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Imprints of short distance physics on inflationary cosmology
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We analyze the impact of certain modifications to short distance physics on the inflationary perturbation
spectrum. For the specific case of power-law inflation, we find distinctive—and possibly observable—effects
on the spectrum of density perturbations.
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Inflation stretches quantum fluctuations to astrophys
scales, providing a microscopic mechanism for the format
of galaxies @1#. Most models of inflation yield far more
quasi-exponential expansion than the 60e-foldings required
to solve the difficulties faced by the standard model of
hot big bang. Consequently, astrophysical scales in
present universe map to physical distances in the primor
universe that are exponentially smaller than any conceiva
fundamental length. As explained in@2–4#, this introduces
an implicit assumption into the perturbation spectrum cal
lation: that spacetime physics and quantum mechanics ca
extrapolated to arbitrarily small physical lengths, indepe
dently of any fundamental length scale. A fundamen
length is predicted by almost all attempted unifications
general relativity with the other fundamental forces of n
ture, and also by quantum theories of gravity. Naive dim
sional arguments identify this scale with the Planck len
but, for example, the additional scale introduced by str
theory, the string length, can easily be one or two orders
magnitude larger than the Planck length@5#, if not more@6#.
Thus we ask two important questions: can a fundame
length change the predicted perturbation spectrum and, i
are these differences detectable observationally? If th
questions are answered in the affirmative, they may prov
astrophysical tests for theories of nature containing a fun
mental length scale, including string theory.

Initial investigations@3,4# relied on assessing the robus
ness of the usual inflationary spectra to changes in the
turbations’ dispersion relations. A different approach was
tiated in @7–9# where a nominally string inspired
fundamental length appears in the uncertainty relations
provides a short distance cutoff. We showed that the de S
space power spectrum predicted for this model is rescale
a multiplicative constant, observable only if one has indep
dent knowledge of the Hubble constant during inflation@9#.
We emphasize that the calculations of@9# and those pre-
sented here are not performed within string theory, but
stead make use of a standard field theory modified on s
scales in a manner inspired by string theory. Our aim is
determine if such short distance scale modifications can y
astrophysically observable signatures.

In almost all non de Sitter inflationary backgrounds t
expansion rate is slower than exponential, and the phys
horizon size increases with time. We predicted that the sp
trum will be changed more dramatically at long waveleng
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than at short wavelengths~largerk), since the impact of the
fundamental length increases with its ratio to the physi
horizon size@9#. Since the resulting change to the spectru
is more complicated than a simple rescaling, it is —
principle—observable.

This article discusses the perturbation spectrum gener
by power law inflation when a fundamental length is inser
into the uncertainty relations. The shape of the spectrum d
change, in line with our initial expectation. To this extent, w
agree with@8# which presents a qualitative analysis of th
same problem. However, the magnitude of the effect dr
more slowly as the fundamental length decreases than
analysis of@8# suggests, with important consequences for
possibility of observing this signal.

In broad outline, the procedure for determining the sp
trum is not changed by the introduction of a fundamen
length. We begin with appropriately normalized field oscill
tions, which are quantum in origin but obey the classi
equations of motion, and extract the spectrum from th
asymptotic amplitudes. However, the fundamental len
modifies both the evolution equation and the explicit form
the normalization condition.

For wavelengths much greater than the fundame
length, tensor modesvk obey

vk91S k22
a9

a D vk50, ~1!

with Pg
1/2}uvk /au. Scalar modesuk obey a similar equation

with a replaced byz[aḟ/H. Heref is the field responsible
for inflation, andPs

1/2}uuk /zu. For the special case of powe
law inflation,z}a, so scalar and tensor modes obey identi
equations, although their power spectra differ in their n
malizations. Since the two types of modes have the sa
equations of motion at long wavelength, we assume that t
also obey the same equations of motion atshortwavelength,
where the influence of short-distance physics is importa
and that any modulations of the power spectrum due
short-distance physics apply identically to tensor and sc
modes. With this assumption, modifications to short dista
physics can result in violations of the so-called ‘‘consisten
condition’’ for inflation @10,11#. While this is reasonable, it is
by no means guaranteed: scalar modes are a mix of field
metric fluctuations in an arbitrary gauge@12#, where as the
tensor modes are purely metric. It is not clear that a sh
©2003 The American Physical Society08-1



e
w
n

c-
d

sc
tin

a

io

or

f
in-
he
be
ec-

de
b-

r

ate

l
lly,
y

of
of

ven
e-

ow
l’’

is

EASTHERet al. PHYSICAL REVIEW D 67, 063508 ~2003!
distance cutoff will affect fluctuations of the metric in th
same way as fluctuations in an arbitrary scalar field. Ho
ever, general coordinate invariance implies that we can tra
form ~for example! to a gauge in which even the scalar flu
tuations are purely ‘‘metric,’’ and if this property is preserve
at short distances then the effect of new physics on the
lars and tensors should be identical. Even in the exis
literature, metric~gravitational wave! fluctuations can be
treated as a generic scalar field at short distances. This is
reasonable, but not inevitable.

Following @7#, tensor fluctuationsv k̃ obey

v k̃
91

n8

n
v k̃
81S m2

a9

a
2

a8

a

n8

n D v k̃50 ~2!

wherea is the scale factor, the prime denotes differentiat
with respect to conformal timeh, while k̃i5ar ie2br2/2 with
r i being the Fourier transform of the physical coordinatesxi ,
and

m~h,r![
a2r2

~12br2!2
, n~h,r![

e3br2/2

~12br2!
. ~3!

When evaluating the derivatives ofv k̃ with respect toh, we
are holdingk̃ ~and not the usual comoving momentumk)
fixed with time. It is therefore convenient to expressm andn

in terms of k̃ by introducing the LambertW function @14#,
which is defined so thatW(xex)5x:

m52
a2

b

W~z!

@11W~z!#2
,

n8

n
5

a8

a

W~z!@513W~z!#

@11W~z!#2
,

~4!

wherez52b k̃ 2/a2.
For power law inflation

a~ t !5tp, a~h!5S h

h0
D q

, q5
p

12p
. ~5!

For inflation to occur, we needp.1.
The cutoff is introduced by requiring thatr2<1/b, moti-

vated by the notions of a minimum distance in string the
and the so-called ‘‘stringy uncertainty principle’’@15#. Fluc-
tuations with comoving wave numberk reach the cutoffr2

51/b at hk , where

hk5h0~ebk̃2!1/2q5
1

12p
~ebk̃2!1/2q ~6!

where the implicit definition ofh0 comes from settinga(t)
51 whent51, andt is the usual physical time.

Writing h5hk(12y) in order to extract thek dependence
and abbreviatingW(z) asW, we have
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v̈ k̃2
q

12y

W~513W!

~11W!2
v̇ k̃2S ~12y!2qhk

2q12W

bh0
2q~11W!2

1
q~q21!

~12y!2

1
q2

~12y!2

W~513W!

~11W!2 D v k̃50. ~7!

In the de Sitter case,k can be eliminated from the equation o
motion, but this cannot be done here. During power-law
flation, different modes sample a different value of t
Hubble constant as they cross the horizon, and this will
reflected in the scale-dependent modifications to the sp
trum we will observe. Despite this, our analysis of the
Sitter case@9# can easily be adapted to the power-law pro
lem.

When z521/e, W(z) has a branch point@14#. Physi-
cally, this is the moment wheny50 (h5hk) and the fluc-
tuation with wavelengthk is ‘‘created.’’ As in @9#, we solve
for the leading behavior ofv k̃ by extracting the most singula
terms of the equation of motion,

v̈ k̃2
1

2y
v̇ k̃1

Ak

y
v k̃50, ~8!

where overdots denote derivatives with respect toy, and

Ak52
1

q

hk
2q12

4bh0
2q

2
q

2
. ~9!

The solution to Eq.~8! is

v k̃
(0)

~y!5y3/4
„CH23/2

(2) ~2AAky!1DH23/2
(1) ~2AAky!….

~10!

Here, H23/2
(2) is the second Hankel function;C and D are

constants. The first Hankel function is its complex conjug
Hq/221

(1) 5Hq/221
(2)* .

The solution is normalized by the Wronskian condition

v k̃~h!v k̃
* 8~h!2v k̃

* ~h!v k̃
8~h!5 i ~12br2!e23br2/2.

~11!

Using Hankel function identities@16# we deduce

uCu22uDu252hkpA2qe23/2. ~12!

This, together with Eqs.~10! and ~13!, gives the genera
result for all possible boundary conditions. More specifica
though, we must fixC andD, i.e. we must specify boundar
conditions for Eq. ~8! or, equivalently, the form of the
vacuum state. Ultimately, a more complete understanding
short scale physics would allow a first principles selection
boundary conditions. Here we simply note that ifDÞ0, the
spectrum never approaches the exact power-law form, e
when the Hubble parameter is arbitrarily small. Cons
quently,D50 is the only vacuum choicewith constant co-
efficientsthat reduces to the Bunch-Davies vacuum at l
energies. We thus focus our analysis on the ‘‘minima
choice thatD50 for all k, but we stress that this choice
8-2
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not unique:C andD could depend onb, k or H in a such a
way that the constraint of Eq.~12! was always satisfied, an
that D was non-zero at high energies, and vanishing su
ciently rapidly asb→0 to avoid any experimental con
straints on non-zeroD. Our results obviously depend on th
choice and this issue certainly deserves further investigat
Finally, we point out that settingq521 in Eq. ~12! repro-
duces the de Sitter result, after reconciling the normaliza
factors.

We solve the mode equations numerically@9,13# and
match the numerical solution to the approximate analyt
form, including sub-leading corrections, neary50. We ob-
tain the scalar spectrum by solving the mode equations
multiple values ofk, and then extracting the necessary la
time limit to compute

Pg
1/25A k3

2p2Uvk

a U
k5aH

, Ps
1/25A32ppPg

1/2, ~13!

where we have obtained the scalar spectrum from the te
one, as outlined above.

The spectrum is only well defined if the minimum leng
(Ab) is less than the horizon size (1/H), or AbH is less than
unity. The critical mode,kcrit , that crosses the horizon at th
moment whenAbH51 is

kcrit5p~ebp2!(p21)/2. ~14!

For large values ofp, kcrit is enormous. This reflects th
massive amount of inflation that takes place between
Planck time (t51 in natural units! and the moment at which
AbH51; the numerical value ofk can always be rescaled b
redefininga0, the value ofa when t51.

Figure 1 shows the spectrum for the longest modes, w
p5100. There is a large modulation in the spectrum, co
sponding to the slow decrease inH as the universe evolves
However, these modes have a much larger amplitude
those contributing to the cosmic microwave backgrou

FIG. 1. The scalar spectrum,Ps
1/2(k) is plotted againstk, with

Ab5100 andp5100, wherek51 corresponds tokcrit . The stan-
dard power law spectrum is plotted for comparison~smooth line!. It
should be noted that for any reasonable parameter values,
large modulations correspond to physical scales far bigger than
present horizon volume, and will have no observable impact
present-day cosmology.
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~CMB! power spectrum and structure formation. Figure
displays the spectrum withp5500 and a ‘‘window’’ of k
values with amplitudes of the same order as the modes w
are the precursors to structure formation. We have not c
fully normalized this spectrum~which requires assumption
about the dark matter composition,VL , etc.!, since any sig-
nal of trans-Planckian physics is much smaller than the
certainty in currently available data. Instead we assume
1026&DT/T&1025, which—given that (DT/T)2.Ps/180
@17#—corresponds to 1.531025&Ps

1/2&1.431024.
The standard power-law spectrum is modulated by

‘‘oscillation’’ whose amplitude and wavelength depend
both the fundamental lengthAb and the power-law param
eter,p. The oscillations are attributable to successive mo
undergoing increasing numbers of periods between the in
time and horizon exit, with a full extra period correspondi
to a single oscillation in the spectrum.

The amplitude and period~in logk) of the oscillations are
roughly proportional toAb. In principleAb is predicted by
fundamental theory, but from our perspective here it is a f
parameter. IfAb is identified with the string scale, it could
conceivably be two orders of magnitude longer than
Planck length, and we use this value in the numerical pl
Observationally, the key parameter is the ratio of the fun
mental length to the Hubble radiusAbH. In power-law in-
flation ~and any other non de Sitter model! H is a slowly

se
he
n

FIG. 2. The top plot plotsPs
1/2(k) againstk for Ab5100 and

p5500, and with the straight line showing the standard power-
result. The modulation of the spectrum has an amplitude of 0.4%
the overall signal. The bottom plot shows the percentage chang
theCl values~plotted againstl ) computed from this spectrum, rela
tive to the spectrum calculated in the absence of a fundame
length.
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changing parameter. The observationally relevant range oH
is fixed by the amplitude of the power spectrum, which
deduced from observations of the CMB and large scale st
ture.

The rate of change ofH is determined byp, and asp
increases the wavelength of the fluctuations in the spect
increases while their amplitude goes down. This acco
with our physical understanding of the oscillations: for
fixed value ofH ~and thusPs

1/2), Ḣ decreases with increasin
p. Thus the wavelength of the oscillations~in logk) increases
with p, sinceH at horizon exit changes more slowly withk at
largerp. The variation in the amplitude arises because we
effectively holdingH fixed at horizon exit, butH(tk) de-
creases asp is increased. Consequently, the effective value
bH2 for a given mode decreases asp is increased, which
accounts for thep dependence of the amplitude of the osc
lations. The oscillations do not vanish asp becomes arbi-
trarily large, although their wavelength becomes arbitra
long, and we approach the de Sitter limit where the spect
is shifted by a constant multiplicative factor.

In Fig. 2, p5500 the spectrum is almost flat, and theCl
values that would be measured by CMB experiments
modified by between 0.5% and 1%. A signal of this size l
at the limits of detectability, even with ideal experimen
and would be swamped by cosmic variance at all but
largest values ofl. Existing constraints on the spectral inde
put a weak lower bound onp of around 20. With this value
the oscillations’ wavelength is so short that the result
spectrum appears to include a random noise term when
ted over the range ofk values relevant to structure formatio

Despite the extreme challenge and perhaps near imp
bility of detecting an effect of this size for reasonable valu
of b, the conclusions of this article are still much more o
timistic than we might have otherwise expected. First, and
accord with our previous de Sitter calculation, we find th
the magnitude of the modification to the spectrum is a fu
tion of (bH2)n, wheren appears to be slightly smaller tha
1/2. This disagrees with@8#, in which it is argued thatn is
roughly unity. However,@8# relies on a WKB approximation
to the mode equation and chooses the vacuum to be
purely ‘‘2 ’’ WKB solution. We have decomposed our nu
merical solutions into the two WKB solutions at a time wh
the WKB approximation holds well, and the actual soluti
~using the initial conditions described above and also ad
cated by@8#! contains a mixture of both WKB solutions
. A
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where the coefficient on the ‘‘1 ’’ solution scales like
(bH2)n with n&0.5. It is this mode mixing of the standar
WKB solutions, with a mixing coefficient of orderAbH,
that accounts for the magnitude of our results. Thus the p
‘‘ 2 ’’ WKB approximation is not consistent with these initia
conditions, perhaps explaining why the estimate of@8# for
the impact of the fundamental length on the spectrum is
nificantly less than we find here.

We have assumed that the minimum length lies somew
below the Planck scale. While this is justifiable from
stringy perspective, if we put the fundamental length equa
the Planck length (Ab51) the effect we see decreases s
nificantly. Moreover, as mentioned, the equations we so
are not derived from string theory and hence there is
guarantee that they are the ones that quantum gravity
give us.Nevertheless, we find it encouraging that where
there are 16 orders of magnitude separating the Planck sc
from conventional accelerator experiments, the string sc
modifications we study here yield cosmological effects t
may be only one or two orders of magnitude below
threshold of observability.

In principle existing CMB measurements put experime
tal restrictions on a portion of the (b,p) plane. Given the
accuracy of current data, the constraints onb would be ex-
tremely weak, and we have not performed this calculati
As CMB data and surveys of large scale structure~and our
ability to work backward from the observed to the primord
spectrum! improve, it may become possible to place mea
ingful restrictions on short scale physics using astrophys
and cosmological data.

It is natural to ask whether we can do a full string the
retic version of this calculation. One approach would be
study the full two-point functions of graviton and inflatio
string excitations, either from string field theory or along t
lines of Ref.@18#. These quantities are sensitive to the lar
number of high energy degrees of freedom found in str
theory, another inherently stringy feature.
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