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Cosmology with tachyon field as dark energy
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We present a detailed study of cosmological effects of homogeneous tachyon matter coexisting with non-
relativistic matter and radiation, concentrating on the inverse square potential and the exponential potential for
the tachyonic scalar field. A distinguishing feature of these models~compared to other cosmological models! is
that the matter density parameter and the density parameter for tachyons remain comparable even in the matter
dominated phase. For the exponential potential, the solutions have an accelerating phase,followed bya phase
with a(t)}t2/3 as t→`. This eliminates the future event horizon present in cold dark matter models with a
cosmological constant (LCDM) and is an attractive feature from the string theory perspective. A comparison
with supernova type Ia data shows that for both the potentials there exists a range of models in which the
universe undergoes an accelerated expansion at low redshifts which are also consistent with the requirements
of structure formation. They do require fine-tuning of parameters but not any more than in the case ofL CDM
models or quintessence models.
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I. MOTIVATION

Observations suggest that our universe has entere
phase of accelerated expansion in the recent past. Friedm
equations can be consistent with such an accelerated ex
sion only if the universe is populated by a medium w
negative pressure. One of the possible sources which c
provide such a negative pressure will be a scalar field w
either of the following two types of Lagrangians:

Lquin5
1

2
]af]af2V~f!; ~1!

L tach52V~f!@12]af]af#1/2.

Both these Lagrangians involve one arbitrary functionV(f).
The first one,Lquin, which is a natural generalization of th
Lagrangian for a nonrelativistic particle,L5(1/2)q̇2

2V(q), is usually called quintessence~for a sample of mod-
els, see Ref.@1#!. When it acts as a source in a Friedma
universe, it is characterized by a time dependentw(t)
[(P/r) with

rq~ t !5
1

2
ḟ21V; Pq~ t !5

1

2
ḟ22V; ~2!

wq5
12~2V/ḟ2!

11~2V/ḟ2!
.
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Just asLquin generalizes the Lagrangian for the nonre
tivistic particle,L tach generalizes the Lagrangian for the rel
tivistic particle@2#. A relativistic particle with a~one dimen-
sional! position q(t) and massm is described by the

Lagrangian L52mA12q̇2. It has the energy E

5m/A12q̇2 and momentump5mq̇/A12q̇2 which are re-
lated byE25p21m2. As is well known, this allows the pos
sibility of having massless particles with finite energy f
which E25p2. This is achieved by taking the limit ofm

→0 and q̇→1, while keeping the ratio inE5m/A12q̇2

finite. The momentum acquires a life of its own, unconnec
with the velocityq̇, and the energy is expressed in terms
the momentum~rather than in terms ofq̇) in the Hamiltonian
formulation. We can now construct a field theory by upgra
ing q(t) to a fieldf. Relativistic invariance now requiresf
to depend on both space and time@f5f(t,x)# andq̇2 to be
replaced by] if] if. It is also possible now to treat the ma
parameterm as a function off, say,V(f) thereby obtaining
a field theoretic LagrangianL52V(f)A12] if] if. The
Hamiltonian structure of this theory is algebraically ve
similar to the special relativistic example we started with.
particular, the theory allows solutions in whichV
→0, ] if] if→1 simultaneously, keeping the energy~den-
sity! finite. Such solutions will have finite momentum de
sity ~analogous to a massless particle with finite moment
p) and energy density. Since the solutions can now dep
on both space and time~unlike the special relativistic ex
ample in whichq depended only on time!, the momentum
density can be an arbitrary function of the spatial coordina
This form of scalar field arises in string theories@3# and—for
technical reasons—is called a tachyonic scalar field.~The
structure of this Lagrangian is similar to those analyzed i
wide class of models calledK essence; see, for example, Re
@4#.! This provides a rich gamut of possibilities in the conte
of cosmology@2,4–7#.
©2003 The American Physical Society04-1
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The stress tensor for the tachyonic scalar field can
written in a perfect fluid form,

Tk
i 5~r1p!uiuk2pdk

i , ~3!

with

uk5
]kf

A] if] if
; r5

V~f!

A12] if] if
; ~4!

p52V~f!A12] if] if.

The remarkable feature of this stress tensor is that it could
considered asthe sum of a pressure less the dust compon
and a cosmological constant@2#. To show this explicitly, we
break up the densityr and the pressurep and write them in
a more suggestive form as

r5rV1rDM ; p5pV1pDM , ~5!

where

rDM5
V~f!] if] if

A12] if] if
; pDM50; ~6!

rV5V~f!A12] if] if; pV52rV.

This means that the stress tensor can be thought of as m
up of two components—one behaving like a pressure
fluid, while the other having a negative pressure. In the c
mological context, whenḟ is small ~compared toV in the
case of quintessence or compared to unity in the cas
tachyonic field!, both these sources havew→21 and mimic
a cosmological constant. Whenḟ@V, the quintessence ha
w'1 leading torq}(11z)6; the tachyonic field, on the
other hand, hasw'0 for ḟ→1 and behaves like nonrelativ
istic matter.

An additional motivation for studying models based
Lquin is the following: The standard explanation of the cu
rent cosmological observations will require two compone
of dark matter:~i! The first one is a dust component with th
equation of statep50 contributingVm'0.35. This compo-
nent clusters gravitationally at small scales (l &500 Mpc,
say! and will be able to explain observations from galactic
supercluster scales.~ii ! The second one is a negative press
component with equation of state likep5wr with 21,w
,20.5 contributing aboutVV'0.65. There is some leewa
in the (p/r) of the second component but it is certain thap
is negative and (p/r) is of order unity. The cosmologica
constant will providew521 while several other candidate
based on scalar fields with potentials@1# will provide differ-
ent values forw in the acceptable range. By and large, co
ponent~ii ! is noticed only in the large scale expansion and
does not cluster gravitationally to a significant extent. N
ther of the components~i! or ~ii ! has laboratory evidence fo
its existence directly or indirectly. In this sense, cosmolo
requires invoking wishful thinking twice to explain the cu
rent observations. It was suggested recently@2# that one may
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be able to explain the observations at all scales using a si
scalar field with a particular form of Lagrangian.

In this paper we explore the cosmological scenario
greater detail, concentrating on the background cosmolo
Our approach will be based on the above viewpoint and
shall treat the form of the Lagrangian forL tachas our starting
point without worrying about its origin. In particular, w
shallnot make any attempt to connect the form ofV(f) with
string theoretic models but will explore different possibi
ties, guided essentially by their cosmological viability.

We construct cosmological models with homogeneo
tachyon matter, assuming that tachyon matter coexists w
normal nonrelativistic matter and radiation. Section II pr
sents the equations for the evolution of the scale factor
the tachyon field. In Sec. III we present solutions of the
equations and discuss variations introduced by the avail
parameters in the model. Here we have analyzed two dif
ent models of the scalar field potential; one is the exponen
potential and the other is the inverse square potential wh
leads to power law cosmology@7#. In Sec. IV we compare
the model with observations and constrain the paramet
Section V discusses structure formation in tachyon mod
The results are summarized in a conclusion in Sec. VI.

II. TACHYON-MATTER COSMOLOGY

For a spatially flat universe, the Friedmann equations

S ȧ

a
D 2

5
8pG

3
r,

ä

a
52

4pG

3
~r13p!, ~7!

where r5rNR1rR1rf , with respective terms denotin
nonrelativistic, relativistic, and tachyon-matter densities. F
the tachyon fieldf we have

rf5
V~f!

A12ḟ2
, pf52V~f!A12ḟ2. ~8!

The equation of state for tachyon matter isp5wr with w

5ḟ221. The scalar field equation of motion is

f̈52~12ḟ2!F3Hḟ1
1

V~f!

dV

dfG . ~9!

The structure of this equation suggests that the changeḟ
goes to zero as it approaches61. In this case, the equatio
of state for the tachyon field is dustlike. Thus at any stag
the tachyon field behaves like dust, it will continue to do
for a long time. This behavior persists for a duration th
depends on the closeness ofḟ to 61. Detailed behavior will
depend on the form of the potential.

We shall discuss cosmological models with two differe
V(f) in this paper. The first one has the form

V~f!5
n

4pG S 12
2

3nD 1/2

f22.
4-2
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It was shown in Ref.@7# that the above potential leads to th
expansiona(t)5tn if f is the only source.@The form
V(f)}1/(f2f0)2 can be reduced to the form given abo
by a simple redefinition of the scalar field.# In this case, the

term in the square bracket in Eq.~9! is @3Hḟ22/f#. This
term vanishes in the asymptotic limit when tachyons do
nate andf}t. This asymptotic solution is stable in the sen
that all initial conditions eventually lead to this state. If no

mal matter or radiation dominates,ḟ stays close to the tran
sition point 2/(3Hf), unless we start the field very close

ḟ251. Thus the presence of nonrelativistic matter and
diation leads to a change in the equation of state for
tachyon field. The change in equation of state for the tach
field implies that it isnot a tracker field~for details see Refs
@8,9#!. To get a viable model, i.e., matter domination at hi
redshifts and an accelerating phase at low redshifts, we n

to start the tachyon field such thatḟ is very close to unity,
andf is very large. We will describe the fine tuning require
in greater detail when we discuss numerical solutions
these equations.

The second form of potential which we will consider
the exponential one withV(f)}e2f/f0. Then the term in
square brackets in Eq.~9! can be written as@3Hḟ21/f0#.
In a universe dominated by radiation or normal matter,H(t)
is a monotonically decreasing function of time whilef0 is a
constant. From this equation, it is clear thatḟ will increase if
ḟ,1/@3H(t)f0#. As H(t) keeps decreasing,ḟ will increase
slowly and approach unity, asymptotically. However, in t
meanwhile, tachyons may begin to dominate in terms of
ergy density and this changes the behavior. In a tach
dominated scenario, we get a rapid expansion of the univ
and H(t) varies much more slowly than in the matter
radiation dominated era. Thusḟ changes at a slower rate b
it still approaches unity and hence we—eventually—ge
dustlike equation of state for the tachyon field. Whether th
is an accelerating phase or not depends on the initial va
of ḟ, f0, andVf . Present values of the density parame
for nonrelativistic matter and tachyons fix the epoch at wh
tachyons start to dominate the energy density. The param
f0 sets the time whenḟ approaches unity and th
asymptotic dustlike phase for tachyons is reached. The in
value ofḟ fixes the duration of the accelerating phase. If t
value is very close to unity then it departs very little fro
this value through the entire evolution. On the other hand
it starts far away from this value, then the equation of st
for the tachyon field can lead to a significantly long accel
ating phase. It is possible to fine-tune the evolution by cho
ing a sufficiently large value for the constantf0, so thatḟ is
much smaller than unity even at the present epoch, and
requiring that the tachyon field start to dominate the ene
density of the universe at the present epoch. In such a c
the accelerating phase is a transient between the m
dominated era and the tachyon dominated era witha(t)
}t2/3 in both of these regimes. This model has been the fo
of many studies@10# though most of these have chosen
ignore the role of matter or radiation.
06350
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Some of the models discussed below have an accelera
phase for the universefollowed bya dustlike expansion with
a(t)}t2/3 asymptotically. These models have the attract
feature that they donot behave as a de Sitter-like universe
the asymptotic future and thus do not possess a future h
zon. String theoretic models have difficulty in incorporatin
cosmologies which approach the de Sitter-like phase asy
totically; from this point of view, these models can be the
retically attractive.

III. NUMERICAL SOLUTIONS TO COSMOLOGICAL
EQUATIONS

This section presents a detailed study of the backgro
tachyon cosmology. We solve the cosmological equation
motion numerically for the two potentials mentioned in t
previous section.

A. Inverse square potential

We start with the discussion of the potentialV(f)
}f22. The energy density of the universe is a mix of t
tachyon field, radiation, and nonrelativistic matter. T
asymptotic solutions for the universe with only the tachy
field as the source are well understood: we get rapid exp
sion of the universe with the fieldf growing in proportion
with time. We wish to see the effect of other species~matter
and radiation! on the evolution of the tachyon field, and th
stability of the asymptotic solution.

Since only two of the three equations in Eqs.~7! and ~9!
are independent, we choose to drop the equation with
second derivative of the scale factor. We choose some ins
of time ast in and rescale variables as follows, for numeric
convenience:

x5tH in , y5a~ t !/a~ t in!, y85dy/dx ~10!

and c5f/f in ,c85dc/dx. ~We will use the present epoc
and Planck epoch fort in , in two different contexts describe
below.! Then the equations are

y85yFVM in

y3
1

VRin

y4
1

2n

3 S 12
2

3nD 1/2

3
1

f in
2 H in

2 c2A12f in
2 H in

2 c82G 1/2

, ~11!

c95~12f in
2 H in

2 c82!S 2

f in
2 H in

2 c
23

y8

y
c in8 D . ~12!

The subscript in refers to the initial value, andVM andVR
refer to the density parameters for matter and radiation,
spectively. It is assumed that the sum of all density para
eters is unity.

The initial conditions fory andc follow from their defi-
nition: yin51,c in51. The initial condition forc8 can be
related to the density parameter of tachyon matter att5t in ,
4-3
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Vf
in
5

2n

3
S 12

2

3n
D 1/2 1

f in
2 H in

2 c in
2A12f in

2 H in
2 c in8

2
. ~13!

There are two branches of solutions, one with positivec8
and another with negative values ofc8. For each set ofVmin

andn, there is a minimum value off inH in below which we
cannot satisfy this equation. We can solve these equatio
c82.0, or if

f in
2 H in

2 >
2n

3Vf in

S 12
2

3nD 1/2

. ~14!

For a given value off in
2 H in

2 , we get initial values of all
the variables from the above equations and using these
evolve these quantities. As shown in the above equati
parametersn, Vf in

, f inH in , anduḟ inu are interrelated. For a

fixed n andVf in
, larger values of thef in

2 H in
2 imply a larger

value of initial uḟu, and hence an equation of state that
closer to that of dust.

We study the evolution of such a model in three ste
First we evolve the system from the present day to the fu
and show that the asymptotic solution@7# is stable, i.e., the
entire allowed range of present values leads to the s
asymptotic solution. In this context ‘‘in’’ refers to the prese
values of the parameters. We choose the present valu
VM in

50.3, and all the results shown here usen56 ~results

do not change qualitatively for other values ofn), i.e., the
asymptotic solution givesa(t)}t6.

FIG. 1. Phase portrait for the scale factor. This plot is
VM (present)50.3 and n56. We choose the present value
f inH in52.4 where ‘‘in’’ refers to the present epoch (a51;z50).
The transition from a decelerated expansion to an accelerated o
clear in this picture. We have used this model for all the figu
pertaining to the inverse square potential.
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We plot the phase portrait for the scale factor in Fig.
This figure clearly shows the late time acceleration in
tachyon dominated universe.~The figures exhibit past as we
as future evolution; the past evolution is discussed later.! The
positive branch is plotted in this and the following figur
but the discussion holds true for the negative branch as w
The evolution of fieldf and its time derivativeḟ are shown
in Figs. 2 and 3. These too demonstrate the approach to
asymptotic solution for the two initial conditions. In th
asymptotic future, we expectḟ to approach a constant valu

is
s

FIG. 2. The tachyon fieldf/fpresentas a function of redshift.
The model is the same as in Fig. 1.

FIG. 3. This plot showsḟ as a function of redshift for the sam
model.
4-4
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COSMOLOGY WITH TACHYON FIELD . . . PHYSICAL REVIEW D67, 063504 ~2003!
of A2/3n. Indeed, both the negative and the positi
branches~which, respectively, correspond to positivec8 and
negativec8) exhibit this behavior. The fact that other initia
conditions lead to similar behavior is shown in the pha
diagram for fieldf in Fig. 4. We see that for the entire rang
of initial conditions for the fieldf, it quickly approaches the
asymptotic solution. It takes longer to reach the asympt
solution for initial conditions whereuf inH inu ~the value at
present! is much larger than its minimum allowed valu
since in this caseuḟu is closer to unity and hence the prese
equation of state for the tachyon field is like that of a pr
sureless fluid. In such a case the accelerating phase o
universe starts at late times compared to models wh
uf inH inu is closer to its minimum allowed value. Thus w
need to fine-tune the value of this parameter in order to
range for the accelerating phase of the universe to sta
low redshifts, as required by observations.

In future evolution, the density parameter for matter d
creases with the start of the accelerating phase. The de
parameter for tachyons begins to increase in this phase
quickly approaches unity.

Next we study the behavior of these solutions in the p
i.e., we use the present day conditions and evolve back to
the kind of initial conditions that are required for us to ge
viable model today. Figures used to illustrate future evo
tion also show the past evolution of these quantities. As m
tivated in Sec. II, we expect matter and radiation to driveḟ
away from unity towards smaller values in forward evo
tion. So, as we evolve the equations back, we expect
present day conditions to lead towardsḟ51. This is indeed

FIG. 4. Phase plot for the tachyon field. Here, we started fr

initial conditions with a fixed value off andn. ḟ was varied and
Vf in

was allowed to vary with it. Both the positive branch as w
as the negative branch are shown. The scale factora(t)51/(1
1z) is marked along the arrow heads.
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what we find in numerical solutions. The equation of sta
for the tachyon field approaches that of a pressureless fl
and the universe expands witha(t)}t2/3 at high redshifts. At
even earlier times, radiation takes over and both matter
tachyons become subdominant components.

The time dependent matter density parameterVM(t)
58pGrM(t)/3H2(t) is plotted as a function of redshift in
Fig. 5. Here nonrelativistic matter dominates in the sense
VM.Vf but evolution does not driveVf towards zero or
VM close to unity. Instead the two density parameters rem
comparable during much of the ‘‘matter dominated’’ e
~from z'103 to z'2). This is a unique feature not seen
other cosmological models. In the phase where the equa
of state of the tachyon field approachesw.0, the ratio of the
density parameter for nonrelativistic matter and tachyon fi
becomes a constant. For models of interest, i.e., where
accelerating phase starts at low redshifts, this ratio is of or
unity for most choices of parameters and the relative imp
tance of tachyons and matter does not change up to the
when the accelerating phase begins.~This has a significant
effect on gravitational instability and growth of perturb
tions; see Sec. V.!

The tachyon fieldf approaches a nearly constant value
the past and changes very little from its value in the ea
universe to the time when the accelerating phase begins
the preacceleration phase,ḟ is close to unity. This means
that the fieldf starts from large values in the models th
satisfy basic observational constraints. This is the fine tun
required in constructing viable tachyon models. In Fig. 6
show the evolution off(t)H(t) as a function of redshift. As
expected, this is a constant in the asymptotic regime wh

FIG. 5. VM , Vf , andVR as functions of redshift. The matte
density parameter is almost a constant at 2<z<103 and then drops
to small values as radiation begins to dominate. The present
values of the density parameter for matter and radiation are 0.3
1025, respectively.
4-5
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BAGLA, JASSAL, AND PADMANABHAN PHYSICAL REVIEW D 67, 063504 ~2003!
tachyons dominate. However, this function evolves rapidly
the dustlike regime. Sincef remains a constant in this re
gime, the change is mainly due to change inH(t). The
asymptotic value of this product isfH(t)→A2n/3, so we
expectfH(t) to decrease from its initial value and make
transition to the constant asymptotic value. We need
choose the initial value of this product so that the transit
from dustlike to accelerating phase happens around n
Since the asymptotic value isfH(t)→A2n/3, and this is of
order unity for smalln, the value off in the early universe
has to be large. The productf(tPl)H(tPl) is approximately
f(t0)H(tPl) since f does not change by much during i
evolution. Since the present dayf(t0)H0 is of order unity,
f(tPl)HPl'HPl /H0. ~Here t0 is the present time andH0 is
the present value of the Hubble constant.! Thus the initial
value of f sets the time scale when the transition
asymptotic behavior takes place. This fine-tuning is sim
to that needed in models with the cosmological const
since the value ofL has to be tuned to arrange for the a
celerating phase to start at low redshifts.

To illustrate this point further, we start the integration
Planck time for a range of initial conditions and show th
indeed we obtain this behavior. The age of the universe a
time of transition from pressureless behavior for the tach
field to an effective cosmological constant behavior is inde
proportional to the initial value off. To illustrate this, we
first plot w for the tachyon field as a function of the sca
factor in Fig. 7. This is plotted for many values o
f(tPlanck)H(tPlanck). An order of magnitude increase in th
initial value delays the onset of the accelerating phase
roughly an order. Hence to achieve the accelerating phas

FIG. 6. Plot offH as a function of redshift.
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late times, one requires the fine-tuned value mentio
above. The same behavior is summarized in Fig. 8, where
plot the scale factor whenwf5wfasym

/25@2/(3n)21#/2 as

a function off(tPlanck)H(tPlanck).

FIG. 7. Plot ofwf5ḟ221 as a function of the scale factor. Th
curve on the left has the lowest value of the initialfH and in-
creases by an order of magnitude for respective curves as we
proach the right.

FIG. 8. Plot off inH in ~at Planck time! as a function of the scale

factor value at whichwf5ḟ221 becomes half its asymptoti
value.
4-6
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COSMOLOGY WITH TACHYON FIELD . . . PHYSICAL REVIEW D67, 063504 ~2003!
B. Exponential potential

We now repeat the above analysis for the exponential
tential. As before, we consider a mix of nonrelativistic m
ter, radiation/relativistic matter, and the tachyon field. We
Vf50.7 at the present epoch.@In the literature, it has been
suggested that the exponential potential does arise in som
the string theoretic models. However, in our approach,
think of V(f) as an arbitrary function, just as in quinte
sence models.# For the purpose of numerical work, we hav
taken the value off/f0 to be 102 at the present epoch. Th
choice of ḟ fixes the amplitude of the potential since w
have already fixedVf andf/f0. The remaining paramete
is f0, and since we have already fixedf in /f0, fixing f0 is
equivalent to fixingf in . We use the combinationf inH in to
construct a dimensionless parameter which indicates
value off0 . f inH in should be of order unity iff in is com-
parable to the age of the Universe today. We shall study
variation of the quantities of interest with time for a range
values ofḟ andf inH in .

In the case of the exponential potential, the equation
state for the tachyon field approaches that of dust ast→`.
Thus any accelerating phase that we might get will be
lowed by a dustlike phase. The accelerating phase oc
when the tachyon field dominates the energy density of
universe since it is only in this case that we can getr13p
,0. For an accelerating phase to exist at all, the tach
field should begin to dominatebefore it enters the dustlike
phase. Thus the duration of the accelerating phase will

FIG. 9. Phase plot for the exponential potential. The duration

the accelerated phase depends on the initial value ofḟ. The accel-
erated phase ends into a dustlike phase of tachyons. The solid l

for ḟ in50.1, the dashed line forḟ in50.3, and the dot-dashed

dashed, and dot-dot-dashed curves forḟ in50.5, 0.7, and 0.9, re-
spectively.
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pend on how differentḟ is from unity at the start of the
tachyon dominated phase.

The phase plot for the scale factor is shown in Fig. 9. W
have keptf inH in fixed at the present day and variedḟ for a
range of values. The unique feature of this model is that
regain the dustlike phase in the future. It is clear from t
plot that the duration of the accelerating phase varies con
erably across models shown here. The supernova obse
tions require the universe to be in an accelerating phas
z,0.25, so for models that do not have an accelerat
phase at all or are too small an accelerating phase ca
ruled out easily.

The fact that these cosmological models have two de
erating phases, with an accelerating phase sandwiched in
tween, is noteworthy. In such models, one can accommo
the current acceleration of the universe without the mo
‘‘getting stuck’’ in the accelerating phase for eternity. Sin
the universe hasa(t)}t2/3 asymptotically, it follows that
there will be no future horizon~for some other attempts to
eliminate the future horizon, see@16#!. String theoretic mod-
els have difficulty in accommodating an asymptotically
Sitter-like universe and our model could help in this conte

The plot in Fig. 10 showsVm ,Vf as functions of redshift
and shows thatVf increases monotonically with time.

A plot of ḟ as a function ofVf in Fig. 11 shows that all
initial conditions lead toḟ51. The functionfH increases
with 11z. It is clear that all initial conditions lead to a
narrow range of asymptotic values for this product.

If we keep the value ofḟ fixed and increasef inH in , the
duration of the accelerating phase increases. This is il
trated in Fig. 12. A plot of the density parameters is shown
Fig. 13.

f

is

FIG. 10. Plot of density parameters for matter and tachyon
functions of redshift. The models are the same as those in the
vious figure.
4-7
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IV. COMPARISON WITH SUPERNOVA IA
OBSERVATIONS

We now compare the results with supernova type Ia
servations by Perlmutteret al. @12,13#. The data from the

FIG. 11. Plot of ḟ vs Vf . The asymptotic valueḟ51 is
reached irrespective of the initial conditions. The models are
same as these in the previous figure.

FIG. 12. Phase plot for a fixed value ofḟ50.38 and varying
f inH in ~present day!. The solid line is forf inH in51/3, and the
dashed, dot-dashed, dotted, and dot-dot-dashed lines forf inH in

55/3, 7/3, 3, and 11/3, respectively. As we increase the value
f inH in the duration of accelerated phase increases.
06350
-

redshift and luminosity distance observations of these su
novae, collected by the Supernova Cosmology Project, c
clude that the universe is currently going through an acc
erating phase of expansion. This is a powerful constraint
cosmological models, e.g., it rules out the Einstein–de Si
model at a high confidence level. The obvious contender
positive cosmological constant, though more exotic ma
driving the accelerated expansion is also a possibility. Si
currently the energy density of the universe is dominated
a form of matter with negative pressure, the presence o
tachyon source is thus expected to be consistent with th
observations.

The results of theoretical model and observations
compared for luminosity measured in logarithmic units, i.
magnitudes defined by

mB~z!5M15 log10~DL!, ~15!

where M5M25 log10(H0) and DL5H0dL , the factorM
being the absolute magnitude of the object anddL is the
luminosity distance,

dL5~11z!a~ t0!r ~z!; r ~z!5cE dt

a~ t !
~16!

wherez is the redshift.
We perform thex2 test of goodness of fit on the mode

with V(f)}f22. For our analysis, we have used all the
supernovae quoted in Ref.@12#. Of these 42 are high redshif
supernovae reported by the supernova cosmology pro
@12,13# and 18 low redshift supernovae of the Callan-Tollo
survey @14,15#. We have three parameters:VM(in), n, and
f inH in ~with ‘‘in’’ referring to the present epoch!. An addi-
tional freedom is the choice of sign ofḟ(x5t inH in). We

e

of

FIG. 13. This plot shows density parameters for matter a

tachyon for a fixed value ofḟ50.38 and varyingf inH in . The mod-
els are same as these in Fig. 12.
4-8
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freezeVM(in) at 0.3 and we find that for any choice ofn, we
can get a reasonably low value for reducedx2 by choosing
f0H0 judiciously. In addition, the value ofx2 does not vary
much over the range of parameter values that we have s
ied. The minimum value ofx2 per degree of freedom that w
encountered is around 1.93. This test does not isolate
particular region in parameter space so we shall refrain fr
quoting any particular values of parameters as our bes
Suffice it to say that a large range of each of these parame
is allowed by the supernova observations. This discuss
holds for both the potentials discussed above.

We have plotted the distance modulusdm(z)5m2M as
a function of redshift for one of the models in Fig. 14. T
data points for the 60 supernovae are plotted as well.
contours of reducedx2 and the value ofVm at redshiftz
510 are illustrated in Fig. 15. This is of interest while stud
ing structure formation in these models.

We also did ax2 analysis of models with a range of pa
rameters for the exponential potential. Here again the th
retical models satisfy the supernova constraints and we
not rule out a specific model by this analysis. We plot t
contours ofVM at z510 andx2 in Fig. 16. We obtain results
similar to those for 1/f2 potential.

V. STRUCTURE FORMATION IN TACHYONIC MODELS

Cosmological models with tachyons and nonrelativis
matter have a significantly different behavior as compare
quintessence or the cosmological constant models. The m
important difference here is that the source of acceleratio
the Universe makes an insignificant contribution to the
ergy density of the universe beyondz.1 in quintessence o
cosmological constant models, whereas in tachyon mo
the density parameter for the scalar field does not bec

FIG. 14. Comparison of the model withn56 and the presen
fH52.56 with supernova type Ia data.
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insignificant in comparison with the density parameter
matter in most models. This has important implications
structure formation in these models since the density par
eter of the matter that clusters is always smaller than un
and the rate at which perturbations grow will be smaller th
in standard models. The exception to this rule is a sm
subset of models whereVf approaches values much small
than unity beyondz'1. As can be seen in the contour plo
in the previous section, these are a small subset of the m
els that satisfy the constraints set by supernova observat

Given that the density parameter for matter is almos
constant at high redshifts (3,z,103), we can solve for the
rate of growth for density contrast in the linear limit. Th
equation for the density contrast is given by@11#

d̈12
ȧ

a
ḋ54pGrd, ~17!

whered5(r2 r̄)/ r̄, the factorr̄ being the average density
Rescaling in the same manner as the cosmological equa
we have

d912
H

H0
d85

3

2
VM0

a0
3

a3
d. ~18!

HereVM0
is the density parameter for nonrelativistic matt

at the epoch when the scale factor isa0 and the Hubble
parameter isH0. SinceVM is nearly constant at high red
shift, we getd}tm, and m5(1/6)(A1124VM21) for the

FIG. 15. Contours ofVM at z510 ~dashed lines! and reduced
x2 ~solid lines! for V(f)}1/f2. There is a small region where
small x2 overlaps Vm.0.9. This region is nearn51.2 and
log(f inH in /f in1H in1)50.05. The values along thex axis are ratios
of f inH in to the minimum value off inH in for a particular value of
powern.
4-9



ed
n

et
, a
ic
o

de

s
m
o
d
o

b

n
e
rr

w
nd
wt
.
ti
ap
ce
7

th
er

uct
to
is
row
s; if
row
t in
led
er,
as
a

er-
our
of
o-
et
all

erse

od-
gy
tion
dels

f the
sent

eter
ifts,
r is

e

-
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growing mode. The unique feature here is that at high r
shift, the matter density parameter does not saturate at u
for all the models. This is true for both exponential and 1/f2

potentials. For models in which the matter density param
does not reach unity, the growth of perturbations is slow
can be seen from the above equation. For models in wh
the density parameter is unity at high redshifts, the growth
perturbations is closer to that in the cold dark matter mo
with a cosmological constant (LCDM) model. The slower
growth of perturbation implies that rms fluctuations in ma
distribution were larger at the time of recombination as co
pared to conventional models. This will have an impact
the temperature anisotropies in the microwave backgroun
these models. Since the latter is tightly constrained from c
mic microwave background radiation~CMBR! measure-
ments, models with slow growth of perturbations can
ruled out.

We use the solution outlined above to set the initial co
ditions for Eq.~18! and evolve forward through the regim
where tachyons begin to dominate and matter becomes i
evant. As the universe begins to accelerate, at late times
anticipate that the growing mode would slow down a
eventually saturate. This is indeed true. The rate of gro
for d slows down once the universe begins to accelerate
comes to a halt around the epoch where the accelera
phase begins. This late time behavior is similar to what h
pens in most models in which the universe begins to ac
erate at late times. The evolution is illustrated in Fig. 1
Here we have plotted two different models, one in which
density parameter saturates at a small value and the oth
which it approaches unity.

FIG. 16. Contours ofVM at z510 ~dashed lines! and reduced
x2 ~solid lines!. The favored region is aroundf inH in51 and 0.25

<ḟ<0.4.
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It is clear from the figure that one can indeed constr
models in which the growth of perturbation is very similar
that LCDM models. Such models are clearly viable. It
also obvious that these models are confined to a nar
range of parameters, as described in the figure caption
one moves out of this range, then the perturbations g
more slowly and should have higher amplitude in the pas
order to maintain a given amplitude today. These are ru
out by CMBR observations. The following caveat, howev
needs to be kept in mind when ruling out such models. It w
suggested in Ref.@2# that one can construct models with
tachyonic scalar field in which the equation of state is diff
ent at small scales and large scales. In such models,
conclusions will apply only at large scales, and growth
structure at small scales will still be possible, i.e., inhom
geneities in the tachyon field will play a role and may offs
the conclusions about the growth of perturbations at sm
scales, whereas our results for the expansion of the univ
will remain valid at sufficiently large scales.

VI. CONCLUSIONS

We have shown that it is possible to construct viable m
els with tachyons contributing significantly to the ener
density of the universe. In these models, matter, radia
and tachyons coexist. We show that a subset of these mo
satisfies the constraints on the accelerating expansion o
universe. For the accelerating phase to occur at the pre
epoch, it is necessary to fine-tune the initial conditions.

We have further demonstrated that the density param
for tachyons does not become negligible at high redsh
hence the growth of perturbations in nonrelativistic matte

FIG. 17. Evolution of the density contrast with redshift. Th
curves correspond toV in50.3 ~present day value!. The solid curve
is for theLCDM model given for comparison. The density param
eter VM'0.98 at z510 for the dashed line andVM'0.56 at z
510 for the dotted line.
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slower for most models than, e.g., in theLCDM model. This
problem does not effect a small subset of models. Howe
given that the density parameter of tachyons cannot be
nored in the ‘‘matter dominated era,’’ it is essential to stu
the fate of fluctuations in the tachyon field.
ev
.

s.

.

d

g

06350
r,
g-

ACKNOWLEDGMENTS

H.K.J. thanks Ranjeev Misra for useful discussions. J.S
is grateful to Rajaram Nityananda for insightful commen
All the authors thank K. Subramanian for useful commen
H.

s.
,

,

x-

n.

b-
d,

ab-
@1# B. Ratra and P. J. E. Peebles, Phys. Rev. D37, 3406~1988!; C.
Wetterich, Nucl. Phys.B302, 668~1988!; P. G. Ferreira and M.
Joyce, Phys. Rev. D58, 023503~1998!; J. Frieman, C. T. Hill,
A. Stebbins, and I. Waga, Phys. Rev. Lett.75, 2077~1995!; P.
Brax and J. Martin, Phys. Rev. D61, 103502~2000!; L. A.
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