order to compare the first two terms of Eq.~27! we
consider the explicit expression of the approximate solut
for C5a c̃ derived in the preceding section and write
7-4
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]ac̃

c̃
[

]ac~a!

c~a!
1

]au~a,f!

u~a,f!
. ~29!

On recalling Eq. ~13! the second term behaves
]au(a,f)/u(a,f);1/a while the first term is asymptotically
given by

]ac~a!

c~a!
5

]y

]a

]yc~y!

c~y!
;

mMf0a3/2

c~a!

3FD1cos
mMf0

3
a32D2sin

mMf0

3
a3G .

~30!

The crucial point is now to estimate the ratio~30!: c(a) and
its derivative are products of a highly oscillating function
a with some power ofa. Let us consider thea-dependent
period of oscillationDa:

Da;
2p

mMf0a2
. ~31!

SinceM is the Plank mass,m;1026M!M , f0;M anda
@M 21 ~by many orders of magnitude! during the inflation-
ary phase fora large, one obtains the inequality

Da!M 21. ~32!

Thus one may estimate~30! by averaging over an interva
@a,a1Da# which is much shorter than a Planck length:

I av5
1

DaEa

a1Da

da~mMf0a2!

3

FD1cos
mMf0

3
a32D2sin

mMf0

3
a3G

FD1sin
mMf0

3
a31D2cos

mMf0

3
a3G . ~33!

The coarse-graining integral~33! is well defined for any
complexD1 andD2, except for a zero measure case whe
their ratio is real, since the denominator in the integrand m
vanish. To obtain a finite result one may then consider
principal value of the integral. We shall see that, except
the latter case and depending on the initial conditions
cussed at the end of Sec. II, one is able to introduce a t
evolution. In particular, one finds that Vilenkin type wav
functions allow one to introduce a time, while Hartl
Hawking ones do not. On defining a new integration varia
x5(mMf0/3)a3 one may write

I av5
mMf0

2p
a2E

0

2p

dx
@D1cosx2D2sinx#

@D1sinx1D2cosx#
, ~34!

which can be evaluated in the complex plane by using J
dan’s lemma and the residue theorem. In fact on settinz
5expix one has cosx51

2@z1(1/z)#, sinx5(1/2i )@z2(1/z)#,
dx52( i /z)dz and the integral~34! becomes:
06351
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mMf0

2p i
a2 R dz

z

iD 1z21 iD 12D2z21D2

D1z22D11 iD 2z21 iD 2

. ~35!

The function in the integrand@let us denote it byF(z)] has
three singularities, atz050 and

z1,256A~D12 iD 2!/~D11 iD 2![6Aeiu.

z0 will always lie within the path of integration~the circum-
ference of radius 1 centered on the origin of the comp
plane! while z1,2 generally will not. Only ifD1 andD2 have
a real ratio one hasA51 andz1,2 are on the circumference. I
one evaluates the residues ofF(z) at z0,1,2 one obtains

ResF~z!uz5z0
52 i , ResF~z!uz5z1,2

5 i . ~36!

To summarize, one can distinguish between 3 cases: w
0,A,1:

I av5mMf0a2@ResF~z!uz5z0
1ResF~z!uz5z1

1ResF~z!uz5z2
#

5 imMf0a2 ~37!

whenA.1:

I av5mMf0a2@ResF~z!uz5z0
#52 imMf0a2 ~38!

when A51 the calculations are slightly different since on
has to deform the path of integration to avoid the two sing
larities and then let the deformation tend to zero. For
stance, the path could turn aroundz1,2 following: z1,2(g)
5z1,21eeig with g going from u2(p/2) to u2(3p/2)
aroundz1 and fromu1(p/2) to u2(p/2) aroundz2:

I av5mMf0a2@ResF~z!uz5z0
#

2 lim
e→0

FmMf0

2p i
a2S E

z1(g)
dzF~z!1E

z2(g)
dzF~z! D G

52 imMf0a22FmMf0

2p i
a2~p1p!G50. ~39!

Thus, unlessA51, coarse-graining of the ratio~30! leads to
a nonzero result, in which case the dominant contribution
Eq. ~29! comes from the first term and one has

]ac̃

c̃
;6 imMf0a2. ~40!

We must further estimate]ax, again forN quanta, obtain-
ing for its magnitude:

@^Nu]Qa]WauN&#1/2[F(
L

^Nu]QauL&^Lu]WauN&G1/2

}
N

a
.

~41!

As for the last term, we have shown it to be highly su
pressed.

On just retaining the two leading terms in Eq.~27! one
obtains
7-5
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6 i
mf0

M
a]ax5Ĥm~w,a!x. ~42!

Therefore we are left with a parabolic partial different
equation~PDE! which describes the evolution of ‘‘normal
matter with respect toa. On just defining a timet according
to 6 imf0 /M] logax[ i ] tx one obtains a Schro¨dinger equa-
tion describing the quantum mechanical evolution of mat
or a Schwinger-Tomonaga equation

i ] tx5Ĥm~w,a!x. ~43!

Let us note that this is equivalent to interpreting the coe
cient of i ]ax on the left-hand side of Eq.~42! as ȧ, the rate
of expansion seen by the ‘‘normal’’ matter~observers1
clocks!. In particular, the approximate analysis employ
here shows a de Sitter type expansion. In general an obse
made of ‘‘normal’’ matter, using clocks made of normal ma
ter, can only measure any change of state with respect to
evolution of thet introduced above as the parameter of t
Schrödinger equation~42!. In other words, it is the presenc
of normal matter which leads naturally to the introduction
a time. The sign in Eq.~42! depends on the initial condition
which characterize the solutionc(a). With generic condi-
tions, one of the two cases is realized and this, in our
proach, is related to the definition of the flow of time.

B. Beyond the approximation

The result we have obtained is reasonable, especially
sidering the approximations made during the inflation
phase. A different scale-dependent evolution seen by ma
such as the one obtained in the classical limit of the cha
inflation model, could be easily recovered by a very m
correction~logarithmic! to the coefficient ofi ]ax, which al-
lows for the difference between a constant and an appr
mate linearly decreasing~in time! Hubble parameter.

For the general case, with a strongly peaked inflaton w
function, independently of any particular approximation, t
oscillatory wave function in the largea region can be written
asc̃(a)5r(a)expib(a), wherer is an oscillating real func-
tion. For most initial conditions, as in the approximate so
tion, such a function never vanishes except possibly a
extreme of the oscillation. Only a zero measure set of ini
conditions will not satisfy this property leading to the sam
consequences as already discussed in the previous su
tion. After the course-graining integration one can theref
make the correspondence:

1

aM2

]ac̃

c̃
]a5

1

aM2 S r8~a!

r~a!
1 ib8~a! D ]a

'
i

aM2
b8~a!]a→ i ] t ~44!

where a prime denotes differentiation with respect toa, since
after course-graining the termr8(a)/„ar(a)…]a is always
negligible and the gradient of the phase is unaffected. F
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this formula one can recover the previous approximate res
Indeed, for example, for the case of the Vilenkin type wa
function one hasb(a)5mMf0a3/3. Again time is defined
in terms of the inverse of the gradient of the phase of thec
wave function with respect to the scale factor, and in parti
lar dt[@aM2/b8(a)#da.

Until now we have worked with the amplitude and not t
probability density; however, for largea a probability density
analysis leads to the same result. One may easily conv
oneself of this on examining the probability current, whi
satisfies the relation

Ja}c̃* ]ac̃2c̃]ac̃* '2ir2]ab}]ac̃, ~45!

since, in the limit we consider and on repeating the previo
steps, the terms leading to differences are negligible. T
means that the density flux is proportional to the gradien
the phase and the fundamental condition for time to arise
our framework, is then a non-negligible coarse-grained pr
ability current.

The presence of an effective time evolution for mat
arises from a mechanism similar to one already observe
the analysis of the classical limit of quantum systems, s
as the hydrogen atom@15#, in the sense that the quantu
probability as a function ofa is similar to the measure o
temporal density in a classical orbit. This fact has been st
ied for the stationary quantum eigenstates of the hydro
atom ~with two particular fixed values of the angular mo
menta and large principal quantum numbern) one of which
presents a radial highly oscillatory behavior. On cou
graining ~in particular on applying the Riemann-Lebesg
lemma! one is able to recover the classical trajectory rela
to the given angular momenta. Indeed the classical trajec
is related to a classical spatial probability distribution of
particle in terms of the inverse of its speed~the fraction of
time spent in a spatial interval is a measure of the probab
density!. There is a deep connection between the above
ample and the situation present in the matter-gravity syst

As a side remark we note that for the particular ca
wherein one performs a WKB analysis in order to obtain
classical limit of Eq.~3! ~since this leads to the Hamilton
Jacobi equation!, c̃ is characterized byr;(b8)21/2 ~with b
the classical action! which does not oscillate and the usu
relation ȧ;pa /a;b8(a)/a is found. In any case we stres
that the relation in Eq.~44! is quite general, a much wide
class of states for the inflaton-minisuperspace system
lead to an effective time evolution of ‘‘normal’’ matter.

It is worth noting that we always obtain in the cours
grained differential equation for normal matter, which co
stitutes a perturbation in the whole Hamiltonian system
factorized term of the formf (a)]ax. In such a termf (a) is
related to the variation of the universe wave functi
~minisuperspace1inflaton! regarded as a system separa
from normal matter. It therefore leads to a universal time
all the normal matter since it is a common factor for all typ
of normal matter. One has an analogy with the introduct
of a temperature in statistical mechanics if one thinks of
minisuperspace-inflaton system in dynamical equilibrium
a sort of ‘‘heat’’ bath and normal matter~a perturbation! in
7-6



e
a

un
st
te
ab
nd
e
a
s
t

.
te
th
n
io
di
av

to
o-
a
d
a
fie

ity
e
s
ri
or
s

he
ys
le

ica
ry

c
po
n

f a
it
e

ca
u
n

th
it

ich

sys-
ties
the

on
e of
nd
eral

otal
so-

on
unc-
red
-

ility
ng
r is

be
nta.

the
ith-

i-
ates
e
al
is
or

rvals

nal
m-
ine

vi-
ry
en
la-
de
the
we
just

ch
the
in

’’
an
. In
as
on

s
c-

al

INFLATON AND TIME IN THE MATTER-GRAVITY SYSTEM PHYSICAL REVIEW D 67, 063517 ~2003!
‘‘thermal’’ equilibrium with the ‘‘bath’’ ~reservoir!, in the
sense that it acquires from the bath a time~in analogy with
temperature in statistical mechanics!.

A short comment also on a possible highly quantum m
chanical situation wherein the initial condition leads to
coherent superposition of states described by a wave f
tion of the inflatonf consisting of well separated, almo
Gaussian, peaks. A similar definition of time can be extrac
on repeating the analysis performed above using a prob
ity density and its flux, constructing a density matrix a
subsequently tracing over the possible inflaton states. Ind
the different superimposed states are almost orthogonal
one is finally left with an average gradient of the pha
which plays an analogous role to the single peak case in
construction of an effective Schro¨dinger equation for matter
The application of course-graining techniques in the con
of quantum cosmology has also been considered by o
authors@8,9#, for example in the study of the wave functio
of a minisuperspace model by using the Wigner funct
approach, where diverse kinds of coarse graining are
cussed in the search for the emergence of a classical beh
for gravity.

In our quantum mechanical framework it is tempting
say that time ‘‘exists’’ only as far as normal matter or inh
mogeneous modes for the inflaton or metric fluctuations
concerned. The homogeneous minisuperspace gravity an
flaton condensate system may still be in a quantum st
which is practically unobservable in the sense speci
above for the other physical degrees of freedom~normal
matter and inhomogeneous modes of inflaton and grav!.
Indeed any observer, made of normal matter will only se
classical time dependent scale factor of the universe. La
let us emphasize that the presence of inflatonic matter d
ing the universe is crucial: in a chaotic inflation model f
which f050 @13# one would not obtain suitable condition
for time to evolve.

IV. CONCLUSIONS

As we mentioned in the Introduction the problem of t
emergence of time in the context of the matter-gravity s
tem has already drawn considerable attention. Nonethe
we feel that the issue is worth reexamining in a cosmolog
minisuperspace context, in particular within the inflationa
paradigm@10–12,14#. Inflation gives a framework in which
to pose basic cosmological questions.

Associated with inflation is the early universe dominan
of a vacuum energy density effectively described by a hy
thetical scalar field called inflaton. In particular we have co
sidered a simple model of chaotic inflation consisting o
minimally coupled massive scalar field in a flat 3-space w
inflation being driven by the homogeneous mode. We th
start from the quantum minisuperspace-homogeneous s
field system. Such a quantum system has been previo
studied within a Born-Oppenheimer approach and show
lead to inflation even for nonclassical initial states@13#. Our
present approach and goal are quite different: we study
system, in an inflationary regime, in order to understand
06351
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influence on the dynamics of other degrees of freedom wh
we call ‘‘normal’’ matter.

The quantum minisuperspace homogeneous-inflaton
tem cannot be solved exactly, however, some of its proper
can be obtained through the use of a suitable ansatz for
initial state which allows us to find an approximate soluti
for a large. The results we obtain are not a consequenc
our approximation, which certainly aids us in suggesting a
understanding the basic mechanisms, but reflect a gen
structure for the effective dynamics of ‘‘normal’’ matter.

Our approximate approach consists of expanding the t
matter-gravity wave function on the basis of the states as
ciated with different numbers of homogeneous inflat
quanta. Subsequently, a common minisuperspace wave f
tion is extracted from the expansion and the modulus squa
of the coefficients multiplying the states with different num
ber of inflaton quanta is then interpreted as the probab
for the creation of such a state in the initial interval leadi
to inflation, bearing in mind, of course, that such a numbe
large in order for suitable inflation to take place.

The search for a suitable ansatz for the initial state may
related to a creation process for a large number of qua
Such a mechanism can be considered as analogous to
inverse of a decay process, which is a Poisson process, w
out concerning oneself as to what it is~the equivalent of the
decay products! that leads to the creation. The initial cond
tions are then associated with a Poisson distribution of st
with diverse numbersn of inflaton quanta and with averag
number of quantan̄. This can be seen either as an initi
statistical distribution in which each n quantum creation
associated with an inflationary gravitational wave function
a sequence of inflationary processes in successive inte
of a which are, however, so close thata is approximately
constant. In all cases a common part of the gravitatio
wave function is extracted leaving the different quanta nu
bers states with their Poisson weights which then comb
into a coherent state.

The quantity which is then studied is the common gra
tational wave function. It is found to satisfy the same Ai
equation fora large, independently of any ordering chos
for the gravitational kinetic term, leading to a strong oscil
tory behavior having a frequency many orders of magnitu
greater than the Planck one. The oscillatory behavior of
complete wave function is the main feature we use and
stress that is not related to the approximation made but
to initial conditions such as those leading to inflation.

One may at this point introduce normal matter whi
should be regarded as a small perturbation with respect to
contribution of the homogeneous inflaton mode. Again
this contexta is considered large and an effective ‘‘flow,
due to the nature of the gravity-inflaton wave function, c
be associated to the existence of time for normal matter
order to obtain this, a ‘‘coarse graining’’ was performed so
to smooth out the effects of the gravitational wave functi
oscillations at ultra-Planckian frequencies~for the atomic
case see@15#!, to which normal matter is insensitive. It i
also worth noting that the common gravitational wave fun
tion term leads to the introduction of a ‘‘time density’’~the
magnitude of the gravitational wave function in an interv
7-7
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of a being related to the ‘‘time’’ spent in that interval! which
is universal, i.e. independent of the type of normal ma
associated with it. The paradigm of time developed h
arises from a novel point of view, but nonetheless leads
the usual time that one considers in the WKB limit of t
gravity-inflaton system.

Moreover, we observe that a new interesting possibility
the emergence of a time even with gravity and the inflaton
quantum regimes: it is a consequence of the fact that nor
matter cannot see quantum fluctuations below the Pla
size but just experiences an evolution with respect to a fu
tion of the scale factor, associated with the speed of inflat
In such a framework time only exists for normal matt
which evolves according to its position on the gravitation
wave function.

In a sense, and particularly on considering the appro
mate analysis, this emergence of a universal time remind
of the derivation of a Boltzmann distribution and a tempe
ture for systems obtained by placing them in contact wit
large heat bath where it is the density of energy levels of
heat bath that is related to the~common! temperature of sys
tems in contact with it, different energy level densities for t
reservoir being associated with different temperatur
Analogously, for us, normal matter is in contact with a gra
es
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tational wave function generated by the homogeneous m
inflaton background~reservoir-‘‘time bath’’! and it is that
wave function with suitable initial conditions that generate
‘‘time density’’ and ‘‘flow’’ which leads to the usual evolu-
tion of matter corresponding to the value of the matter wa
function for different values ofa in the gravitational wave
function.

Lastly let us note that we have studied the introduction
time during the inflationary era with the gravitation bein
driven by the homogeneous inflaton Hamiltonian. Clea
one may ask what happens at the end of inflation when
sumably all~or most or some! of the homogeneous mode
have decayed into lighter matter. In such a case gravita
will just be driven by the mean energy of all matter~includ-
ing a residual cosmological constant! and the resulting gravi-
tational wave function will introduce a common time for an
small subsystem which may be regarded as a perturbatio
the whole.
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