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Casimir effect in de Sitter and anti–de Sitter braneworlds
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We discuss the bulk Casimir effect~effective potential! for a conformal or massive scalar when the bulk
represents five-dimensional anti–de Sitter~AdS! or de Sitter~dS! space with one or two four-dimensional dS
branes, which may correspond to our Universe. Using zeta regularization, the interesting conclusion is reached
that for both bulks in the one-brane limit the effective potential corresponding to the massive or to the
conformal scalar is zero. The radion potential in the presence of quantum corrections is found. It is demon-
strated that both the dS and the AdS braneworlds may be stabilized by using the Casimir force only. A brief
study indicates that bulk quantum effects are relevant for brane cosmology, because they do deform the de
Sitter brane. They may also provide a natural mechanism yielding a decrease of the four-dimensional cosmo-
logical constant on the physical brane of the two-brane configuration.
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I. INTRODUCTION

If our world is really multidimensional, asM ~string!
theory predicts, then one of the most economical possibili
for its realization is the braneworld paradigm. Indeed, in
case when string theory is taken in its exact vacuum st
with the five-dimensional~asymptotically! anti–de Sitter
~AdS! sector, in a full ten-dimensional space, the correspo
ing effective five-dimensional theory represents so
~gauged! supergravity. Adding the four-dimensional surfa
terms predicted by the AdS conformal field theory~CFT!
correspondence to such five-dimensional AdS~super!gravity,
one arrives at the dynamical four-dimensional bound
~brane! of this five-dimensional manifold. Depending on th
structure of the surface terms, the choice of~bulk and brane!
matter, the assumptions about the general structure of
brane and bulk manifold, fields content, etc., our fo
dimensional universe can be realized in a particular way
such a brane. The brane universe can be consistent with
servational data even when the radius of the extra dimen
is quite significant. Moreover, the braneworld point of vie
of our Universe may bring about a number of interest
mechanisms to resolve such well-known problems as
cosmological constant and the hierarchy problems.

As the braneworld corresponds to a five-dimensio
~usually AdS! manifold with a four-dimensional dynamica
boundary, it is clear that, when five-dimensional quant
field theory~QFT! is considered, the nontrivial vacuum e
ergy ~Casimir effect, see, e.g., Ref.@1# for a recent review!
should appear. Moreover, when brane QFT is considered
nontrivial brane vacuum energy also appears. The bulk
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simir effect should conceivably play a quite remarkable r
in the construction of the consistent braneworlds. Indeed
gives a contribution to both the brane and the bulk cosm
logical constants. Hence it is expected that it may help in
resolution of the cosmological constant problem.

For consistency, the five-dimensional braneworld sho
be stabilized~radion stabilization! @2#, and the challenging
idea is that a very fundamental quantity, the bulk vacu
energy ~Casimir contribution!, may be used explicitly for
realizing the radion stabilization. This has been checked
number of models@4–16#, although mainly with flat branes
only. An interesting connection between the bulk Casim
effect and supersymmetry breaking in braneworld@17# or
moving branes@18# also exists. On the other hand, the bra
Casimir effect may be used for a braneworld realization@19#
of the anomaly driven~also called Starobinsky! inflation
@20#.

The works mentioned above discuss mainly the Casi
effect in the situation when the brane is flat space. But a
the situation in which the brane is more realistic, say a
Sitter~dS! universe, has been discussed in Refs.@5,14#. It has
been shown there that, in an AdS bulk, the Casimir ene
for the bulk conformal scalar field in a one-brane configu
tion is zero. However, in situations where the bulk is diffe
ent, a nonzero contribution of the Casimir energy is not
cluded and even a possibility may exist of gravity trappi
on the brane itself.

In the present work we study the bulk Casimir effect fo
conformal or massive scalar when the bulk is a fiv
dimensional AdS or a dS space and the brane is a fo
dimensional dS space. We show that zeta-regularization t
niques at its full power@21# can be used in order to calcula
the bulk effective potential in such braneworlds, in a qu
general setting. One interesting result we got is that, for b
bulks ~AdS and dS! under discussion with one brane, th
bulk effective potential is zero for a conformal as well as f
a massive scalar. Applications of our results to the stabili
tion of the radion and to the brane dynamics are presente
well.
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The paper is organized as follows. The next section
devoted to the discussion of a general effective potential~Ca-
simir effect! for bulk conformal scalar on AdS when th
brane is a de Sitter space. The small distance behavio
investigated and the one-brane limit of the potential, wh
turns out to be zero, is worked out. As an application,
discuss the role of the leading term of the effective poten
to the brane dynamics. It is shown here that the Casi
force only slightly deforms the shape of the four-dimensio
sphereS4 . The radion potential~in two limits!, with account
of the Casimir term, is found and the stabilization of t
braneworld is discussed. Using an explicit short distance
pansion for the effective potential, it is demonstrated that
brane may indeed be stabilized using the Casimir force o

In Sec. III similar questions are investigated for a conf
mal scalar when the brane isS4 , and the bulk is a five-
dimensional dS space. It is interesting that the effective
tential turns out to be the same as in the case of the prev
section~AdS!. Also, the one-brane limit of the effective po
tential is again zero. From the study of brane dynamic
turns out that the role of the Casimir force is again that
inducing some deformation of theS4 brane~especially close
to the poles!.

In Sec. IV the effective potential for a massive scalar~also
with scalar-gravitational coupling! is presented, for both a dS
and an AdS bulk, when the brane isS4 . The small and large
mass limits are found. The one-brane limit of the potentia
again zero, even in the massive case, but the main non
correction to this limit is obtained explicitly. Brane stabiliz
tion due to the Casimir force for a massive scalar is d
cussed when the bulk is five-dimensional dS.

In Sec. V the potential for a massive scalar withou
scalar-gravitational coupling is briefly studied for dS a
AdS braneworlds. It is shown that it is again zero in t
one-brane limit. Finally, a short summary and an outlook
presented in Sec. VI.

II. CASIMIR EFFECT FOR A de SITTER BRANE
IN A FIVE-DIMENSIONAL ANTI –de SITTER

BACKGROUND

A. Effective potential for the brane

In this section, we review the calculation of the effecti
potential for a de Sitter brane in a five-dimensional anti–
Sitter background, following Refs.@4,5,14#. First, we start
with the action for a conformally invariant massless sca
with scalar-gravitational coupling,

S5
1

2 E d5xAg@2gmn]mf]nf1j5R~5!f2#, ~2.1!

wherej552 3
16 , R(5) being the five-dimensional scalar cu

vature. This action is conformally invariant under the conf
mal transformations:1

1Note that there is a relation betweena and b, namely
2@(D22)/4#a5b, and jD depends on the dimensions a
2(D22)/4(D21), for the generalD-dimensional bulk.
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gmn5eas~xm!ĝmn , f5ebs~xm!f̂, ~2.2!

where2 3
4 a5b.

Let us recall the expression for the Euclidean metric
the five-dimensional AdS bulk:

ds25gmndxmdxn5
l 2

sinh2 z
~dz21dV4

2!, ~2.3!

dV4
25dj21sin2 jdV3

2, ~2.4!

wherel is the AdS radius which is related to the cosmolo
cal constant of the AdS bulk, anddV3 is the metric on the
three-sphere. Two dS branes, which are four-dimensio
spheres, are placed in the AdS background. If we put
brane atz1 , which is fixed, and the other brane atz2 , the
distance between the branes is given byL5uz12z2u. When
z2 tends to`, namely L5`, the two-brane configuration
becomes a one-brane configuration.

We can see that the action Eq.~2.1! is conformally invari-
ant under the conformal transformations for the metric E
~2.3! and the scalar field, which are given by

gmn5sinh22 zl2ĝmn , f5sinh3/2zl23/2f̂. ~2.5!

The action~2.1! is not changed by the conformal transform
tion, Eqs.~2.5!. The corresponding transformed Lagrangi
looks like

L5f~]z
21D~4!1j5R~4!!f, ~2.6!

whereR(4)512. Since we are interested in the Casimir effe
for the bulk scalar in the AdS background, we shall use t
Lagrangian hereafter.

The one-loop effective potential can be written as@5,14#

V5
1

2LVol~M4!
ln det~L5 /m2!, ~2.7!

where L552]z
22D (4)2j5R(4)5L11L4 . To calculate the

effective potential in Eq.~2.7!, we usez function regulariza-
tion @21,25#, as was done in Refs.@4,5,14#. Being precise, the
very first step in this procedure consists in the introduction
a mass parameter in order to work with dimensionless eig
values, thus we should write at every instanceL5 /m2, etc.
However, as is often done for the sake of the simplicity
the notation, we will just keep in mind the presence of thism
factor, to recover it explicitly only in the final formulas.

First, we assume that the eigenvalues ofL1 andL4 are of
the formln

2, la
2>0 ~with n, a51,2,...) respectively. In terms

of these eigenvalues, ln detL5 can be rewritten as follows:

ln detL55Tr ln L55Tr ln~L11L4!5(
n,a

ln~ln
21la

2 !.

~2.8!
5-2
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Since thez function for an arbitrary operatorA is defined by

z~suA![(
m

~lm
2 !2s5(

m
e2s ln lm

2
, ~2.9!

it turns out that Tr lnL5 can be rewritten as

Tr ln L552]sz~suL5!us50 . ~2.10!

Furthermore, thez function is related to theG function and
heat kernelKt(A):

z~suA!5
1

G~s!
E

0

`

dtts21Kt~A!, Kt~A!5(
m

e2lm
2 t.

~2.11!

L1 is a one-dimensional Laplace operator, and the bound
conditions result in that the brane separationL can be taken
as the width of a one-dimensional potential well. As a co
sequence, the eigenvalues ofL1 are given by

ln
25S pn

L D 2

~2.12!

for finite L.

B. One-brane limit „L\`…

The above formula leads to the heat kernelKt(L1):

Kt~L1!;(
n

e2t~pn/L !2
;E

0

`

dye2t~py/L !2
5

L

2Apt
,

~2.13!

where the large-L limit has been taken, namely, the contin
ous limit of n. The heat kernel forL5 is written in terms of
Kt(L1) andKt(L4) @25#, as

Kt~L5!5Kt~L1!Kt~L4!. ~2.14!

By using Eqs.~2.11!, ~2.13!, and~2.14!, we obtainz(suL5):

z~suL5!5
1

G~s!
E

0

`

dtts21Kt~L1!Kt~L4!,

;
L

2Ap

GS s2
1

2D
G~s!

1

GS s2
1

2D
3E

0

`

dtt~s21/2!21Kt~L4!1OS 1

L D

5
L

2Ap

GS s2
1

2D
G~s!

zS s2
1

2 UL4D1OS 1

L D . ~2.15!

Combined with Eq.~2.10!, we obtain the effective potentia
in the largeL limit:
06351
ry

-

V52
1

2LVol~M4!
$z8~0uL5 /m2!1 ln m2z~0uL5 /m2!%

5
1

2LVol~M4!
zS 2

1

2
uL4 /m2D1OS m2

L D . ~2.16!

Note that them2 factor has to be taken into account fo
obtaining the derivative and, as discussed before, it is in
everywhere present in each Lagrangian and its eigenva
~although it is usually not written down in order to simplif
the notation!. For the spherical braneS4 whose radius isR,
the four-dimensional zeta functionz(suL4) is given by

z~suL4!5
R2s

3 FzHS 2s23,
3

2D2
1

4
zHS 2s21,

3

2D G .
~2.17!

Here we used a Hurwitz zeta function and a Bernoulli po
nomial as in Ref.@5#. This equation leads to

zS 2
1

2 UL4D5
1

3R FzHS 24,
3

2D2
1

4
zHS 22,

3

2D G50.

~2.18!

As a result, the effective potential Eq.~2.16! becomes zero
~as first has been observed in Ref.@5# and has been con
firmed in Ref.@14#! asL→`. This situation corresponds t
the case of a one-brane configuration.

C. Small distance expansion

Using the power of the zeta regularization formul
@21,22#, a much more precise~albeit involved! calculation
can be carried out which respects at every step the comp
structure of the five-dimensional zeta function. That is,
full zeta function is preserved until the end, and the fin
expression is given in terms of an expansion on the br
distanceL over the brane compactification radiusR, valid
for L/R<1, which complements the one for large brane d
tance obtained above. A detailed calculation follows.

As to the specific zeta formulas employed, adhering to
classification that has been given in Ref.@22#, the case at
hand is indeed to be found there~even if at first sight it
would not seem so!. It corresponds to a two-dimensiona
quadratic plus linear form with truncated spectrum. In fa
this is clear from the structure of the spectrum yielding t
zeta function

z~suL5!5m22s (
n,l 50

`

~ln
21l l

2!2s, ~2.19!

wherem is a dimensional regularization scale that renders
argument of the zeta function dimensionless. In the cas
the four-dimensional spherical brane of radiusR considered
above, this reduces to
5-3
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z~suL5!5
m22s

6 (
n,l 50

`

~ l 11!~ l 12!~2l 13!

3F S pn

L D 2

1R22S l 213l 1
9

4D G2s

. ~2.20!

This zeta function looks awkward, at first sight. But aft
some reshuffling it can be brought to exhibit the stand
structure mentioned. Specifically,

z~suL5!5
R2s

6m2s (
n,l 50

`

2S l 1
3

2D H F S l 1
3

2D 2

1
p2n2R2

L2 G12s

2S p2n2

L2 1
1

4D F S l 1
3

2D 2

1
p2n2R2

L2 G2sJ
[

R2s

6m2s @Z1~s!1Z2~s!#, ~2.21!

where bothZ1(s) andZ2(s) are obtained by taking deriva
tives ~see Ref.@23# for a discussion of this issue, nontrivia
when asymptotic expansions are involved!, with respect tox
at x5 3

2 , of a zeta function of the class just mentioned, e

(
l 50

`

@~ l 1x!21q#2s, q[
p2n2R2

L2 . ~2.22!

In Refs. @22#, explicit formulas for the analytical continua
tion of this class of zeta functions are given. To be brief~and
forgetting for the moment about then sum, for simplicity!,
we just have to recall the useful asymptotic expansion

(
n50

`

@~n1c!21q#2s;S 1

2
2cDq2s1

q2s

G~s!

3 (
n51

`
~21!nG~n1s!

n!
q2nzH

3~22n,c!1
ApG~s21/2!

2G~s!
q1/22s

1
2ps

G~s!
q1/42s/2 (

n51

`

ns21/2

3cos~2pnc! Ks21/2~2pnAq!.

~2.23!

After some calculations, we get, forZ1(s) andZ2(s),

Z1~s!52
1

22s S p2R2

L2 D 22s

z~2s24!

2
1

G~s21! (
n51

`
~21!nG~n1s22!

n!

3S p2R2

L2 D 22n2s

z~2s12n24!zH8 ~22n,3/2!,

~2.24!
06351
d

.,

Z2~s!5
1

12s S p2R2

L2 D 12sS p2R2

L2 z~2s24!

1
1

4
z~2s22! D1

1

G~s! (
n51

`
~21!nG~n1s21!

n!

3S p2R2

L2 D 12n2sS p2R2

L2 z~2s12n24!

1
1

4
z~2s12n22! D zH8 ~22n,3/2!. ~2.25!

Finally, for the derivative of the five-dimensional ze
function ats50, we obtain

z8~0uL5!5
z8~24!

6

p4R4

L4 1
z8~22!

12

p2R2

L2

1
1

24S zH8 ~24,3/2!2
1

2
zH8 ~22,3/2! D ln

p2R2

L2

1
z8~0!

6 S zH8 ~24,3/2!2
1

2
zH8 ~22,3/2! D

1
1

24
zH8 ~24,3/2!1

1

36S 1

8
zH8 ~24,3/2!

2
1

3
zH8 ~26,3/2! D L2

R2 1OS L4

p4R4D
.0.129 652

R4

L4
20.025 039

R2

L2
20.002 951 ln

R2

L2

20.017 95620.000 315
L2

R2 1¯ . ~2.26!

D. Dynamics of the brane

We now consider the dynamics of the dS brane, which
taken to be the four-dimensional sphereS4 , as in Ref.@5#.
The bulk part is given by five-dimensional Euclidea
Anti–de Sitter space, Eq.~2.3!, which can be rewritten as

dsAdS5

2 5dy21 l 2 sinh2
y

l
dV4

2. ~2.27!

One also assumes that the boundary~brane! lies aty5y0 and
the bulk space is obtained by gluing two regions, given
0<y,y0 ~see Ref.@19# for more details!.

We start with the actionS which is the sum of the
Einstein-Hilbert actionSEH, the Gibbons-Hawking surface
term SGH @24#, and the surface countertermS1 , e.g.,

S5SEH1SGH12S1 , ~2.28!

SEH5
1

16pG E d5xAg~5!S R~5!1
12

l 2 D , ~2.29!
5-4
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SGH5
1

8pG E d4xAg~4!¹mnm, ~2.30!

S152
3

8pGl E d4xAg~4!. ~2.31!

Hereafter the quantities in the five-dimensional bulk spa
time are specified by the subindices~5! and those in the
boundary four-dimensional spacetime are~4!. The factor 2 in
front of S1 in Eq. ~2.28! is coming from the fact that we hav
two bulk regions, which are connected with each other by
brane. In Eq.~2.30!, nm is the unit vector normal to the
boundary.

If we change the coordinatej in the metric ofS4 , Eq.
~2.4!, to s by

sinz56
1

coshs
, ~2.32!

we obtain

dV4
25

1

cosh2 s
~ds21dV3

2!. ~2.33!

For later convenience, one can rewrite the metric of the fi
dimensional space, Eqs.~2.27! and ~2.33!, as follows:

ds25dy21e2A~y,s!g̃mndxmdxn,

g̃mndxmdxn[ l 2~ds21dV3
2!. ~2.34!

From Eq.~2.34!, the actions~2.29!–~2.31!, have the follow-
ing forms:

SEH5
l 4V3

16pG E dydsH @28]y
2A220~]yA!2#e4A

1@26]s
2A26~]sA!216#

e2A

l 2 1
12

l 2
e4AJ , ~2.35!

SGH5
4l 4V3

8pG E dse4A]yA, ~2.36!

S152
3l 3V3

8pG E dse4A. ~2.37!

Here V35*dV3 is the volume~or area! of the unit three-
dimensional sphere.

As it follows from the discussion in the previous subse
tions, there is a gravitational Casimir contribution comi
from bulk quantum fields. As one sees in the simple exam
of a bulk scalar,SCsmr ~leading term! has typically the fol-
lowing form:

SCsmr5
cV3

R5 E dydse2A. ~2.38!
06351
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Herec is some coefficient, whose value and sign depend
the type of bulk field~scalar, spinor, vector, graviton, etc!
and on parameters of the bulk theory~mass, scalar-
gravitational coupling constant, etc.!. In a previous subsec
tion we have found this coefficient for a conformal scal
For the following discussion it is more convenient to co
sider this coefficient to be some parameter of the theo
Doing so, the results are quite common and may be app
to an arbitrary quantum bulk theory. We also assume t
there are no background bulk fields in the theory~except for
the bulk gravitational field!.

Adding the quantum bulk contribution to the actionS in
Eq. ~2.28!, one can regard

Stotal5S1SCsmr ~2.39!

as the total action. In Eq.~2.38!, R is the radius ofS4 .
In the bulk, one obtains the following equation of motio

from SEH1SCsmr by variation overA:

05S 224]y
2A248~]yA!21

48

l 2 De4A

1
1

l 2 @212]s
2A212~]sA!2112#s2A1

16pGc

R5l 4 e2A.

~2.40!

Let us discuss the solution in the situation when the sc
factor depends on both coordinates:y ands. In Ref. @5#, the
solution of Eq.~2.40! given by an expansion with respect
e2y/ l was found by assuming thaty/ l is large:

eA5

sinh
y

l

coshs
2

32pGcl3

15R5 cosh4 se24y/ l1O~e25y/ l !

~2.41!

for the perturbation from the solution where the brane isS4 .
On the brane at the boundary, one gets the following eq
tion:

05S ]yA2
1

l De4A. ~2.42!

Substituting the solution~2.41! into Eq. ~2.42!, we find that

0;S 1

RA11
R2

l 2
1

2pGl2c

3R10
cosh5 s2

1

l D . ~2.43!

Equation~2.43! tells us that the Casimir force deforms th
shape ofS4 , since R depends ons. The effect becomes
larger for larges. In the case of aS4 brane, the effect be-
comes large if the distance from the equator becomes la
sinces is related to the angle coordinatej by Eq. ~2.32!. In
particular, at the north and south poles (j50,p), coshs di-
verges and thenR should vanish. This is not coordinate sin
gularity. In fact, whens→6`, the 5D scalar curvature be
haves as
5-5
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R~5!;2
20

l 2
1

12pGcl

R5
e7usue27y/ l1O~e29y/ l !. ~2.44!

This only tells, however, that the perturbation with respec
c or e2y/ l breaks down. In fact, whens is large, the correc-
tions appear in the combination of the power ofeusue2y/ l .
Then the singularity at the poles is not a real one but if
can sum up the correction terms in all orders with respec
e2y/ l , the singularity would vanish. Then we have demo
strated that bulk quantum effects do have the tendenc
support the creation of a de Sitter braneworld Universe.

The original Euclidean 5D AdS space has a isometry
SO~5, 1!, which is identical with the Euclidean 4D conform
symmetry. The existence of theS4 brane breaks the isometr
into SO~5! rotational symmetry, which makesS4 invariant. If
there is no the Casimir effect, Eq.~2.43! has the SO~5! sym-
metry. The result in Eq.~2.43! seems to indicate that th
Casimir force breaks the SO~5! symmetry. We should note
that the effective action~2.38! does not seem to be invarian
under the rotational symmetry since the action seems to
pend on the choice of the axis connecting the north and s
poles although the calculation of the Casimir effect should
invariant under the SO~5! symmetry. Since the Casimir effec
is the nonlocal effect, the exact form of the effective acti
should be nonlocal. Then a more exact form of the effect
action might be obtained, for example, by averaging the
tion ~2.38! with respect to the choice of the axis. Such
symmetry can be, in general, broken spontaneously as in
~2.43!. The breakdown would occur by choosing the tim
direction to be parallel with the axis. Then the SO~5! sym-
metry is broken to SO~4!, which preserves the rotations ma
ing the axis, that is, also north and south poles, invarian

We now consider the case when the bulk quantum effe
are the leading ones. From Eq.~2.43!, one obtains

R8;2
4pGlc

3
cosh5 s. ~2.45!

Here we only consider the leading term with respect toc,
which corresponds to the largeR approximation. Thus we
have demonstrated that bulk quantum effects do not vio
~in some cases they even support! the creation of a de Sitte
brane living in a five-dimensional AdS background.

E. Dynamics of two branes at small distance

In this subsection, we consider the dynamics of two
branes when the distance between them is small. Before
cluding the Casimir effect, we consider the following a
tions:

S5SEH1 (
a56

~SGH12S1!, ~2.46!

SEH5
1

16pG E d5xAg~5!S R~5!1
12

l 2 D , ~2.47!
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6 56

1

8pG E d4xAg~4!¹mnm, ~2.48!

S1
657

3

8pGl6 E d4xAg~4!. ~2.49!

Here the indexa56 distinguishes the two branes and w
assume that the radiusR1 (R2) corresponds to the large
~smaller! brane. The bulk space is AdS again and, on
branes, we obtain the following equations:

1

R6A12
R62

l 2 5
1

l 6. ~2.50!

The left-hand side in Eq.~2.50! is a monotonically decreas
ing function with respect toR. Since the left-hand side be
comes1` when R→0 and 1/l when R→1`, there is a
solution when

l . l 1. l 2. ~2.51!

We now include the Casimir effect. First, we consider t
backreaction to the bulk geometry. As we assume the
tance between the branes is small, the radius of the bra
are almost constant. The distanceL in Eq. ~2.26! is given by
uz12z2u, the energy density by the Casimir effect would
proportional toe25A/L5. Then the effective action would b

SCsmr5
c̃V3

L5 E dydse2A. ~2.52!

Therefore, as in the previous section, the bulk geome
would be deformed as

eA5

sinh
y

l

coshs
2

32pGc̃l 3

15L5 cosh4 se24y/ l1O~e25y/ l !. ~2.53!

In this case, the equation of the brane corresponding to
~2.43!, has the following form:

0;S 1

R6A11
R62

l 2 6
2pGl2c̃

3L10 cosh5s2
1

l 6D . ~2.54!

Equation~2.54! tells us that the Casimir force deforms th
shape ofS4 and the effect becomes larger for larges, again,
as in the previous section. We should note, however, that
signs of the contribution from the Casimir effect are differe
for the larger and smaller branes. Then if the radius of
large brane becomes large~small!, that in the smaller one
becomes small~large!. It is interesting that if larger brane i
the physical Universe, this may serve as a dynamical mec
nism of decreasing the cosmological constant.

F. Stabilization of the radion potential

In this subsection, we consider the stabilization of t
radion potential following Ref.@2#. As first setup, we prepare
the suitable metric and action for the discussion of the sta
lization of the radion potential,
5-6
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ds25e22krcufuhmndxmdxn2r c
2df2. ~2.55!

Heref is the coordinate on five dimensions,xm are the co-
ordinates on the four-dimensional surfaces of constantf, and
2p<f<p with (x,f) and (x,2f) identified. The coordi-
nate z in the metric ~2.3! corresponds toekrcf/k in Eq.
~2.55!, and the distance between two branesL corresponds to
(epkrc2e2pkrc)/k.

We assume that a potential can arise classically from
presence of a bulk scalar with interaction terms that are
calized at the two three-branes. The action of the model w
scalar fieldF is given by

Sb5
1

2 E dx4E
2p

p

dfAG~GAB]AF]BF2m2F2!,

~2.56!

whereGAB with A, B5m, f as in Eq.~2.55!. The interaction
terms on the hidden and visible branes~at f50 and f
5p, respectively! are also given by

Sh52E d4xA2ghlh~F22yh
2!2, ~2.57!

Sv52E d4xA2gvlv~F22yv
2!2, ~2.58!

wheregh andgv are the determinants of the induced met
on the hidden and visible branes, respectively.

The general solution forF which only depends on the
coordinatef is taken from the equation of motion of th
action with respect toF to have the following form:

F~f!5e2s@Aens1Be2ns#, ~2.59!

wheres5krcufu andn5A41m2/k2. Substituting this solu-
tion ~2.59! into the action and integrating overf yields an
effective four-dimensional potential forr c which has the
form @2#

VF~r c!5k~n12!A2~e22nkrcp21!1k~n22!

3B2~12e22nkrcp!1lve24krcp@F~p!22yv
2#2

1lh@F~0!22yh
2#2. ~2.60!

The unknown coefficientsA andB are determined by impos
ing appropriate boundary conditions on the three-branes.
calling Ref.@2#, the coefficientsA andB are given by

A5yve2~21n!krcp2yhe22vkrcp, ~2.61!

B5yh~11e22nkrcp!2yve2~21n!krcp, ~2.62!

for a largekrc limit. Here we takeF(0)5yh and F(p)
5yv .

We now consider the case thatkrc is large andm/k!1
for simplicity as in Ref. @2#, so that n521e with e
;m2/4k2 being a small quantity. Smallm/k should generate
correct hierarchy@3#. We also assumeekrc is theO~1! quan-
tity. Then the potential~2.60! becomes
06351
e
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th

e-

VF~r c!5keyh
214ke24krcp~yv2yhe2ekrcp!2S 11

e

4D
2keyhe2~41e!krcp~2yv2yheekrcp!, ~2.63!

and its minimum is given by

r 05S 4

p D k

m2 lnFyh

yv
G . ~2.64!

When krc is large, L5(epkrc2e2pkrc)/k;epkrc/k is also
large. Then one may assume that the effective potentia
cludes the term induced by the Casimir effect asa/L dis-
cussed in Sec. II B, wherea is some constant.2 Thus we shall
add this term to the potential~2.63! and consider the first-
order correction tor c with respect toa. Then by assuming
r c5r 01dr c , we find the minimum of the potential is shifte
by

dr c52
ae~31e!pkr0

16kpyhyve
1

1

4kp
;2

ae3pkr0

16kpyhyve
, ~2.65!

where terms of ordere2 and the higher-order terms wit
respect toe2pkr0 are neglected. The role of Casimir effect
in only to shift slightly the minimum.

In the smallkrc limit, which corresponds to the smallL
limit as well, the coefficientsA andB in the radion potential
~2.60! are changed as follows:

A5
1

2krcpn
$yv@11krcp~n22!#2yh%, ~2.66!

B5
1

2krcpn
$2yv@11krcp~n22!#

1yh~112nkrcp!%. ~2.67!

In this limit, we suppose thatm/k@1, so thatn;m/k, which
makes the situation simple. The effective potential might
clude the term induced by the Casimir effect asb/L5 dis-
cussed in Sec. II C, whereb is some constant. Then, th
radion potential in the smallkrc limit is

VF~r c!52mrcpkS m

k
12DA212mrcpkS m

k
22DB21

b

L5

;
1

r cp
~yv2yh!21

b

~2pr c!
5 , ~2.68!

being hereL;2pr c . To obtain the minimum of the poten
tial, we differentiate Eq.~2.68! with respect tor c :

d

drc
VF~r c!52

1

r c
2p

~yv2yh!22
5b

~2p!5r c
6 . ~2.69!

Then, if b<0, the extremum of the potential is reached a

2Note that a Casimir term may be induced by other bulk fields
5-7
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r c56
1

2p~yv2yh!1/2 S 2
5b

2 D 1/4

. ~2.70!

The extremum is, however, maximum then the stabilizat
should be local. Let us give some numbers. Ifyv , yh
;(1019 GeV)3/2 and b;(1019 GeV)21, we have thatr c
;(1019 GeV)21 andkrc could be ofO~1!. Thus it is not so
unnatural for the hierarchy problem.

For the shortr c case, we may not include the scalar fie
F in Eq. ~2.56! but instead we may include the next-t
leading order of the effective potential~2.26!, induced by the
Casimir effect, although the next-to-leading term should
neglected for the flat brane corresponding toR→1`:

VC~r c!5
b1

~2pr c!
5

1
b2

~2pr c!
3

. ~2.71!

From Eq.~2.26!, we see thatb1.0 andb2,0. As a conse-
quence, in the above potential, there is a minimum at

r c5
1

2p
A2

5b1

3b2
.0.4675l . ~2.72!

The result in Eq.~2.26! is not for flat brane but for de Sitte
brane and only including the contribution from massless s
lar. We also put a length parameterl in Eq. ~2.72!. Then the
numerical value in Eq.~2.72! would be changed but hope
fully the main structure would not be changed. We conclu
therefore that with the only consideration of the Casimir
fect, the brane might get stabilized, which is a nice resul3

As we will see later in Eq.~4.10!, when one considers th
massive scalar with small mass, there appears the corre
to the effective potential. Motivated with such result, o
considers the following correction to the effective potenti
which corresponds to the leading term in Eq.~4.10! whenL
is small:

DVC~r c!5
b3m2

2pr c
. ~2.73!

Herem expresses the mass of the scalar field. The resu
Eq. ~4.10! suggests thatb3 is negative. By assuming that th
correction term~2.73! is dominant compared with the thir
~logarithmic! term in Eq.~2.26!, the minimum in Eq.~2.72!
is shifted as

r c5
1

2p
A2

5b1

3b2
S 11

5b1b3m2

18b2
2 1O~m4! D . ~2.74!

Then the contribution from small mass has a tendency
make the distance between the two branes smaller.

3Note, however, that thermal effects@6# may significantly change
the above discussion.
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III. CASIMIR EFFECT FOR THE DE SITTER BRANE
IN A FIVE-DIMENSIONAL DE SITTER BACKGROUND

A. Effective potential for the brane

Next, we use the Euclideanized form of the fiv
dimensional de Sitter~dS! metric for a four-dimensional dS
brane as follows:

ds25 l 2~du21sin2 udV4
2!5

l 2

cosh2 z
~dz21dV4

2!,

~3.1!

wherel is the dS radius, which is related to the cosmologi
constant of the dS bulk.

We place two dS branes—which are four-dimensio
spheres, as in the AdS bulk case—in a dS background as
one depicted in Fig. 1. Since the parameteru in Eq. ~3.1!
takes values between 0 andp, the parameterz takes values
between2` and `. As in the AdS bulk case, the distanc
between the branes can be defined asL5uz12z2u. Whenz2
is placed at̀ , namelyL5`, the two-brane configuration
becomes a one-brane configuration, as seen in Fig. 1.

The Casimir effect for the bulk scalar in dS backgrou
can be calculated by using the same method as in AdS b

Namely, the Lagrangian for a conformally invariant mas
less scalar with scalar-gravitational coupling is obtained
conformal transformation of the action Eq.~2.1! for the met-
ric and the scalar field given by

gmn5cosh22 zl2ĝmn , f5cosh3/2zl23/2f̂. ~3.2!

Then the Lagrangian is of the same form of Eq.~2.6!.
The one-loop effective potential is calculated by means

z-function regularization techniques. Then, the calculated
sult for the effective potential in the largeL limit is of the
same form of Eq.~2.16!. Since the effective potential in Eq
~2.16! becomes zero atL→`, the effective potential of the
one-brane configuration becomes zero. Note that this me
that the effective potential forB5 , which is the right part in
Fig. 1, is zero. Concerning the small distance expansion,
a potential corresponding to a conformally invariant sca
we have an expression as Eq.~2.26!. No essential difference
is encountered in this case.

FIG. 1. The two dS branes are placed in the dS5 background.
The two-brane configuration becomes a one-brane configuratio
L→`.
5-8
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B. Dynamics of the brane

The dynamics of dS brane in a five-dimensional Eucl
ean de Sitter bulk can be considered in a similar way as
the AdS bulk. The brane is de Sitter, and is taken to b
four-dimensional sphereS4 , as in the previous section. Th
five-dimensional Euclidean de Sitter space Eq.~3.1! can be
rewritten as

dsdS5

2 5dy21sin2
y

l
dV4

2. ~3.3!

Here, we adopt Eq.~2.33! for the metric ofS4 . We assume
that the brane lies aty5y0 and that the bulk is obtained b
gluing two regions given by 0<y,y0 .

The total actionS is the sum of the Einstein-Hilbert actio
SEH, the Gibbons-Hawking surface termSGH, and the sur-
face counter termS1 , like in the AdS bulk case:

S5SEH1SGH12S1 . ~3.4!

The Einstein-Hilbert actionSEH is

SEH 5
1

16pG E d5xAg~5!S R~5!2
12

l 2 D . ~3.5!

The Gibbons-Hawking surface termSGH and the surface
counter termS1 are of the same forms as in Eqs.~2.30! and
~2.31!.

For later convenience, we rewrite the metric of the fiv
dimensional dS space, Eqs.~3.3! and ~2.33!, as follows:

ds25dy21e2A~y,s!g̃mndxmdxn,

g̃mndxmdxn[ l 2~ds21dV3
2!. ~3.6!

By using Eq.~3.6!, the action Eq.~3.5! becomes

SEH5
l 4V3

16pG E dydsS @28]y
2A220~]yA!2#e4A

1@26]s
2A26~]sA!216#

e2A

l 2 2
12

l 2
e4AD , ~3.7!

which is similar to the AdS bulk case, Eq.~2.35!, except for
the last term, i.e., the cosmological constant. The Gibbo
Hawking surface termSGH and the surface counter termS1 ,
Eqs. ~2.30! and ~2.31!, have also the same form of Eq
~2.36! and~2.37!. We also consider the gravitational Casim
contribution due to bulk quantum fields. So we add the
tion of the Casimir effectSCsmr, Eq. ~2.38!, to the total ac-
tion S, Eq. ~3.4!.

In the bulk, we obtain the following equation of motio
from SEH1SCsmr by variation overA:
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05S 224]y
2A248~]yA!22

48

l 2 D e4A

1
1

l 2 @212]s
2A212~]sA!2112#e2A1

16pGc

R5l 4
e2A.

~3.8!

For the AdS bulk case, the solution of Eq.~3.8! can be
found as an expansion with respect toe2y/ l , assuming that
y/ l is large. But for the dS bulk case, we cannot adopt
same method, since the function siny/l cannot be regarded a
an expansion with respect toe2y/ l . Thus we assume the so
lution to have the following form:

eA5

sin
y

l

coshs
1dA. ~3.9!

Substituting Eq.~3.9! into Eq. ~3.8!, we obtain

05
1

l 2 S 2

6 sin
y

l

coshs
1

coshs

sin
y

l

2
2

coshs sin
y

l

D dA

2
4

l

cos
y

l

coshs
]y~dA!2

2 sin
y

l

coshs
]y

2~dA!

2
coshs

l 2 sin
y

l

]s
2~dA!2

4pGc

3R5l 4 S coshs

sin
y

l
D 3

. ~3.10!

We now investigate the behavior of Eq.~3.10! at the north
and south poles (j50, p!, that is, as coshs diverges. In this
case, Eq.~3.10! is approximated as

0;
es

2l 2 sin
y

l

dA2
es

2l 2 sin
y

l

]s
2~dA!2

4pGc

3R5l 4 S es

2 sin
y

l
D 3

,

~3.11!

and then

dA2]s
2~dA!}

pGc

3R5l 2

e2s

sin2
y

l

. ~3.12!

Here, we have used the approximation coshs;es/2. From
Eq. ~3.12!, we assume

dA5a
e2s

sin2
y

l

, ~3.13!
5-9
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wherea is the constant which is obtained by substituting E
~3.13! into Eq. ~3.12!, thus

a52
pGc

9R5l 2
. ~3.14!

The region of the equatorj5p/2, namely, coshs;1
11/2s2, Eq. ~3.10!, is approximated as

0;2F 1

l 2 S 6 sin
y

l
1

2

sin
y

l
D dA1

4

l
cos

y

l
]y~dA!

12 sin
y

l
]y

2~dA!G S 12
1

2
s2D . ~3.15!

On the brane at the boundary, we get the same Eq.~2.42!:

05S ]yA2
1

l De4A. ~3.16!

Finally, by substituting the solutions~3.9! into Eq.~3.16!, we
find

05
1

l coshs S cos
y

l
2sin

y

l D1]y~dA!. ~3.17!

In the region at the north and south poles, coshs;eusu/2, if
we assumey5(p/4)l 1dy, from Eq. ~3.17!, dy is obtained
by

dy5
&pGc

9R5l
e3usu. ~3.18!

Thus the deformation of the brane seems to become larg
the north and south pole.

We should note the expression in Eq.~3.18! diverges at
north and south poles wheres→6`. As in case of AdS
bulk in the previous section, this indicates that the pertur
tion with respect toc breaks down. The original Euclidea
5D dS space has a isometry of SO~6!, which is broken by the
existence of theS4 brane into SO~5!. Due to the Casimir
effect, the SO~5! symmetry seems to be broken to SO~4!,
again.

IV. EFFECTIVE POTENTIAL FOR A MASSIVE SCALAR
FIELD IN THE AdS AND dS BULKS

Until now we have dealt with a massless scalar. In t
section we will consider a massive scalar field in AdS and
backgrounds. Let us start with the action for a massive sc
with scalar-gravitational coupling,

S5
1

2 E d5xAg@2gmn]mf]nf2m2f21j5R~5!f2#.

~4.1!

For the AdS background with the metric Eq.~2.3!, under the
conformal transformations~2.5!, the action changes as
06351
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S5
1

2 E d5xAg@2gmn]mf]nf2m2l 2 sinh22 zf2

1j5R~5!f2#, ~4.2!

which yields the Lagrangian for the massive scalar field w
scalar-gravitational coupling in an AdS background as

L5f~]z
21D~4!2m2l 2 sinh22 z1j5R~4!!f. ~4.3!

In the above Lagrangian, there appears a singularity az
50. The pointz50 corresponds tò , where the warp factor
blows up to infinity. Then by putting a brane as the bound
of the bulk, say putting a brane atz5z0,0 ~or z0.0) and
considering the regionz,z0 ~or z.z0) as bulk space, the
singularity does not appear. And as we can see in the App
dix, if we include the singular pointz50, half of the solu-
tions are excluded but there remain the other half of
solutions. From this Lagrangian, we can calculate the o
loop effective potential like in the case of a massless sc
field. The form of the effective potential from the massi
scalar field is given by

V5
1

2LVol~M4!
ln det~L5 /m2!,

L5[2]z
21m2l 2 sinh22 z2D~4!2j5R~4!

5L11L4 , ~4.4!

where the mass term is included inL1 . The eigenvalue ofL1
is different from that in Eq.~2.12!, for finite L, sinceL1 in
Eq. ~4.4! is the one-dimensional Schro¨dinger operator with
the potential termm2l 2 sinh22 z. But this potential term,
which is positive valued and has no bound state, beco
zero in the limitz2→`, that is, when the distance betwee
branesL becomes̀ . In this case, the eigenvalue ofL1 re-
duces to the same form of Eq.~2.12! and thus the effective
potential becomes zero at the limit of a one-brane confi
ration.

For the case of a dS background, Eq.~3.1!, the conformal
transformations, Eqs.~3.2! change the action~4.1! as fol-
lows:

S5
1

2 E d5xAg@2gmn]mf]nf2m2 cosh22 zf2

1j5R~5!f2#. ~4.5!

Then, the Lagrangian for a massive scalar field in the
background is given by

L5f~]z
21D~4!2m2 cosh22 z1j5R~4!!f. ~4.6!

Similarly, the effective potential for the massive scalar fie
in the dS bulk can be calculated as in Eqs.~2.7! and~4.4!, by
using the operators:

L5[2]z
21m2 cosh22 z2D~4!2j5R~4!5L11L4 , ~4.7!
5-10
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where the mass term is included inL1 . The potential term of
L1 , m2 cosh22 z, has always a positive value and no bou
state like in the AdS case. It becomes zero in the limitz2
→` as well. Therefore the effective potential for the ma
sive scalar field in a dS background also becomes zero in
limit of a one-brane configuration.

A. Small mass limit „with L not large…

Continuing with the massive scalar field, and for a
Sitter brane in an AdS bulk, in the case of the two bra
configuration we just need to supplement the calculation
ried out in the Appendix, which can be done exactly, with t
boundary conditions imposed on the two branes. We t
obtain a modification of a perfectly solvable model whi
appears in several textbooks~namely, an hyperbolic varian
of the celebrated Po¨schl-Teller potential!, albeit with reverse
sign and supplemented with the infinite well created by
branes~as in the massless case!. Since we shall deal with the
low and high mass approximations, the WKB method tu
out to be well suited to carry out the analysis.

Setting the branes atz56L/2 ~for the sake of symmetry!
we get the following results. In the small mass limit, w
obtain a modification of the eigenvalues of theL1 Lagrang-
ian, in the form

ln
2.

p2n2

m2L2 1m2l 2
tanh~mL/2!

mL/2
. ~4.8!

Carrying this into the zeta function, after a further appro
mation one gets that the elementary zeta functions in
formulas are modified in the way, e.g.,

z~2s!→z~2s!2sz~2s12!r

1
s~11s!

2
z~2s14!r21O~m6!,

r[
m2l 2m2L2

p2

tanh~mL/2!

mL/2
. ~4.9!

Thus in the case here considered, whenm is small andL is
not very large, for the derivative of the zeta function atz
50 we obtain the following additional terms (l 2m251):

Dz8~0uL5!.
ar1a2r2

48
2

p2

144S ar2

2
1@2z8~24,3/2!

2z8~22,3/2!#r D2
p4

4370
@2z8~24,3/2!

2z8~22,3/2!#r21O~m6!,

a[
p2R2

L2 , r[
m2l 2

p2

tanh~L/2l !

L/2l
. ~4.10!

These terms have just to be added to the derivative of
zeta function atz50, Eq. ~2.26!, corresponding to the de
Sitter brane in AdS bulk, in order to obtain the correspond
effective potential. In a full-fledged analysis of the differe
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contributions to the effective potential, one has to take i
account the relative importance of the different dimensio
less ratios involved here. The working hypothesis has b
thatm2 was ‘‘small.’’ In fact, we see from the final result tha
m2 most naturally goes withl 2, which also serves as a un
for L and, indirectly, forR. The ordering in Eq.~4.10! as-
sumes thatar;1, r,1, but a lot more information can b
extracted from this small-mass expansion.

The calculation in the same case of a massive scalar
but for a de Sitter brane in a dS bulk~two- and one-brane
configurations! proceeds in a quite similar fashion. Only, a
additional coordinate change is required at the beginning
deal with the problem of the singularity of the potential
the Schro¨dinger equation atz50 in the initial coordinates, as
carefully explained in the Appendix.

B. Large mass limit „with L not small…

In this case the calculation turns out to be more involv
The eigenvalues get modified as follows:

ln
2.

p2n2l 2

L2 1
2 arctan~sinhL/2l !

sinh~L/2l !
m2l 21

pnml2

L sinh~L/2l !

1¯ . ~4.11!

However, we will be interested in the dominant contributi
only. Thus in the approximation which is opposite to t
previous one, namely whenm2 is large andL is not very
small, we get a simple modification of the relevant zeta fu
tion of the form

z~suL5!5
L

2lAp

G~s21/2!

G~s!

3zS s2
1

2UL412m2
arctan~sinh~L/2l !!

sinh~L/2l ! D1¯ .

~4.12!

And this leads to the following result, for the derivative
the zeta function atz50, which is valid for sufficiently large
scalar mass andL:

z8~0uL5!52
4m2l 3

3R
arctan~sinhL/2l !

sinh~L/2l !
1¯ . ~4.13!

Again, this is the additional contribution to the derivative
the full zeta function atz50, the same as Eq.~2.18! but
corresponding to the de Sitter case. However, as this der
tive was equal to zero in the massless case, the above ex
sion yields now thewhole value of the derivative and, cor
respondingly, of the effective potential. Note in fact that th
reduces to zero, exponentially fast, in the one-brane li
(L→`), in perfect accordance with Eq.~2.18!. Also in this
case we are allowed to play with the relative values of
different dimensionless fractions appearing in our expr
sion.
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C. Braneworld stabilization by the Casimir force

In Ref. @13#, the brane stabilization via study of radio
potential in the Lorentzian de Sitter bulk space was discus
in direct analogy with the AdS case. The branes are space
and the distance between two branes is timelike and we
note the distance byT. As in Eqs. ~2.71!–~2.74!, we now
consider the contribution from the Casimir effect to the s
bilization. For simplicity, we do not include the massive sc
lar field F as in Eq.~2.56! but we take the next-to-leadin
order of the effective potential~2.26!, induced by the Ca-
simir effect, and we assume

VC~T!5
b1

dS

T5
1

b2
dS

T3
. ~4.14!

If b1
dS.0 andb2

dS,0 as in Eq.~2.26!, there is a minimum at

T5A2
5b1

dS

3b2
dS. ~4.15!

Then even for the branes in the de Sitter bulk, only by
Casimir effect, the brane might get stabilized.

As in Eq. ~4.10!, when we consider the Casimir effe
from the massive scalar with small mass, we may cons
the following correction to the effective potential:

DVC~T!5
b3m2

T
. ~4.16!

Herem expresses the mass of the scalar field. Then the m
mum in Eq.~4.15! is shifted as

r c5A2
5b1

dS

3b2
dSS 11

5b1
dSb3

dSm2

18b2
dS2 1O~m4!D . ~4.17!

Then again the contribution from small mass has a tende
to make the distance between the two branes smaller. T
the possibility of dS braneworld stabilization occurs in t
same way as with AdS bulk.

V. EFFECTIVE POTENTIAL FOR A MASSIVE SCALAR
WITHOUT SCALAR-GRAVITATIONAL COUPLING

In this section we will consider a more simple case, wh
does not include a scalar-gravitational coupling ter
j5R(5)f2. The action is simply

S5
1

2 E d5xAg@2gmn]mf]nf2m2f2#. ~5.1!

This action is not conformally invariant under the conform
transformations~2.2!, which change it as
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S5
1

2 E d5xAĝ@2e3sĝmn]m~e2~3/2!sf̂ !]n~e2~3/2!sf̂ !

2m2e2sf̂2#

5
1

2 E d5xAĝ S 2ĝmn]mf̂]nf̂2
9

4
ĝmn]ms]nsf̂2

13f̂ĝmn]ms]nf̂2m2e2sf̂2D , ~5.2!

where we takea52 andb523/2 for simplicity. The third
term in Eq.~5.2! can be rewritten as

f̂ĝmn]ms]nf̂5
1

2
Dm~f̂2]ms!2

1

2
f̂2D~5!s ~5.3!

and using partial integration, we obtain

S5
1

2 E d5xAĝF2ĝmn]mf̂]nf̂

2S 9

4
ĝmn]ms]ns1

3

2
D~5!s D f̂22m2e2sf̂2G . ~5.4!

If we now introduce the AdS background, which has t
metric Eq.~2.3!, under the conformal transformations~2.5!,
namelye2s5 l 2 sinh22 z, the action changes as

S5
1

2 E d5xAgF2gmn]mf]nf2S 9

4
1

15

4
sinh22 zDf2

2m2l 2 sinh22 zf2G . ~5.5!

This action leads the Lagrangian for the massive scalar fi
without scalar-gravitational coupling in an AdS backgrou
as

L5fF]z
21D~4!2S 9

4
1

15

4
sinh22 zD2m2l 2 sinh22 zGf.

~5.6!

Note that the third term in Eq.~5.6!,

2S 9

4
1

15

4
sinh22 zD , ~5.7!

corresponds to

z5~R~4!2R~5!e2s!, ~5.8!

coming from Eqs.~2.1! and ~2.6!, where e2s5 l 2 sinh22 z,
because if we putj552 3

16 , R(4)512, R(5)5220/l 2, which
are the scalar curvatures ofS4 and AdS5, respectively, into
Eq. ~5.8!, then Eq.~5.8! coincides with Eq.~5.7! exactly.

The one-loop effective potential can be written as

V5
1

2LVol~M4!
ln det~L5 /m2!,
5-12



ni

f-
ar
er

ld
a

l

to
be

ca
ive

a
et
-
n

de

ic
u
c

av
e

m
tiv
m
fo
i
s
um
ne

re
ea

ial
ne

-
ve
ns.
os-

IT,
ry
at

O.
ns
as

up-

part
of
was
tion

n

d
ws

unc-
y-

CASIMIR EFFECT IN de SITTER AND ANTI–de . . . PHYSICAL REVIEW D 67, 063515 ~2003!
L552]z
22D~4!1S 9

4
1

15

4
sinh22 zD

1m2l 2 sinh22 z5L11L4 ,

L152]z
21

15

4
sinh22 z1m2l 2 sinh22 z,

L45
9

4
2D~4!. ~5.9!

Then, the eigenvalue ofL1 agrees with Eq.~2.12! in the limit
when the distance between the two-brane becomes infi
L→`, because the potential terms of Eq.~5.9!, 15

4 sinh22 z
1m2l2 sinh22 z, become zero in this limit. Therefore the e
fective potential for the massive scalar field without scal
gravitational coupling in an AdS background becomes z
in the limit of the one-brane configuration.

Similarly, the Lagrangian for the massive scalar fie
without scalar-gravitational coupling in a dS background c
be seen to be

L5fF]z
21D~4!2S 9

4
2

3

4
cosh22 zD2m2l 2 cosh22 zGf.

~5.10!

In the limit L→`, the eigenvalue ofL1 and the heat kerne
Kt(L1) have the same form of Eqs.~2.12! and ~2.13! as in
the AdS case. Thus the effective potential becomes zero
in the limit when the distance between the two branes
comes infinite.

VI. DISCUSSION AND CONCLUSIONS

To summarize, in this paper we have shown how one
bring the calculation of the effective potential for a mass
or conformal bulk scalar, in an AdS or dS braneworld with
dS brane, down to well-known cases corresponding to z
function expansions@21#. In this way, a complete and de
tailed analysis of the different situations can be given, a
corrections to the limiting cases are obtainable at any or
As our four-dimensional universe is~or will be! in a dS
phase, our results have, potentially, very interesting appl
tions to primordial cosmology. What is also important, o
method and results here open the door to corresponding
culations for other quantum fields as spinors, vectors, gr
ton, gravitino, etc. As we see it, this will only need som
more involved calculations, but no new conceptual proble
are expected, at least at the level of the one-loop efec
potential. In the case of several spin fields, the bulk Casi
effect may also be found in this way, at least in principle,
supersymmetric theories, including supergravity too. It
quite possible then that a five-dimensional AdS gauged
pergravity can be constructed, with AdS being the vacu
state but still having a dynamically realized de Sitter bra
which represents our observable universe.

Another issue where bulk quantum effects may play
dominant role involves moving, curved branes. The cor
sponding bulk effective potential might sometimes be a m
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sure of supersymmetry breaking, and thus be of primord
cosmological importance in the study of the very early bra
universe.

Finally, the bulk effective potential in realistic supersym
metric theories gives a nontrivial contribution to the effecti
cosmological constant, in five as well as in four dimensio
Hence it is conceivable to use it in a relaxation of the c
mological constant problem.
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APPENDIX

We consider the following Schro¨dinger equation:

S 2
d2

dz2
1

m2l 2

sinh2 z
D f5lf. ~A1!

This equation is thez-dependent part of the Klein-Gordo
equation in AdS5 and f̂5sinh23/2zf corresponds to the
original scalar field in the action. The limitz5` corresponds
to the infinity in AdS5 at which the warp factor vanishes, an
z50 corresponds to the infinity where the warp factor gro
up to infinity. In Eq. ~A1! there appears a singularity atz
50. At the pointz50 corresponding tò , by putting a brane
as the boundary of the bulk, say putting a brane atz5z0
,0 ~or z0.0), and considering the regionz,z0 ~or z
.z0) as bulk space, the singularity does not appear.

With the redefinitions

f5sinh1/2zc, x5coshz, ~A2!

Eq. ~A1! can be rewritten as

05~x221!
d2c

dx2
12x

dc

dx
2S 2l2

1

4
1

m2l 21
1

4

x221
D c,

~A3!

whose solutions are given by the associated Legendre f
tions Pn

6m(x), which are defined in terms of the Gauss h
pergeometric function:
5-13
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Pn
m~z!5

1

G~12m! S x11

x21D m/2

FS 2n,n11,12m;
12x

2 D .

~A4!

The parametersm andn are here given by

m25 l 2m21
1

4
, n~n11!52l2

1

4
or n5

216A24l

2
.

~A5!

Whenx is large,Pn
m(x) behaves as

Pn
m~x!;

1

Ap
F GS n1

1

2D ~2x!n

G~n2m11!
1

GS 2n1
1

2D
G~2n2m!~2x!n11

G .

~A6!

Since f;x1/2c, then in order thatf is regular there, we
have the constraint that

24l<0 or l>0, ~A7!

which is identical with what we have in the massless ca
When we include the pointz50, which corresponds tox
51, when Ax21;z→0, Eq. ~A4! becomes singular fo
positive m as (x21)2m/2;z2m. As f;z1/2c;z(1/2)2m

5z(1/2)(12A114l 2m2), the positive branch ofm should be ex-
cluded and we must havem52Al 2m211/4.

If we do not include the brane, the spectrum for the m
sive case is not changed. In order to investigate the effec
the mass, we put a brane atx5x0@1 ~or z5z0). On the
brane, we impose the Neumann boundary condition forf:

df

dz
50, S ⇔ df

dx
50D . ~A8!

For simplicity, we consider the model where the bulk spa
includes the pointx51 (z50); hencem52Al 2m211/4.
We write m andn in Eq. ~A5! as

m52v2
1

2
, n52

1

2
1 iv. ~A9!

Then we havel5v2. By using Eq.~A6!, we find, for large
x,

f~x!;
G~ iv!

G~ iv1k!
~2x! iv1

G~2 iv!

G~2 iv1k!
~2x!2 iv.

~A10!

Then the boundary condition~A8! yields

G~ iv!

G~ iv1k!
~2x0! iv2

G~2 iv!

G~2 iv1k!
~2x0!2 iv. ~A11!

If we assumev andk to be small, the gamma function can b
approximated byG(6 iv);61/iv and G(6 iv1k);1/
6 iv1k. Then, Eq.~A11! can be rewritten as
06351
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e

lnS 11 i
k

v

12 i
k

v

D 5 iv ln~2x0!12p in ~n50,61,62,...!.

~A12!

For largex0 , the solution forn50 is given by

v;
p

ln~2x0!
~A13!

for nonvanishingk (mÞ0), which gives the following lower
bound forl:

l5v2>S p

ln~2x0! D
2

;
p2

z0
2 . ~A14!

We now consider the equation for the dS case:

S 2
d2

dz2 1
m2l 2

cosh2 zDf5lf. ~A15!

This equation is thez-dependent part of the Klein-Gordo
equation in S5 or Euclidean de Sitter space, andf̂
5cosh23/2zf corresponds to the original scalar field in th
action. The limit of z56` corresponds to the south an
north poles inS5 . With the following redefinitions:

f5cosh1/2zc, x5coshz, ~A16!

Eq. ~A15! can be rewritten as

05~x211!
d2c

dx2 12x
dc

dx
2S 2l2

1

4
1

m2l 21
1

4

x211
D c.

~A17!

If we replacex by x5 iy , the above equation~A17! turns into

05~y221!
d2c

dy2 12x
dc

dx
2S 2l2

1

4
2

m2l 21
1

4

y221
D c.

~A18!

Finally, if we choose, as in Eq.~A5!,

m252S l 2m21
1

4D , n~n11!52l2
1

4
or

n5
216A24l

2
, ~A19!

the solution of Eq.~A18! or Eq. ~A17! is given by the asso-
ciated Legendre functionsPn

6m( ix), again. Note thatm in

Eq. ~A19! is imaginary, in general. Anyhow, in order thatf̂
be regular there, we must impose again the same const
~A17!.
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