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Extended open inflationary universes
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In this paper we study a type of one-field model for open inflationary universe models in the context of the
Jordan-Brans-Dicke theory. In the scenario of a one-bubble universe model we determine and characterize the
existence of the Coleman–De Luccia instanton, together with the period of inflation after tunneling has
occurred. Our results are analogous to those found in the Einstein general relativity models.
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I. INTRODUCTION

Until recently, inflation@1–3# was always associated wit
a flat universe, due to its ability to drive the spatial curvatu
to zero so effectively. In fact, requiring sufficient inflation
homogenize random initial conditions drives the unive
very close to critical density. However, current observatio
e.g. the cosmic microwave background~CMB! radiation,
show a large degree of homogeneity, but are as yet incon
sive as to spatial curvature. Because of this, some aut
have put forward the idea of considering other models
which the curvature does not vanish.

In the context of an open scenario, it is assumed that
universe has a lower-than-critical matter density and, the
fore, a negative spatial curvature. Several authors@4–7#, fol-
lowing previous speculative ideas@8,9#, have proposed pos
sible scenarios in which open universes may be realized,
its consequences, such that density perturbations, have
explored@10#. Very recently the possibility has been consi
ered to create an open universe from the perspective of
brane-world scenarios@11#.

The need to consider open models is reflected in the
that primordial perturbations and their corresponding pow
spectrum give rise in a natural way not only to adiaba
perturbation but also to isocurvature perturbations. This
neric situation is obtained, for instance, in the case wh
two fields are excited during inflation. We expect this sort
situation in a model in which the inflatons and the Jordan-
Brans-Dicke~JBD! f scalar fields are present@12#.

The basic idea in an open universe is that a symme
bubble nucleates in the de Sitter space background, an
interior undergoes a stage of slow-roll inflation, where t
parameterV0 can be adjusted to any value in the range
,V0,1.

Bubble formation in the false vacuum is described by
Coleman–De Luccia~CDL! instantons@13#. Once a bubble
has taken place by this mechanism, the bubble’s inside lo
like an infinite open universe. The problem with this sort
scenario is that the instanton exists only if the followi
inequalityuV9u.H2 is satisfied during the tunneling proces
On the contrary, during inflation the inequalityuV9u!H2 is
satisfied~slow-roll approximation!. From now onV9 stands
for d2V/ds2, where s is the inflaton scalar field andV
5V(s), the inflaton potential. Linde solves this problem
proposing a simple one-field model in Einstein’s gene
relativity ~GR! theory @7# ~see also Ref.@14#!. At this point,
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e

e
,

lu-
rs

n

e
e-

nd
en

he

ct
r

c
e-
re
f

ic
its

e

e

ks
f

.

l

we should mention that Ratra and Peebles were the firs
elaborate on the open inflation model@15#.

In Ref. @16# a one-field model for open inflation by usin
scalar-tensor type of theory~a nonminimally coupled scala
field with polynomial potentials! is studied. Here, the scala
potential associated with the JBD field is assumed to
V(f)5 1

2 m2f2@11 f 2(f)#. Then, the arbitrary function
f (f) is fixed in such a way that in the Einstein frame t
resulting effective action coincides with the one used
Linde @7#. This certainly restricts not only the evolution o
the JBD field but also the parameters that enter into
model.

The purpose of the present paper is to study a one-fi
open inflation in a JBD theory@17#, where the inflaton field
s is of the same nature as that described by Linde@7#. In this
sense, our model will be a genuine, extended open inflat
ary universe model.

The plan of the paper is as follows: In Sec. II we nume
cally write and solve the field equations in a Euclide
spacetime. Here, the existence of the CDL instanton for
different models are described. In Sec. III we determine
characteristic of the open inflationary universe model tha
produced after tunnelling has occurred. In Sec. IV we de
mine the corresponding density perturbations for our mod
Our results are compared with the analogous results obta
by using the Einstein theory of gravity. Finally, we conclu
in Sec. V.

II. THE EUCLIDEAN COSMOLOGICAL EQUATIONS
IN JBD THEORY

We consider the effective action given by

S5E d4xA2gF1

2
«f2R2

1

2
]mf]mf2L~s!G , ~1!

where

L~s!5
1

2
]ms]ms1V~s!,

andR is the Ricci scalar curvature,f is the JBD scalar field,
and« is a dimensionless coupling constant that, in terms
JBD parameterv, is equivalent to 1/4«. V(s) is an effective
scalar potential associated with the inflaton fields.
©2003 The American Physical Society07-1
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The O(4) invariant Euclidean spacetime metric is d
scribed as

ds25dt21a~t!2~dc21sin2cdV2
2!, ~2!

wherea(t) is the scale factor, andt represents the Euclidea
time.

When metric~2! is introduced into action~1!, we obtain
the following field equations:

S a8

a D 2

12
a8

a

f8

f
5

1

a2
1

1

3«f2 Ff82

2
1

s82

2
2V~s!G , ~3!

f913
a8

a
f81

f82

f
1

1

116« Fs82

f
1

4

f
V~s!G50, ~4!

s9523
a8

a
s81

dV

ds
, ~5!

where the primes denote derivatives with respect tot. From
now on we will use units wherec5\5M p5G21/251.

From Eqs.~3!, ~4!, and~5! we obtain

a952
a8f8

af
2

a

3«f2 Ff821
113«

116«
s821

126«

116«
V~s!G .

~6!

The first model considered corresponds to the effec
potential used by Linde@7#:

V~s!5
m2s2

2 S 11
a2

b21~s2v !2D , ~7!

wherea, b, andv are arbitrary constants. In this potenti
the first term controls inflation after quantum tunneling h
occurred. Its form coincides with that used in the simpl
chaotic inflationary universe model,m2s2/2. The second
term controls the bubble nucleation, whose role is to cre
an appropriate shape in the inflaton potential,V(s), where
its maximum occurs nears5v. Following Linde@7# we take
b252a2, b50.1, v53.5, and m51.531026. Certainly,
this is not the only choice, since other values for these
rameters can also lead to a successful open inflation sce
~with any value ofV, from 0 and 1!.

We have solved the field equations~3!–~5! numerically.
The boundary conditions that we used are those in wh
f85s850 and a851 at a50, for various values of the
JBD parameter,v. At t'0, the scalar fields5sT lies in the
‘‘true vacuum,’’ near the maximum of the potential,V(s),
and at tÞ0, the same field is found closed to the fal
vacuum, but now with a different value,s5sF . In our
model, when the scalar fields evolves from some initial
valuesF>s i'3.6 to the final valuesT>s f'3.4, we found
that the CDL instanton does exist, and the extended o
inflationary universe scenario can be realized. Figure
shows how the scale factor evolves during the tunneling p
cess. Note that the interval of tunneling, specified byt, de-
creases when the parameterv decreases, but its shapes r
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main practically similar. The evolution of the inflaton field a
a function of the Euclidean time is shown in Fig. 2. Note t
similar quantities thats(t) contracts at the beginning of th
inflationary era (t50).

In Fig. 3 we showuV9u/H2 as a function of the Euclidean
time t for our model. From this plot we observe that, most

FIG. 1. For our model we plot the scale factora(t) as a function
of the Euclidean timet, for two different values of the JBD param
eter, v5500 andv52000. GR represents the same graph, bu
was obtained by using the Einstein GR theory. We have assu
constantm to be equal to one.

FIG. 2. The instantons(t) as a function of Euclidean timet is
shown for Einstein’s GR and JBD theories. In the latter case
have assumedv5500 andv52000. As before, we have assume
m51.
7-2
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the time during the tunneling, we obtainuV9u.H2, analo-
gous to what occurs in Einstein’s GR theory. Note that, as
as we decrease the value of the parameterv, the peak be-
comes narrower and deeper, and thus the above inequal
better satisfied. In our model, it is possible to numerica
show that the CDL instantons(t) exists, and for various
values of thev parameter, it presents a similar behavior
that described in Linde’s paper@7#. The values actually co
incide for smallt, and its values~after tunneling has oc
curred! coincide in the two theories, i.e. Einstein’s GR a
JBD theories. This result shows that the value thats obtains
at the end of the tunneling process is independent of thv
parameter. On the other hand, the numerical solution sh
that the evolution of the JBD fieldf during the tunneling
process is such that it remains practically constant fot
<0.3, and it then decreases fort.0.3.

At this point, we would like to consider a new effectiv
potential:

V~s!5
m2s2

2 S 11
a2tanh~v2s!

b21~s2v !2 D , ~8!

which is quite similar to that studied in Ref.@14#. Herea, b,
andv are arbitrary constants. For completeness, we will
strict ourselves to the particular case in which the differ
constants take the values m51.531026, v53.5, a250.1,
andb250.01. The shape of this potential is shown in Fig.
We should mention that both effective potentials~7! and ~8!
present a pronounced peak, which is necessary for ope
flation to occur. The nature of these potentials may be var
For instance, present-day supersymmetry and supergra
theories include many scalar fields, whose interaction po
tials may be arbitrary to certain extent. It is therefore use

FIG. 3. This plot shows how during the tunneling process
inequality uV9u@H2 is satisfied for two values ofv(v5500 and
v52000 for JBD theory!. The continuous line represents the sam
inequality for Einstein’s GR theory. Again, we have takenm51.
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to study the de Sitter stage which is produced by effect
potentials, such as those expressed by Eqs.~7! and ~8!. As
Linde mentions in Ref.@14#, whens→v a sharp peak appea
in the effective potential, and it may be due to the emerge
of a strong coupling regime in the Yang-Mills sector, whe
the energy density gets a contribution from new terms i
the Lagrangian, such that̂Fmn

a Fa
mn&, where Fmn

a 5]mAn
a

2]nAm
a 1eTbc

a Am
b An

c are the field strengths for the Yang
Mills fields Am

a , wheree is the gauge coupling constant, an
the Tbc

a are the structure constants of the Lie algebra.
The Coleman–De Luccia instantons(t) in this model is

shown in Fig. 5. Our results are compared to that cor
sponding to Einstein’s GR theory. Tunneling occurs from t
initial point s i'3.54, which almost coincides with the loca
minimum ofV(s), to final points f'3.31. The evolution of
the inflaton field during the tunneling process shown by F
5 is quite similar to what happens in the previous case,
the values that the inflaton field gets immediately after
tunneling are different. The reason for this is due to the f
that we have considerds/dt50, both at the beginning and
at the end of the tunneling. Thus, unlike the first case, an
order to satisfy this condition in our second model, we we
forced to consider different initial values of the inflaton fiel
when different values of the JBD parameterv were taken.

Figure 6 shows that almost everywhere along the evo
tion of the scalar inflaton field,s(t), it is found thatuV9u
@H2. Unlike the previous case, the width of the peak
creases when thev parameter decreases.

In the following we are going to calculate the instant
action for the quantum tunneling between the false and
true vacuum in the JBD theory. By integrating by parts a
using the Euclidean equations of motion, we find that
action may be written as

e
FIG. 4. The effective potential for our second model. Note t

similarity between this potential and that considered in Ref.@14#.
7-3
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S52p2E dt@a3~f821s82!26«faa8~a8f12af8!#.

~9!

Note that this action coincides with that corresponding to
analogous action in Einstein’s general relativity theory if w
assume thatef25Cte51/8p51/k2 @18#.

Thes inflaton field is initially trapped in its false vacuum
whose value issF , and where the JBD field has the valu
fF . After tunneling to the true vacuum, the instanton and
JBD fields get the valuessT and fT , respectively, and a
single bubble is produced. Similar to the case of GR the
the instanton~or bounce! action is given byB5S2SF , i.e.
the difference between the action associated with the bou
solution and the false vacuum. This action determines
probability of tunneling for the process. We have defin
VF5V(sF) and VT5V(sT) as the false and true vacuu
energies, respectively. Under the approximation that
bubble wall is infinitesimally thin, we obtain the reduce
action for the thin-wall bubble:

S52p2S1R324p2@~12HF
2R2!3/221#

«fF
2

HF
2

14p2@~12HT
2R2!3/221#

«fT
2

HT
2

, ~10!

where we have taken into account the contributions from
wall ~first term! and the interior of the bubble~the second

FIG. 5. The instantons(t) as a function of Euclidean timet for
our second model in both Einstein’s GR and JBD theories~for v
5500 andv52000 in the latter case!. Note the different values tha
occur for s at the beginning of inflation, i.e. att50. Again, as
before, we have assumedm51.
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and third terms!. Here R is the radius of the bubble,HF
2

5VF/3«fF
2 and HT

25VT/3«fT
2 . The surface tension of the

wall becomes defined by

S15E dt@fwall82 1s82#, ~11!

or equivalently

S15E dt fwall82 1E
sT

sF
ds$2@V~s!2VF#%1/2,

where fwall8 is the variation of scalar fieldf across the
bubble wall. To continue, we have taken the approach
lowed by the authors of Ref.@19#, where they use the ap
proximationfwall8 '0; in this way, we could drop the firs
term of Eq.~11!. However, we should note that in our ca
we are concerned with the decay of a false vacuum w
positive energy density to a true vacuum in which this ene
is also positive, but smaller than the other one, i.e., the de
from V(sF) to V(sT)Þ0.

The curvature radius of the bubble wall is one for whi
the bounce action~10! is an extremum. Then, the wall radiu
is determined by settingdS/dR50, which gives

S1R

2
5~12HT

2R2!1/2«fT
22~12HF

2R2!1/2«fF
2 .

This can be solved for the radius of the bubble, and it
found that

R5FS26$S2
22H2@12~fT /fF!4#%1/2

H2
G1/2

, ~12!

FIG. 6. This graph shows how the inequalityuV9u@H2 is satis-
fied during the tunneling process. The continuous line repres
what happen in Einstein’s GR theory. The other curves corresp
to v5500 andv52000 in JBD theory. We have assumedm51.
7-4
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whereS2 is given by

S25S S1

2«fF
2 D 2F11S fT

fF
D 4G2F12S fT

fF
D 4G@HT

22HF
2 #,

and

H25FHF
22HT

2S fT

fF
D 4

1S S1

2«fF
2 D 2G 2

1HT
2S fT

fF
D 4S S1

«fF
2 D 2

.

We choose the positive root in Eq.~12!, since with this root
we could get the appropriate Einstein’s general relativ
limit in which «f25«f0

25Cte[1/8p51/k2 with fT5fF

5f0. In this limit the curvature radius of the bubble wa
becomes

R→RGR5
S1k2

$@HF
22HT

21~S1k2/2!2#21HT
2k4S1

2%1/2
.

A dimensionless quantityDs, which represents the
strength of the wall tension in the thin-wall approximation,
given in Einstein’s GR theory in Ref.@14#, which in our case
can be represented by

D s5
S1R

2«fT
2
,1. ~13!

By numerically solving the field equation associated w
the JBD fieldf, Eq.~5!, we obtain forv5500 the following
valuesfT57.645 andfF56.023. With these values we fin
that Ds50,436. Analogously, forv52000, we obtainfT
517.247 andfF515.276, and thus we getDs50,429. In
the second model, it is found that, forv5500, fT57.800,
and fF55.220, which givesDs50,506, and forv52000,
fT517.310 andfF514.817 we findDs50,478. We should
note here that, as long as we decrease the value of thv
parameter the strength of the wall tensionDs increases. We
could see this from the fact that in Einstein’s GR theory,Ds
becomes given byDsGR54pRS1 @20#, which turns out to be
smaller than the corresponding expression in the JBD the
since the quantity («fT

2)21 increases. In the first of th
particular cases described above, we get that, whenDs is
compared with the corresponding value in Einstein’s G
theory, we find thatDs2DsGR.0.012, forv5500, and for
v52000 we get;0.005. In the second model this differen
becomes of the order of;0.06 forv5500 and;0.032 for
v52000.

III. INFLATION AFTER TUNNELLING

After the tunnel has occurred, we should both make
analytical continuation to the Lorentzian spacetime and
what is the time evolution of the scalar fieldsf(t) ands(t),
and of the scale factora(t). The field equations of motion
for the fieldss, f, anda are given by

s̈523
ȧ

a
ṡ2

dV

ds
, ~14!
06350
y

ry,

n
e

f̈523
ȧ

a
ḟ2

ḟ2

f
2

1

116«
F ṡ2

f
2

4

f
V~s!G , ~15!

and

ä52
ȧḟ

af
2

a

3«f2 F ḟ21
113«

116«
ṡ22

126«

116«
V~s!G ,

~16!

where the dots now denote derivatives with respect to
cosmological time.

In order to numerically solve this set of equations we u
the following boundary conditionsṡ(0)5ḟ(0)50, a(0)
50 and ȧ(0)51. In our first model the solutionss(t) are
shown in Fig. 7 for some different values of thev parameter.
In the same situation, we have studied the evolution of
JBD field f. We have found that this field monotonicall
increases to some constant value, which is closer to that
termined by the actual value of the Planck mass~recall that
«f0

251/8p), just when the inflaton scalar fields begins to
oscillate near the minimum of the effective potential, locat
at s'0. We have also found that for the range 50<v
<2000, the universe could inflate more than the
e-folding, which we find in Einstein’s theory of gravity
However, for a sufficiently small value of this parameter, s
v'5 or so, thee-folding obtained after tunneling has oc
curred, is not enough to solve the cosmological puzzles, s
as flatness, horizon, etc. Therefore, we have found that
models are quite sensitive to the value we assign to thv
parameter.

FIG. 7. This plot shows the inflaton fields as a function of the
cosmological timet during the slow rolls down an open inflationar
universe, either in Einstein’s GR and JBD theories (v5500 and
v52000). In these graphs we have assumed the constantm to be 1.
7-5
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IV. SCALAR PERTURBATION SPECTRA

Even though the study of scalar density perturbations
open universes is quite complicated@14#, it is interesting to
give an estimation of the standard quantum scalar field fl
tuations inside the bubble for our scenarios. The correspo
ing density perturbation in the JBD theory becomes@8#

dr

r
'CteH2F ~«f28p!3/2

1

uṡu
1

~12«f28p!

2uḟu
gfG ,

~17!

where g51/Av13/2 and Cte'3/5p. The latter equation
coincides with its analogous equation in Einstein’s theo
when the substitution«f251/8p is made. The reason wh
this expression is approximated is because it is expected
other contributions to the exact expression exist@16#. How-
ever, as was observed by Linde@14#, we may use the abov
expression forN.3 as a correct result.

Figure 8 shows the magnitude of the scalar perturbati
dr/r for our first model as a function of theN e-folds of
inflation for two different values of thev parameter, after the
open universe was formed. Even though the shape of
graph is similar to Einstein’s GR case,dr/r has a maximum
at smallN;O(12). Its maximum value, however, increas
a little bit, when we decrease thev parameter value. Simi
larly, the values ofN e-folds, wheredr/r vanishes, increase
whenv decrease. We should mention that there is a rela
between the value of the scalar perturbation and theN e-folds
of inflation. ForN;10, wheredr/r gets it maximum value,

FIG. 8. Scalar density perturbations for our first model produ
inside the bubbleN e-folds after the open universe creation. W
have plotteddr/r for v5500 andv52000. These plots are com
pared with those obtained by using Einstein’s GR theory, wh

dr/r'CteH2/uṡu.
06350
n
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n

it is found that the scale where the scalar perturbation
measured corresponds to the 1024 cm scale. However, for
N;15 it decreases to 1022 cm, and forN@50 this practically
comes to zero. We could show that something similar h
pens in the second model considered. There, the corresp
ing values ofN e-folds were smaller.

One interesting parameter to consider is the so-ca
spectral indexn, which is related to the power spectrum
density perturbationsPR

1/2(k). For modes with wavelength
much larger than the horizon (k!aH), the spectral indexn
is an exact power law, expressed byPR

1/2(k)}kn21, wherek
is the comoving wave number. In the slow roll limit, whe
s̈.0 and the first two derivatives of the effective potent
are small relative to its magnitude, i.e.,V8, V9!V, with
V85dV/ds, it is found that the spectral indexn is given by

n5124e12h,

where the parameterse andh, the so-called slow roll param
eters, are given by@21,22#

e.
mMp

2

16p S V8

V D 2

!1

and

h.
mMp

2

8p FV9

V
2

1

2 S V8

V D 2G!1.

Figure 9 shows the spectral index parametern as a function
of the e-folds parameterN for two different values of the
JBD parameterv. With the aim of comparing, we have als
included here the spectral index in Einstein’s GR theo

d

e

FIG. 9. The spectral indexn as a function of theN e-folds
parameter for two different values of the JBD parameterv. The
values that we have taken arev5500 andv52000. These plots
are compared with that obtained by using Einstein’s GR theory
7-6
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Note that the parametern gets values which are, on averag
smaller than that found in the Einstein theory.

Certainly, apart from the scalar perturbations, tensor p
turbation also exists. These perturbations are usually ass
ated with perturbations of the bubble wall@7#. Specifically, in
Einstein’s GR theory it is known that the fluctuations of t
bubble wall contribute to the low frequency spectrum of te
sor perturbations, which can dominate over the scalar pe
bations@23–25#. Here, we expect something similar to occ
in our models, except at low enough JBD parameter, wh
Einstein’s GR and the JBD theories can be distinguished
from the other. However, due to the present bound of
observational limits from the solar system measurements
the v parameter@26#, we expect these contributions to b
come tiny corrections of that obtained in Einstein’s G
theory. Certainly, this latter point deserves further investi
tion, which we hope to carry out in the near future.

V. CONCLUSION

Since we still we do not know the exact value of theV
parameter, it is convenient to count on an inflationary u
verse model in whichV,1. In this sense, we could hav
single-bubble open inflationary universe models, which m
be consistent with a natural scenario for understanding
large scale homogeneity and isotropy structure. Howe
open inflationary models have a more complicated prim
dial spectrum than that obtained in flat universes, where
tra discrete modes and possibly large tensor anisotro
spectrum could be found, especially those related to su
curvature modes, which are particular to open inflation
universes. Forthcoming astronomical measurements will
termine if this extra terms are present in the scalar spectr
y
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In this paper we have studied one-field open unive
models in which the gravitational effects are described b
JBD theory. In this theory the fundamental quantity is t
JBD field f, from which, after that universe enters th
Lorentzian era, it can numerically be shown that it monoto
cally increases from an initial value to the present value
the Planck mass obtained at the end of inflation. We h
studied solutions to two effective potentials in which t
CDL instantons exist. The existence of these instanton
shown because the inequalityuV9u.H2 is satisfied, and thus
slow-roll inflationary universes are realized for different va
ues of the JBDv parameter.

For the two models considered,V9 remains greater than
H2 during the firste-folds of inflation. In the thin-wall limit
we have also found an increase in the strength of the w
tension,ns, when compared with their analogous resu
obtained in Einstein’s GR theory.

Since indr/r graphs the maximum present a small d
placement in the JBD theory when compared with that
tained in Einstein’s GR theory, this would change the co
straint on the value of the parameterm that appears in the
scalar potentials. In this way, we have shown that one-fi
open inflationary universe models can be realized in the J
theory.
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