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Extended open inflationary universes
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In this paper we study a type of one-field model for open inflationary universe models in the context of the
Jordan-Brans-Dicke theory. In the scenario of a one-bubble universe model we determine and characterize the
existence of the Coleman—De Luccia instanton, together with the period of inflation after tunneling has
occurred. Our results are analogous to those found in the Einstein general relativity models.
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I. INTRODUCTION we should mention that Ratra and Peebles were the first to
elaborate on the open inflation modéb.

Until recently, inflation[1—3] was always associated with  In Ref.[16] a one-field model for open inflation by using
a flat universe, due to its ability to drive the spatial curvaturescalar-tensor type of theoiga nonminimally coupled scalar
to zero so effectively. In fact, requiring sufficient inflation to field with polynomial potentialsis studied. Here, the scalar
homogenize random initial conditions drives the universepotential associated with the JBD field is assumed to be
very close to critical density. However, current observationsV(¢)=3m?¢?[1+%(¢$)]. Then, the arbitrary function
e.g. the cosmic microwave backgrout@MB) radiation, f(¢) is fixed in such a way that in the Einstein frame the
show a large degree of homogeneity, but are as yet inconcluesulting effective action coincides with the one used by
sive as to spatial curvature. Because of this, some authotdnde [7]. This certainly restricts not only the evolution of
have put forward the idea of considering other models irthe JBD field but also the parameters that enter into the
which the curvature does not vanish. model.

In the context of an open scenario, it is assumed that the The purpose of the present paper is to study a one-field
universe has a lower-than-critical matter density and, therespen inflation in a JBD theor}17], where the inflaton field
fore, a negative spatial curvature. Several authérs?], fol- o is of the same nature as that described by Liieln this
lowing previous speculative ide&8,9], have proposed pos- sense, our model will be a genuine, extended open inflation-
sible scenarios in which open universes may be realized, araty universe model.
its consequences, such that density perturbations, have beenThe plan of the paper is as follows: In Sec. Il we numeri-
explored[10]. Very recently the possibility has been consid- cally write and solve the field equations in a Euclidean
ered to create an open universe from the perspective of thepacetime. Here, the existence of the CDL instanton for two
brane-world scenarigd1]. different models are described. In Sec. Ill we determine the

The need to consider open models is reflected in the faatharacteristic of the open inflationary universe model that is
that primordial perturbations and their corresponding poweproduced after tunnelling has occurred. In Sec. IV we deter-
spectrum give rise in a natural way not only to adiabaticmine the corresponding density perturbations for our models.
perturbation but also to isocurvature perturbations. This ge©ur results are compared with the analogous results obtained
neric situation is obtained, for instance, in the case wherdy using the Einstein theory of gravity. Finally, we conclude
two fields are excited during inflation. We expect this sort ofin Sec. V.
situation in a model in which the inflatos and the Jordan-

Brans-Dicke(JBD) ¢ scalar fields are presefit2]. _Il. THE EUCLIDEAN COSMOLOGICAL EQUATIONS

The basic idea in an open universe is that a symmetric IN JBD THEORY
bubble nucleates in the de Sitter space background, and its
interior undergoes a stage of slow-roll inflation, where the We consider the effective action given by
parameter(), can be adjusted to any value in the range O
<Qy<1.

Bubble formation in the false vacuum is described by the Szf d*xV-g
Coleman—De LuccidCDL) instantong 13]. Once a bubble
has taken place by this mechanism, the bubble’s inside loo'ﬂf/here
like an infinite open universe. The problem with this sort of
scenario is that the instanton exists only if the following
inequality|V”|>H? is satisfied during the tunneling process. L(o)= 1 9,00 5+ V(o)

On the contrary, during inflation the inequality”|<H? is 2+ '

satisfied(slow-roll approximation From now onV” stands

for d?V/do?, where o is the inflaton scalar field an¥  andRis the Ricci scalar curvature is the JBD scalar field,
=V(o), the inflaton potential. Linde solves this problem by ande is a dimensionless coupling constant that, in terms of
proposing a simple one-field model in Einstein’'s generaldBD parametew, is equivalent to 1/4. V(o) is an effective
relativity (GR) theory[7] (see also Refl14]). At this point,  scalar potential associated with the inflaton field
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The O(4) invariant Euclidean spacetime metric is de- 012
scribed as
ds?=d7?+a(7)2(dy?+sirtydQ3), 2) 010+ i
wherea(7) is the scale factor, andrepresents the Euclidean
time. 0,08 |
When metric(2) is introduced into actioril), we obtain
the following field equations: ©
1\ 2 ’ ’ 12 12 0,06 T
a a' ¢ 1 1 |¢ o
0,04 4 E
’ ¢/2 12 4
H+ ! -+ _—t — =
PR v el A CO R C
0,02 i
. 3a’ - dv 5
7'=37 T e ©
0,00 005 0,10 0,15 020 025 030 0,35
where the primes denote derivatives with respect.térom T
now on we will use units where=f=M,=G~2=1,
From Egs.(3), (4), and(5) we obtain FIG. 1. For our model we plot the scale factqrr) as a function

of the Euclidean timer, for two different values of the JBD param-
eter, =500 andw=2000. GR represents the same graph, but it
. was obtained by using the Einstein GR theory. We have assumed
©6) constantm to be equal to one.

The first model considered corresponds to the effectiv
potential used by Lindg7]:

2 1+ 3¢ ' 1-6¢
¢ +1+680 +1+68V(U)

ae’__a
ap  3g¢?

a’'=2

main practically similar. The evolution of the inflaton field as
% function of the Euclidean time is shown in Fig. 2. Note the
similar quantities thatr(7) contracts at the beginning of the

m2g? 2 inflationary era ¢=0).
V(o)= i ( + “« ) , ) In Fig. 3 we showV”|/H? as a function of the Euclidean
2 B2+(U—v)2 time 7 for our model. From this plot we observe that, most of
wherea, B, andv are arbitrary constants. In this potential Bl L B B B B B B

the first term controls inflation after quantum tunneling has
occurred. Its form coincides with that used in the simplest ]
chaotic inflationary universe modein?¢?/2. The second 3584
term controls the bubble nucleation, whose role is to create .
an appropriate shape in the inflaton potenti&lg), where 3,56 1
its maximum occurs near=v. Following Linde[7] we take
B?=2a? B=0.1, v=3.5, andm=1.5x10 5. Certainly, ]
this is not the only choice, since other values for these pa- 3,524
rameters can also lead to a successful open inflation scenario ]
(with any value of(), from 0 and J. 3,50 4
We have solved the field equatiof®)—(5) numerically.
The boundary conditions that we used are those in which
¢'=0'=0 anda’=1 ata=0, for various values of the
JBD parameterp. At 7~0, the scalar fieldr= o lies in the ]
“true vacuum,” near the maximum of the potentil{o), 3,44
and at 7#0, the same field is found closed to the false 1
vacuum, but now with a different valuer=o¢. In our 3,421
model, when the scalar field evolves from some initial 000 005 010 015 080 025 080 005
valueor=0;~3.6 to the final valuerr=0;~3.4, we found
that the CDL instanton does exist, and the extended open 1
inflationary universe scenario can be realized. Figure 1 FiG. 2. The instantorr(7) as a function of Euclidean timeis
shows how the scale factor evolves during the tunneling proshown for Einstein’s GR and JBD theories. In the latter case we

cess. Note that the interval of tunneling, specifiedrbyde-  have assumed =500 andw=2000. As before, we have assumed
creases when the parameterdecreases, but its shapes re-m=1.

3,60

3,54 4

3,48 +

3,46 1

063507-2



EXTENDED OPEN INFLATIONARY UNIVERSES PHYSICAL REVIEW D67, 063507 (2003

4 —T T T T 1,6x10™ T T v T
1,2x10™ 4 .
o
~
—> . 8,0x10™ - 7
4,0x10™ - E
— 7T + r 1 r 1t T1 71"
0,00 005 0,10 0,15 020 025 030 035 0,40 0,0 . T
T 0 2 4
6)

FIG. 3. This plot shows how during the tunneling process the
inequality |V"|>H? is satisfied for two values oi(w=500 and FIG. 4. The effective potential for our second model. Note the
w=2000 for JBD theory. The continuous line represents the samesimilarity between this potential and that considered in Rif].
inequality for Einstein’s GR theory. Again, we have takes 1.

to study the de Sitter stage which is produced by effective
otentials, such as those expressed by Egsand (8). As
inde mentions in Ref.14], wheno—uv a sharp peak appear

iln the effective potential, and it may be due to the emergence

o? a strong coupling regime in the Yang-Mills sector, where

the time during the tunneling, we obtaji”|>H?, analo-
gous to what occurs in Einstein’s GR theory. Note that, as fa
as we decrease the value of the parametethe peak be-
comes narrower and deeper, and thus the above inequality
better satisfied. In our model, it is possible to numerically . A .
show that the CDL instantor(7) exists, and for various the energy d_ensny gets a Cogmbljt'on from niw termi Into
values of thew parameter, it presents a similar behavior toth® Lagrangian, such thafF ) F2"), where F,=d,A]
that described in Linde's papéT]. The values actually co- —d,A3+eTpAPAS are the field strengths for the Yang-
incide for small7, and its valuedafter tunneling has oc- Mills fields A%, , wheree is the gauge coupling constant, and
curred coincide in the two theories, i.e. Einstein’s GR andthe T{. are the structure constants of the Lie algebra.
JBD theories. This result shows that the value thatbtains The Coleman—De Luccia instanter( ) in this model is
at the end of the tunneling process is independent ofthe shown in Fig. 5. Our results are compared to that corre-
parameter. On the other hand, the numerical solution showsponding to Einstein’s GR theory. Tunneling occurs from the
that the evolution of the JBD fieled during the tunneling jnjtial point ;~3.54, which almost coincides with the local
process is _such that it remains practically constant for minimum of (o), to final pointo~3.31. The evolution of
=0.3, and it then decreases for-0.3. _the inflaton field during the tunneling process shown by Fig.

At this point, we would like to consider a new effective g js quite similar to what happens in the previous case, but
potential: the values that the inflaton field gets immediately after the

- 5 tunneling are different. The reason for this is due to the fact
mo ( L ta“””“f)) ®) that we have considata/d7=0, both at the beginning and

2 B+ (o—v)? ' at the end of the tunneling. Thus, unlike the first case, and in

order to satisfy this condition in our second model, we were

which is quite similar to that studied in Ré¢fL4]. Herea, S, forced to consider different initial values of the inflaton field,
andv are arbitrary constants. For completeness, we will rewhen different values of the JBD parametemwere taken.
strict ourselves to the particular case in which the different Figure 6 shows that almost everywhere along the evolu-
constants take the values=m.5x10 6, v=3.5, «?=0.1, tion of the scalar inflaton fieldy(7), it is found that|V"|
and32=0.01. The shape of this potential is shown in Fig. 4.>H?. Unlike the previous case, the width of the peak in-
We should mention that both effective potentiél$ and (8) creases when the parameter decreases.
present a pronounced peak, which is necessary for open in- In the following we are going to calculate the instanton
flation to occur. The nature of these potentials may be variedaction for the quantum tunneling between the false and the
For instance, present-day supersymmetry and supergravityue vacuum in the JBD theory. By integrating by parts and
theories include many scalar fields, whose interaction poterndsing the Euclidean equations of motion, we find that the
tials may be arbitrary to certain extent. It is therefore usefulaction may be written as

V(o)=
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T FIG. 6. This graph shows how the inequaliyy’|>H? is satis-
FIG. 5. The instantowr( ) as a function of Euclidean timefor fied during the tunneling process. The continuous line represents
our second model in both Einstein's GR and JBD theoffes what happen in Einstein’'s GR theory. The other curves correspond
=500 andw = 2000 in the latter cageNote the different values that t© @=1500 andw=2000 in JBD theory. We have assumee- 1.

occur for o at the beginning of inflation, i.e. at=0. Again, as ) ) ) 5
before, we have assumea=1. and third terms Here R is the radius of the bubbleii¢

=V(/3e 2 andHZ=V/3e 2. The surface tension of the
wall becomes defined by
S=27-rzf dr{ad(¢'?+0'?)—6epaa’(a’ p+2ad’)].

(9) S, = J dr g2+ 0'?], (12)

Note that this action coincides with that corresponding to itsor equivalently

analogous action in Einstein’s general relativity theory if we

assume that ¢?>=Cte=1/87=1/«? [18]. " oF "
The o inflaton field is initially trapped in its false vacuum, Sl:f dr ¢wall+L do{2[V(o) = VE]}™

whose value isrg, and where the JBD field has the value !

bk Aftertunneling to the true vacuum, the ingtanton and theyhere b is the variation of scalar fields across the

JBD fields get the valuest and ¢, respectively, and a pypple wall. To continue, we have taken the approach fol-

smg.le bubble is produced. .S|m.|Iar _to the case of GR.theory;owed by the authors of Ref19], where they use the ap-

the instantor(or bouncg action is given byB=S-Sg, i.e.  proximation ¢/, ~0; in this way, we could drop the first

the difference between the action associated with the boungg,, of Eq.(11). However, we should note that in our case

solutior)_and the false vacuum. This action determineg th€e are concerned with the decay of a false vacuum with

probability of tunneling for the process. We have def'nedpositive energy density to a true vacuum in which this energy

Ve=V(o¢) andVr=V(oy) as the false and true vacuum s 5i50 positive, but smaller than the other one, i.e., the decay
energies, respectively. Under the approximation that the.m V(op) to V(o) #0.

bubble wall is infinitesimally thin, we obtain the reduced  Tnhe curvature radius of the bubble wall is one for which

action for the thin-wall bubble: the bounce actiofil0) is an extremum. Then, the wall radius
is determined by settindS'"dR=0, which gives

2
edr

S=272S,R®—47?[(1-H2R?)%2— 11— SR

1 F H|2: T:(1_H12—R2)1/28¢-2|—_(1_H|2:R2)1/28¢|2:.
2
+477 (1—-H2R?)%¥2— 1]8;*'ST (100  This can be solved for the radius of the bubble, and it is
' HE ' found that
2_ _ 471 1/2]1/2
where we have taken into account the contributions from the R— S = {S5—Ho[ 1= (¢1/¢6)"1} 12

wall (first term and the interior of the bubbléhe second H> '
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whereS, is given by

[T v -

SZ_(ZS(]S'ZZ) 1+ ¢F 1 ¢F [HT HF];

and i
[0 , ¢T) s, 272 2(@)4( s, 2 |

He= | et (¢F +(28¢,2:) AT Pr s¢,2:

We choose the positive root in E(L2), since with this root
we could get the appropriate Einstein’s general relativity
limit in which & ¢?=¢ ¢2=Cte=1/87=1/x? with ¢1= ¢

= ¢o. In this limit the curvature radius of the bubble wall
becomes

R R S]_K2
—d == . -1
S {HE— HE 4 (S,4%12) 224+ HEk*S2} 12 ——————————r
0 5 10 15 20 25 30
A dimensionless quantityAs, which represents the t
strength of the wall tension in the thin-wall approximation, is
given in Einstein's GR theory in Reff14], which in our case FIG. 7. This plot shows the inflaton field as a function of the
can be represented by cosmological time during the slow rolls down an open inflationary
universe, either in Einstein’s GR and JBD theories=500 and
A 5= 51R2< 1 (13) »=2000). In these graphs we have assumed the constambe 1.
28 ¢7
: _ : . . . $* 1 |o? 4
By numerically solving the field equation associated with b= —V(o)|, (15
the JBD field¢, Eqg.(5), we obtain foro =500 the following ¢ ¢ ¢
values¢=7.645 andp=6.023. With these values we find
that As=0,436. Analogously, forw=2000, we obtaing; and
=17.247 and¢=15.276, and thus we gets=0,429. In
the second model, it is found that, far=500, ¢;=7.800, . a¢ a [., 1+3¢. 5 1—6¢
and ¢ =5.220, which gives\s=0,506, and forw=2000, 2@‘ 30 d? P+ 1767  176s VO]
¢+=17.310 andp=14.817 we findds=0,478. We should (16)

note here that, as long as we decrease the value obthe
parameter the strength of the wall tensiés increases. We
could see this from the fact that in Einstein’s GR thedtsy, . .
becomes given bsgr=47R S, [20], which turns out to be cosmological time. . ,
smaller than the correspondlng expression in the JBD theory, In order to numerically solve this set of equations we use
since the quantity {2)—1 increases. In the first of the the following boundary conditionsr(0)=¢(0)=0, a(0)
particular cases described above, we get that, wherns =0 anda(0)=1. In our first model the solutions(t) are
compared with the corresponding value in Einstein’s GRshown in Fig. 7 for some different values of theparameter.
theory, we find thatns— Asgg=0.012, foro=>500, and for In the same situation, we have studied the evolution of the
w=2000 we get-0.005. In the second model this difference JBD field ¢. We have found that this field monotonically
becomes of the order of 0.06 for w=500 and~0.032 for increases to some constant value, which is closer to that de-
w=2000. termined by the actual value of the Planck mé&ssgall that
sq&o 1/81r), just when the inflaton scalar field begins to
I1l. INFLATION AFTER TUNNELLING oscillate near the minimum of the effective potential, located

at o~0. We have also found that for the range<b0
After the tunnel has occurred, we should both make an<2000, the universe could inflate more than the 60

analyt|ca| continuation to the Lorentzian Spacetlme and Seg.fo|d|ng which we find in Einstein’s theory of grav|ty

where the dots now denote derivatives with respect to the

what is the time evolution of the scalar field¢t) anda(t),  However, for a sufficiently small value of this parameter, say
and of the scale factaa(t). The field equations of motion ,~5 or so, thee-folding obtained after tunneling has oc-
for the fieldso, ¢, anda are given by curred, is not enough to solve the cosmological puzzles, such
: as flatness, horizon, etc. Therefore, we have found that our
=— a o d_V (14) models are quite sensitive to the value we assign toathe
a do’ parameter.
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0 10 20 30 40 50 60 70 80 FIG. 9. The spectral index as a function of theN efolds
N parameter for two different values of the JBD parameterThe

values that we have taken a#e=500 andw=2000. These plots

FIG. 8. Scalar density perturbations for our first model producedyre compared with that obtained by using Einstein's GR theory.
inside the bubbleN efolds after the open universe creation. We

have plottedsp/p for =500 andw=2000. These plots are com-
pared with those obtained by using Einstein's GR theory,

Splp~CteH/|o]|.

it is found that the scale where the scalar perturbation is
Whereheasured corresponds to the?46m scale. However, for
N~ 15 it decreases to #dcm, and folN> 50 this practically
comes to zero. We could show that something similar hap-
pens in the second model considered. There, the correspond-
Even though the study of scalar density perturbations idng values ofN efolds were smaller.
open universes is quite Compncatm], it is interesting to One |nterest|ng parameter to consider is the so-called
give an estimation of the standard quantum scalar field flucSPectral indexn, which is related to the power spectrum of
tuations inside the bubble for our scenarios. The correspondiensity perturbationd®}/%(k). For modes with wavelength
ing density perturbation in the JBD theory becorh@k much larger than the horizork€aH), the spectral index
is an exact power law, expressed B%Z(k)ocknfl, wherek
is the comoving wave number. In the slow roll limit, where
' =0 and the first two derivatives of the effective potential
(17) are small relative to its magnitude, i.&/,/, V"<V, with
V'=dV/da, it is found that the spectral indexis given by

IV. SCALAR PERTURBATION SPECTRA

) 1 (1-e¢%8
% _Cter?| (s g28moe L 4 LTEP8T)
p o] 2|¢|

where y=1/\Jw+3/2 andCte~3/57. The latter equation
coincides with its analogous equation in Einstein’s theory,
when the substitutior ¢2=1/8w is made. The reason why
this expression is approximated is because it is expected th
other contributions to the exact expression eki€]. How-
ever, as was observed by Linfi®4], we may use the above 2 2
. m V
expression folN>3 as a correct result. ~ ﬂ(_) <1
Figure 8 shows the magnitude of the scalar perturbations 167\ V
oplp for our first model as a function of the efolds of
inflation for two different values of the parameter, after the and
open universe was formed. Even though the shape of the )
graph is similar to Einstein’s GR casép/p has a maximum __ Mvp
at smallN~0O(12). Its maximum value, however, increases 87
a little bit, when we decrease the parameter value. Simi-
larly, the values oN e-folds, wheredp/p vanishes, increase Figure 9 shows the spectral index parameters a function
whenw decrease. We should mention that there is a relationf the e-folds parameteN for two different values of the
between the value of the scalar perturbation and\tlefolds ~ JBD parametew. With the aim of comparing, we have also
of inflation. ForN~ 10, wheredp/p gets it maximum value, included here the spectral index in Einstein's GR theory.

n=1—4e+27,

ere the parameteesand 7, the so-called slow roll param-
eters, are given bf21,22

v 2lv) <t

V// 1(V’)2
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Note that the parametergets values which are, on average, In this paper we have studied one-field open universe
smaller than that found in the Einstein theory. models in which the gravitational effects are described by a

Certainly, apart from the scalar perturbations, tensor perdBD theory. In this theory the fundamental quantity is the
turbation also exists. These perturbations are usually assocBD field ¢, from which, after that universe enters the
ated with perturbations of the bubble wgll. Specifically, in  Lorentzian era, it can numerically be shown that it monotoni-
Einstein’s GR theory it is known that the fluctuations of the cally increases from an initial value to the present value of
bubble wall contribute to the low frequency spectrum of ten-the Planck mass obtained at the end of inflation. We have
sor perturbations, which can dominate over the scalar pertustudied solutions to two effective potentials in which the
bations[23—-25. Here, we expect something similar to occur CDL instantons exist. The existence of these instantons is
in our models, except at low enough JBD parameter, wherghown because the inequaljty”’|>H? is satisfied, and thus,
Einstein’s GR and the JBD theories can be distinguished onglow-roll inflationary universes are realized for different val-
from the other. However, due to the present bound of theies of the JBDw parameter.
observational limits from the solar system measurements for For the two models considered! remains greater than
the w parametef26], we expect these contributions to be- H? during the firste-folds of inflation. In the thin-wall limit
come tiny corrections of that obtained in Einstein's GRwe have also found an increase in the strength of the wall
theory. Certainly, this latter point deserves further investigatension, As, when compared with their analogous results
tion, which we hope to carry out in the near future. obtained in Einstein's GR theory.

Since inédpl/p graphs the maximum present a small dis-
placement in the JBD theory when compared with that ob-
. ) tained in Einstein’s GR theory, this would change the con-

Since we still we do not know the exact value of ®1e  graint on the value of the parameterthat appears in the
parameter, it is convenient to count on an inflationary uni-g.ar potentials. In this way, we have shown that one-field

verse model in whicH)<1. In this sense, we could have ,nen inflationary universe models can be realized in the JBD
single-bubble open inflationary universe models, which Mayheory.

be consistent with a natural scenario for understanding the
large scale homogeneity and isotropy structure. However,
open inflationary models have a more complicated primor-
dial spectrum than that obtained in flat universes, where ex-
tra discrete modes and possibly large tensor anisotropies S.d.C. was supported by Comision Nacional de Ciencias y
spectrum could be found, especially those related to supeffecnologia through FONDECYT Grant Nos. 1000305 and
curvature modes, which are particular to open inflationaryl010485. Also, it was partially supported by UCV Grant No.

universes. Forthcoming astronomical measurements will det23.752. R.H. is supported the MECESUP FSM 9901
termine if this extra terms are present in the scalar spectrunproject.

V. CONCLUSION
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