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Large-scale curvature and entropy perturbations for multiple interacting fluids
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We present a gauge-invariant formalism to study the evolution of curvature perturbations in a Friedmann-
Robertson-Walker universe filled by multiple interacting fluids. We resolve arbitrary perturbations into adia-
batic and entropy components and derive their coupled evolution equations. We demonstrate that perturbations
obeying a generalized adiabatic condition remain adiabatic in the large-scale limit, even when one includes
energy transfer between fluids. As a specific application we study the recently proposed curvaton model, in
which the curvaton decays into radiation. We use the coupled evolution equations to show how an initial
isocurvature perturbation in the curvaton gives rise to an adiabatic curvature perturbation after the curvaton
decays.
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I. INTRODUCTION

The primordial curvature perturbation plays a central r
in modern cosmology. It characterizes large-scale den
perturbations in our Universe from which smaller scale str
tures form via gravitational instability. Therefore much effo
has been devoted to understanding the evolution of the
vature perturbation on large-scales in a general cosmolog
gauge-invariant formalism for cosmological metric perturb
tions was developed by Bardeen@1# and the curvature per
turbation ~on uniform density hypersurfaces! z was intro-
duced by Bardeenet al. @2,3# shortly afterwards as a
convenient gauge-invariant variable which remains cons
for purely adiabatic perturbations on large scales. On la
scales in an expanding universe it is essentially equivalen
the comoving density perturbation@4–6#.

The constancy of the curvature perturbationz in the case
of a single perfect fluid follows directly from the local con
servation of the energy-momentum tensor, in a suitably
fined large-scale limit@7#. But z can change on arbitrarily
large scales due to a nonadiabatic pressure perturba
@6–9#. Thus in a multifluid system it is in general necessa
to follow the coupled evolution of curvature and entropy~or
isocurvature! perturbations in order to determine the lat
time curvature perturbation.

There has been increasing interest in multi-field inflatio
ary models and the spectrum of curvature@9–13# and isocur-
vature@14,15# perturbations that may be produced and th
correlations@16,17#. In particular it has recently been sug
gested that the large-scale curvature perturbationz may be
generated by initial isocurvature perturbations in a ‘‘curv
ton’’ field which subsequently decays into radiation@18–21#.

Kodama and Sasaki@22# developed a general formalism
to describe the evolution of cosmological perturbations w
multiple fluids ~with corrections given in Ref.@23#!. This
0556-2821/2003/67~6!/063516~10!/$20.00 67 0635
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formalism has subsequently been used by a number of
thors@23–27# ~see also Refs.@28–30#!. In particular Kodama
and Sasaki applied their formalism to a matter-radiation fl
in Refs.@24,25#, where energy transfer can be neglected. O
can argue on general grounds@7# that the entropy perturba
tions evolve independently of the curvature perturbation
large scales, but that the evolution of the large-scale cu
ture is sourced by entropy perturbations. Nonetheless th
has been no detailed study of the evolution in general
curvature and entropy perturbations including energy tra
fer. By contrast a formalism to study the coupled evoluti
equations for curvature and entropy perturbations in mod
with multiple interacting scalar fields has recently been
veloped by Gordonet al. @17# and applied in a variety of
scenarios@31–34# ~see also Refs.@35,36#!.

In this paper we introduce a gauge-invariant formalism
follow the coupled evolution of curvature and entropy pe
turbations in multi-fluid cosmologies when energy trans
between fluids is included. As an example we study the e
lution of curvature and entropy perturbations in a curva
scenario where the decay of the curvaton field represents
transfer of energy from the curvaton to radiation. We co
pare the results of numerical solutions of the coupled eq
tions with analytic estimates based on the sudden decay
proximation, where the curvaton and radiation are assum
to be noninteracting up until a given decay time.

II. GOVERNING EQUATIONS

In this section we give the governing equations for t
general case of an arbitrary number of interacting fluids
general relativity. We will consider linear perturbations abo
a spatially flat Friedmann-Robertson-Walker~FRW! back-
ground model, as defined by the line element
©2003 The American Physical Society16-1
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ds252~112f!dt212aB,idtdxi1a2@~122c!d i j

12E,i j #dxidxj , ~2.1!

where we use the notation of Ref.@6# for the gauge-
dependent curvature perturbationc, the lapse functionf,
and scalar shearx[a2E2ȧB.

Each fluid has an energy-momentum tensorT(a)
mn . The to-

tal energy momentum tensorTmn5(aT(a)
mn , is covariantly

conserved, but we allow for energy transfer between the
ids

¹mT(a)
mn 5Q(a)

n , ~2.2!

whereQ(a)
n is the energy-momentum transfer to thea fluid,

which is subject to the constraint

(
a

Q(a)
n 50. ~2.3!

The equations hold for any type of fluid, the only requir
ment being the local conservation of the total ener
momentum tensor¹mTmn50.

A. Background equations

The evolution of the background FRW universe is go
erned by the Friedmann constraint

H25
8pG

3
r ~2.4!

and the continuity equation

ṙ523H~r1P!, ~2.5!

where the overdot denotes a derivative with respect to c
dinate timet, H[ȧ/a is the Hubble parameter, andr andP
are the total energy density and the total pressure

(
a

ra5r, (
a

Pa5P. ~2.6!

The continuity equation for each individual fluid in the bac
ground is thus@22#

ṙa523H~ra1Pa!1Qa , ~2.7!

where the energy transfer to thea fluid is given by the time
component of the energy-momentum transfer vectorQ(a)

0

5Qa in the background. Equation~2.3! implies that the
background energy transfer obeys the constraint

(
a

Qa50. ~2.8!

B. Perturbed equations

Perturbing the constraint equation~2.4! yields the first-
order equation@6,22,37#
06351
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3H~ ċ1Hf!2
¹2

a2
~c1Hx!524pGdr, ~2.9!

where the comoving spatial Laplacian is denoted by¹2

[]2/]xi2, and the momentum constraint equation~identi-
cally zero in the FRW background! is given by@6,22,37#

ċ1Hf524pGdq, ~2.10!

where dr is the density perturbation anddq the scalar
3-momentum potential.

Perturbing the continuity equation~2.5! yields an evolu-
tion equation for the total density perturbation@22,37#

ḋr13H~dr1dP!2~r1P!3ċ1
¹2

a2
@dq1~r1P!x#50,

~2.11!

while total momentum conservation is given by@22,37#

ḋq13Hdq1~r1P!f1dP1
2

3

¹2

a2
P50, ~2.12!

whereP is the total anisotropic stress.
The perturbed energy transfer vector, Eq.~2.2!, including

terms up to first order, is written as@22#

Q(a)052Qa~11f!2dQa , ~2.13!

Q(a) i5S f a1
Qa

r1P
dqD

,i

, ~2.14!

and Eq.~2.3! implies that the perturbed energy and mome
tum transfer obey the constraints

(
a

dQa50, (
a

f a50. ~2.15!

The perturbed energy conservation equation for a partic
fluid, including energy transfer, is then given by

ḋra13H~dra1dPa!2~ra1Pa!3ċ

1
¹2

a2
@dqa1~ra1Pa!x#5Qaf1dQa ,

~2.16!

while the momentum conservation equation is

ḋqa13Hdqa1~ra1Pa!f1dPa1
2

3

¹2

a2
Pa

5Qa

dq

r1P
1 f a , ~2.17!

where the density, pressure, momentum and anisotr
stress perturbations of the individual fluids are related to
total density, pressure, momentum and anisotropic stress
turbations by
6-2
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(
a

dra5dr, (
a

dPa5dP, (
a

dqa5dq,

(
a

Pa5P. ~2.18!

C. Gauge-invariant perturbations

Both the density perturbationdra and the curvature per
turbationc are in general gauge dependent. Specifically th
depend upon the chosen time-slicing in an inhomogene
universe. However a gauge-invariant combination can
constructed which describes the density perturbation on
form curvature slices or, equivalently the curvature of u
form density slices.

The curvature perturbation on uniform total density h
persurfacesz is given by@2,7#

z52c2H
dr

ṙ
, ~2.19!

while the curvature perturbation on uniforma-fluid density
hypersurfacesza is defined as@7#

za52c2H
dra

ṙa

. ~2.20!

The total curvature perturbation~2.19! is thus a weighted
sum of the individual perturbations

z5(
a

ṙa

ṙ
za , ~2.21!

while the difference between any two curvature perturbati
describes a relative entropy~or isocurvature! perturbation

Sab53~za2zb!523HS dra

ṙa

2
drb

ṙb
D . ~2.22!

The classic example of just such a relative entropy pertu
tion is a perturbation in the primordial baryon-photon ra
~with negligible energy transfer between the two fluids!

SBg53~zB2zg!5
drB

rB
2

3

4

drg

rg
. ~2.23!

This is also described as an initial isocurvature baryon d
sity perturbation asSBg→drB /rB in the limit rB /rg→0.

From the definitions of the total curvature perturbati
~2.21! and the entropy perturbation~2.22!, we get

za5z1
1

3 (
b

ṙb

ṙ
Sab . ~2.24!

D. Long-wavelength limit

To describe the evolution of long-wavelength perturb
tions we will work in the ‘‘separate universes’’ picture@7#
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where, smoothing over sufficiently large scales, the unive
looks locally similar to an unperturbed~FRW! cosmology.
Specifically we assume that we can neglect the divergenc
the momenta in the zero-shear gauge¹2@dqa1(ra
1Pa)x#, in Eq. ~2.16!.

In this long-wavelength limit, the perturbed continui
equation~2.11! becomes

ḋr13H~dr1dP!53~r1P!ċ. ~2.25!

Rewriting this equation in terms of the total curvature p
turbation,z in Eq. ~2.19!, gives@7,9#

ż52
H

r1P
dPnad, ~2.26!

where the nonadiabatic pressure perturbation isdPnad[dP

2cs
2dr and the adiabatic sound speed iscs

25 Ṗ/ ṙ. Thus the
total curvature perturbation is constant on large scales
purely adiabatic perturbations.

In the presence of more than one fluid, the total nonad
batic pressure perturbationdPnadmay be split into two parts:

dPnad[dPintr1dPrel . ~2.27!

The first part is due to the intrinsic entropy perturbation
each fluid

dPintr5(
a

dPintr,a , ~2.28!

where the intrinsic non-adiabatic pressure perturbation
each fluid is given by

dPintr,a[dPa2ca
2dra , ~2.29!

ca
2[ Ṗa / ṙa is the adiabatic sound speed of that fluid and

total adiabatic sound speed is the weighted sum of the a
batic sound speeds of the individual fluids

cs
25(

a

ṙa

ṙ
ca

2 . ~2.30!

The second part of the nonadiabatic pressure perturba
~2.27! is due to therelative entropy perturbationbetween
different fluids, denoted bySab in Eq. ~2.22!,

dPrel[
1

6H ṙ
(
a,b

ṙaṙb~ca
22cb

2 !Sab . ~2.31!

The time dependence of the intrinsic entropy perturbat
dPintr,a of each fluid must be specified according to the d
tailed modeling of that fluid. For instance, if the fluid has
definite equation of statePa5Pa(ra) then the intrinsic
nonadiabatic pressure perturbation vanishes.

The evolution of the relative entropy perturbationSab fol-
lows from the time dependence of the individual curvatu
6-3
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perturbationsza andzb . Equation~2.16! for the evolution of
the gauge-dependent density perturbations in the lo
wavelength limit reduces to

ḋra13H~dra1dPa!53~ra1Pa!ċ1Qaf1dQa .
~2.32!

Rewriting this in terms of the gauge-invariant curvature p
turbationza defined in Eq.~2.20! gives an evolution equa
tion for the curvature perturbation on uniforma-fluid density
hypersurfaces

ża5
3H2

ṙa

@dPa2ca
2dra#2

HQa

ṙa
FdQa

Qa
1S ṙ

2r
2

Q̇a

Qa
D dra

ṙa

1H21ċ1fG
5

3H2dPintr,a

ṙa

2
HdQnad,a

ṙa

. ~2.33!

For noninteracting, perfect fluids (Qa50 and dPintr,a50)
we haveża50 and the individual curvature perturbations f
each fluid remain constant in the long-wavelength limit@7#.
But in general, the curvature perturbationza may change
with time either due to the intrinsic nonadiabatic press
perturbationdPintr,a in Eq. ~2.29! or due to what we will call
the ‘‘nonadiabatic’’ energy transferdQnad,a .

Analogously to the total nonadiabatic pressure pertur
tion ~2.27!, we will split the nonadiabatic energy transfer in
two parts

dQnad,a[dQintr,a1dQrel,a . ~2.34!

The first part is the instrinsic non-adiabatic energy trans
perturbations, defined as

dQintr,a[dQa2
Q̇a

ṙa

dra . ~2.35!

This is automatically zero if the local energy transferQa is a
function of the local densityra so thatdQa5Q̇adra / ṙa ,
just as the intrinsic nonadiabatic pressure perturbation~2.29!
vanishes whendPa5 Ṗadra / ṙa . The second part is the
relative nonadiabatic energy transfer

dQrel,a5
Qaṙ

2r S dra

ṙa

2
dr

ṙ
D 52

Qa

6Hr (
b

ṙbSab ,

~2.36!

where we have used the background Einstein equations~2.4!
and the perturbed Friedmann constraint equation~2.9! on
large scales

ċ1Hf52
H

2

dr

r
, ~2.37!
06351
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in order to writedQrel,a explicitly in terms of the relative
entropy perturbationSab .

Note that the relative nonadiabatic pressure perturbat
defined in Eq.~2.31! is related to the relative nonadiabat
energy transfer perturbation defined in Eq.~2.36! as

dPrel522
r

ṙ
(
a

ṙaca
2

Qa
dQrel,a . ~2.38!

The nonadiabatic pressure perturbationsdPintr,a and dPrel
and the nonadiabatic energy transfersdQintr,a anddQrel,a are
all automatically gauge invariant. The intrinsic entropy p
turbationsdPintr,a anddQintr,a are both zero if the pressur
and local energy transfer are determined by the local ene
density. But even if the intrinsic entropy perturbations va
ish, there may be a nonadiabatic energy transfer due to
relative entropy perturbationz2za . We interpret this as due
to a gravitational redshift~time dilation! which perturbs the
rate of energy transfer with respect to coordinate time if
uniform a-density hypersurface does not coincide with t
uniform total density hypersurfacezaÞz.

By taking the difference between the evolution equatio
~2.33! for two fluids we obtain an evolution equation for th
relative entropy perturbation on large scales

Ṡab53HS 3HdPintr,a2dQintr,a

ṙa

2
3HdPintr,b2dQintr,b

ṙb
D

1(
g

ṙg

2rS Qa

ṙa

Sag2
Qb

ṙb

SbgD . ~2.39!

Thus we see that any relative entropy perturbationSab is
sourced on large scales only by intrinsic entropy pertur
tions in thea andb fluid, or by other relative entropy per
turbations. There is no source term coming from the ove
curvature perturbation and so adiabatic perturbations~with
no intrinsic or relative entropy perturbation! remain adiabatic
on large scales even when one considers interacting flui

III. CURVATON DECAY

Having established a general formalism in which to stu
the evolution of large-scale curvature and entropy pertur
tions including entropy transfer between multiple fluids, w
now study the specific case of a nonrelativistic matter dec
ing into radiation. In particular this can be used to descr
the decay of a massive curvaton field into radiation@18–21#.

The curvaton scenario has recently been proposed@18–
21# as a mechanism by which a large-scale curvature per
bation can be produced from an initially isocurvature pert
bation. If the curvaton is a light scalar field~with mass less
than the Hubble rate! the field may acquire an almost scal
invariant spectrum of perturbationszs . In the curvaton sce-
nario radiationrg is supposed to dominate the initial energ
density after inflation and this is assumed to be unpertur
zg50. Thus the curvaton perturbation is initially an isocu
vature density perturbation (z.0 and Ssg53zs) and re-
mains an isocurvature perturbation while the relative den
6-4
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of the curvaton remains negligible. However, once
Hubble rate drops below the mass of the curvaton, the fi
begins to oscillate. Averaged over several oscillations
effective equation of state iŝPs /rs&50, i.e., the coheren
oscillations of the field are equivalent to a fluid of nonre
tivistic particles@38#. As the energy density of nonrelativisti
particles grows relative to the energy density of radiati
what was once an isocurvature perturbation becomes a
turbation in the total curvature Eq.~2.21!.

Assuming the curvaton is unstable and decays into li
particles~‘‘radiation’’ ! with a decay rateG, this represents an
energy transfer from the pressureless curvaton fluid to
radiation fluid. The precise amplitude of the resulting curv
ture perturbation, relative to the initial curvaton perturbatio
depends upon both the initial density and the decay rat
the curvaton. We present the equations for the evolution
the curvature and relative entropy perturbations and so
them numerically, comparing with an analytic approximati
assuming an instantaneous decay.

A. Background solution

The energy transfer from the massive curvaton to li
radiation is described by

Qs52Grs , ~3.1!

Qg5Grs , ~3.2!

where G is the decay rate of the curvaton into radiatio
which we take to be a constant. The energy conserva
equations are therefore

ṙs52rs~3H1G!, ~3.3!

ṙg524Hrg1Grs , ~3.4!

ṙ52H~3rs14rg!, ~3.5!

where the Hubble expansion is given by

H25
8pG

3
~rs1rg!. ~3.6!

In order to solve the system of equations above num
cally, it is convenient to work in terms of the dimensionle
density parameters

Vs[
rs

r
, Vg[

rg

r
, ~3.7!

and the dimensionless ‘‘reduced’’ decay rate

g[
G

G1H
, ~3.8!

which varies monotonically from 0 to 1 in an expandin
universe. The background equations~3.3!–~3.6! can then be
written as an autonomous system
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Vs85VsS Vg2
g

12gD ~3.9!

Vg85VsS g

12g
2VgD , ~3.10!

g85
1

2
~42Vs!~12g!g, ~3.11!

where a prime denotes differentiation with respect to
number ofe foldings N[ ln a. The density parameters ar
subject to the Friedmann constraint~3.6! which requires

Vs1Vg51. ~3.12!

There are only two independent dynamical equations and
generic solutions follow trajectories in a compact tw
dimensional phase plane (0<g<1, 0<Vs<1), illustrated
in Fig. 1.

The dynamical system~3.9!–~3.12! admits three fixed
points

@~A!# Vg51, Vs50, g50,
@~B!# Vg50, Vs51, g50,
@~C!# Vg51, Vs50, g51.

Generic solutions start at the unstable repellor~A! and ap-
proach the stable attractor~C! at late times. At early times
(Vg.1, g!1) we find g}Vs

2}a2. The standard radiation
dominated cosmology corresponds to evolution along
line Vs50. However solutions can approach arbitrar
close the curvaton-dominated saddle point~B! before the
curvaton decays andVs→0 once again.

B. Perturbations

Both the curvaton and radiation fluids have fixed equ
tions of state (dPs50 anddPg5drg/3) and hence there ca
be no intrinsic nonadiabatic pressure perturbation (dPintr,s
50 anddPintr,g50). However the total curvature perturba
tion z does change on large scales in the presence of a
tive entropy perturbation~2.22!

FIG. 1. Phase-plane showing trajectories for the background
lutions in the curvaton model in Eqs.~3.9!–~3.12!.
6-5



gy

si
at

fe

on

er

ion

-
opy
n
hat
n

tion
rba-

r

ak-
In

y

n

ave

ge
itial

r-

nd

MALIK, WANDS, AND UNGARELLI PHYSICAL REVIEW D 67, 063516 ~2003!
Ssg[3~zs2zg!, ~3.13!

which leads to a nonadiabatic pressure perturbation~2.31!.
The evolution of the total curvature perturbationz, using
Eqs.~2.26!, is

ż5
H

3

ṙsṙg

ṙ2
Ssg . ~3.14!

We assume that the curvaton decay rateG is fixed by
microphysics~i.e., dG50) and hence the perturbed ener
transfer is simply given by

dQs52Gdrs , ~3.15!

dQg5Gdrs . ~3.16!

This energy transfer is determined solely by the local den
of the curvaton and hence there is no intrinsic nonadiab
energy transfer from the curvatondQintr,s50. However, the
radiation suffers an intrinsically nonadiabatic energy trans
from the curvaton decay~2.35!

dQintr,g5GS drs2
ṙs

ṙg

drgD , ~3.17!

which is proportional to the relative entropy perturbati
~3.13! between the radiation and curvaton

dQintr,g52
G

3H
ṙsSsg . ~3.18!

The relative nonadiabatic energy transfers~2.36! are also
nonzero and given by

dQrel,s52
Grsṙ

2r S drs

ṙs

2
dr

ṙ
D , ~3.19!

dQrel,g5
Grsṙ

2r S drg

ṙg

2
dr

ṙ
D , ~3.20!

which can be rewritten in terms of the relative entropy p
turbation as

dQrel,s5
Grs

6Hr
ṙgSsg , ~3.21!

dQrel,g5
Grs

6Hr
ṙsSsg . ~3.22!

Thus the evolution equations~2.33! for the curvature pertur-
bation on uniform curvaton density hypersurfaceszs and
uniform radiation density hypersurfaceszg are given by

żs52
G

6

rs

r

ṙg

ṙs

Ssg , ~3.23!
06351
ty
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żg5
G

3

ṙs

ṙg
S 12

rs

2r DSsg . ~3.24!

The evolution equation for the relative entropy perturbat
Ssg is, from Eq.~2.39!,

Ṡsg5
G

2

ṙs

ṙg

rs

r S 12
ṙg

2

ṙs
2 D Ssg . ~3.25!

Equations~3.14! and~3.25! form a closed system of first
order equations for the evolution of the adiabatic and entr
perturbationsz and Sab on large scales in the curvato
model. They clearly demonstrate the general principle t
the total curvature perturbationz evolves on large scales i
the presence of a relative entropy perturbationSab , while
the entropy perturbation obeys a homogeneous evolu
equation, unaffected by the large-scale curvature pertu
tion. Alternatively we could use Eqs.~3.23! and ~3.24! as a
closed system of first-order equations forzs andzg , remem-
bering thatSsg53(zs2zg).

However the evolution equation~3.24! for zg and, hence,
the evolution equation~3.25! for Ssg both become singula
wheneverGrs54Hrg andṙg50. This is due to the uniform
rg hypersurface becoming ill defined rather than any bre
down of perturbation theory on generic hypersurfaces.
particular the uniformrs and uniform total energy densit
hypersurfaces remain well behaved.

In practice we will use the two nonsingular evolutio
equations~3.14! and ~3.23! for z and zs , respectively. In
terms of the dimensionless background variables we h
two coupled evolution equations

z85
Vs~2g23!

~12g!~42Vs!
~z2zs!, ~3.26!

zs85
g~42Vs!

2~322g!
~z2zs!. ~3.27!

To calculate the final curvature perturbation on lar
scales produced in the curvaton scenario we start with in
conditions close to the point~A! for the background vari-
ables (g!1, Vs!1) and unperturbed radiation, but pe
turbed curvaton fluid

zg50, ~3.28!

zs5zs, in . ~3.29!

From the definitions of the total curvature perturbation a
the entropy perturbation Eqs.~2.21! and ~2.22!, this corre-
sponds to initial values

z5
3Vs, in

42Vs, in
zs, in , ~3.30!

Ssg53 zs, in . ~3.31!
6-6
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This is an initial isocurvature perturbation in the sense t
z→0 in the early time limit~A!, whereVs, in→0.

Starting from these initial conditions we use Eqs.~3.26!
and~3.27! to follow the evolution ofz andzs until we reach
the late time attractor~C! whereg→1 andVs→0. At late
times the perturbations too approach a fixed point attra
wherezg5zs and

z5r zs, in , ~3.32!

Ssg50. ~3.33!

This is an adiabatic primordial perturbation, where the fi
value of the large-scale curvature perturbationz is related to
the initial curvaton perturbationzs, in by a parameterr
@19,21# which is determined by the numerical solution
Eqs.~3.9!, ~3.11!, ~3.26!, and~3.27!.

Thus, we can represent the integrated effect upon
large-scale curvature and entropy perturbations of the cu
ton growth and decay by the transfer matrix

S z

Ssg
D

out

5S 1 r /3

0 0 D S z

Ssg
D

in

. ~3.34!

Examples of the evolution of large-scale perturbations
two different choices of initial conditions are shown in Fig
2 and 3. The resulting value for the transfer parameter
defined in Eq.~3.32! depends upon the maximum value
Vs before the curvaton decays. If the curvaton domina
before it decays, i.e.,Vs,dec.1, we haver .1 as in the case
shown in Fig. 3. More generally,r is a one-dimensional func
tion of the initial value ofVs /(G/H)1/2 which determines
which trajectory is followed in the two-dimensional (g,Vs)
phase plane, Fig. 1. The precise dependence ofr upon the
initial value of Vs /(G/H)1/2 is shown in Fig. 4.

FIG. 2. Evolution of the normalized curvature perturbation
uniform curvaton density hypersurfaceszs /zs, in and of the normal-
ized total curvature perturbationz/zs, in as a function of the numbe
of e foldings, starting withzs /zs, in51 and initial density and deca
rateVs51022 andG/H51023.
06351
t

or

l

e
a-

r
.

s

C. Comparison with sudden decay approximation

Previous analyses@19,21,39# have relied on the assump
tion of ‘‘sudden decay’’ to estimate the final curvature pe
turbation produced after curvaton decay. In this approxim
tion the energy transferQs52Grs is assumed to be
negligible until the decay time, defined byG/H reaching
some critical valueG/Hdec of order unity, at which time all
the energy density of the curvaton field is rapidly conver
into radiation.

In the absence of energy transfer the individual curvat
perturbationszs andzg , defined by Eq.~2.20!, remain con-
stant on large scales@see Eq.~2.33!#. Thus the total curvature
perturbation, Eq.~2.21!, is given by

z' f zs1~12 f !zg , ~3.35!

wherezs andzg are constant and the only time dependen
arises from the time dependence of the weight given to
curvaton perturbation

FIG. 3. Evolution of the normalized curvature perturbation
uniform curvaton density hypersurfaceszs /zs, in and of the normal-
ized total curvature perturbationz/zs, in as a function of the numbe
of e foldings, starting withzs /zs, in51 and initial density and decay
rateVs51022 andG/H51026.

FIG. 4. Transfer parameterr defined in Eq.~3.32! obtained from
numerical solutions as a function of the initial value
Vs /(G/H)1/2.
6-7
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f [
3Vs

3Vs14Vg
. ~3.36!

After the curvaton decays into radiation all the ener
density in the model has a unique equation of state, he
dPnad50 in Eq. ~2.26!, and z becomes constant on larg
scales. Hence in the curvaton scenario, where the initial
vature perturbationzg is assumed to be negligible, the resu
ing adiabatic curvature perturbation after curvaton deca
given by

zout' f deczs, in . ~3.37!

In terms of an initial value forVs, in and reduced deca
rateG/H in , we can writef dec as

f dec[
3Vs, in

3Vs, in14~12Vs, in!ydec
, ~3.38!
nu

im
e
a
t
n

06351
ce

r-

is

whereydec5ain /adec is the ratio of initial scale factor to tha
at decay. We can calculate this from the Friedmann equa
for non-interacting matter and radiation which can be writt
as

S H

H in
D 2

5~12Vs, in!S ain

a D 4

1Vs, inS ain

a D 3

. ~3.39!

Thus the epoch of decay,ydec, is given by the one real root
0,ydec,1 of

~12Vs, in!ydec
4 1Vs, in ydec

3 2S G/H in

G/Hdec
D 2

50, ~3.40!

and f dec is then obtained from Eq.~3.38!.
There are two limiting cases:
f dec'H 3

4
Vs, in~12Vs, in!23/4S G/Hdec

G/H in
D 1/2

for ydec@Vs, in /~12Vs, in!,

12
4

3
Vs, in

24/3~12Vs, in!S G/Hdec

G/H in
D 1/2

for ydec!Vs, in /~12Vs, in!.

~3.41!
ure
r-

the

e

rtur-

rba-

fer,
ds,

atic
The sudden decay approximation is compared with
merical results for the full equations~3.26! and~3.27! in Fig.
5. The one free parameter in the sudden-decay approx
tion is the particular value ofG/Hdec chosen to characteriz
the epoch of decay. Optimizing the fit to the full numeric
solutions fixesG/Hdec.1.4, in line with our expectation tha
G/Hdecshould be of order unity. With this choice the sudde
decay approximation is seen~Fig. 5! to give a good estimate
for r . f dec ~good to within 10%!.

FIG. 5. Comparison of full numerical solution forr in Eq. ~3.34!
with sudden-decay approximationf dec given in Eq.~3.38!.
-

a-

l

-

IV. CONCLUSIONS

We have studied the evolution of large-scale curvat
perturbations for multiple interacting fluids in a linearly pe
turbed FRW cosmology. The curvature perturbationza on
hypersurfaces of uniform density for each fluid Eq.~2.20!,
provides a gauge-invariant variable by which to study
large-scale evolution. The total curvature perturbationz is
then a weighted sum~2.21!, of the individual za’s. For a
noninteracting perfect fluid,za remains constant on larg
scales, independently of perturbations in other fluids@7#.
More generally we have shown howza can change on large
scales due to either an intrinsic nonadiabatic pressure pe
bation or nonadiabatic energy transfer.

We can decompose an arbitrary energy transfer pertu
tion into two parts:

dQa5
Q̇a

ṙa

dra1dQa, intr , ~4.1!

wheredQa, intr is the~gauge-invariant! intrinsic nonadiabatic
energy transfer. The large-scale curvature perturbationza
can change due to this intrinsic non-adiabatic energy trans
or due to a relative entropy perturbation between flui
dQa,rel defined in Eq.~2.36!, which is proportional toza
2z. For perturbations that obey the generalized adiab
condition
6-8
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dPa5ca
2dra , dQa5

Q̇a

ṙa

dra and za5z, ~4.2!

the curvature perturbationza remains constant on larg
scales. If all the individual fluids obey this generalized ad
batic condition, then the total curvature perturbationz is nec-
essarily constant too.

Most previous analyses have adopted the variables
Kodama and Sasaki@22# who defined the relative entrop
perturbation between two fluids as

Sab[
dra

ra1Pa
2

drb

rb1Pb
. ~4.3!

However, this definition is only gauge-invariant in the a
sence of energy transfer. As a result the evolution equat
including energy transfer are particularly unpleasant@22,23#.
In particular it is difficult to show that entropy perturbation
obey a homogeneous evolution equation on large scales~i.e.,
adiabatic perturbations stay adiabatic on large scales! in the
way that was recently shown for multiple interacting sca
fields @17#. Although it has been be argued on very gene
grounds that this must be the case@7#, this fundamental resul
has not previously been explicitly demonstrated in treatme
of interacting fluids.

We have used the correct gauge-invariant generaliza
of Eq. ~4.3!, allowing for energy transfer

Sab[3~za2zb!, ~4.4!

which describes the relative displacement between the
hypersurfaces of uniform density defined with respect to
two fluids. This reduces to Eq.~4.3! in the case of no energ
transfer. It allows us to demonstrate that the evolution of
large-scale entropy perturbation, Eq.~2.39! is sourced only
by entropy perturbations and not sourced by the total cu
ture perturbationz. Thus the integrated evolution on larg
v.

e
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.

06351
-

of

-
ns

r
l

ts

n

o
e

e

a-

scales, even when we include energy transfer, can be s
matically represented by the linear transfer matrix

S z

SD
out

5S 1 TzS
0 TSS

D S z

SD
in

. ~4.5!

We have applied our formalism to study the evolution
curvature perturbations in the curvaton scenario where
initially isocurvature~nonadiabatic! perturbation in the cur-
vaton field is transferred to the radiation fluid when the c
vaton eventually decays. The decay of the curvaton rep
sents a nonadiabatic energy source for the radiation fluid.
have numerically solved the coupled evolution equations
determine the resulting curvature perturbationz for an initial
entropy perturbation. Thus we have calculated the tran
coefficientTzS in Eq. ~4.5! for different parameter values o
the background models. We compared our results with se
analytic estimates based on the ‘‘sudden-decay’’ approxim
tion @19,21# where the fluids are assumed to be nonintera
ing up until a fixed decay time. The sudden-dec
approximation is shown to give a good fit to the full resu
~within 10%! for a suitable choice of fitting parameter.

In this two-fluid realization of the curvaton scenario th
interaction between the fluids leads to the relative entro
decaying to zero at late timesTSS50 in Eq. ~4.5!, leaving a
purely adiabatic curvature perturbation. Our formalism c
also be applied to cosmological models including other c
mological fluids such as baryons, CDM or neutrinos,
which case it should be possible to calculate the amplitud
any residual isocurvature perturbations that may survive a
curvaton decay in different variations of the curvaton s
nario.
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