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Inflaton and time in the matter-gravity system
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The emergence of time in the matter-gravity system is addressed within the context of the inflationary
paradigm. A quantum minisuperspace-homogeneous minimally coupled inflaton system is studied with suitable
initial conditions leading to inflation and the system is approximately solved in the limit for a large scale factor.
Subsequently normal mattéeither nonhomogeneous inflaton modes or lighter matteintroduced as a
perturbation and it is seen that its presence requires the coarse averaging of a gravitational wave function
(which oscillates at trans-Planckian frequengibaving suitable initial conditions. Such a wave function,
which is common for all types of normal matter, is associated with a “time density” in the sense that its
modulus is related to the amount of time spent in a given intgimathe rate of flow of timg One is then
finally led to an effective evolution equatiqi®chralinger Schwinger-Tomonagdor “normal” matter. An
analogy with the emergence of a temperature in statistical mechanics is also pointed out.
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I. INTRODUCTION the cosmog6] or through interaction with the environment
[7,8] or decoherencf9].

A fundamental property of the interaction of matter and The scope of this paper is to examine the above problem
gravity is its spacetime reparametrization invariance. In parby studying the matter-gravity quantum system within the
ticular invariance under time reparametrization leads to th&€ontext of a mini-superspace model containing a minimally
constraint that the sum of the matter and gravitational Hamilcoupled homogeneous scalar figidflator) which is known
tonians is zero. This implies that time does not appear in théo lead to inflation[10-14 together with normal matter
Hamiltonian formulation of the matter-gravity action. How- (Which could be the non-homogeneous modes of the inflaton
ever, this does not mean that time does not appear at all ifield or generic inflaton decay products appearing as lighter
the classical equations of motion, since they involve timematter fields.
derivatives of the dynamical parameters, but rather that there In Sec. Il we shall study the general minisuperspace-
is no absolute time and no clock external to the universe. homogeneous inflaton system and obtain for it an approxi-

Such a feature is maintained and becomes even more eviate solution for a large scale fact@nflation), suitable for
dent in the canonical quantization of gravity within the su-Some analytic considerations. Subsequently in Sec. Ill we
perspace approad}j_]_ In such an approach the SpacetimeSha" illustrate the way the presence of normal matter leads to
dynamical variables are the three geometries of spacelikéie requirement of an evolutiofr time) which is obtained
surfaces with their conjugate momenta, while matter is dethrough a coarse graining and relating a gravitational part of
scribed by the corresponding fields and their conjugate mothe wave function to a measure of temporal density. Lastly,
menta. As a consequence the classical equations correspotidSec. IV, our results are summarized and discussed.
to geodesic equations in the manifold of all three geometries
[1,2] (superspagemaodified by the presence of a force term. Il. THE GRAVITY-MATTER SYSTEM

Canonical gquantization then leads to a Scimger-like As we have anticipated in the Introduction we consider
equation Wheeler-DeWitf WDW)] without any time deriva- ; ticipatec X .
the gravity-matter interaction and work with a simple model

tives and a corresponding wave function satisfying it. ; : : .
Clearly, if one considers as a starting point the completehavIng an approximate high degree of symmetry. To be defi-

guantum system, it must be possible to reobtain the usuarﬂite we shall consi_der an inflationgry cos_,mology driven by
classical Einstéin and quantum mattefSchwinger- an homogeneous inflaton scalar field, with the presence of

: : extra matter degrees of freedom, which will be treated as a
Tomonaga equations. This last step, however, does not ap r[{nall perturbation. Our goal is to study the effective quan-

pear to be immediate and has raised considerable interest. T behavior of these latter dearees of freedom in the back-
particular the introduction of time has been examined within 9 i
round of the homogeneous inflaton-gravity system. After

:Te E)?(?pr;?t% %etr(l) helrrz?\ﬁ:yak?(?t?)\:\l/?hag[:fg] 223 wifhfzrg]l?r?essw%aving given the classical description of the full system we
P g y shall consider the quantized system described by the corre-

back reaction of matter. Further it has also been discussed in ondina WDW equation. The studv of the consequences of
quite diverse contexts such as through an examination lid 9 q ' Y q

- . L . .1aking an approximate quantum solution will be of interest
transition matrix elements of radiative processes occurring i 9 PP q
Or our purposes.
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which is described by a Robertson-Walker minisuperspacdifferent orderings, for example, manifestly Hermitian ones,
The scalar field of mass is the homogeneous inflaton field || differ by terms of the form {/a?) , or 7,(i/a%) which,

@b, typlcal of chaotic inflation models, while matter fields are as we shall later Verify, are irre|evam0n_|eading for a

generally inhomogeneous, and of typical massm. large.
On takingds?= —dt?+a?(t)dr?, the line element in a It is clear that for a positive definite inflaton Hamiltonian
flat 3-space, we write the total action with=c=1: the wave functionV will tend to have a strongly oscillatory

dependence oa. The oscillatory period will be so small that
natural scales for the matter dynamicsanwill be much
longer and a coarse graining, which can be, for example,
chosen as an averaging over a period of oscillatioa, iwill
whereM is the Plank mass arid, is the matter Lagrangian, be necessary to study the effective matter dynamics. A sta-
which depends on the scale factar Let us note that the tistical interpretation as given in studies of the probability
volume factor has been absorbed by the scaingaV*. distributions in the hydrogen atofd5] gives further insight.
Sincea acquires the dimension of a length, theariable is  We shall develop this idea in Sec. Ill and concentrate in the
dimensionless just as any momehtarising from a Fourier ~following on studying the oscillatory behavior of the “uni-

analysis, and further, the scalar fietdhas the dimension of Verse”wave function. . .
a mass. It is convenient to write an expansion on a complete basis

The classical Hamiltonian is of the Hilbert space of the states of the inflaton field associ-
ated with the Hamiltoniar, :

s=%fdt{—Mzaéz+a3(¢2—m2¢2)+Lu} @)

H L 7 + ! (w2 +m?¢p?al)+H, ,=Hg+H,+H
= — — — (7T =
2 M2 2a3% ¢ woe (") W(a,p)=a> yn(a)uy(a,¢)
2 n
with m,= —M?aa, m,=a’s. =ay(a), cy(a)uy(a, )
B. The quantum system =ayg(a)u(a,d); (4)

The starting point of all our considerations is the quan-
tized matter-gravity system. We shall consider in this sectiorpn using the eigenstates of the inflaton Hamiltori?anone
only the homogeneous inflaton degree of freedom minimallyhas
coupled to gravity, leaving to Sec. Ill the discussion of the
guantum effects on the other matter fields. At the quantum A 1
level there is no time in the description of the system since H||Un>:m( n+s
the Hamiltonian, generating the dynamics, is a constraint
which annihilates the physical states. The latter can be writg pstitution of Eq(4) into Eq. (3) leads to(henceforthd,
ten as wave functions on considering, for example, the] = dlda)
representation. The dynamics is described by a second order
partial differential equation which can be interpreted as giv-, 2 2
ing a flow ina of some distribution inp given for an initial u(a,#)ai(@) +20,U(a. ) dap(@) + ¢(a) 7u(a. )
Ao

|up). ®

- 9  m2at
Physically we shall be interested in configurations with +2M2¢(a)< BT R
largea, typical of a situation which belongs to an advanced 2a” d¢

stage of the inflationary phase. At the same time we shall . )
have a constraint on the kind of inflaton field quantum dis- L€t us comment on the expansion in &), and its sta-

tribution which must be compatible with such an inflationarytis“g""_I interpretation in quantum mechanics. We note that
regime. |c,|* is the probability that a state of quanta is created

We therefore start from the quantufDW) Einstein (observegland thec,, arose through the extraction of a com-

equation in the 4, $) representation: mon factory(a) from the ¢,(a). That is the superposition
of the differentn quantum number configurations which oc-

¢2)U(a,¢)=0- (6)

(a|@(p|(Ag+H,)|P) curred after extracting the common factor from the sum of

the products of each quantum state with its corresponding

1 41 1 ¢ m2ad 5 universe wave function,(a). Furthermore, we expect the
=\omM2oaza 2a3 c7732+ 5 ¢7|¥(ad) homogeneous inflatonic matter initial state to be such as to
lead to inflation. Thus we assume that the initial conditions

=0 (3) are associated with the creati@@onsidered as the inverse of

a decay proce$®f a large average numbarof quanta in an
where, for convenience, we have taken a particular orderinghitial interval of a. This can then be imagined as occurring
for the first term[(wgla)ewg(lla)] and W (a,¢) is the through a Poisson process so that the initial state associated
total scale factor-inflaton wave function. Let us note thatwith the interval ofa is related to a Poisson distribution.
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Thus, instead of having a sequence of random creations of mad\ ¥4 mad )
n quanta(with averagen) corresponding to a sequence of u(a, ¢):(T) exr{— — (6= o) } (12)
inflationary processes in successive infinitesimal intervals of
a, we consider a statistical average, which is a superpositiowhich is a simple Gaussian peaked arousdwith a width
of the different possible quanta numbers that can occur in thevhich decreases as the scale faetancreases. The values of
interval of a leading to inflation. Subsequently will un-  the parametet, are constrained in order to lead to an infla-

dergo a rapid change due to inflation. . _ tionary regime[13] [n=«(a)?], since such a quantum co-
This distribution is familiar in quantum mechanical oscil- herent state description can be related to the classical analy-

lators. It is associated with coherent states which, for larggs of the inflaton system.

average occupation numbers, describe an almost classical be-| et ys now study the consequences of such a choice for

havior. We shall discuss the above assumption in the next we substitute the expressidh?2) into Eq.(6) and calculate

section and find that for large it is a reasonable one, inde- the contributions of the different derivatives, we obtain
pendently of any possible interpretation of its origin.

3 3ma’
C. Approximating the quantum inflaton-gravity system dau(a, )= 4a 2 (¢—do)*|u(a,¢), (13
This section is devoted to the construction of an approxi-
mate solution of the WDW which corresponds to an infla- 2 uad)=| - 3 2]ma(¢_¢ 2
tionary situation. As a next step, in the following section, we a ' 1632 4 0
shall make use of the results of this section in order to obtain
some analytical insights on the dynamics of other matter 9m?2a*
degrees of freedom and show how a concept of time arises +—g(¢- $0)*|u(a,¢), (19
naturally, a phenomenon which in any case appears to be
independent of the approximation employed. 7

To extract an approximate solution two procedures are
possible: either try to solve directly the partial differential
equation(6) or make an ansatz far(a,¢) and show that it
leads to an approximate solvable differential equation forA key point is that we are interested in solutions of Eg),
(a). We shall choose the latter approach. describing an advanced stage of inflaticae(1), since in

For convenience we rewrite the inflaton Hamiltonian this phase we wish to study how normal matter behaves. In
H,(a)=(a|H,|a) in terms of inflaton creation and annihila- this limit all the terms in the expressiori$3)—(15), which
tion operators: are of the form ¢p— ¢y)"u(a, ¢) with n>0, are non-leading

by powers ofa with respect tau(a, ¢) since

T&U(a,@:[—maﬂ m?a®(¢— ¢o)?Ju(a,¢). (15

. w5, m?ad. ) W1 o

H|(a)E—3+T¢ =m|b b+§ , (7) N n n
2a max | — ¢o|"u(a, ¢) ]~ 3 93 max u(a,)];
where (16)

5 . 3 . in other words one has
Y L PP IS (I P

2 | ¢ T 2 | " 7u(a,$)=0(a Hu(a,$), )
® Jau(a,¢)=0(a ?)u(a,¢), (18)

and the ansatz fau(a, ¢) will be
2

Jd
u(a,¢)=(¢la(a)), 9 aTBZU(a,¢)=O(a3)U(a,¢)- (19

where|a(a)) is a coherent state of the inflaton, defined by ) . . o .
On just retaining the leading contributions in E6) one has

Dle(@)) = a(@la(a), o @)+ M2 atp@)lu(a,d)=0  (20)
with a(a)=mg¢2a’2. From Egs.(9) and (10) u(a,d)

must satisfy the differential equation: whereu(a, ¢) has support in a tiny region arourfg, due to

the large values o&. We have also used the fact that any
1 4 term of O(1/a) #(a) is negligible with respect ta,(a) for
-7 _ _ large a, as can be verified on using the solution found for
(ma3 d¢ e ¢o) u(a.$)=0, ) #(a). Further additional terms, such asg,(1/a?) or
(1/a®)d,, due to different orderings in the gravitational ki-
where ¢, is a free parameter. Equatiohl) has the familiar netic term, are non-leading when acting an(a,¢) [see
normalized solution: Egs. (17) and (18)] and are also negligible with respect to
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a§¢ when acting on the solution found f@r(a). Therefore
the choice of ordering is irrelevant for large Finally one
may rewrite Eq.(20) as

d2y(a)+m2M2p3 aty(a)=0 (21)

or on changing to the variablg=a? (again apart from a
non-leading term fom large),

(92 m2M2 S
Py Ply)+ ——yp(y)=0. (22)

A general solution, in terms of the Airy functiodd andBi,
for Eq. (22) is

p(y)=CiAi(y) +C3Bi(y)

mM mM
—y~ 1"{ Dlsin—3 %o y32+ chos—3 %o y3’2}

(23)
asy—, or

mMdgg

lﬂ(a)~a1’z[Dlsin 3 mMéo

3
3 a

a®+D,cos

(29)

for a>1 whereD; andD, are complex numbers. The oscil-
latory behavior is encoded iy, even if at an approximate

level (the solution is not exagtLet us note that th®; (C;)

PHYSICAL REVIEW D67, 063517 (2003

the presence of “normal” matter, and consider the following
extended quantum equation for the factorized wave function:

1 21 1 ¢ mZad

— —+
2M? ga?a 2ad9¢? 2

¢2+I:IM ¥y

=(al@(p|®(¢|(He+H,+H,)|¥)®[x)=0, (25

where we have collectively denoted with all the matter
fields (bosonic and fermionjcand y(¢,a) describes their
quantum state in some representation.

The first term in Eq(25) FIG acts on both¥(a,¢) and
x(¢,a), the last @,) only on y andH, only on ¥. On
using Eq.(3) for ¥ we can obtain an equation for the “nor-
mal” matter wave functiony:

v, o &
&a)(-i—gﬁa)(-i-ZM YH, (e, @)x=0 (26

v
2 &a(g

where, for the sake of compactnessﬂ u(@,2)
=(al®(¢|H, la)®|p). Further, on defining ¥(a,¢)
=y(a)u(a, ) and bearing in mind Eq4), one has

Y .
z%baaXJrzaMzHM(go,a)XJrag)(:o. (27)

Let us now examine the different terms in EQ7) while

in Eq. (23) can be determined by the initial conditions. For assuming the presence of a finite numbenf quanta of
example,C,;=—i and C,=1 corresponds to the Vilenkin normal matter. It is convenient to consider a free matter

initial wave function of the universe, while i€;=1 and
C,=0 one has the Hartle-Hawking choice.

(bosonic or fermionigfield. Then it is clear that the eigen-
values of the Hamiltonian will be independent afas a

One may ask what would be the effect of a perturbation—«. For example, a state dd bosonic quanta of momen-

such as the addition of a small contribution wfinflaton

tum k leads to a contribution~w(N+3) where wﬁ

quanta. Because of the rapid oscillatory behavior of the=k?/a?+ u? (apart from a normal ordering subtractjon
gravitational wave function and the fast increasenodisa  The last term is then proportional to

—o such a contribution will be quickly washed out. Thus

our “coherent” state will remain dominant during inflation. . . 12 N2
Nonetheless some correction are certainly expected. For ex- > (N|GZ|LY(L|G3INY | = -
ample, in the classical limione has the classical Einstein - a
equation there are nonleading non-power-like corrections to
the oscillatory phase which are expected to be of a logarithand is negligible with respect to the second for lazge
mic nature. We shall comment more on this in the following The first term in Eq.(27) contains all the information

(28)

section.

Ill. THE APPEARANCE OF TIME IN THE DESCRIPTION
OF MATTER

related to the behavior of the gravity-inflaton wave function

which is highly oscillatory ina with a typical period much

less than a Planck timé@length (see beloyw Since any
physical phenomena of interest for matter are related to

scales abovéor at least not belopthe Planck timeM ~1, it

Let us at this point discuss the dynamics of “normal” is very natural to obtain an effective equation by means of a
matter fields. The quanta of these fields, associated with matourse graining. In particular, we shall implement it by av-
ter particles, are assumed to contribute as a small perturbaraging over an oscillation period &
tion in the total Hamiltonian where the inflatghomoge-
neous mode condensatend gravity are dominant and
whose classical expression was given in &j. In order to
study this quantum problem one has to enlarge the corre- In order to compare the first two terms of EQ7) we
sponding Hilbert space of the physical states, in which theonsider the explicit expression of the approximate solution
inflaton-gravity quantum state is only negligibly affected by for ¥ =a Tﬁ derived in the preceding section and write

A. Approximate analysis
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Do dap(a)  duu(a,d) _mM¢0a23gd_ziD122+iD1—D222+D2 39

—= . 29 o= - - —.
V(Y] i u(a,¢) @9 2 Z D,;7°-D,;+iD,Z>+iD,

On recalling Eq. (13) the second term behaves as The function in the integranflet us denote it byF(2)] has
d,u(a, ¢)/u(a, )~ 1/a while the first term is asymptotically three singularities, at,=0 and
given by

daip(a) _dy dyply) mMgoa*?

21 ,= =\(D1—iD,)/(D;+iD,)=*=A€".

z, will always lie within the path of integratiotthe circum-

wa) g y(y) ¥(a) ference of radius 1 centered on the origin of the complex
mMd MM plang while z; , generally will not. Only ifD, andD, have
x| D4cos 3 0a3—D23in 3 03|, areal ratio one ha&=1 andz, , are on the circumference. If
one evaluates the residuesffz) at z;; , one obtains
30 . .
(30 ResF(z)|Z=zO= —i, ReSF(Z)|z=z1‘2:|- (36)

The crucial point is now to estimate the ratR0): (a) and ) o _
its derivative are products of a highly oscillating function of 10 Summarize, one can distinguish between 3 cases: when
a with some power ofa. Let us consider th@-dependent 0<A<IL:

period of oscillationAa: l,=m M¢>0a2[ResF(z)|z=zO+ ResF(z)|z=Zl
2
Na-—" 31) +ResF(2)|,-,,]
m M¢oa o 2

=imM ¢oa (37)

SinceM is the Plank massn~10 ®M<M, ¢,~M anda WhenA>1:

>M "1 (by many orders of magnitugleluring the inflation- '

ary phase foil large, one obtains the inequality l,,=mMm M¢oa2[ResF(z)|Z=zo] =—imMg¢ea® (39

Aa<M™ . (320 whenA=1 the calculations are slightly different since one

has to deform the path of integration to avoid the two singu-
larities and then let the deformation tend to zero. For in-
stance, the path could turn aroumg, following: z; ()

Thus one may estimate0) by averaging over an interval
[a,a+Aa] which is much shorter than a Planck length:

1 rataa =2z, ,+€€'” with y going from 6—(m/2) to 6—(37/2)
|avzE da(mMgya?) aroundz; and from @+ (/2) to — (/2) aroundz,:
a
| oy =MMa?[ResF(2)|,- ]
mM¢, , MMy
D,cos a’—D,sin a MM,
> (33) —lim|———a? f sz(z)+f sz(z))
mM¢ mMoo .| enol 2l 24(7) 2(7)
0 3 0 3
D,sin 3 @ +D,cos 3 @

mM
=—imMg¢ea’— i

2
o as(m+)

=0. (39)

The coarse-graining integrdB3) is well defined for any
complexD,; andD,, except for a zero measure case where . )
their ratio is real, since the denominator in the integrand mayl NUS: Unies#=1, coarse-graining of the rati@0) leads to
vanish. To obtain a finite result one may then consider thé& nonzero result, in Whlch_ case the dominant contribution in
principal value of the integral. We shall see that, except for=d- (29) comes from the first term and one has
the latter case and depending on the initial conditions dis- 0.0
cussed at the end of Sec. Il, one is able to introduce a time %~timM¢oa2. (40)
evolution. In particular, one finds that Vilenkin type wave
functions allow one to introduce a time, while Hartle- . . :
Hawking ones do not. On defining a new integration variable We must further e§t|mat9ﬁx, again forN quanta, obtain-
x=(MMe/3)a® one may write ing for its magnitude:
12
M [ D200 Da [(N1Ga3alNYT?=| 2 (N|GalLY(LIZIN) | o
a2 0 [D,sinx+ D,cosx]’ -

(41)

which can be evaluated in the complex plane by using JorAs for the last term, we have shown it to be highly sup-
dan’'s lemma and the residue theorem. In fact on setting pressed.

=expix one has cos=3[z+(1/2)], sinx=(1/2)[z— (1/2)], On just retaining the two leading terms in EQ7) one
dx=—(i/z)dz and the integra(34) becomes: obtains
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Mo . this formula one can recover the previous approximate result.
v 29ax=Hu(e.a)x. (42 Indeed, for example, for the case of the Vilenkin type wave
function one hag3(a)=mMgya®/3. Again time is defined
Therefore we are left with a parabolic partial differential In t€rms of the inverse of the gradient of the phase ofithe
equation(PDE) which describes the evolution of “normal” Wave function with respect to the scale factor, and in particu-
— 21!
matter with respect ta. On just defining a time according  1ar dt=[aM?/p’(a)]da.

*i

t0 +imeo/Mdiogax=i ,x One obtains a Schdinger equa- Until now we have worked with the amplitude and not the
— 0 . . . .

tion describing the quantum mechanical evolution of matterProbability density; however, for largea probability density

or a Schwinger-Tomonaga equation analysis leads to the same result. One may easily convince

oneself of this on examining the probability current, which

i,th:ﬂ#((P,a)X_ (43) satisfies the relation

Tx 9 0 % A~ D0 A2 7
Let us note that this is equivalent to interpreting the coeffi- Ja% ™ datp = hap™ =21 p*9af* daif, (49

cient ofid,x on the left-hand side of Eq42) asa, the rate  gince, in the limit we consider and on repeating the previous
of expansion seen by the “normal” mattépbservers+  steps, the terms leading to differences are negligible. This
clocks. In particular, the approximate analysis employedmeans that the density flux is proportional to the gradient of
here shows a de Sitter type expansion. In general an observgfe phase and the fundamental condition for time to arise, in

made of “normal” matter, using clocks made of normal mat- our framework, is then a non-negligible coarse-grained prob-
ter, can only measure any change of state with respect to thgjlity current.

evolution of thet introduced above as the parameter of the The presence of an effective time evolution for matter
Schralinger equatiorf42). In other words, it is the presence arises from a mechanism similar to one already observed in
of normal matter which leads natura”y to the introduction Ofthe ana|ysis of the classical limit of guantum systems, such
atime. The Sign in Eq42) depends on the initial conditions as the hydrogen atorﬁ]_s], in the sense that the guantum
which characterize the solutiog(a). With generic condi-  probability as a function of is similar to the measure of
tions, one of the two cases is realized and this, in our aptemporal density in a classical orbit. This fact has been stud-

proach, is related to the definition of the flow of time. ied for the stationary quantum eigenstates of the hydrogen
atom (with two particular fixed values of the angular mo-
B. Beyond the approximation menta and large principal quantum numbégrone of which

The result we have obtained is reasonable, especially Corﬁ)_resents a radial highly oscillatory behavior. On course

sidering the approximations made during the inﬂationarygrammg (in particular on applying the Riemann-Lebesgue

phase. A different scale-dependent evolution seen by matteImea one is able to recover the classical trajectory related

such as the one obtained in the classical limit of the chaoticlgg trre]?a?;\ée?oag gclf;irsirggmsergﬁéfm:gf,géﬂif Clc(i’j}:?rli(l:)iltitg?ljeocftc:y
inflation model, could be easily recovered by a very mild P P y

correction(logarithmig to the coefficient of 9, x, which al particle in terms of the inverse of its spetie fraction of
ge aX time spent in a spatial interval is a measure of the probability
lows for the difference between a constant and an approxiy .~ : ; .
; s density. There is a deep connection between the above ex-
mate linearly decreasingn time) Hubble parameter. S . .
, . ample and the situation present in the matter-gravity system.
For the general case, with a strongly peaked inflaton wave

. . L As a side remark we note that for the particular case
function, independently of any particular approximation, the . L .
X e . : wherein one performs a WKB analysis in order to obtain the
oscillatory wave function in the largeregion can be written

Tp( )= p(a)expiB(a), wh ) llati f classical limit of Eq.(3) (since this leads to the Hamilton-
asy(a)=p(a)expiB(a), wherep is an oscillating real func- . L~ . N =112
tion. For most initial conditions, as in the approximate solu-‘]aCObI equation y is characterized by~ (5) (with 3

. ; ; : the classical actionwhich does not oscillate and the usual
tion, such a function never vanishes except possibly at an

extreme of the oscillation. Only a zero measure set of initiaf€lationa~m,/a~pg’(a)/a is found. In any case we stress
conditions will not satisfy this property leading to the samethat the relation in Eq(44) is quite general, a much wider
consequences as already discussed in the previous subs§lass of states for the inflaton-minisuperspace system can

tion. After the course-graining integration one can thereford€@d to an effective time evolution of “normal” matter.
make the correspondence: It is worth noting that we always obtain in the course-

grained differential equation for normal matter, which con-

1 9.9 1 [p'(a) stitutes a perturbation in the whole Hamiltonian system, a
— == @ +i,8’(a))c9a factorized term of the fornfi(a)d,x. In such a ternf(a) is
aM® aM=i p related to the variation of the universe wave function

i (minisuperspaceinflaton regarded as a system separate

~——pB'(a)dy—id, (44) ~ from normal matter. It therefore leads to a universal time for

aM? all the normal matter since it is a common factor for all types

of normal matter. One has an analogy with the introduction

where a prime denotes differentiation with respea,tsince  of a temperature in statistical mechanics if one thinks of the

after course-graining the term’(a)/(ap(a))d, is always minisuperspace-inflaton system in dynamical equilibrium as
negligible and the gradient of the phase is unaffected. From sort of “heat” bath and normal mattéa perturbatiopin
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“thermal” equilibrium with the “bath” (reservoij, in the influence on the dynamics of other degrees of freedom which
sense that it acquires from the bath a tifreanalogy with  we call “normal” matter.
temperature in statistical mecharjics The quantum minisuperspace homogeneous-inflaton sys-
A short comment also on a possible highly quantum metem cannot be solved exactly, however, some of its properties
chanical situation wherein the initial condition leads to acan be obtained through the use of a suitable ansatz for the
coherent superposition of states described by a wave fundnitial state which allows us to find an approximate solution
tion of the inflaton¢ consisting of well separated, almost for a large. The results we obtain are not a consequence of
Gaussian, peaks. A similar definition of time can be extracte@ur approximation, which certainly aids us in suggesting and
on repeating the analysis performed above using a probabitnderstanding the basic mechanisms, but reflect a general
ity density and its flux, constructing a density matrix andStructure for the effective dynamics of “normal” matter.
subsequently tracing over the possible inflaton states. Indeed OUr approximate approach consists of expanding the total

the different superimposed states are almost orthogonal ar{’aatter-gravity wave function on the basis of the states asso-

one is finally left with an average gradient of the phaseC|ated with different numbers of homogeneous inflaton

which plays an analogous role to the single peak case in thguanta. Subsequently, a common minisuperspace wave func-

construction of an effective Schimger equation for matter. tion is extracted from the expansion and the modulus squared

The application of course-graining techniques in the contexgethe coefficients multiplying the states with different num-

of quantum cosmology has also been considered by oth r of inflatqn quanta is then ir?terpre_te_d_ as the probab_ility
authors[8,9], for example in the study of the wave function or the creation of such a state in the initial interval leading
i to inflation, bearing in mind, of course, that such a number is

of a minisuperspace model by using the Wigner function ; der f itable inflati ke ol
approach, where diverse kinds of coarse graining are digarge in order for suitable inflation to take place.

cussed in the search for the emergence of a classical behavior The search for a Suitable ansatz for the initial state may be
for gravity. related to a creation process for a large number of quanta.

In our quantum mechanical framework it is tempting to _SUCh a r?ec:anlsm can be cr?nﬁl(_jereg as analogous to_;[rr:e
say that time “exists” only as far as normal matter or inho- INVErSe Of a decay process, which IS a FoISson process, with-

mogeneous modes for the inflaton or metric fluctuations ar@Ut conce:jnlng :r)]n?slelfdasttot\r:vhat 't(tf'e e(_qu::va}lg?t |0f thz.
concerned. The homogeneous minisuperspace gravity and iH_ecay productsthat leads to the creation. The initial condi-

flaton condensate system may still be in a quantum staté'ons are then associated with a Poisson distribution of states

which is practically unobservable in the sense specified‘”th diverse numb_ers of inflaton quanta and with average
above for the other physica| degrees of freedmnrmed number of quantan. This can be seen either as an initial
matter and inhomogeneous modes of inflaton and grh\”ty statistical distribution in which each n quantum creation is
Indeed any observer, made of normal matter will On|y see @ssociated with an inﬂationary gravitational wave function or
classical time dependent scale factor of the universe. Lastl§ sequence of inflationary processes in successive intervals
let us emphasize that the presence of inflatonic matter drivof & which are, however, so close thatis approximately

ing the universe is crucial: in a chaotic inflation model for constant. In all cases a common part of the gravitational

which ¢,=0 [13] one would not obtain suitable conditions Wave function is extracted leaving the different quanta num-
for time to evolve. bers states with their Poisson weights which then combine

into a coherent state.

The quantity which is then studied is the common gravi-
tational wave function. It is found to satisfy the same Airy
equation fora large, independently of any ordering chosen

As we mentioned in the Introduction the problem of thefor the gravitational kinetic term, leading to a strong oscilla-
emergence of time in the context of the matter-gravity systory behavior having a frequency many orders of magnitude
tem has already drawn considerable attention. Nonetheleggeater than the Planck one. The oscillatory behavior of the
we feel that the issue is worth reexamining in a cosmologicatomplete wave function is the main feature we use and we
minisuperspace context, in particular within the inflationarystress that is not related to the approximation made but just
paradigm[10—12,14. Inflation gives a framework in which to initial conditions such as those leading to inflation.
to pose basic cosmological questions. One may at this point introduce normal matter which

Associated with inflation is the early universe dominanceshould be regarded as a small perturbation with respect to the
of a vacuum energy density effectively described by a hypocontribution of the homogeneous inflaton mode. Again in
thetical scalar field called inflaton. In particular we have con-this contexta is considered large and an effective “flow,”
sidered a simple model of chaotic inflation consisting of adue to the nature of the gravity-inflaton wave function, can
minimally coupled massive scalar field in a flat 3-space withbe associated to the existence of time for normal matter. In
inflation being driven by the homogeneous mode. We themrder to obtain this, a “coarse graining” was performed so as
start from the quantum minisuperspace-homogeneous scalfr smooth out the effects of the gravitational wave function
field system. Such a quantum system has been previousbscillations at ultra-Planckian frequenci€®r the atomic
studied within a Born-Oppenheimer approach and shown tocase se¢15]), to which normal matter is insensitive. It is
lead to inflation even for nonclassical initial staf@8]. Our  also worth noting that the common gravitational wave func-
present approach and goal are quite different: we study thison term leads to the introduction of a “time densitithe
system, in an inflationary regime, in order to understand itsnagnitude of the gravitational wave function in an interval

IV. CONCLUSIONS
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of a being related to the “time” spent in that interyakhich  tational wave function generated by the homogeneous mode
is universal, i.e. independent of the type of normal matteinflaton backgroundreservoir-“time bath) and it is that
associated with it. The paradigm of time developed hergvave function with suitable initial conditions that generates a
arises from a novel point of view, but nonetheless leads totime density” and “flow” which leads to the usual evolu-
the usual time that one considers in the WKB limit of the tion of matter corresponding to the value of the matter wave
gravity-inflaton system. _ _ ~function for different values of in the gravitational wave
Moreover, we observe that a new interesting possibility isfynction.
the emergence of a time even with gravity and the inflaton in | astly let us note that we have studied the introduction of
quantum regimes: it is a consequence of the fact that normaime during the inflationary era with the gravitation being
matter cannot see quantum fluctuations below the Planclriven by the homogeneous inflaton Hamiltonian. Clearly
size but just experiences an evolution with respect to a funcone may ask what happens at the end of inflation when pre-
tion of the scale faCtor, associated with the Speed of |nﬂat|0nsumab|y a"(or most or Som)aof the homogeneous modes
In such a framework time only exists for normal matter have decayed into lighter matter. In such a case gravitation
which evolves according to its position on the gravitationalyil| just be driven by the mean energy of all matterclud-
wave function. _ o {ing a residual cosmological constaand the resulting gravi-
In a sense, and particularly on considering the approxitational wave function will introduce a common time for any

mate analysis, this emergence of a universal time reminds Umall subsystem which may be regarded as a perturbation of
of the derivation of a Boltzmann distribution and a tempera+the whole.

ture for systems obtained by placing them in contact with a
large heat bath where it is the density of energy levels of the
heat bath that is related to tlleommon temperature of sys-
tems in contact with it, different energy level densities for the
reservoir being associated with different temperatures. We wish to thank R. Brout for several clarifying discus-
Analogously, for us, normal matter is in contact with a gravi-sions.
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