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Large-scale curvature and entropy perturbations for multiple interacting fluids
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We present a gauge-invariant formalism to study the evolution of curvature perturbations in a Friedmann-
Robertson-Walker universe filled by multiple interacting fluids. We resolve arbitrary perturbations into adia-
batic and entropy components and derive their coupled evolution equations. We demonstrate that perturbations
obeying a generalized adiabatic condition remain adiabatic in the large-scale limit, even when one includes
energy transfer between fluids. As a specific application we study the recently proposed curvaton model, in
which the curvaton decays into radiation. We use the coupled evolution equations to show how an initial
isocurvature perturbation in the curvaton gives rise to an adiabatic curvature perturbation after the curvaton
decays.
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I. INTRODUCTION formalism has subsequently been used by a number of au-
thors[23-27] (see also Ref$§28—-30). In particular Kodama
The primordial curvature perturbation plays a central roleand Sasaki applied their formalism to a matter-radiation fluid
in modern cosmology. It characterizes large-scale densitin Refs.[24,25, where energy transfer can be neglected. One
perturbations in our Universe from which smaller scale struc€an argue on general groungdd that the entropy perturba-
tures form via gravitational instability. Therefore much effort tions evolve independently of the curvature perturbation on
has been devoted to understanding the evolution of the cutarge scales, but that the evolution of the large-scale curva-
vature perturbation on large-scales in a general cosmology. Aire is sourced by entropy perturbations. Nonetheless there
gauge-invariant formalism for cosmological metric perturba-has been no detailed study of the evolution in general of
tions was developed by Bardegh] and the curvature per- curvature and entropy perturbations including energy trans-
turbation (on uniform density hypersurfaceg was intro-  fer. By contrast a formalism to study the coupled evolution
duced by Bardeeretal. [2,3] shortly afterwards as a equations for curvature and entropy perturbations in models
convenient gauge-invariant variable which remains constanjith multiple interacting scalar fields has recently been de-
for purely adiabatic perturbations on large scales. On |ar99eloped by Gordoret al. [17] and applied in a variety of
scales in an expanqmg universg it is essentially equivalent thenarioi31—34{ (see also Refd:35,36).
the comoving density perturbati¢s —6]. o In this paper we introduce a gauge-invariant formalism to
The constancy of the curvature perturbatiom the case  fo|low the coupled evolution of curvature and entropy per-
of a single perfect fluid follows directly from the local con- pations in multi-fluid cosmologies when energy transfer
servation of the energy-momentum tensor, in a suitably depetween fluids is included. As an example we study the evo-
fined large-scale limif7]. But { can change on arbitrarily ytion of curvature and entropy perturbations in a curvaton
large scales due to a nonadiabatic pressure perturbatiatenario where the decay of the curvaton field represents the
[6—9]. Thus in a multifluid system it is in general necessaryransfer of energy from the curvaton to radiation. We com-
to follow the coupled evolution of curvature and entrdpy  pare the results of numerical solutions of the coupled equa-
isocurvature perturbations in order to determine the late-tions with analytic estimates based on the sudden decay ap-

time curvature perturbation. . ~ proximation, where the curvaton and radiation are assumed
There has been increasing interest in multi-field inflation-t pe noninteracting up until a given decay time.

ary models and the spectrum of curvat{®e-13] and isocur-
vature[14,15 perturbations that may be produced and their
correlations[16,17). In particular it has recently been sug-
gested that the large-scale curvature perturbationay be
generated by initial isocurvature perturbations in a “curva- In this section we give the governing equations for the
ton” field which subsequently decays into radiatid8—21]. general case of an arbitrary number of interacting fluids in

Kodama and SasakR2] developed a general formalism general relativity. We will consider linear perturbations about
to describe the evolution of cosmological perturbations witha spatially flat Friedmann-Robertson-Walk@tRW) back-
multiple fluids (with corrections given in Ref[23]). This  ground model, as defined by the line element

1. GOVERNING EQUATIONS
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ds?=—(1+2¢)dt*+2aB;dtdX +a%[ (1-2¢)§;

+2E ;;]dx'dX, (2.0
where we use the notation of Ref6] for the gauge-
dependent curvature perturbatign the lapse functionp,
and scalar shegy=a’E —aB.

Each fluid has an energy-momentum terigg . The to-
tal energy momentum tensd"=X%,T(,), is covariantly

conserved, but we allow for energy transfer between the flu-

ids
VT = Qe » (2.2

whereQ(,, is the energy-momentum transfer to thefluid,
which is subject to the constraint

2 Q(y=0. 2.3

The equations hold for any type of fluid, the only require-
ment being the local conservation of the total energy-

momentum tensov, T#"=0.

A. Background equations
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V2

3H(Y+Hp)— —7(+HxX)=—47Gap, 2.9

where the comoving spatial Laplacian is denoted WY
=3%/9x'?, and the momentum constraint equatiédenti-
cally zero in the FRW backgrounds given by[6,22,37

(2.10

where Sp is the density perturbation andqg the scalar
3-momentum potential.

Perturbing the continuity equatiai2.5) yields an evolu-
tion equation for the total density perturbatid®,37

Y+Hp=—47Gsq,

. V2
Sp+3H(8p+8P)—(p+P)3y+ —[q+(p+P)x]=0,
a

(2.11
while total momentum conservation is given [82,37]
2

. 2V
5a+3H5q+(p+P) ¢+ 6P+ 2 —T1=0,
a

(2.12

wherell is the total anisotropic stress.
The perturbed energy transfer vector, E22), including

The evolution of the background FRW universe is gov-terms up to first order, is written 482]

erned by the Friedmann constraint

H2=57C 2.4
- 3 ( . )
and the continuity equation

p=—3H(p+P), (2.5

where the overdot denotes a derivative with respect to coor-

dinate timet, H=a/a is the Hubble parameter, apdand P
are the total energy density and the total pressure

> pa=p, 2 P.=P.

(2.6

The continuity equation for each individual fluid in the back-

ground is thug22]

poa=—3H(po,+P,)+Q,, (2.7)

where the energy transfer to tlefluid is given by the time
component of the energy-momentum transfer ve@?g)
=Q, in the background. Equatiof2.3 implies that the
background energy transfer obeys the constraint

> Q,=0. (2.9
B. Perturbed equations

Perturbing the constraint equatidB.4) yields the first-
order equatiorn6,22,37

Q(a)0=—Qu(1+¢)—35Q,, (2.13
Q.
Qui=|fat p+P5q) E (2.14

and Eq.(2.3) implies that the perturbed energy and momen-

tum transfer obey the constraints

> 5Q,=0, 2, f,=0. (2.15

The perturbed energy conservation equation for a particular

fluid, including energy transfer, is then given by

3pat3H(8pat 8P ,) — (patPo)3
VZ
* g[éqa_'—(pa—i_ Pa)X]:Qa¢+ 5QC¥’

(2.19
while the momentum conservation equation is

2

2V
5qa+3H 5qa+(pa+ Pa)(ﬁ'i‘ 5Pa+ § _21_[0‘
a

o
L

= -
QC(p_"_P a’

(2.1

where the density, pressure, momentum and anisotropic
stress perturbations of the individual fluids are related to the
total density, pressure, momentum and anisotropic stress per-

turbations by
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where, smoothing over sufficiently large scales, the universe

> Sp.=dp, X P,=6P, 2 8q,=dq, looks locally similar to an unperturbed@RW) cosmology.

“ “ “ Specifically we assume that we can neglect the divergence of
the momenta in the zero-shear gaud€’sq,+ (p,

> I0,=1I. (2.18  +P,)x], in Eq.(2.16.

@ In this long-wavelength limit, the perturbed continuity
equation(2.11) becomes

C. Gauge-invariant perturbations

Both the density perturbatiofp, and the curvature per- Op+3H(op+ oP)=3(p+P)ih. (229
turbationy are in general gauge dependent. Specifically theBf?ewriting this equation in terms of the total curvature per-
depend upon the chosen time-slicing in an inhomogeneouﬁ,eration £ in Eq. (2.19, gives[7.9]

universe. However a gauge-invariant combination can be ' q-(.19. 9 '

constructed which describes the density perturbation on uni-

form curvature slices or, equivalently the curvature of uni- = Lgpnad, (2.26)
form density slices. p+P

The curvature perturbation on uniform total density hy- ] . )
persurfaceg is given by[2,7] where the nonadiabatic pressure perturbatioaRs,= 6P

—c28p and the adiabatic sound speed:fs=P/p. Thus the
p total curvature perturbation is constant on large scales for
{=—¢—H—, (2.19 purely adiabatic perturbations.
P In the presence of more than one fluid, the total nonadia-
while the curvature perturbation on uniformfluid density ~ batic pressure perturbatiafP,,qmay be split into two parts:
hypersurfaceg, is defined a$7]

OPnaE OPintr+ OP el (2.27
Opa
{,=—tp—H—. (2.20  The first part is due to the intrinsic entropy perturbation of
Pa each fluid
The total curvature perturbatiq.19 is thus a weighted
sum of the individual perturbations SPi= 2 Pinras (2.29
Pa
(=2 L, (2.2)  where the intrinsic non-adiabatic pressure perturbation of
« p

each fluid is given by

while the difference between any two curvature perturbations

— _ A2
describes a relative entrofdgr isocurvaturg perturbation OPintr,o= 0P 0= Co0pa, (2.29

c2=P,/p, is the adiabatic sound speed of that fluid and the
' (222 {otal adiabatic sound speed is the weighted sum of the adia-
batic sound speeds of the individual fluids

The classic example of just such a relative entropy perturba-
tion is a perturbation in the primordial baryon-photon ratio 5
(with negligible energy transfer between the two flgids s

opa Op
Saﬁzg(ga_gﬁ):_SH( E _-_ﬁ
Pa pﬁ’

=> =“c. (2.30

%_§%_ (2.23  The second part of the nonadiabatic pressure perturbation
Pe 4 py (2.27 is due to therelative entropy perturbatiorbetween

This is also described as an initial isocurvature baryon den(_jlfferent fluids, denoted by, in Eq. (2.22),

sity perturbation asg,— dpg/pg in the limit pg/p,—0. 1
From the definitions of the total curvature perturbation — o2 2
: OPe=——+ c.—C%)S,5- 2.3
(2.21) and the entropy perturbatiai@.22), we get " 6Hp az,g PaPp(Ca™ Cp)Sap (233

Sg,=3(Ls—¢,)=

1 b/; The time dependence of the intrinsic entropy perturbation

ga_ §+ a 2 '_Saﬁ . (224) ] . . - )
3% »p OPintr o OF each fluid must be specified according to the de

tailed modeling of that fluid. For instance, if the fluid has a
definite equation of state®,=P,(p,) then the intrinsic
nonadiabatic pressure perturbation vanishes.

To describe the evolution of long-wavelength perturba- The evolution of the relative entropy perturbatisyy; fol-
tions we will work in the “separate universes” pictuf&] lows from the time dependence of the individual curvature

D. Long-wavelength limit
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perturbations’, and{ ;. Equation(2.16) for the evolution of  in order to write 6Q, explicitly in terms of the relative
the gauge-dependent density perturbations in the longentropy perturbatiois,; .

wavelength limit reduces to Note that the relative nonadiabatic pressure perturbation,
defined in Eq.(2.3)) is related to the relative nonadiabatic
8pat3H(8pat 6P ) =3(pat P+ Qi+ 6Q,. energy transfer perturbation defined in E2.36) as
(2.32
’ 2
" L . : P PaCq
Rewriting this in terms of the gauge-invariant curvature per- SP o= —2% 2, Q—5Qre|,a. (2.39
turbation ¢, defined in Eq.(2.20 gives an evolution equa- p “«
Egggfsrl}rfggeusrvature perturbation on uniformfluid density The nonadiabatic pressure perturbatia¥®, , and P
and the nonadiabatic energy transfé,; , and6Q, , are
2 : : all automatically gauge invariant. The intrinsic entropy per-
L= 3_1[&3&_(:2 Sp,]— H_Q“ 5Q“+<£_ %) bjp“ turbationsoP;yy , and 6Qjny , are both zero if the pressure
Pu “ pe | Qe \2p Qu/ p, and local energy transfer are determined by the local energy
density. But even if the intrinsic entropy perturbations van-
FH g4 ish, there may be a nonadiabatic energy transfer due to the
relative entropy perturbatiof— ¢, . We interpret this as due

to a gravitational redshifttime dilation which perturbs the
3H25P. H 60 rate of energy transfer with respect to coordinate time if the
- ~ it T¥%nade (2.33  uniform a-density hypersurface does not coincide with the
Pa Pa uniform total density hypersurfacg,# ¢.

By taking the difference between the evolution equations
For noninteracting, perfect fluidsQ(,=0 and 6P;y, ,=0) (2.33 for two fluids we obtain an evolution equation for the
we have/,=0 and the individual curvature perturbations for relative entropy perturbation on large scales
each fluid remain constant in the long-wavelength lifit
But in general, the curvature perturbatigp may change L H(3H OPintr.a = 6Qinr,a  3H 6Pintr,ﬁ_5Qintr,B>

aB ™ - .

with time either due to the intrinsic nonadiabatic pressure

perturbationsPi.y ., in EQ.(2.29 or due to what we will call Pa Pe

the “nonadiabatic” energy transfe¥Qaq,, - Py Qa Qg

Analogously to the total nonadiabatic pressure perturba- +2 2—( —Say— -—S,ey)- (2.39
tion (2.27), we will split the nonadiabatic energy transfer into 7 P\ pa Pp
two parts

Thus we see that any relative entropy perturbatigp is
S5 — 50 45 _ 23 sourced on large scales only by intrinsic entropy perturba-
Qnada™= 0Qintr.a+ OQret.a (2.3 tions in thea and g fluid, or by other relative entropy per-

The first part is the instrinsic non-adiabatic energy transfefurPations. There is no source term coming from the overall

perturbations, defined as curvature perturbation and so adiabatic perturbati@vith
no intrinsic or relative entropy perturbatijoremain adiabatic
O on large scales even when one considers interacting fluids.
5Qintr,aE 5Qa_ '_a 5pa . (235
Pa Ill. CURVATON DECAY
This is automatically zero if the local energy trans@gy is a Having established a general formalism in which to study
function of the local density, so that5Qa=Qa5pa/ba, the evolution of large-scale curvature and entropy perturba-

just as the intrinsic nonadiabatic pressure perturba@a29  tions including entropy transfer between multiple fluids, we

vanishes whensP =P 5p /") . The second part is the NOW study the specific case of a nonrelativistic matter decay-
relative nonadiabatic ecrk1er5y transfer ing into radiation. In particular this can be used to describe

the decay of a massive curvaton field into radiafib@—21].

: The curvaton scenario has recently been prop¢4&d-
_Qup(dpa P\ Qa < - 21 hanism by which a large-scal t tur-
Qe g= | = — | == 2 PsSap; ] as a mechanism by which a large-scale curvature pertur
2p Pa p 6Hp 5 bation can be produced from an initially isocurvature pertur-

(2.36  bation. If the curvaton is a light scalar fie{dith mass less
S than the Hubble rajethe field may acquire an almost scale-
where we have used the background Einstein equat@ds  invariant spectrum of perturbatiors . In the curvaton sce-
and the perturbed Friedmann constraint equat®) on  nario radiatiorp., is supposed to dominate the initial energy
large scales density after inflation and this is assumed to be unperturbed
{,=0. Thus the curvaton perturbation is initially an isocur-
UHHp=— ﬂ @ (2.37) vature density perturbation/&0 and S,,=3¢,) and re-
2 p’ ' mains an isocurvature perturbation while the relative density
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of the curvaton remains negligible. However, once the 1 T T T T
Hubble rate drops below the mass of the curvaton, the field
begins to oscillate. Averaged over several oscillations the 0.8 3
effective equation of state i /p,)=0, i.e., the coherent
oscillations of the field are equivalent to a fluid of nonrela-
tivistic particles[38]. As the energy density of nonrelativistic
particles grows relative to the energy density of radiation, G
what was once an isocurvature perturbation becomes a per- 0.4 .
turbation in the total curvature E¢R.21).
Assuming the curvaton is unstable and decays into light 0.2 ]
particles(“radiation” ) with a decay raté’, this represents an
energy transfer from the pressureless curvaton fluid to the . . . -
radiation fluid. The precise amplitude of the resulting curva- % 0.2 0.4 0.6 0.8 1
ture perturbation, relative to the initial curvaton perturbation, g
?heepiﬂ?\?atjopnonV\?eOtSrézgr::“ttéael g:lr,l]:lg)(;nasn?o:htiedis?){utri%tr? gff _FIG.. 1. Phase-plane showi_ng trajectories for the background so-
) . . lutions in the curvaton model in Eq6.9)—(3.12.
the curvature and relative entropy perturbations and solve
them numerically, comparing with an analytic approximation

0.6F ]

assuming an instantaneous decay. Q' =0 (Q 9 ) (3.9
o o b4 1_ g .
A. Background solution
The energy transfer from the massive curvaton to light Q;=QU(%—07), (3.10
radiation is described by 9
o="Tp,, (3.) o1
Qo= l g'=5(4-0,)(1-gg (1
Q,=I'p,, (3.2

) ) ~where a prime denotes differentiation with respect to the
whereI" is the decay rate of the curvaton into radiation, number ofe foldings N=Ina. The density parameters are

which we take to be a constant. The energy conservatioBubject to the Friedmann constraiBt6) which requires
equations are therefore

. Q,+Q,=1. (3.12
pPo=—ps(3H+T), 3.3
There are only two independent dynamical equations and the
,'37: —4Hp +Tp,, (3.4 generic solutions follow trajectories in a compact two-
dimensional phase plane €g<1, 0<(,<1), illustrated
S in Fig. 1.
p="HBpst4py), @9 The dynamical systeni3.9—(3.12 admits three fixed
where the Hubble expansion is given by points
[(A)]Q,=1,0,=0,g=0,
2 871G [(B)] QyIOIQ(f:l!gzoy
H ZT(p(,-i-py). (3.6 (O] Q,=1,0,=0,g=1.

In order t e th ; ¢ i b .Generic solutions start at the unstable repe{loy and ap-
n order 1o solve the systém of equations above .nume”broach the stable attract¢€) at late times. At early times
cally, it is convenient to work in terms of the dimensionless

density parameters (2,=1, g<1) we find gxQ%xa?. The standard radiation
dominated cosmology corresponds to evolution along the
line Q,=0. However solutions can approach arbitrarily
y p_y’ (3.7 close the curvaton-dominated saddle paoiB) before the
p curvaton decays an@ ,—0 once again.

Q

o

Pe g
p

and the dimensionless “reduced” decay rate )
B. Perturbations
) Both the curvaton and radiation fluids have fixed equa-
9= r+H’ 38 tions of state §P,=0 andéP = dp,/3) and hence there can
be no intrinsic nonadiabatic pressure perturbatior;

which varies monotonically from 0 to 1 in an expanding =0 andéP;,, ,=0). However the total curvature perturba-
universe. The background equatioi3s3)—(3.6) can then be tion ¢ does change on large scales in the presence of a rela-
written as an autonomous system tive entropy perturbatiof2.22
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Soy=3({s— L), (3.13 . Ty
Y i =P "( &) S, (3.24
which leads to a nonadiabatic pressure perturbatib8dl).

The evolution of the total curvature perturbatign using _ ) ) )
Egs.(2.26), is The evolution equation for the relative entropy perturbation

Sy is, from Eq.(2.39,
. Hp.p, . .
(=3 2 Sery- (3.14 . Tp, pg( 3

1- 218, (3.25

We assume that the curvaton decay rhtas fixed by
microphysics(i.e., sST'=0) and hence the perturbed energy Equations3.14) and(3.25 form a closed system of first-

transfer is simply given by order equations for the evolution of the adiabatic and entropy
perturbations{ and S, on large scales in the curvaton
0Q,=—T6p,, (3.19  model. They clearly demonstrate the general principle that
the total curvature perturbatiahevolves on large scales in
0Q,=T"dp,. (3.16  the presence of a relative entropy perturbatifyy, while

_ . _ _the entropy perturbation obeys a homogeneous evolution
This energy transfer is determined solely by the local densitgquation, unaffected by the large-scale curvature perturba-
of the curvaton and hence there is no intrinsic nonadiabatigion. Alternatively we could use Eq$3.23 and(3.24 as a

energy transfer from the curvat@iQi,,=0. However, the closed system of first-order equations fgrand¢.,, remem-
radiation suffers an intrinsically nonadiabatic energy transfepering thatS,.,=3({,—¢,)-

from the curvaton decaf2.35 However the evolution equatiof8.24) for £, and, hence,
. the evolution equation3.29 for S, both become singular
Po whenevell p,=4Hp., andp.=0. This is due to the uniform
Q=T 8py— =2 5p, |, 3.1 po=4Hp, andp,
Quntry ( Po Dy p’) 3.19 p, hypersurface becoming ill defined rather than any break-

down of perturbation theory on generic hypersurfaces. In
which is proportional to the relative entropy perturbationparticular the uniformp, and uniform total energy density
(3.13 between the radiation and curvaton hypersurfaces remain well behaved.
In practice we will use the two nonsingular evolution
. equations(3.14 and (3.23 for { and ¢, respectively. In
OQintr,y= — ﬁpvsm/' (318 terms of the dimensionless background variables we have
two coupled evolution equations
The relative nonadiabatic energy transfégs36) are also
nonzero and given by Q,(29—3)

“d-g4-0, ¢

!

), (3.26

Lpop | bps, Op
5Qre|,g_—7<b——7 : (3.19 9(4-0.)
’ (o= 23— 2g) (Lo (3.27
_Fpgb op, 6 _ _
5Qrel,y_W 7—7 , (3.20 To calculate the final curvature perturbation on large
Y

scales produced in the curvaton scenario we start with initial
conditions close to the pointA) for the background vari-
ables <1, Q,<1) and unperturbed radiation, but per-
turbed curvaton fluid

which can be rewritten in terms of the relative entropy per-
turbation as

Ip,- B
5Qrel,a: wp'yso”yi (32]) 57— 0, (32&
g =§r in- (329
l—'pa . o a,
5Q = _p(rS(r . (322
e 6Hp 7 From the definitions of the total curvature perturbation and

) ) the entropy perturbation Eq§2.21) and (2.22), this corre-
Thus the evolution equatior{&.33 for the curvature pertur- sponds to initial values

bation on uniform curvaton density hypersurfacgs and

uniform radiation density hypersurfacés are given by 30,
{= _—' go’,inv (330}
) 4 Q(r in
- T'psp, ’
{,=— g—.—SM, (3.23
P ps Soy=3 Loin- (3.3
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FIG. 2. Evolution of the normalized curvature perturbation on ~ FIG. 3. Evolution of the normalized curvature perturbation on
uniform curvaton density hypersurfacgs/{,,.i, and of the normal-  uniform curvaton density hypersurfacgs/{,i» and of the normal-
ized total curvature perturbatiafi{,, i, as a function of the number ized total curvature perturbatiaft, i, as a function of the number
of efoldings, starting with, /¢, ;,=1 and initial density and decay ©f efoldings, starting witlt, /{,, ;=1 and initial density and decay
rateQ, =102 andT/H=10"3. rate),=10"2 andT'/H=10"°.

This is an initial isocurvature perturbation in the sense that C. Comparison with sudden decay approximation

{—0 in the early time limit(A), where(}, ;,—0. Previous analysefl9,21,39 have relied on the assump-
Starting from these initial conditions we use E¢3.26  tion of “sudden decay” to estimate the final curvature per-

and(3.27 to follow the evolution ofZ and/, until we reach  turbation produced after curvaton decay. In this approxima-

the late time attractofC) whereg—1 and(),—0. At late  tion the energy transfeQ,=—-Ip, is assumed to be

times the perturbations too approach a fixed point attractonegligible until the decay time, defined Hy/H reaching

where{,={, and some critical valud'/H g4 Of order unity, at which time all
the energy density of the curvaton field is rapidly converted
into radiation.

{=roin, (3.32 In the absence of energy transfer the individual curvature
perturbationg, and¢,,, defined by Eq(2.20, remain con-
S =0 (3.33 stant on large scalésee Eq(2.33)]. Thus the total curvature
oy="0. .

perturbation, Eq(2.21), is given by

This is an adiabatic primordial perturbation, where the final (=1, +(1-1){,, (3.39
value of the large-scale curvature perturbatiois related to

the initial curvaton perturbatiory, ;, by a parameter ~ Where{, andZ, are constant and the only time dependence
[19,21] which is determined by the numerical solution of arises from the time dependence of the weight given to the

Egs.(3.9), (3.11), (3.26), and(3.27). curvaton perturbation
Thus, we can represent the integrated effect upon the
large-scale curvature and entropy perturbations of the curva- 10° f
ton growth and decay by the transfer matrix
1 r/3 -
o )lo Gl ) s @
8‘77 out 0 0 8‘77 in
[

Examples of the evolution of large-scale perturbations for 107
two different choices of initial conditions are shown in Figs.
2 and 3. The resulting value for the transfer parameter
defined in Eq.(3.32 depends upon the maximum value of
Q) , before the curvaton decays. If the curvaton dominates 10° .
before it decays, i.e), 4oc=1, we have =1 as in the case 10~ 107" 10" 10°
shown in Fig. 3. More generally,is a one-dimensional func- [Q.(T/ ™,
tion of the initial value ofQ,/(I'/H)Y2 which determines ¢ n
which trajectory is followed in the two-dimensiona,(2,,) FIG. 4. Transfer parameterdefined in Eq(3.32) obtained from
phase plane, Fig. 1. The precise dependence uon the  numerical solutions as a function of the initial value of
initial value of Q. /(I'/H)Y? is shown in Fig. 4. Q, /[(TIH)Y2
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30, wherey .= ain/a4ec IS the ratio of initial scale factor to that
f= 30 140" (3.36 at decay. We can calculate this from the Friedmann equation
7 v for non-interacting matter and radiation which can be written
After the curvaton decays into radiation all the energy@s
density in the model has a unique equation of state, hence
6P..=0 in Eq. (2.26), and { becomes constant on large H\?2 ap\? a3
scales. Hence in the curvaton scenario, where the initial cur- (H_> :(1—Qa,m)(—) Qa,m(;) . (339
vature perturbatiod,, is assumed to be negligible, the result- "

ing adiabatic curvature perturbation after curvaton decay is o
given by Thus the epoch of decayye., IS given by the one real root,

0<ygec<1 of

Lour™ 1Edecga,in . (3.37
In terms of an initial value foK . ;, and reduced deca 4 3 I'/Hin ?
ni I. vald a,in u y (1_Q(r,in)ydec+ﬂu-,in ydec_ T'/H :O, (34@
ratel'/H;,, we can writef 4. as de
30, i . .
fgo= a,in 1 (3.39 and f 4. is then obtained from E¢3.38).
30 int4(1= Qg in)Ydec There are two limiting cases:

I'Hge

3 . 1/2
_Qa,in(l_ﬂo,in)sm( ) for yde?ﬂa,in/(l_ga,in)v

4 I'/'H;,
fgec™ 4 T/Hyq 1/2 (3.41
— ec
1- 590,?143(1_Qo,in)( F/Hm> for ydeC<er,in/(l_Q(r,in)'
|
The sudden decay approximation is compared with nu- IV. CONCLUSIONS

merical results for the full equatiori8.26 and(3.27) in Fig. We have studied the evolution of large-scale curvature

5.' The one fre_e parameter in the sudden-decay apprqx'm%'erturbations for multiple interacting fluids in a linearly per-
tion is the particular value of /H 4. chosen to characterize turbed FRW cosmology. The curvature perturbatignon
the epoch of decay. Optimizing the fit to the full numerical hypersurfaces of uniform density for each fluid E8.20),
solutions fixed'/Hgec=1.4, in line with our expectation that ,rovides a gauge-invariant variable by which to study the
I'/H gecShould be of order unity. With this choice the sudden-|arge-scale evolution. The total curvature perturbatiofs
decay approximation is se€Rig. 5 to give a good estimate then a weighted sun@2.21), of the individual ,’s. For a

for r="fgyec (good to within 10%. noninteracting perfect fluidZ, remains constant on large
scales, independently of perturbations in other flUid
1.10 : , . More generally we have shown hafy, can change on large

scales due to either an intrinsic nonadiabatic pressure pertur-
bation or nonadiabatic energy transfer.
We can decompose an arbitrary energy transfer perturba-

105 tion into two parts:

% 1.00 o
= Qu=""8Pat 6Qq i, 4.
Pa
095 | —_— (I'/H)i,.=10j
(/) =10 | where 8Q,, iy is the (gauge-invariantintrinsic nonadiabatic
—-—- (IVH), =10 '
i ‘ . ‘ energy transfer. The large-scale curvature perturbatipn
0‘9‘10-6 10° 10 100 100 100 10° can change due to this intrinsic non-adiabatic energy transfer,
Qn or due to a relative entropy perturbation between fluids,
° 6Q, rel defined in Eq.(2.36, which is proportional tof,
FIG. 5. Comparison of full numerical solution foin Eq.(3.34 ~ —{. For perturbations that obey the generalized adiabatic
with sudden-decay approximatidie. given in Eq.(3.39. condition
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o) scales, even when we include energy transfer, can be sche-
oP,=c%8p,, 8Q,=~—6bp, and {,=¢, (42  matically represented by the linear transfer matrix

Pa
. . ¢ 1 T\ (¢
the curvature perturbatiord, remains constant on large = ) (4.5)
scales. If all the individual fluids obey this generalized adia- S ot 10 Tss S in

batic condition, then the total curvature perturbatios nec-
essarily constant too.

Most previous analyses have adopted the variables
Kodama and SasakR2] who defined the relative entropy
perturbation between two fluids as

We have applied our formalism to study the evolution of

0(furvature perturbations in the curvaton scenario where an
Initially isocurvature(nonadiabatig perturbation in the cur-
vaton field is transferred to the radiation fluid when the cur-
vaton eventually decays. The decay of the curvaton repre-
sents a nonadiabatic energy source for the radiation fluid. We

8p, Spp have ngmerically sqlved the coupled evolution qugti_ons to
pat P, pptPgs (4.3 determine the resulting curvature perturbatiofor an initial

“o e entropy perturbation. Thus we have calculated the transfer
) o ) o coefficientT s in Eq. (4.9 for different parameter values of
However, this definition is only gauge-invariant in the ab-the background models. We compared our results with semi-
sence of energy transfer. As a result the evolution equation@nawﬂc estimates based on the “sudden-decay” approxima-
including energy transfer are particularly unpleag@223.  tjon [19,21] where the fluids are assumed to be noninteract-
In particular it is difficult to show that entropy perturbations jng up until a fixed decay time. The sudden-decay
obey a homogeneous evolution equation on large s¢aes  approximation is shown to give a good fit to the full result
adiabatic perturbations stay adiabatic on large sgatethe  (within 10%) for a suitable choice of fitting parameter.
way that was recently shown for multiple interacting scalar |n this two-fluid realization of the curvaton scenario the
fields[17]. Although it has been be argued on very generajnteraction between the fluids leads to the relative entropy
grounds that this must be the c4g¢ this fundamental result decaying to zero at late tim&&;s=0 in Eq.(4.5), leaving a
has not previously been explicitly demonstrated in treatmentgyrely adiabatic curvature perturbation. Our formalism can

Sup

of interacting fluids. o ~also be applied to cosmological models including other cos-
We have used the correct gauge-invariant generalizatiomological fluids such as baryons, CDM or neutrinos, in
of Eq. (4.3), allowing for energy transfer which case it should be possible to calculate the amplitude of

any residual isocurvature perturbations that may survive after
curvaton decay in different variations of the curvaton sce-

Saﬁzs(ga_gﬁ)1 (44) nario.

which describes the relative displacement between the two
hypersurfaces of uniform density defined with respect to the
two fluids. This reduces to E¢4.3) in the case of no energy The authors are grateful to David Lyth and Misao Sasaki
transfer. It allows us to demonstrate that the evolution of thdor useful comments. This work was supported by PPARC
large-scale entropy perturbation, HQ.39 is sourced only Grant No. PPA/G/S/2000/00115. K.M. is supported by a
by entropy perturbations and not sourced by the total curvaMarie Curie Fellowship under Contract No. HPMF-CT-

ture perturbationy. Thus the integrated evolution on large 2000-00981. D.W. was supported by the Royal Society.
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