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Imprints of short distance physics on inflationary cosmology
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We analyze the impact of certain modifications to short distance physics on the inflationary perturbation
spectrum. For the specific case of power-law inflation, we find distinctive—and possibly observable—effects
on the spectrum of density perturbations.
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Inflation stretches quantum fluctuations to astrophysicathan at short wavelengthfargerk), since the impact of the
scales, providing a microscopic mechanism for the formatiorfundamental length increases with its ratio to the physical
of galaxies[1]. Most models of inflation yield far more horizon size[9]. Since the resulting change to the spectrum
quasi-exponential expansion than theesfldings required is more complicated than a simple rescaling, it is — in
to solve the difficulties faced by the standard model of thePrinciple—observable.
hot big bang. Consequently, astrophysical scales in the This article discusses the perturbation spectrum generated
present universe map to physical distances in the primordidly power law inflation when a fundamental length is inserted
universe that are exponentially smaller than any conceivablito the uncertainty relations. The shape of the spectrum does
fundamental |ength As exp|ained [ﬁ_4Z|, this introduces Change, in line with our initial expectation. To this extent, we
an implicit assumption into the perturbation spectrum calcu@dree with[8] which presents a qualitative analysis of the
lation: that spacetime physics and quantum mechanics can §@me problem. However, the magnitude of the effect drops
extrapolated to arbitrarily small physical lengths, indepenimnore slowly as the fundamental length decreases than the
dently of any fundamental length scale. A fundamenta@@nalysis of8] suggests, with important consequences for the
length is predicted by almost all attempted unifications ofPossibility of observing this signal.
general relativity with the other fundamental forces of na- In broad outline, the procedure for determining the spec-
ture, and also by quantum theories of gravity. Naive dimenirum is not changed by the introduction of a fundamental
sional arguments identify this scale with the Planck lengthe€ngth. We begin with appropriately normalized field oscilla-
but, for example, the additional scale introduced by stringions, which are quantum in origin but obey the classical
theory, the string length, can easily be one or two orders ofquations of motion, and extract the spectrum from their
magnitude |arger than the Planck |en@ﬂl if not more[6]_ asymptotic amplitudes. However, the fundamental Iength
Thus we ask two important questions: can a fundamentdedifieS both the evolution equation and the eXpIiCit form of
length change the predicted perturbation spectrum and, if sée normalization condition.
are these differences detectable observationally? If these For wavelengths much greater than the fundamental
questions are answered in the affirmative, they may providéength, tensor modes, obey
astrophysical tests for theories of nature containing a funda-
mental length scale, including string theory. i+

Initial investigationd3,4] relied on assessing the robust-
ness of the usual inflationary spectra to changes in the per-, 12 o )
turbations’ dispersion relations. A different approach was ini-\With Pg“[vic/a|. Scalar modesi obey a similar equation,
tiated in [7-9] where a nominally string inspired Wwith areplaced byy=a¢/H. Here¢ is the field responsible
fundamental length appears in the uncertainty relations anftbr inflation, andPi’zoc|uk/z|. For the special case of power-
provides a short distance cutoff. We showed that the de Sittdaw inflation,zxa, so scalar and tensor modes obey identical
space power spectrum predicted for this model is rescaled bgquations, although their power spectra differ in their nor-
a multiplicative constant, observable only if one has indepenmalizations. Since the two types of modes have the same
dent knowledge of the Hubble constant during inflatiéh equations of motion at long wavelength, we assume that they
We emphasize that the calculations [6f] and those pre- also obey the same equations of motiorsladrt wavelength,
sented here are not performed within string theory, but inwhere the influence of short-distance physics is important,
stead make use of a standard field theory modified on shoeind that any modulations of the power spectrum due to
scales in a manner inspired by string theory. Our aim is teshort-distance physics apply identically to tensor and scalar
determine if such short distance scale modifications can yielthodes. With this assumption, modifications to short distance
astrophysically observable signatures. physics can result in violations of the so-called “consistency

In almost all non de Sitter inflationary backgrounds thecondition” for inflation[10,11. While this is reasonable, it is
expansion rate is slower than exponential, and the physicdly no means guaranteed: scalar modes are a mix of field and
horizon size increases with time. We predicted that the speanetric fluctuations in an arbitrary gau¢&2], where as the
trum will be changed more dramatically at long wavelengthsensor modes are purely metric. It is not clear that a short-
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distance cutoff will affect fluctuations of the metric in the W
: . . . . q (5+3W).
same way as fluctuations in an arbitrary scalar field. How- y3— UK
ever, general coordinate invariance implies that we can trans- 1=y (1+w
form (for example to a gauge in which even the scalar fluc- 5
tuations are purely “metric,” and if this property is preserved q W(5+3W) o
. . vk—O. (7)
at short distances then the effect of new physics on the sca- (1-y)2 (1+W)2
lars and tensors should be identical. Even in the existing
literature, metric(gravitational wave fluctuations can be In the de Sitter casé can be eliminated from the equation of
treated as a generic scalar field at short distances. This is alsgotion, but this cannot be done here. During power-law in-
reasonable, but not inevitable. flation, different modes sample a different value of the
Following [7], tensor fluctuationsy obey Hubble constant as they cross the horizon, and this will be
reflected in the scale-dependent modifications to the spec-

(1—y)2q77ﬁ‘”2WJr q(g—1)
Bra(1+W)2  (1-y)?

' P, trum we will observe. Despite this, our analysis of the de
v£+ Tu{(Jr ( T A vi=0 (2)  Sitter casd9] can easily be adapted to the power-law prob-
lem.

When {=—1/e, W({) has a branch poinfl4]. Physi-
wherea is the scale factor, the prime denotes differentiationcally, this is the moment whep=0 (7= 7,) and the fluc-
with respect to conformal time, while~ki=afaie*ﬁf’2’2 with  tuation with wavelengtlk is “created.” As in [9], we solve
p' being the Fourier transform of the physical coordinates for the leading behavior afy by extracting the most singular

and terms of the equation of motion,
. 1. A
(m) a2p? (7.0} 360712 - vk~ 2—va+ Vkv’k:O, 8
w(np)=—"-70=, vinp)=—7,.
(1-Bp?)? (1-Bp?)

where overdots denote derivatives with respect,tand

When evaluating the derivatives of with respect tonp, we
are holdingk (and not the usual comoving momentud A=—————= (9)
fixed with time. It is therefore convenient to expresand v q48m,
in terms ofk by introducing the LambertV function [14],

which is defined so thatv(xe’) = x: The solution to Eq(8) is

00(y) = yPUCHB 2 Ay) + DHY (2 VAY)).
W(O)[5+3W(2)] (10

[1+W(0)]?

a? W) v

al
B nwor va

Here, H®),, is the second Hankel functiorC and D are

“) constants. The first Hankel function is its complex conjugate
1 2
~ 5 5 H((qlz)—l: g/%_tr. . . -
where{= — gk “/a“. The solution is normalized by the Wronskian condition
For power law inflation
’ ’ . _ 2
. vi(n)vi () —vi (pvp(n)=i(1—Bp?e k72
7 p (12)
a(t)=tP, a(ﬂ)=(—> , qlep' 6)
70 Using Hankel function identitiegl6] we deduce
For inflation to occur, we neeg>1. |C|?—|D|?=— e —qe 32 (12)

The cutoff is introduced by requiring that<1/8, moti-
vated by the notions of a minimum distance in string theoryThis, together with Eqs(10) and (13), gives the general
and the so-called “stringy uncertainty principl€15]. Fluc-  result for all possible boundary conditions. More specifically,
tuations with comoving wave numbérreach the cutofp?  though, we must fixC andD, i.e. we must specify boundary
=1/B at 5, where conditions for Eq.(8) or, equivalently, the form of the
vacuum state. Ultimately, a more complete understanding of
1 short scale physics would allow a first principles selection of
M= no(eBr?) Y= ——(eBKk?)YA (6)  boundary conditions. Here we simply note thabit 0, the
1=p spectrum never approaches the exact power-law form, even
when the Hubble parameter is arbitrarily small. Conse-
where the implicit definition ofyy comes from setting(t) quently, D=0 is the only vacuum choiceith constant co-

=1 whent=1, andt is the usual physical time. efficientsthat reduces to the Bunch-Davies vacuum at low
Writing »= 7 (1—Y) in order to extract th& dependence energies. We thus focus our analysis on the “minimal”
and abbreviatingV({) asW, we have choice thatD=0 for all k, but we stress that this choice is
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FIG. 1. The scalar spectrur®¥%(k) is plotted againsk, with ~ °°**

JB=100 andp=100, wherek=1 corresponds tl.. The stan- 0.01}
dard power law spectrum is plotted for comparigemooth line. It

should be noted that for any reasonable parameter values, the:
large modulations correspond to physical scales far bigger than th ; .1
present horizon volume, and will have no observable impact or
present-day cosmology. 0.004}

0.008F

not unique:C andD could depend o8, k or H in a such a 0.002y

way that the constraint of Eq12) was always satisfied, and of
that D was non-zero at high energies, and vanishing suffi-
ciently rapidly as—0 to avoid any experimental con- ~
straints on non-zer®. Our results obviously depend on this
choice and this issue certainly deserves further investigation. FIG. 2. The top plot plot¥4k) againstk for 8=100 and
Finally, we point out that setting=—1 in Eq.(12) repro- p=500, and with the straight line showing the standard power-law
duces the de Sitter result, after reconciling the normalizatiomesult. The modulation of the spectrum has an amplitude of 0.4% of
factors. the overall signal. The bottom plot shows the percentage change in

We solve the mode equations numerical§,13] and the C, values(plotted against) computed from this spectrum, rela-
match the numerical solution to the approximate analyticaIiVe to the spectrum calculated in the absence of a fundamental
form, including sub-leading corrections, near0. We ob-  length.

tain the scalar spectrum by solving the mode equations fO(CMB) power spectrum and structure formation. Figure 2
multiple values ofk, and then extracting the necessary late

time limit to compute displays the spectrum witp=500 and a “window” of k
P values with amplitudes of the same order as the modes which
3 are the precursors to structure formation. We have not care-
12_ [ Yk 12— [Ao—mpll2 fully normalized this spectrunfwhich requires assumptions
Py 2 72 » Ps 32mpPg~, (13 about the dark matter compositiof},, , etc), since any sig-
nal of trans-Planckian physics is much smaller than the un-

where we have obtained the scalar spectrum from the tens@grtainty in currently available data. Instead we assume that

002
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one, as outlined above. 10 ®*<AT/T=<10°, which—given that AT/T)?=P./180
The spectrum is only well defined if the minimum length [17}—corresponds to 1810 °<P?<1.4x 10" “,
(\/B) is less than the horizon size HY, or /BH is less than The standard power-law spectrum is modulated by an
unity. The critical modek;;, that crosses the horizon at the “oscillation” whose amplitude and wavelength depend on
moment when/BH=1 is both the fundamental lengtli3 and the power-law param-
eter,p. The oscillations are attributable to successive modes
K= p(eBp?) (P~ 172, (14)  undergoing increasing numbers of periods between the initial

time and horizon exit, with a full extra period corresponding

For large values of, ki is enormous. This reflects the to a single oscillation in the spectrum.
massive amount of inflation that takes place between the The amplitude and perio@n logk) of the oscillations are
Planck time {=1 in natural unitsand the moment at which roughly proportional to/3. In principle 3 is predicted by
JBH=1; the numerical value df can always be rescaled by fundamental theory, but from our perspective here it is a free
redefininga,, the value ofa whent=1. parameter. Ify3 is identified with the string scale, it could

Figure 1 shows the spectrum for the longest modes, witltonceivably be two orders of magnitude longer than the
p=100. There is a large modulation in the spectrum, correPlanck length, and we use this value in the numerical plots.
sponding to the slow decreasehhas the universe evolves. Observationally, the key parameter is the ratio of the funda-
However, these modes have a much larger amplitude thamental length to the Hubble radiu§sH. In power-law in-
those contributing to the cosmic microwave backgroundfation (and any other non de Sitter mogléll is a slowly
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changing parameter. The observationally relevant rang¢ of where the coefficient on the +” solution scales like

is fixed by the amplitude of the power spectrum, which is(8H?)" with n<0.5. It is this mode mixing of the standard

deduced from observations of the CMB and large scale strud/KB solutions, with a mixing coefficient of ordey/sH,

ture. that accounts for the magnitude of our results. Thus the pure
The rate of change off is determined byp, and asp  “ —” WKB approximation is not consistent with these initial

increases the wavelength of the fluctuations in the spectruronditions, perhaps explaining why the estimatef&jf for

increases while their amplitude goes down. This accord&e impact of the fundamental length on the spectrum is sig-

with our physical understanding of the oscillations: for ahificantly less than we find here.

fixed value ofH (and thusPé’Z), H decreases with increasing beWe have assumed that the minimum length lies somewhat

p. Thus the wavelength of the oscillatiofis logk) increases low the Planck scale. While this is justifiable from a
i . > . i ive, if he f [ h I
with p, sinceH at horizon exit changes more slowly witrat stringy perspective, if we put the fundamental length equal to

the Planck length(8=1) the effect we see decreases sig-
ﬁificantly. Moreover, as mentioned, the equations we solve
L ) fare not derived from string theory and hence there is no
Cre‘;‘ses apls increased. Consequentl)_/, the effective va!ue Oguarantee that they are the ones that quantum gravity will
BH* for a given mode decreases pss mpreased, Wh'Ch. give us.Nevertheless, we find it encouraging that whereas
accounts for thep dependence of the amplitude of the 0scil- hare are 16 orders of magnitude separating the Planck scale

lations. The oscillations do not vanish psbecomes arbi- o conventional accelerator experiments, the string scale
trarily large, although their wavelength becomes arb'trar'lymodifications we study here yield cosmological effects that

long, and we approach the de Sitter limit where the spectru%{le be only one or two orders of magnitude below the
is shifted by a constant multiplicative factor. threshold of observability.
In Fig. 2, p=>500 the spectrum is almost flat, and @¢ In principle existing CMB measurements put experimen-

values that would be measured by CMB experiments are astrictions on a portion of theB(p) plane. Given the

modifieq by between 0‘5% and 1%. A signal of this ;ize Iiesaccuracy of current data, the constraints@mvould be ex-
at the limits of detectability, even with ideal experiments,

. . tremely weak, and we have not performed this calculation.
and would be S""a”.‘p‘?d by cosmic variance at all t,)m th%s CMB data and surveys of large scale structiaed our
largest values of. Existing constraints on the spectral index

K bound ¢ d 20. With thi | ability to work backward from the observed to the primordial
put a weak lower bound op of around 20. With this value,  ¢o 15 improve, it may become possible to place mean-

the oscillations’ wavelength is so short that the resultingin r,| restrictions on short scale physics using astrophysical
spectrum appears to include a random noise term when plo‘t:l

. aind cosmological data.
ted over the range df values relevant to structure formation. It is natural to ask whether we can do a full string theo-
Despite the extreme challenge and perhaps near impos%t

. . o~ ic version of this calculation. One approach would be to
bility of detecting an effect of this size for reasonable valuesstudy the full two-point functions of graviton and inflation

of B, .theh conclu3|pnhs ﬁf this a;]mclg are still mléCh more C(’jp_'string excitations, either from string field theory or along the
timistic than we might have otherwise expected. First, and I, of Ref [18]. These quantities are sensitive to the large

accord with our previous de Sitter calculation, we find thatnumber of high energy degrees of freedom found in string
the magnitude of the modification to the spectrum is a func’theory another inherently stringy feature.

tion of (BH?)", wheren appears to be slightly smaller than
1/2. This disagrees with8], in which it is argued thanh is We thank Robert Brandenberger and Jens Niemeyer for
roughly unity. However[8] relies on a WKB approximation discussions. The work of B.G. is supported in part by DOE
to the mode equation and chooses the vacuum to be thgrant DE-FG02-92ER40699B and the work of G.S. was sup-
purely “—" WKB solution. We have decomposed our nu- ported in part by the DOE grants DE-FG02-95ER40893 and
merical solutions into the two WKB solutions at a time whenDE-EY-76-02-3071 and the University of Pennsylvania
the WKB approximation holds well, and the actual solutionSchool of Arts and Sciences Dean'’s funds. ISCAP gratefully
(using the initial conditions described above and also advoacknowledges the generous support of the Ohrstrom Founda-
cated by[8]) contains a mixture of both WKB solutions, tion.

effectively holdingH fixed at horizon exit, buH(7,) de-
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