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Casimir effect in de Sitter and anti—de Sitter braneworlds
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We discuss the bulk Casimir effe@ffective potentigl for a conformal or massive scalar when the bulk
represents five-dimensional anti—de Sitt&dS) or de Sitter(dS) space with one or two four-dimensional dS
branes, which may correspond to our Universe. Using zeta regularization, the interesting conclusion is reached
that for both bulks in the one-brane limit the effective potential corresponding to the massive or to the
conformal scalar is zero. The radion potential in the presence of quantum corrections is found. It is demon-
strated that both the dS and the AdS braneworlds may be stabilized by using the Casimir force only. A brief
study indicates that bulk quantum effects are relevant for brane cosmology, because they do deform the de
Sitter brane. They may also provide a natural mechanism yielding a decrease of the four-dimensional cosmo-
logical constant on the physical brane of the two-brane configuration.
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I. INTRODUCTION simir effect should conceivably play a quite remarkable role
in the construction of the consistent braneworlds. Indeed, it
If our world is really multidimensional, a1 (string gives a contribution to both the brane and the bulk cosmo-
theory predicts, then one of the most economical possibilitiesogical constants. Hence it is expected that it may help in the
for its realization is the braneworld paradigm. Indeed, in theresolution of the cosmological constant problem.
case when string theory is taken in its exact vacuum state, For consistency, the five-dimensional braneworld should
with the five-dimensional(asymptotically anti-de Sitter be stabilized(radion stabilization[2], and the challenging
(AdS) sector, in a full ten-dimensional space, the correspondidea is that a very fundamental quantity, the bulk vacuum
ing effective five-dimensional theory represents someenergy (Casimir contributiol, may be used explicitly for
(gauged supergravity. Adding the four-dimensional surface realizing the radion stabilization. This has been checked in a
terms predicted by the AdS conformal field thed@FT)  number of model$4—16], although mainly with flat branes
correspondence to such five-dimensional Ad$pejgravity,  only. An interesting connection between the bulk Casimir
one arrives at the dynamical four-dimensional boundaryeffect and supersymmetry breaking in branewddd] or
(brang of this five-dimensional manifold. Depending on the moving brane$18] also exists. On the other hand, the brane
structure of the surface terms, the choicdlmilk and brang  Casimir effect may be used for a braneworld realizafit®
matter, the assumptions about the general structure of thef the anomaly driven(also called Starobinskyinflation
brane and bulk manifold, fields content, etc., our four-[20].
dimensional universe can be realized in a particular way as The works mentioned above discuss mainly the Casimir
such a brane. The brane universe can be consistent with obffect in the situation when the brane is flat space. But also
servational data even when the radius of the extra dimensiothe situation in which the brane is more realistic, say a de
is quite significant. Moreover, the braneworld point of view Sitter (dS) universe, has been discussed in Rggs14]. It has
of our Universe may bring about a number of interestingbeen shown there that, in an AdS bulk, the Casimir energy
mechanisms to resolve such well-known problems as théor the bulk conformal scalar field in a one-brane configura-
cosmological constant and the hierarchy problems. tion is zero. However, in situations where the bulk is differ-
As the braneworld corresponds to a five-dimensionaknt, a nonzero contribution of the Casimir energy is not ex-
(usually Adg manifold with a four-dimensional dynamical cluded and even a possibility may exist of gravity trapping
boundary, it is clear that, when five-dimensional quantunon the brane itself.
field theory (QFT) is considered, the nontrivial vacuum en-  In the present work we study the bulk Casimir effect for a
ergy (Casimir effect, see, e.g., Rdfl] for a recent review  conformal or massive scalar when the bulk is a five-
should appear. Moreover, when brane QFT is considered, thdimensional AdS or a dS space and the brane is a four-
nontrivial brane vacuum energy also appears. The bulk Cadimensional dS space. We show that zeta-regularization tech-
niques at its full powef21] can be used in order to calculate
the bulk effective potential in such braneworlds, in a quite
*On leave from IEEC/CSIC, Edifici Nexus, Gran CapRa4, general setting. One interesting result we got is that, for both
08034 Barcelona, Spain. Email addresses: elizalde@math.mit.edbulks (AdS and d$ under discussion with one brane, the

elizalde@ieec.fcr.es bulk effective potential is zero for a conformal as well as for
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The paper is organized as follows. The next section is g,,=e* g p=eP g 2.2
devoted to the discussion of a general effective pote(iat mr mye ’
simir effec) for bulk conformal scalar on AdS when the 3
brane is a de Sitter space. The small distance behavior }gher _Za_'Bl'l h ion for th i ic of
investigated and the one-brane limit of the potential, WhiChtheLﬁ\t/eu-(sjirrT?ecr?si;ngl ii(dpsreSS:ckj'n or the Euclidean metric o
turns out to be zero, is worked out. As an application, we :
discuss the role of the leading term of the effective potential
to the brane dynamics. It is shown here that the Casimir
force only slightly deforms the shape of the four-dimensional
sphereS,. The radion potentialin two limits), with account
of the Casimir term, is found and the stabilization of the 2_ 420 o 2
braneworld is discussed. Using an explicit short distance ex- d0=dg*+sirf 0, 24

pansion for the effective potential, it is demonstrated that the

brane may indeed be stabilized using the Casimir force onlyVherel is the AdS radius which is related to the cosmologi-
In Sec. Il similar questions are investigated for a confor-cal constant of the AdS bulk, arf); is the metric on the

mal scalar when the brane &,, and the bulk is a five- three-sphere. Two dS branes, which are four-dimensional

dimensional dS space. It is interesting that the effective poSPheres, are placed in the AdS background. If we put one

tential turns out to be the same as in the case of the previodd@n€ atz, which is fixed, and the other brane zt, the

section(AdS). Also, the one-brane limit of the effective po- distance between the branes is givenlby|z,—2z,|. When

tential is again zero. From the study of brane dynamics iZz €nds to=, namelyL =, the two-brane configuration

turns out that the role of the Casimir force is again that of?®COMes a one-brane configuration. .

inducing some deformation of tt®, brane(especially close We can see that the action E@.1) is conformally invari-

to the poles ant under the confor_mal transformatlpns for the metric Eq.
In Sec. IV the effective potential for a massive scétgso  (2-3) and the scalar field, which are given by

with scalar-gravitational couplinds presented, for both a dS

and an AdS bulk, when the braneSs. The small and large 9,,=sinh 22124, ¢=sintP?zI"3%¢. (2.5

mass limits are found. The one-brane limit of the potential is

again zero, even in the massive case, but the main nonzefihe action(2.1) is not changed by the conformal transforma-

tion due to the Casimir force for a massive scalar is diSiggks like

cussed when the bulk is five-dimensional dS.

In Sec. V the potential for a massive scalar without a
scalar-gravitational coupling is briefly studied for dS and
AdS braneworlds. It is shown that it is again zero in the

one-brane limit. Finally, a short summary and an outlook arévhereR¥=12. Since we are interested in the Casimir effect
presented in Sec. VI. for the bulk scalar in the AdS background, we shall use this

Lagrangian hereatfter.
The one-loop effective potential can be written[&sl4]

|2
— MV — 2 2
ds’=g,,dx“dx Sinh2z(dz +dQy), 2.3

L=¢(2+ AP+ R g, (2.6)

II. CASIMIR EFFECT FOR A de SITTER BRANE

IN A FIVE-DIMENSIONAL ANTI -de SITTER 1
BACKGROUND V=——In de(LS/MZ), 2.7

. . 2LVol(M )

A. Effective potential for the brane

In this section, we review the calculation of the effective pere | = —R—AD—gR@=L,+L,. To calculate the

potential for a de Sitter brane in a five-dimensional anti—de,ftective potential in Eq(2.7), we use{ function regulariza-
Sitter backg_round, following Refs{A,S,lA]. First, we start [21,25, as was done in Reff4,5,14. Being precise, the
with the action for a conformally invariant massless scalaq ey first step in this procedure consists in the introduction of
with scalar-gravitational coupling, a mass parameter in order to work with dimensionless eigen-

1 values, thus we should write at every instamgg u?, etc.

S= —f d\o[ —g#*9, 49,6+ ERP@?],  (2.1)  However, as is often done for the sake of the simplicity of
2 the notation, we will just keep in mind the presence of fhis
3 o) ha _ _ _ factor, to recover it explicitly only in the final formulas.

whereés=— 15, R™ being the five-dimensional scalar cur-  jrst we assume that the eigenvalues pfandL, are of
vature. This action is conformally invariant under the confor-i o form)\ﬁ, )\5?0 (with n, @=1,2,...) respectively. In terms

mal transformations: of these eigenvalues, Indef can be rewritten as follows:

!Note that there is a relation betweem and B, namely IndetLs=TrIn L5=Trln(L1+L4)=2 IN(N2+\2).
—[(D—-2)/4a=pB, and &, depends on the dimensions as na nooe
—(D—-2)/4(D—1), for the generaD-dimensional bulk. (2.8
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Since theZ function for an arbitrary operataX is defined by

Ls|A)=D, (\2) 5=, e smn, (2.9
m m
it turns out that TrlrlL; can be rewritten as
TrinLs=—dsl(s|Ls)|s=0- (2.10

Furthermore, the function is related to thé' function and
heat kerneK(A):

S et

— 1 ” s—1 —
{(s|A) = NG fo dit ™ K(A), K(A)=2
(2.12)

L, is a one-dimensional Laplace operator, and the boundary

conditions result in that the brane separationan be taken
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1
V= Svoicnn g 14 OlLs/ )+ In w?2(0]Ls )}
,U~2
=

Note that theu? factor has to be taken into account for
obtaining the derivative and, as discussed before, it is in fact
everywhere present in each Lagrangian and its eigenvalues
(although it is usually not written down in order to simplify
the notation. For the spherical brang, whose radius iR,

the four-dimensional zeta functiaf(s|L,) is given by

2

1

1
- _ 2
20V0l(My) g( 5lLalu®|+0

(2.19

2s

3
§(3|L4):T

1 3
23_3,5) - ZgH(ZS_l’_)}

2
(2.17

as the width of a one-dimensional potential well. As a con-

sequence, the eigenvalueslof are given by

7Tn2

(2.12

for finite L.

B. One-brane limit (L— )

The above formula leads to the heat kerlg(L ;):

L

N
(2.13

where the largé- limit has been taken, namely, the continu-
ous limit of n. The heat kernel fok g is written in terms of
Ki(Ly) andK(L,) [25], as

Kt(l—l)'\'; e—t(wn/L)ZN fo dye—t(wy/L)zz

Ki(Ls) =Ki(L1)K(Ly). (2.14

By using Egs.(2.11), (2.13, and(2.14), we obtainZ(s|Ls):

1 ” s—1
((S|L5)=mfo dtt® K (L1)K(La),

L

ec 1
xfo dtts V27K (L) + 0O E)
( 1)
L Fis=3 ( 1 (1)

Combined with Eq(2.10, we obtain the effective potential
in the largeL limit:

Here we used a Hurwitz zeta function and a Bernoulli poly-
nomial as in Ref[5]. This equation leads to

)

As a result, the effective potential ER.16) becomes zero
(as first has been observed in RE§] and has been con-
firmed in Ref.[14]) asL—. This situation corresponds to
the case of a one-brane configuration.

1

3R

o3

4
(2.18

C. Small distance expansion

Using the power of the zeta regularization formulas
[21,22, a much more preciséalbeit involved calculation
can be carried out which respects at every step the complete
structure of the five-dimensional zeta function. That is, the
full zeta function is preserved until the end, and the final
expression is given in terms of an expansion on the brane
distanceL over the brane compactification radif valid
for L/R<1, which complements the one for large brane dis-
tance obtained above. A detailed calculation follows.

As to the specific zeta formulas employed, adhering to the
classification that has been given in RE22], the case at
hand is indeed to be found thefeven if at first sight it
would not seem g0 It corresponds to a two-dimensional
quadratic plus linear form with truncated spectrum. In fact,
this is clear from the structure of the spectrum yielding the
zeta function

o

z<s|L5>=M*25n§0 (NZ+ND) S, (2.19

wherep is a dimensional regularization scale that renders the
argument of the zeta function dimensionless. In the case of
the four-dimensional spherical brane of radfdsconsidered
above, this reduces to
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-2s =

>

{(slLg ="~ L(1+1)(1+2)(21+3)

n

—S

2
X +R? (2.20

9
2 —
|+3|+4

L

This zeta function looks awkward, at first sight. But after

some reshuffling it can be brought to exhibit the standard

structure mentioned. Specifically,

2s 3 2 ZHZRZ 1-s
g(S|L5) E 2 |+ |+§ +—Lr
m?n® 1 3\2 7%n?R?|s
‘(?W ('*5 +_Lz_} ]
2s
= —75[Z1(5) +Z5(9)], (2.2

where bothZ,(s) andZ,(s) are obtained by taking deriva-
tives (see Ref[23] for a discussion of this issue, nontrivial
when asymptotic expansions are involyedith respect to
atx=3, of a zeta function of the class just mentioned, e.g.,

m°n?R?
L2

2, [(+x)2+a]™® q= (222
In Refs.[22], explicit formulas for the analytical continua-
tion of this class of zeta functions are given. To be bfsfd
forgetting for the moment about thesum, for simplicity,
we just have to recall the useful asymptotic expansion

©

1 —S
> [(n+c)2+q]s~<§—0)qs+ Fq(s)
i 1)”F(n+s) -
= H
\/;F(s—1/2) P
><(—2n,c)+T(s)q1
27° S s—1/
+ﬁql4 ZZIn 1/2
x cog2mnc) Ke_1(27nq).
(2.23

After some calculations, we get, f@r(s) andZ,(s),

TR

2\ 2-s
?) {(2s—4)

1
-s

-1)"T(n+s-2)
n!

F(s 1) 3 2
TP R?
L2

2—-n—s
X ) {(2s+2n—4)¢,(—2n,3/2),

(2.24)
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1-s 71_27?/2
) ( 7 {(25-4)

2R2
LZ

1

Zy(s)= s

(77

{(2s—2) |+

1 -1 T'(n+s—-1)

n!

F(S) Z

1ns< 71_27?/2

B

P R?

X ? ?5(25+2n—4)

(=Y

5(23+2n—2))§,;(—2n,3/2). (2.25

+
N

Finally, for the derivative of the five-dimensional zeta
function ats=0, we obtain

RA

{'(—2) m*R?
12 L2

Z(— 4) 7R
L4

{'(0|Ls)=

2752

1
2 {n(—4,312)—- 55,;(—2,3/2)) In

g( )(§H( 43/2)——§H( 23/2))
1
zH( 4,3/2)+ e“H( 4,3/2)
L? L*
——gH( 6,3/2) 2+o 4R4)

4 2 2
=0.129 652L—4— 0.025 039L—2 —0.002 951 Inl?

2

L
—0.017956-0.000 3157?+~-- (2.2

D. Dynamics of the brane

We now consider the dynamics of the dS brane, which is
taken to be the four-dimensional sphe&g as in Ref.[5].
The bulk part is given by five-dimensional Euclidean
Anti—de Sitter space, Eq2.3), which can be rewritten as

dSigs =dy*+1? sinhzlzdﬂﬁ. (2.27)

One also assumes that the bound#@mane lies aty=y, and
the bulk space is obtained by gluing two regions, given by
0<y<y, (see Ref[19] for more details

We start with the actionS which is the sum of the
Einstein-Hilbert actionSg, the Gibbons-Hawking surface
term Sgy [24], and the surface counterter®, e.g.,

S= SEH+ SGH+ 281, (228)

12
f dSX\ 9(5)( R(5)+ |_2 f

(2.29

SEH= 167G

063515-4
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1 . Herec is some coefficient, whose value and sign depend on
SeH= %J d*XVg4)V.n*, (2.30  the type of bulk field(scalar, spinor, vector, graviton, etc.
and on parameters of the bulk theorynass, scalar-
3 gravitational coupling constant, ekcin a previous subsec-
=~ 8oG] d*x/g4).- (2.37  tion we have found this coefficient for a conformal scalar.
w For the following discussion it is more convenient to con-
o ] ) ] sider this coefficient to be some parameter of the theory.
Hereafter the quantities in the five-dimensional bulk spacenging so, the results are quite common and may be applied
time are specified by the subindices) and those in the {5 an arbitrary quantum bulk theory. We also assume that

boundary four-dimensional spacetime &g The factor 2in  there are no background bulk fields in the theeycept for
front of S, in Eq.(2.28 is coming from the fact that we have he pylk gravitational field

two bulk regions, which are connected with each other by the  Aqding the quantum bulk contribution to the acti6rin
brane. In Eq.(2.30, n* is the unit vector normal to the gq, (2.28, one can regard

boundary.

If we change the coordinaté in the metric ofS,, Eq. Siota= S+ Scemr (2.39
(2.4), to o by

as the total action. In Eq2.38, R is the radius ofS,.
L 1 23 In the bulk, one obtains the following equation of motion
SINE==% - oho” (232 from Sgy+ Seeny by variation overA:
. 48
we obtain 0= —24(9§A—48(z9yA)2+ o et
1
dQ2= (do?+dO32). (2.33 1 16wGce
4" cosf & 3 + l-z[—lzaiA— 12(9,A)2+ 12] A+ We“\.

For later convenience, one can rewrite the metric of the five- (2.40

dimensional space, EqR.27) and(2.33), as follows:
Let us discuss the solution in the situation when the scale

ds’=dy*+e*v7g,,, dx*dx", factor depends on both coordinatgsando. In Ref.[5], the
solution of EqQ.(2.40 given by an expansion with respect to
9,,0x*dx’=1%(do?+dQ3). (2.39 e " was found by assuming that! is large:
From Eq.(2.34), the actiong2.29—(2.31), have the follow- ] hy
ing forms: SN 35 Gel®
A_ _ —ayl —sy/l
. = e 1575 costf ce W'+ O(e
Sen= Vs fdyda [—8d2A—20(9,A)%]e*A (249
" 167G g Y

for the perturbation from the solution where the brang,is

5 ) e?r 12 On the brane at the boundary, one gets the following equa-
+[—BI,A—6(d,A)?+6] 7+ |—ze4A . (239 tion:

1
414V, 0= gy)A— —)e“A. (2.42

Sen= e J doe* 9 A, (2.39 |
313 Substituting the solutio2.41) into Eq. (2.42), we find that

V3f
S=— doe*A, 2.3
1= 8gaG ) 7 (2.39 o2 1+R2+27TG|20 5o L o4

R 2 3R10COSO'I.(.3)

Here V3= [dQ; is the volume(or area of the unit three-
dimensional sphere.

As it follows from the discussion in the previous subsec-
tions, there is a gravitational Casimir contribution coming
from bulk quantum fields. As one sees in the simple exampl
of a bulk scalarScqy, (leading term has typically the fol-
lowing form:

Equation(2.43 tells us that the Casimir force deforms the
shape ofS,, since’R depends oro. The effect becomes
darger for largeo. In the case of &, brane, the effect be-
comes large if the distance from the equator becomes large,
sinceo is related to the angle coordinagdy Eq.(2.32. In
particular, at the north and south poles=0,7), cosho di-

Ry verges and thef® should vanish. This is not coordinate sin-
SCSmr:_3f dydoe A, (2.3g  9ularity. In fact, wheno— * o, the 5D scalar curvature be-
R® haves as

063515-5
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20 127Gcl . 1
Ry~ 5 + e’llle™ 1 0(e= ). (2.44 SeH= i%j d*xVg () V,.n*, (248
This only tells, however, that the perturbation with respect to S, = T 8aGIE d*x\g(a).- (2.49
c or e Y breaks down. In fact, whea is large, the correc-
tions appear in the combination of the poweresfle Y. Here the indexa=+ distinguishes the two branes and we

Then the singularity at the poles is not a real one but if wegssume that the radidg™* (R™) corresponds to the larger
can sum up the correction terms in all orders with respect tgsmalley brane. The bulk space is AdS again and, on the
e‘y", the singularity would vanish. Then we have demon-pranes, we obtain the following equations:
strated that bulk quantum effects do have the tendency to
support the creation of a de Sitter braneworld Universe. 1 R* 1

The original Euclidean 5D AdS space has a isometry of RE 1- N (2.50
SQ(5, 1), which is identical with the Euclidean 4D conformal
symmetry. The existence of ti& brane breaks the isometry The left-hand side in Eq2.50 is a monotonically decreas-
into SQ5) rotational symmetry, which maké invariant. If  ing function with respect t&R. Since the left-hand side be-
there is no the Casimir effect, E.43 has the S(5) sym- comes+» whenR—0 and 1 when R— +», there is a
metry. The result in Eq(2.43 seems to indicate that the solution when
Casimir force breaks the $8) symmetry. We should note L
that the effective actiof2.38 does not seem to be invariant I>17>1". (2,51

under the rotational symmetry since the action seems to det; We now include the Casimir effect. First, we consider the

pend on the choice of the axis connecting the north and sou . ckreaction 1o the bulk geometry. As we assume the dis-
poles although the calculation of the Casimir effect should b ge Y. )
ance between the branes is small, the radius of the branes

invariant under the SG) symmetry. Since the Casimir effect . . o
is the nonlocal effect, the exact form of the effective actionare almost constant. The distaricén Eq. (2.2 is given by

y : -
should be nonlocal. Then a more exact form of the effective,lz —z .|’ the e”_i?y Sdensny by the Casimir e_ffect would be
action might be obtained, for example, by averaging the acproportlonal toe”>?/L>. Then the effective action would be
tion (2.38 with respect to the choice of the axis. Such a TV,

symmetry can be, in general, broken spontaneously as in Eq. SCSmF?J’ dydoe A, (2.52
(2.43. The breakdown would occur by choosing the time

direction to be parallel with the axis. Then the GDsym-
metry is broken to S@), which preserves the rotations mak-
ing the axis, that is, also north and south poles, invariant.

Therefore, as in the previous section, the bulk geometry
would be deformed as

We now consider the case when the bulk quantum effects oy

are the leading ones. From E@.43), one obtains sinh7- ~3
A | 327Gt K oo+ O(e-5) (2.5
€ = Cosho 155 cosht oe (e ). (2.53

8 47Glc B
R*~——3—cosito. (249 |5 this case, the equation of the brane corresponding to Eq.
(2.43, has the following form:
Here we only consider the leading term with respectto 1 R*2 24G1% 1
which corresponds to the large approximation. Thus we 0~ RE 1+ TiWCOSﬁU— = (2.59

have demonstrated that bulk quantum effects do not violate
(in some cases they even suppafie creation of a de Sitter £qyation(2.54) tells us that the Casimir force deforms the

brane living in a five-dimensional AdS background. shape ofS, and the effect becomes larger for largeagain,
as in the previous section. We should note, however, that the
E. Dynamics of two branes at small distance signs of the contribution from the Casimir effect are different
for the larger and smaller branes. Then if the radius of the

b h he di b h . I Bef ﬁarge brane becomes largsmal), that in the smaller one
ranes wnen L e .|stance etween t. em 1S small. BEIOre e comes smalllarge. It is interesting that if larger brane is
cluding the Casimir effect, we consider the following ac-

o the physical Universe, this may serve as a dynamical mecha-
tions: nism of decreasing the cosmological constant.

S=Sen+ > (Seut2Sy), (2.49 F. Stabilization of the radion potential
a==

In this subsection, we consider the stabilization of the
radion potential following Ref.2]. As first setup, we prepare
(2.47) t_he §uitab|e metrig and actiqn for the discussion of the stabi-
' lization of the radion potential,

1 12
S L T
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ds?=e 2Keldly  dxtdx’—r2d¢?. (2.55 1€

Va(ro) =kev+ake™ ¥y, —ype™ 40em)? 1+ 2

Here ¢ is the coordinate on five dimensiong; are the co-
ordinates on the four-dimensional surfaces of constaand —kevpe (4T OKCT(2y —v,eKTeT), (2.63
—a<¢=< with (X,¢) and ,— ¢) identified. The coordi-

nate z in the metric (2.3 corresponds teeX’<?/k in Eq.  and its minimum is given by

(2.55, and the distance between two brahesrresponds to

(eﬂrrkrc_efﬂ'krc)/k_ 4\ k | Uh 26
We assume that a potential can arise classically from the o=l 7 /m2 ", (2.69

presence of a bulk scalar with interaction terms that are lo-
calized at the two three-branes. The action of the model witWhen kr is large, L= (e™c—e~ "'c)/k~e™'¢/k is also
scalar field® is given by large. Then one may assume that the effective potential in-
cludes the term induced by the Casimirﬁ?ffectcﬁ(ﬂ;. dis-
1 ” cussed in Sec. I B, where is some constaritThus we shall
Sb:if dx“f_wd(p\/E(GABaAcban)—m2q>2), add this term to the potentid?.63 and consider the first-
(2.56  order correction ta; with respect toe. Then by assuming
r.=ro+ oér¢, we find the minimum of the potential is shifted
whereGg with A, B=u, ¢ as in Eq.(2.59. The interaction by
terms on the hidden and visible branés ¢=0 and ¢
=1, respectively are also given by S a3tk N 1 B a3k
fo= 16kmupv e 4k 16k o €’

(2.65
Si=— f A%V =gy @2- D)% (257

where terms of orde? and the higher-order terms with

respect tee” "€"o are neglected. The role of Casimir effect is
R BN 2 2.2 in only to shift slightly the minimum.

Sy f AV =GN (P 2)% (2.58 In the smallkr limit, which corresponds to the small

) ] _ limit as well, the coefficient®\ andB in the radion potential
wheregy, andg, are the determinants of the induced metric (2,60 are changed as follows:

on the hidden and visible branes, respectively.
The general solution fo® which only depends on the

coordinate¢ is taken from the equation of motion of the A=Sr m/{vv[l'i' krem(v—2)]—-wy},  (2.66
action with respect t@ to have the following form: ¢
d(p)=e?[Ae’"+Be "], (2.59 B= 2k;{_ v[1+krem(v—2)]
eV
whereo=kr andv=4+m?k?. Substituting this solu-
o =krc|¢| andy d (14 2kr )} (2.67

tion (2.59 into the action and integrating ovef yields an

effective four-dimensional potential far, which has the In this limit, we suppose that/ks 1, so that~m/k, which

form [2] makes the situation simple. The effective potential might in-
Vo(reo)=k(v+2)A%(e 27— 1)+ k(v—2) clude the term induced by the Casimir effect @4 ° dis-
cussed in Sec. IIC, wherg is some constant. Then, the
XB2(1—e 2KTe) + )\ o~ e[ P (77)2— 2] radion potential in the smakr, limit is
AP (0)2— 122 (2.60 m m B
N _ _ Vo(re)=2mremk F+2)A2+2mrcwk(?—2 B*+ 5
The unknown coefficientd andB are determined by impos-
ing appropriate boundary conditions on the three-branes. Re- 1
calling Ref.[2], the coefficientsA andB are given by ~ ﬂ(vv_ v 2+ (277—”5 (2.68
Cc C

A= vvef(ZJr v)Krem _ vh672vkrcﬂ', (26])
being hereL ~27r.. To obtain the minimum of the poten-

B=uy(1+e 27KIem) —yy @~ (@+0kiem (2 D) tial, we differentiate Eq(2.68 with respect ta.:

for a largekr. limit. Here we take®(0)=uv, and ® () i :_i ., 5B
=v,. ar, Vo('o) rﬁw(”‘f Un) e (2.69

We now consider the case thiat. is large andm/k<1
for simplicity as in Ref.[2], so that v=2+¢€ with €  Then, if 8<0, the extremum of the potential is reached at
~m?/4k? being a small quantity. Smat/k should generate
correct hierarchy3]. We also assumekr . is theO(1) quan-
tity. Then the potentia{2.60 becomes Note that a Casimir term may be induced by other bulk fields.
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1 SB 1/4 SS
=+ - —
The extremum is, however, maximum then the stabilization Ll’,o

should be local. Let us give some numbers.f, v,
~(10*° GeV)®? and B~ (10*° GeV) !, we have thatr,
~ (10" GeV) ! andkr, could be ofO(1). Thus it is not so L
unnatural for the hierarchy problem. 54 g4
For the short . case, we may not include the scalar field
® in Eq. (2.56 but instead we may include the next-to-  FIG. 1. The two dS branes are placed in the #i&ckground.
leading order of the effective potenti@.26), induced by the The two-brane configuration becomes a one-brane configuration as
Casimir effect, although the next-to-leading term should be.—o.
neglected for the flat brane correspondingie- + o«

IIl. CASIMIR EFFECT FOR THE DE SITTER BRANE
B B IN A FIVE-DIMENSIONAL DE SITTER BACKGROUND
(2.7

+ .
(27re)®  (2mr,)3 A. Effective potential for the brane

VC(rc) =

Next, we use the Euclideanized form of the five-
From Eq.(2.26, we see thap;>0 andB,<0. As a conse- dimensional de SittefdS) metric for a four-dimensional dS

guence, in the above potential, there is a minimum at brane as follows:
1 53 12
— 2P d?=1%(d6?+sir? 0dQ3) = ——— (dZ2+dQJ),
re=5_ 35, 04678, (2.72 ( )= 5 2)

(3.9

The result in Eq(2.26) is not for flat brane but for de Sitter

brane and only including the contribution from massless scawherel is the dS radius, which is related to the cosmological

lar. We also put a length parameten Eq. (2.72. Then the  constant of the dS bulk.

numerical value in Eq(2.72 would be changed but hope-  We place two dS branes—which are four-dimensional

fully the main structure would not be changed. We concludespheres, as in the AdS bulk case—in a dS background as the

therefore that with the only consideration of the Casimir ef-one depicted in Fig. 1. Since the paramefiein Eq. (3.1)

fect, the brane might get stabilized, which is a nice rebult. takes values between 0 anmd the parametez takes values
As we will see later in Eq(4.10, when one considers the petween— and . As in the AdS bulk case, the distance

massive scalar with small mass, there appears the correctigiztween the branes can be defined asz, —z,|. Whenz,

to the effective potential. Motivated with such result, onejs placed atw, namelyL =%, the two-brane configuration

considers the following correction to the effective potential,becomes a one-brane configuration, as seen in Fig. 1.

which corresponds to the leading term in £4.10 whenL The Casimir effect for the bulk scalar in dS background
is small: can be calculated by using the same method as in AdS bulk.
Namely, the Lagrangian for a conformally invariant mass-
Bam? less scalar with scalar-gravitational coupling is obtained by

AV¢(re)= (2.739  conformal transformation of the action E@.1) for the met-

2mre’
e ric and the scalar field given by

Here m expresses the mass of the scalar field. The result in

Eq. (4.10 suggests thgB; is negative. By assuming that the Opr= cosh 2 Z|2gw, p=cosi?zI=%2p. (3.2
correction term(2.73 is dominant compared with the third

(logarithmig term in Eq.(2.26), the minimum in Eq(2.72

is shifted as Then the Lagrangian is of the same form of E2.6).
The one-loop effective potential is calculated by means of
1 58, 58, B5m2 {-function regularization techniques. Then, the calculated re-
re==—1\/— _( ———+0( m*|. (2.74 sult for the effective potential in the larde limit is of the
2m 3B 1885 same form of Eq(2.16). Since the effective potential in Eq.

(2.16) becomes zero dt—«, the effective potential of the
Then the contribution from small mass has a tendency t@ne-brane configuration becomes zero. Note that this means
make the distance between the two branes smaller. that the effective potential foBg, which is the right part in
Fig. 1, is zero. Concerning the small distance expansion, for
a potential corresponding to a conformally invariant scalar
3Note, however, that thermal effeds] may significantly change We have an expression as Ef.26. No essential difference
the above discussion. is encountered in this case.
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B. Dynamics of the brane

The dynamics of dS brane in a five-dimensional Euclid- 0=| -

ean de Sitter bulk can be considered in a similar way as for
the AdS bulk. The brane is de Sitter, and is taken to be a
four-dimensional spherg,, as in the previous section. The
five-dimensional Euclidean de Sitter space Ej1) can be
rewritten as

e, = dy?+sirP 0} (3.3

found as

y/l is large. But for the dS bulk case, we cannot adopt the

1 167
+ 52l - 129°A—12(9,A)%+ 12]e* A+

PHYSICAL REVIEW D 67, 063515 (2003

4A

, , 48
2402A—48(a,A)2— — | e

12

Gc
R4

-A

e

(3.8

For the AdS bulk case, the solution of E®.8) can be

an expansion with respecteo”’', assuming that

Here, we adopt Eq2.33 for the metric ofS,. We assume Same method, since the function gihcannot be regarded as
| Lo ; - i ; syl
that the brane lies at=y, and that the bulk is obtained by an expansion with respect & YI. Thus we assume the so-

gluing two regions given by €y<y,.
The total actiorSis the sum of the Einstein-Hilbert action

lution to have the following form:

Segn, the Gibbons-Hawking surface ter8gy, and the sur- sinX
face counter terng,, like in the AdS bulk case: A I
et= + SA. (3.9
cosho
S: SEH+ SGH+ 281 (34)
Substituting Eq(3.9) into Eq. (3.8), we obtain
The Einstein-Hilbert actiorsgy is y
0 1 6 siny s cosho 2 A
1 12 =12l — -
- = 5. [0 _=c I cosho
SeH = 167G f d™V9(s)| Res) |2) ' S sinlX cosho sinlx
The Gibbons-Hawking surface teri®;y and the surface cosll—/ 23inz
counter termS, are of the same forms as in Eq2.30 and " _ 2
(2.30. | cosho 9y(oA) cosho y(oA)
For later convenience, we rewrite the metric of the five- 5
dimensional dS space, Eq8.3) and(2.33), as follows: _ cosho 2(5A) 47wGc [ cosho (3.10
, .y 7 3RMI4| Y '
[<sin™ sin~-

ds?=dy*+e®A 71y, dx“dx”,

_ 1242 ) We now investigate the behavior of E@.10 at the north
9, dxdX"=1%(do"+dQ3). (36 and south polesg=0, ), that is, as coshr diverges. In this
case, Eq(3.10 is approximated as
By using Eq.(3.6), the action Eq(3.5 becomes
e’ T, A7Ge [ e” \°3
0~ SA— 92(5A) — —
— 4V3 fd d -8 ZA_Z A 2714A ZIZSinX ZIZSinX 3R5|4 ZSinX
SEH_R ydo| [—8d; 0(ayA)“]e | | |
(3.11)
2A 2
+[—6&iA—6(a0A)2+6]|—2— 5 4al (3.7  andthen
5 7Gec %
which is similar to the AdS bulk case, E€.35, except for A= 06 (R)* e v 312
the last term, i.e., the cosmological constant. The Gibbons- sinzl—

Hawking surface ternsgy and the surface counter ter&,
Egs. (2.30 and (2.31), have also the same form of Egs.
(2.36 and(2.37. We also consider the gravitational Casimir
contribution due to bulk quantum fields. So we add the ac-
tion of the Casimir effecB¢qqm, EQ.(2.39, to the total ac-
tion S Eq. (3.4).

In the bulk, we obtain the following equation of motion
from Sgy+ Sceme DY Variation overA:

063515-9

Here, we have used the approximation caste’/2. From
Eqg. (3.12, we assume

e2(r
SA=« Y

(3.13
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wherea is the constant which is obtained by substituting Eq.

(3.13 into Eq.(3.12, thus

_ 7wGc
a——w. (314)

The region of the equato£= /2, namely, cosl—~1
+1/20%, Eq.(3.10, is approximated as

Y 2 4y
6 S|n|— + —y 6A+ l—COSI— &y( OA)
Sinl—

1
0~z

(3.195

Y 5 1,
+25|n|(9y(5A) (1 507

On the brane at the boundary, we get the samgZE42):

1
0= ( IyA— l—) e*A, (3.16
Finally, by substituting the solution(8.9) into Eq.(3.16), we

find

+a,(6A).  (3.17)

0= ! cosz— sinZ
" | coshe I [

In the region at the north and south poles, ceste’/2, if

we assumeg/ = (7/4)l + 8y, from Eq.(3.17), Sy is obtained
by

V27Gc
9IRS

e3lal,

(3.18

PHYSICAL REVIEW D 67, 063515 (2003

1
S=§f d°x\g[ — 9" 9,3, ¢p— m?I 2 sinh 2 zgp?

+&R® ¢, 4.2
which yields the Lagrangian for the massive scalar field with
scalar-gravitational coupling in an AdS background as
L=¢(2+ AP —m?%sinh 2 z+ £RP)p. (4.3
In the above Lagrangian, there appears a singularity at
=0. The pointz=0 corresponds te, where the warp factor
blows up to infinity. Then by putting a brane as the boundary
of the bulk, say putting a brane at=z,<0 (or z,>0) and
considering the regioz<z, (or z>z,) as bulk space, the
singularity does not appear. And as we can see in the Appen-
dix, if we include the singular point=0, half of the solu-
tions are excluded but there remain the other half of the
solutions. From this Lagrangian, we can calculate the one-
loop effective potential like in the case of a massless scalar
field. The form of the effective potential from the massive
scalar field is given by

V Inde(Ls/u?),

~ 2LVoI(My)

Ls=—a2+m?2sinh 22— AW — ¢gR@

=L;+L,, (4.9
where the mass term is includedlin. The eigenvalue of ;

is different from that in Eq(2.12), for finite L, sincel in

Eg. (4.4 is the one-dimensional Schtimger operator with

the potential termm?l2sinh 2z But this potential term,
which is positive valued and has no bound state, becomes

Thus the deformation of the brane seems to become large g in the limitz,—, that is, when the distance between

the north and south pole.

We should note the expression in E§.18 diverges at
north and south poles wheke— *+. As in case of AdS

branesL becomesx. In this case, the eigenvalue bf re-
duces to the same form of ER.12 and thus the effective
potential becomes zero at the limit of a one-brane configu-

bulk in the previous section, this indicates that the perturbagation.

tion with respect toc breaks down. The original Euclidean
5D dS space has a isometry of &D which is broken by the
existence of theS, brane into SCb). Due to the Casimir

effect, the S@) symmetry seems to be broken to @0
again.

IV. EFFECTIVE POTENTIAL FOR A MASSIVE SCALAR
FIELD IN THE AdS AND dS BULKS

Until now we have dealt with a massless scalar. In thisT
section we will consider a massive scalar field in AdS and dSD
backgrounds. Let us start with the action for a massive scalar

with scalar-gravitational coupling,

s=5 f AX\G[ g3, b, ¢~ m?¢? + £RO 7).
4.9

For the AdS background with the metric E§.3), under the
conformal transformation€.5), the action changes as

For the case of a dS background, E81), the conformal
transformations, Eq93.2) change the actiori4.1) as fol-
lows:

S= % J d°x\g[ — g** 9,3, —m? cosh 2 zg?
+ &R $%]. (4.5

hen, the Lagrangian for a massive scalar field in the dS

ackground is given by
L=¢(2+AYD—m?cosh ?2z+¢RY)p. (4.6

Similarly, the effective potential for the massive scalar field

in the dS bulk can be calculated as in E(s7) and(4.4), by

using the operators:

Ls=—d5+m2cosh 2z— AW —&RW=L,+L,,

(4.7)

063515-10
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where the mass term is includedlin. The potential term of contributions to the effective potential, one has to take into
L,, m?cosh?z has always a positive value and no boundaccount the relative importance of the different dimension-
state like in the AdS case. It becomes zero in the limit less ratios involved here. The working hypothesis has been
—oo as well. Therefore the effective potential for the mas-thatm? was “small.” In fact, we see from the final result that
sive scalar field in a dS background also becomes zero in the? most naturally goes with?, which also serves as a unit

limit of a one-brane configuration. for L and, indirectly, forR. The ordering in Eq(4.10 as-
sumes thatp~1, p<1, but a lot more information can be
A. Small mass limit (with L not large) extracted from this small-mass expansion.

N . . . The calculation in the same case of a massive scalar field
Continuing with the massive scalar field, and for a dey  t5r 4 de Sitter brane in a dS bullwo- and one-brane

S|tte_r brar_le in-an AdS bulk, in the case of the two braneconfiguration}; proceeds in a quite similar fashion. Only, an
configuration we just need to supplement the calculation caryyqiional coordinate change is required at the beginning, to

ried out in the Appendix, which can be done exactly, with theje,) yith the problem of the singularity of the potential of

boundary con_djtions imposed on the wo branes. We ,thu§ne Schrdinger equation at=0 in the initial coordinates, as
obtain a modification of a perfectly solvable model which carefully explained in the Appendix.

appears in several textbooksamely, an hyperbolic variant
of the celebrated Rechl-Teller potential albeit with reverse
sign and supplemented with the infinite well created by the B. Large mass limit (with L not small)
branes(as in the massless cas8ince we shall deal with the | this case the calculation turns out to be more involved.
low and high mass approximations, the WKB method turnsrhe eigenvalues get modified as follows:
out to be well suited to carry out the analysis.

Setting the branes at= + L/2 (for the sake of symmetjy , mni? 2arctaiisinhL/2l) anml?
we get the following results. In the small mass limit, we M=z~ " —gnprpn ™ Cainiran
obtain a modification of the eigenvalues of the Lagrang-
ian, in the form e (4.11

N 22 @NMLLI2) (4.9  However, we will be interested in the dominant contribution

\2= :
"oufL? uLi2 only. Thus in the approximation which is opposite to the
previous one, namely whem? is large andL is not very

Carrying this into the zeta function, after a further approxi-gmq)| e get a simple modification of the relevant zeta func-
mation one gets that the elementary zeta functions in thg,n of the form

formulas are modified in the way, e.g.,

{(28)— £(25)—sL(25+2)p L) L T(s—1/2)
s(1+s) ¥ oaym I(s)
{(2s+4)p*+O(mP), .
2 1 ,arctarisinh(L/21))
212,21 2 x< S_E Lat2m sinh(L/2l)
m-l“usL tanH ul/2)
p=—"b e 4.9 4.12

Thus in the case here considered, whers small andL is  And this leads to the following result, for the derivative of
not very large, for the derivative of the zeta functionzat the zeta function at=0, which is valid for sufficiently large

=0 we obtain the following additional term$?u?=1): scalar mass ant:
2 2 2 2
Ag”(O|L5):apZ#— %(a%ﬂzg’(—{g/z) oL ):_4m2|3 arctarisinhL/2l) 413
5 3R sinh(L/2l) :
77_4
N 5’(_2*3/2)]P) N 4370[2§'(_4’3/2) Again, this is the additional contribution to the derivative of
the full zeta function az=0, the same as Eq2.18 but
—={'(=2.312)]p*+O(m°), corresponding to the de Sitter case. However, as this deriva-
tive was equal to zero in the massless case, the above expres-
- mR? mAl? tank(L/2) sion yields now thewhole value of the derivative and, cor-
="z PET 2 T2 (4.10 respondingly, of the effective potential. Note in fact that this

reduces to zero, exponentially fast, in the one-brane limit
These terms have just to be added to the derivative of théL—<), in perfect accordance with ER.18). Also in this
zeta function az=0, Eq. (2.26), corresponding to the de case we are allowed to play with the relative values of the
Sitter brane in AdS bulk, in order to obtain the correspondingdifferent dimensionless fractions appearing in our expres-
effective potential. In a full-fledged analysis of the different sion.

063515-11



ELIZALDE et al. PHYSICAL REVIEW D 67, 063515 (2003

C. Braneworld stabilization by the Casimir force

1 N N
— 5 Al _ a30auv — (3120 — (320
In Ref.[13], the brane stabilization via study of radion S 2 f d x\/§[ erg™du(e $)du(e ¢)

potential in the Lorentzian de Sitter bulk space was discussed

in direct analogy with the AdS case. The branes are spacelike —m2e?7 $?]

and the distance between two branes is timelike and we de- 1 9

note the distance by. As in Egs.(2.71)—(2.74), we now :_J' d5x /8 ( —81Y9 DI d— -0V 0d.ob?
consider the contribution from the Casimir effect to the sta- 2 \/5 0", $9,¢ 4g w0

bilization. For simplicity, we do not include the massive sca-
lar field ® as in Eqg.(2.56 but we take the next-to-leading +3¢g+7d aavfﬁ—mzez”fﬁz), (5.2
order of the effective potentigl.26), induced by the Ca- .

simir effect, and we assume where we takex=2 and = — 3/2 for simplicity. The third

gs gs term in Eq.(5.2) can be rewritten as

. -1 1.
973 ,09,p= 5D’”(¢2r7#0')— > $*A%0 (5.3

d ds : i in
If BS5>0 andB3°<0 as in Eq/(2.26), there is a minimum at and using partial integration, we obtain

/ 585 :1 5. /A
T= —?73;'5. (4.15 S zfd x\g

9 3 . .
_(ngp,vé,luo.é)va._i_ zA(S)O—) ¢2—m2620¢2}- (54)

—§0, 03,4

Then even for the branes in the de Sitter bulk, only by the
Casimir effect, the brane might get stabilized.

As in Eq (410), when we consider the Casimir effect If we now introduce the AdS background, which has the
from the massive scalar with small mass, we may considemetric Eq.(2.3), under the conformal transformatiof.5),

the following correction to the effective potential: namelye®=1%sinh 2z, the action changes as
1 9 15
m? S=—f d°x/g| — 9*"d, b3, — —+—sinh‘22) ®?
AVc(T)= ﬁ?r . (4.16 2 g 4 4

—m?12 sinh 2 z¢?

. (5.9

Herem expresses the mass of the scalar field. Then the mini-

mum in Eq.(4.19 is shifted as This action leads the Lagrangian for the massive scalar field

without scalar-gravitational coupling in an AdS background

5 gds 5395395m2 as
SV (P Law e
3B; 18B; L= 9+15sinh22) mzlzsinhZZ}tﬁ

= it7 - '

Then again the contribution from small mass has a tendency (5.9
to make the distance between the two branes smaller. Th . .
the possibility of dS braneworld stabilization occurs in the'ﬁOte that the third term in E(5.6),

G2+ AW —

same way as with AdS bulk. 9 15
—| =+ —sinh"?z .
2t7s ) : (5.7
V. EFFECTIVE POTENTIAL FOR A MASSIVE SCALAR

WITHOUT SCALAR-GRAVITATIONAL COUPLING corresponds to

In this section we will consider a more simple case, which Ls(RP—RO®e27), (5.9
does not include a scalar-gravitational coupling term,
£sR®) $2. The action is simply coming from Egs.(2.1) and (2.6), where e?“=12sinh 2z

because if we pufs=— 2, R¥=12 R®)=—2012, which
1 are the scalar curvatures 8f and AdS, respectively, into
S= _J d®x\/g[ — g#*d,d,d— m2?]. (5.1 EQq.(5.8), then Eq.(5.8) coincides with Eq(5.7) exactly.
2 a The one-loop effective potential can be written as

This action is not conformally invariant under the conformal Vi

= IndetLs/u?),
transformationg2.2), which change it as 2LVol(My) (Ls/n®)
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5 s (9 15 sure of supersymmetry breaking, and thus be of primordial
Ls=—d;— AW+ 2T g sinh“z cosmological importance in the study of the very early brane
universe.
+m22sinh 2z=L,+L,, Finally, the bulk effective potential in realistic supersym-

metric theories gives a nontrivial contribution to the effective

5 I T, cosmological constant, in five as well as in four dimensions.

Ly=—dz+ 7 sinh = z+m%sinh™“ 2, Hence it is conceivable to use it in a relaxation of the cos-
mological constant problem.

9
_ 4
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In the limit L—<, the eigenvalue of ; and the heat kernel APPENDIX

Ki(L;) have the same form of Eq§2.12) and(2.13 as in

the AdS case. Thus the effective potential becomes zero too,

in the limit when the distance between the two branes be- ) -

comes infinite. L mi
dZ sintfz

We consider the following Schdinger equation:

b=\¢. (A1)

VI. DISCUSSION AND CONCLUSIONS

To summarize, in this paper we have shown how one carThis gqugtion s the—dAepen.dent part of the Klein-Gordon
bring the calculation of the effective potential for a massive€duation in Adg and ¢=sinh¥?z¢ corresponds to the
or conformal bulk scalar, in an AdS or dS braneworld with a0riginal scalar field in the action. The limit= corresponds
dS brane, down to well-known cases corresponding to zetd0 the infinity in AdS at which the warp factor vanishes, and
function expansion§21]. In this way, a complete and de- Z=0 corresponds to the infinity where the warp factor grows
tailed analysis of the different situations can be given, and!P to infinity. In Eq. (A1) there appears a singularity at
corrections to the limiting cases are obtainable at any ordef= 0. At the pointz=0 corresponding te>, by putting a brane
As our four-dimensional universe i®r will be) in a dS  as the boundary of the bulk, say putting a braneat,
phase, our results have, potentially, very interesting applica<<O (or z,>0), and considering the region<z, (or z
tions to primordial cosmology. What is also important, our>2p) as bulk space, the singularity does not appear.
method and results here open the door to corresponding cal- With the redefinitions
culations for other quantum fields as spinors, vectors, gravi-
ton, gravitino, etc. As we see it, this will only need some ¢=sinh"?zy, x=coshz, (A2)
more involved calculations, but no new conceptual problems
are expected, at least at the level of the one-loop efectivEq. (A1) can be rewritten as
potential. In the case of several spin fields, the bulk Casimir
effect may also be found in this way, at least in principle, for

supersymmetric theories, including supergravity too. It is a2y dy 1 m2I2+Z

quite possible then that a five-dimensional AdS gauged su- 0=(x?-1) — +2x——| —A— =+ ———— | 4,
pergravity can be constructed, with AdS being the vacuum X dx 4 x2-1

state but still having a dynamically realized de Sitter brane, (A3)

which represents our observable universe.

Another issue where bulk quantum effects may play awvhose solutions are given by the associated Legendre func-
dominant role involves moving, curved branes. The corretions P, #(x), which are defined in terms of the Gauss hy-
sponding bulk effective potential might sometimes be a meapergeometric function:

063515-13
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N S L ﬂ’ZF PP
" D= Ty x=1) Rl
(A4)
The parameterg and v are here given by
1 1 —1*xy—4\
2_12m24 = _\—— =
pmo=1m +4, v(v+1) N 4Or v 5 .
(A5)
Whenx is large,P%/(x) behaves as
r\iv+ ! 2x)” r + !
PM( : 14 E ( X) 14 E
X)~ —= .
v Jal T(v—p+1) I'(—v—w)(2x)"*?
(A6)
Since ¢~x*2y, then in order thatp is regular there, we

have the constraint that

—4rx<0 or A=0, (A7)

which is identical with what we have in the massless cas

When we include the poinz=0, which corresponds ta
=1, when {x—1~z—0, Eq. (A4) becomes singular for
positive u as k—1) 2~z * As ¢~zV2y~712Dr
=7(12(A=V1+4"m9) " the positive branch of. should be ex-
cluded and we must have= — \1°m?+ 1/4.

If we do not include the brane, the spectrum for the mas-

PHYSICAL REVIEW D 67, 063515 (2003

1+i ”
In K =iwIn(2%Xg) +2min (n=0,£1,=2,..).

1-i—
w

(A12)

For largexg, the solution fom=20 is given by
T A13
@~ In(2xg) (AL3)

for nonvanishind (m#0), which gives the following lower
bound for\:

2 T 2 772

We now consider the equation for the dS case:

m?l2

d2
(—d—22+—cosﬁ Z)qﬁ:)\qb. (A15)

rhis equation is the-dependent part of the Klein-Gordon

equation in S; or Euclidean de Sitter space, ang
=cosh ®?z¢ corresponds to the original scalar field in the
action. The limit ofz= = corresponds to the south and
north poles inS;. With the following redefinitions:

sive case is not changed. In order to investigate the effect of

the mass, we put a brane m&xy>1 (or z=2zp). On the
brane, we impose the Neumann boundary conditiongfor

dé ( do

E— ) C>—=0).

ax (A8)

For simplicity, we consider the model where the bulk space

includes the poinx=1 (z=0); henceu=— JI?’m°+1/4.
We write u and v in Eq. (A5) as

1 1

p=-0= 3, v=—§+iw. (A9)

Then we haven = w?. By using Eq.(A6), we find, for large
X1

I'liw) . IN'—iw) e
¢(X)~m(zx) + m(ZX) :
(A10)
Then the boundary conditiofA8) yields
IN'liw) - IN—-iw) i
m(zxo) - m(zxo) . (A11)

¢=cosi’?zy, x=coshz, (A16)
Eqg. (A15) can be rewritten as
1
PPN S L/ g Mg
S et g\ ANt e )
(A17)

If we replacex by x=iy, the above equatiofA17) turns into

212, —
ooy U du )\1m|+4
— DGyt 22Xy iy )

(A18)
Finally, if we choose, as in EA5),
1 1
2_ _|12m2. = - \—_
o (Im+4, v(v+1) N 4OI’
—1*=\—4\
v=—— (A19)

the solution of Eq(A18) or Eq.(A17) is given by the asso-

ciated Legendre function@f"(ix), again. Note thaju in

If we assumen andk to be small, the gamma function can be Eq. (A19) is imaginary, in general. Anyhow, in order that

approximated byl'(fiw)~*1lfiw and I'(xiw+k)~1/
+iw+k. Then, Eq.(A1l) can be rewritten as

be regular there, we must impose again the same constraint

(A17).
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