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Cosmology with tachyon field as dark energy
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We present a detailed study of cosmological effects of homogeneous tachyon matter coexisting with non-
relativistic matter and radiation, concentrating on the inverse square potential and the exponential potential for
the tachyonic scalar field. A distinguishing feature of these mddelsipared to other cosmological modets
that the matter density parameter and the density parameter for tachyons remain comparable even in the matter
dominated phase. For the exponential potential, the solutions have an acceleratindqtioass] bya phase
with a(t)«t?® ast—c. This eliminates the future event horizon present in cold dark matter models with a
cosmological constant\CDM) and is an attractive feature from the string theory perspective. A comparison
with supernova type la data shows that for both the potentials there exists a range of models in which the
universe undergoes an accelerated expansion at low redshifts which are also consistent with the requirements
of structure formation. They do require fine-tuning of parameters but not any more than in the da€®bf
models or quintessence models.
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I. MOTIVATION Just asl i, generalizes the Lagrangian for the nonrela-
tivistic particle,L 5., generalizes the Lagrangian for the rela-
Observations suggest that our universe has entered tivistic particle[2]. A relativistic particle with aone dimen-
phase of accelerated expansion in the recent past. Friedmagina) position gq(t) and massm is described by the
equations can be consistent with such an accelerated exparagrangian L=-mvy1—qg% It has the energy E
sion iny if the universe is populat.ed by a medium with — /1_q2 and momentunp=mg/ /1_(']2 which are re-
negative pressure. One of the possible sources which couldieq pyE2=p?+m?2. As is well known, this allows the pos-
provide such a negative pressure will be a scalar field withsjpility of having massless particles with finite energy for
either of the following two types of Lagrangians: which E2=p?. This is achieved by taking the limit af
—0 and EJ|—>1, while keeping the ratio irE=m/\/1—('q2
finite. The momentum acquires a life of its own, unconnected
oY) . e : :
with the velocityq, and the energy is expressed in terms of

the momentungrather than in terms dj) in the Hamiltonian
Liacti= — V(@) [1— dapd®p] 2 formulation. We can now construct a field theory by upgrad-
ing q(t) to a field ¢. Relativistic invariance now requires

Both these Lagrangians involve one arbitrary functiti).  to depend on both space and tifng= ¢(t,x)] andqg? to be
The first one L g, Which is a natural generalization of the replaced by ¢4'é. It is also possible now to treat the mass
Lagrangian for a nonrelativistic particleL = (1/2)g? par_ametem asa function (_)tb, say,V(¢) thereby obtaining
—V(q), is usually called quintessenéler a sample of mod- 2 field theoretic Lagrangiah = —V(¢)y1—d'$d;é. The
els, see Ref[1]). When it acts as a source in a FriedmannHamiltonian structure of this theory is algebraically very

universe, it is characterized by a time dependerit) similar to the special relativistic example we started with. In
=(P/p) with particular, the theory allows solutions in whiclv

—0, d;¢d'¢»—1 simultaneously, keeping the enerfgen-
1 1 sity) finite. Such solutions will have finite momentum den-
po(1)==d2+V; Py(t)==¢?—V: (2)  sity (analogous to a massless particle with finite momentum
a 2 a 2 p) and energy density. Since the solutions can now depend
on both space and tim@nlike the special relativistic ex-
l—(2V/£;52) ampl_e in whichq dep_ended only on timethe momentu_m
= density can be an arbitrary function of the spatial coordinate.
1+(2V/¢?) This form of scalar field arises in string theor[&3 and—for
technical reasons—is called a tachyonic scalar fi€ldhe
structure of this Lagrangian is similar to those analyzed in a

1
Lquinzi&a‘ﬁé’a‘f’_ V(g);

*Email address: jasjeet@mri.ernet.in wide class of models callgd essence; see, for example, Ref.
"Email address: hkj@iucaa.ernet.in [4].) This provides a rich gamut of possibilities in the context
*Email address: nabhan@iucaa.ernet.in of cosmology[2,4-7.
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The stress tensor for the tachyonic scalar field can bé&e able to explain the observations at all scales using a single
written in a perfect fluid form, scalar field with a particular form of Lagrangian.
, _ _ In this paper we explore the cosmological scenario in
Ty=(p+p)u'u—péy, ()  greater detail, concentrating on the background cosmology.
. Our approach will be based on the above viewpoint and we
with shall treat the form of the Lagrangian foy,c, as our starting
point without worrying about its origin. In particular, we
U= w¢ . V@) " shallnotmake any attempt to connect the form\if¢p) with
K \/W’ p W’ string theoretic models but will explore different possibili-
ties, guided essentially by their cosmological viability.
_ Ty We construct cosmological models with homogeneous
: V(@IWW1= 9 $aid. tachyon matter, assuming that tachyon matter coexists with
The remarkable feature of this stress tensor is that it could beormal nonrelativistic matter and radiation. Section Il pre-
considered athe sum of a pressure less the dust Componerﬁents the equations for the evolution of the scale factor and
and a Cosmo|ogica| Constam]_ To show this expﬁciﬂy, we the taChyon field. In Sec. Il we present solutions of these
break up the density and the pressure and write them in ~ €quations and discuss variations introduced by the available

a more suggestive form as parameters in the model. Here we have analyzed two differ-
ent models of the scalar field potential; one is the exponential
p=pyv+pom; P=Pv+Pom, (5)  potential and the other is the inverse square potential which
leads to power law cosmolody]. In Sec. IV we compare
where the model with observations and constrain the parameters.
_ Section V discusses structure formation in tachyon models.
V(p)d' po;d 0 ® The results are summarized in a conclusion in Sec. VI.
PoM= ————1 Pom=VY;
DM 1-_Jdad DM
ll. TACHYON-MATTER COSMOLOGY
pv=V(P)N1=d'¢dih; py=—py. For a spatially flat universe, the Friedmann equations are
This means that the stress tensor can be thought of as made 2 .
up of two components—one behaving like a pressureless (E) :SWGP a_ 4”G(p+3p) @
fluid, while the other having a negative pressure. In the cos- a 3 77 a 3 ’

mological context, whenp is small (compared toV in the . . _
case of quintessence or compared to unity in the case d¥here p=pnr+tprtpy, With respective terms denoting
tachyonic field, both these sources hawe——1 and mimic  honrelativistic, relativistic, and tachyon-matter densities. For
a cosmological constant. Wheh>V, the quintessence has the tachyon fieldp we have

w=1 leading tOpqOC(l+Z)6; the tachyonic field, on the

other hand, haa/~0 for ¢—1 and behaves like nonrelativ- V(¢) :
istic matter. ? P¢_—\/—,2a Ps=—V(¢p)V1- > (8)
An additional motivation for studying models based on 1-¢

L quin is the following: The standard explanation of the cur- _ ) )
rent cosmological observations will require two components! "€ equation of state for tachyon matterpis-wp with w
of dark matter{i) The first one is a dust component with the = ¢>—1. The scalar field equation of motion is
equation of statgp=0 contributing(},,~0.35. This compo-

nent clusters gravitationally at small scalds=600 Mpc, . o . av
say) and will be able to explain observations from galactic to ¢=—(1-¢°) 3H¢+W E
supercluster scale6i) The second one is a negative pressure

component with equation of state lige=wp with —1<w
< —0.5 contributing abouf),,~0.65. There is some leeway
in the (p/p) of the second component but it is certain tpat
is negative and ff/p) is of order unity. The cosmological

. 9)

The structure of this equation suggests that the chan@e in
goes to zero as it approachesdl. In this case, the equation
of state for the tachyon field is dustlike. Thus at any stage if

. S : . the tachyon field behaves like dust, it will continue to do so
constant will providev= —1 while several other candidates

based on scalar fields with potenti&l will provide differ- for a long time. This behgvior persists for a duration that
ent values fow in the acceptable range. By and large, com-depends on the closenessdto = 1 Detailed behavior will
ponent(ii) is noticed only in the large scale expansion and itdéPend on the form of the potential. _ _

does not cluster gravitationally to a significant extent. Nei- e shall discuss cosmological models with two different
ther of the component§) or (ii) has laboratory evidence for V(#) in this paper. The first one has the form

its existence directly or indirectly. In this sense, cosmology
requires invoking wishful thinking twice to explain the cur-

n 1/2
rent observations. It was suggested recefglythat one may Vig)= 47G ( " 3n

¢ 2
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It was shown in Ref[ 7] that the above potential leads to the ~ Some of the models discussed below have an accelerating
expansiona(t)=t" if ¢ is the only source[The form phase for the universellowed bya dustlike expansion with
V() 1/(d— ¢o)? can be reduced to the form given above a(t)ct?? asymptotically. These models have the attractive
by a simple redefinition of the scalar fie}dn this case, the feature that they daot behave as a de Sitter-like universe in
term in the square bracket in E(9) is [3H¢—2/¢>] This the asymptotic future and thus do not possess a future hori-
term vanishes in the asymptotic limit when tachyons dom;-2oN- Strin_g theo_retic models have diffi.culty.in incorporating
nate andp«t. This asymptotic solution is stable in the sensecosmOIOgIeS which approach the de Sitter-like phase asymp-

NS . . totically; from this point of view, these models can be theo-
that all initial conditions eventually lead to this state. If nor-

o . . retically attractive.
mal matter or radiation dominate, stays close to the tran-
sition point 2/(H ), unless we start th_e_f@d very close to L. NUMERICAL SOLUTIONS TO COSMOLOGICAL
¢*=1. Thus the presence of nonrelativistic matter and ra- EQUATIONS
diation leads to a change in the equation of state for the

tachyon field. The change in equation of state for the tachyon This section presents a detailed study of the background
field implies that it isnot a tracker fieldfor details see Refs. fachyon cosmology. We solve the cosmological equations of

[8,9]). To get a viable model, i.e., matter domination at highmotion numerically for the two potentials mentioned in the
redshifts and an accelerating phase at low redshifts, we ned€VIous section.

to start the tachyon field such thatis very close to unity,

and ¢ is very large. We will describe the fine tuning required A. Inverse square potential
in greater detail when we discuss numerical solutions of \We start with the discussion of the potentisl(¢)
these equations. x ¢~ 2. The energy density of the universe is a mix of the

The second form of potential which we will consider is tachyon field, radiation, and nonrelativistic matter. The
the exponential one witl(¢)=e~##. Then the term in asymptotic solutions for the universe with only the tachyon
square brackets in Eq9) can be written a§3H¢—1/¢,].  field as the source are well understood: we get rapid expan-
In a universe dominated by radiation or normal mati(t) sion of the universe with the fielp growing in proportion
is a monotonically decreasing function of time whitg is a  with time. We wish to see the effect of other spediestter
constant. From this equation, it is clear tifawill increase if ~@nd radiatiop on the evolution of the tachyon field, and the

. A stability of the asymptotic solution.
¢<1I3H(t) bo]. As H(t).keeps decrgasmgf; will increase Since only two of the three equations in E¢g). and(9)
slowly and approach unity, asymptotically. However, in the : . .
: . . . are independent, we choose to drop the equation with the
meanwhile, tachyons may begin to dominate in terms of en- S :
: : . second derivative of the scale factor. We choose some instant
ergy density and this changes the behavior. In a tachyogf time ast;, and rescale variables as follows, for numerical
dominated scenario, we get a rapid expansion of the universg n k

and H(t) varies much more slowly than in the matter or convenience-
radiation dominated era. Thyschanges at a slower rate but x=tHy,, y=a(t)/a(ty), y' =dy/dx (10

it still approaches unity and hence we—eventually—get a

dustlike equation of state for the tachyon field. Whether thereind = ¢/ ¢, , ' =dy/dx. (We will use the present epoch
is an accelerating phase or not depends on the initial valuesnd Planck epoch fds,, in two different contexts described
of ¢, ¢o, andQ),,. Present values of the density parameterbelow) Then the equations are

for nonrelativistic matter and tachyons fix the epoch at which

tachyons start to dominate the energy density. The parameter

¢y sets the time when¢ approaches unity and the y'=y
asymptotic dustlike phase for tachyons is reached. The initial

value of ¢ fixes the duration of the accelerating phase. If this

QMin QRin 2n< 2 )1/2

vyt 3T an

12
1

value is very close to unity then it departs very little from % (11)
this value through the entire evolution. On the other hand, if GEHZ YA \1— p2HZ 2|

it starts far away from this value, then the equation of state

for the tachyon field can lead to a significantly long acceler- 5 ,

ating phase. It is possible to fine-tune the evolution by choos- ' =(1— p2H? ¢r2)( _ 3y_ o ) (12)
. L. - In"in 2H2 y nj-

ing a sufficiently large value for the constafg, so thate is dinHind

much smaller than unity even at the present epoch, and by

requiring that the tachyon field start to dominate the energylhe subscript in refers to the initial value, afid, and Qg
density of the universe at the present epoch. In such a caseefer to the density parameters for matter and radiation, re-
the accelerating phase is a transient between the mattepectively. It is assumed that the sum of all density param-
dominated era and the tachyon dominated era wifh eters is unity.

«t??in both of these regimes. This model has been the focus The initial conditions fory and ¢ follow from their defi-

of many studie§10] though most of these have chosen tonition: y,,=1,4;,=1. The initial condition fory’ can be
ignore the role of matter or radiation. related to the density parameter of tachyon matter=tt, ,
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FIG. 1. Phase portrait for the scale factor. This plot is for

QO (presenti=0.3 andn=6. We choose the present value of

dinHin=2.4 where “in” refers to the present epocl1;z=0).
The transition from a decelerated expansion to an accelerated one
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FIG. 2. The tachyon fieldb/ ¢yreseni@s @ function of redshift.
The model is the same as in Fig. 1.

~ We plot the phase portrait for the scale factor in Fig. 1.
This figure clearly shows the late time acceleration in a

clear in this picture. We have used this model for all the ﬁgurestachyon dominated univers@he figures exhibit past as well

pertaining to the inverse square potential.

2n 2 1

1/2
S22 |
"3 3] g2HZYR\1- gAHL

There are two branches of solutions, one with positive
and another with negative values @f. For each set Oﬂmin

andn, there is a minimum value ob;,H;, below which we
cannot satisfy this equation. We can solve these equations
Y'%>0, orif

2n 2 1/2
¢§1H§1>—( 1——) . (14)

30y 3n

2

For a given value ofp2HZ, we get initial values of all

the variables from the above equations and using these w
evolve these quantities. As shown in the above equations

parameters), Q , ¢inHiy, and| ¢,,| are interrelated. For a
fixed n and(),, , larger values of thesHZ, imply a larger

value of initial |¢|, and hence an equation of state that is
closer to that of dust.

as future evolution; the past evolution is discussed laiére
positive branch is plotted in this and the following figures
but the discussion holds true for the negative branch as well.

The evolution of field¢ and its time derivativéb are shown
in Figs. 2 and 3. These too demonstrate the approach to the
asymptotic solution for the two initial conditions. In the

asymptotic future, we expeet to approach a constant value

e
|

We study the evolution of such a model in three steps.
First we evolve the system from the present day to the future
and show that the asymptotic solutipri is stable, i.e., the
entire allowed range of present values leads to the sam

asymptotic solution. In this context “in” refers to the present
values of the parameters. We choose the present value ¢
Qy, =0.3, and all the results shown here use6 (results

0.1

10

100 1000

1+z

IETTT| BT A R ETIT B
10t 10°

108

do not change qualitatively for other valuesrof, i.e., the
asymptotic solution givea(t)otS.

FIG. 3. This plot showsp as a function of redshift for the same
model.
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FIG. 5. Qy, Q,, andQg as functions of redshift. The matter
ensity parameter is almost a constant atz&<10° and then drops
to small values as radiation begins to dominate. The present day
values of the density parameter for matter and radiation are 0.3 and
1075, respectively.

FIG. 4. Phase plot for the tachyon field. Here, we started fromd
initial conditions with a fixed value o andn. ¢ was varied and
Q4 was allowed to vary with it. Both the positive branch as well
as the negative branch are shown. The scale faaf{oy=1/(1
+2) is marked along the arrow heads.

) _.what we find in numerical solutions. The equation of state
of y2/3n. Indeed, both the negative and the positivesor the tachyon field approaches that of a pressureless fluid,
branchegwhich, respectively, correspond to positiy¢ and and the universe expands wilft) <t?3 at high redshifts. At
negativey’) exhibit this behavior. The fact that other initial ¢,/e earlier times, radiation takes over and both matter and
conditions lead to similar behavior is shown in the phasetachyons become subdominant components.
diagram for fieldg in Fig. 4. We see that for the entire range 1o time dependent matter density paramefhy;(t)
of initial conditions for the fieldp, it quickly approaches the =87wGpy(t)/3H2(t) is plotted as a function of redshift in

asymptotic solution. It takes longer to reach the asymptoti¢=jy 5 Here nonrelativistic matter dominates in the sense that
solution for initial conditions wherg¢;,Hy,| (the value at Qu>Q, but evolution does not driv€),, towards zero or
present is much larger than its minimum allowed value ) © close to unity. Instead the two density parameters remain
since in this casgg| is closer to unity and hence the presentcomparable during much of the “matter dominated” era
equation of state for the tachyon field is like that of a pres<from z~10°® to z~2). This is a unique feature not seen in
sureless fluid. In such a case the accelerating phase of thgher cosmological models. In the phase where the equation
universe starts at late times compared to models whergf state of the tachyon field approachves-0, the ratio of the
|¢inHin| is closer to its minimum allowed value. Thus we density parameter for nonrelativistic matter and tachyon field
need to fine-tune the value of this parameter in order to arhecomes a constant. For models of interest, i.e., where the
range for the accelerating phase of the universe to start gfccelerating phase starts at low redshifts, this ratio is of order
low redshifts, as required by observations. unity for most choices of parameters and the relative impor-
In future evolution, the density parameter for matter detance of tachyons and matter does not change up to the time
creases with the start of the accelerating phase. The densifyhen the accelerating phase begifEhis has a significant
parameter for tachyons begins to increase in this phase argfect on gravitational instability and growth of perturba-
quickly approaches unity. tions; see Sec. Y.
~ Next we study the behavior of these solutions in the past, The tachyon field approaches a nearly constant value in
i.e., we use the present day conditions and evolve back to sgge past and changes very little from its value in the early
the kind of initial conditions that are required for us to get ayniverse to the time when the accelerating phase begins. In
viable model today. Figures used to illustrate future evolu—the preacceleration phass, is close to unity. This means
tion also show the past evolution of these quantities. A.S MO%that the field¢ starts from large values in the models that

tivated in Sec. Il, we expect matter and radiation to digve  satisfy basic observational constraints. This is the fine tuning
away from unity towards smaller values in forward evolu- required in constructing viable tachyon models. In Fig. 6 we
tion. So, as we evolve the equations back, we expect alblhow the evolution ofs(t)H(t) as a function of redshift. As

present day conditions to lead towardls=1. This is indeed expected, this is a constant in the asymptotic regime where
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FIG. 6. Plot of¢H as a function of redshift.
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FIG. 7. Plot ofw = #*—1 as a function of the scale factor. The

curve on the left has the lowest value of the initiaH and in-
creases by an order of magnitude for respective curves as we ap-
proach the right.

tachyons dominate. However, this function evolves rapidly in

the dustlike regime. Sincé remains a constant in this re- late times, one requires the fine-tuned value mentioned

gime, the change is mainly due to changeHirit). The
asymptotic value of this product i$H(t)— \2n/3, so we

expectoH(t) to decrease from its initial value and make aa function of d(tpjancd H (tpianch -

transition to the constant asymptotic value. We need to
choose the initial value of this product so that the transition %,

above. The same behavior is summarized in Fig. 8, where we
plot the scale factor Whew¢=w¢asym/2=[2/(3n) —1]/2 as

from dustlike to accelerating phase happens around now ™
Since the asymptotic value i8H(t)— /2n/3, and this is of

order unity for smalin, the value of¢ in the early universe

has to be large. The produgi(tp)H(tp,) is approximately ©
¢(to)H(tp)) since ¢ does not change by much during its =
evolution. Since the present day(tg)Hq is of order unity,
¢(tp)Hp=~Hp /Hy. (Heret, is the present time anld is

the present value of the Hubble constafthus the initial I
value of ¢ sets the time scale when the transition to T.%
asymptotic behavior takes place. This fine-tuning is similar -
to that needed in models with the cosmological constant
since the value ofA has to be tuned to arrange for the ac-
celerating phase to start at low redshifts.

To illustrate this point further, we start the integration at = 3
Planck time for a range of initial conditions and show that E
indeed we obtain this behavior. The age of the universe at the
time of transition from pressureless behavior for the tachyon
field to an effective cosmological constant behavior is indeed "’3

in™in
10

6

proportional to the initial value of. To illustrate this, we 1
first plot w for the tachyon field as a function of the scale
factor in Fig. 7. This is plotted for many values of
d(tprancd H (tpiancd - An order of magnitude increase in the

10
a(t)/a(tpl)

100

FIG. 8. Plot of¢;,H;, (at Planck timg¢as a function of the scale

initial value delays the onset of the accelerating phase byactor value at whichw¢=¢2—1 becomes half its asymptotic

roughly an order. Hence to achieve the accelerating phase @dlue.
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FIG. 10. Plot of density parameters for matter and tachyon as

FIG. 9. Phase plot for the exponential potential. The duration ofynctions of redshift. The models are the same as those in the pre-
the accelerated phase depends on the initial valug. dfhe accel-  vious figure.

erated phase ends into a dustlike phase of tachyons. The solid line is
for ¢,,=0.1, the dashed line fo,,=0.3, and the dot-dashed,
dashed, and dot-dot-dashed curves dgr=0.5, 0.7, and 0.9, re- pend on how differen is from unity at the start of the
spectively. tachyon dominated phase.
The phase plot for the scale factor is shown in Fig. 9. We

have kepto;,H;, fixed at the present day and varié:dfor a
range of values. The unique feature of this model is that we
We now repeat the above analysis for the exponential poregain the dustlike phase in the future. It is clear from this
tential. As before, we consider a mix of nonrelativistic mat- plot that the duration of the accelerating phase varies consid-
ter, radiation/relativistic matter, and the tachyon field. We fixerably across models shown here. The supernova observa-
0,4,=0.7 at the present epochin the literature, it has been tions require the universe to be in an accelerating phase at
suggested that the exponential potential does arise in some 8£0.25, so for models that do not have an accelerating
the string theoretic models. However, in our approach, wephase at all or are too small an accelerating phase can be
think of V(¢) as an arbitrary function, just as in quintes- ruled out easily.
sence model$For the purpose of numerical work, we have  The fact that these cosmological models have two decel-
taken the value ofp/ ¢, to be 1@ at the present epoch. The erating .phases, with an accelerating phase sandwiched in be-
choice of ¢ fixes the amplitude of the potential since we tween, is noteworthy._ln such modgls, one can accommodate
have already fixed),, and ¢/ . The remaining parameter Ehe current at":c_eleratlon of the_ universe without t_he m_odel
is ¢, and since we have already fixed,/ b, fixing ¢, is gettlng stuck” in the ac2</:3elerat|ng phase fqr eternity. Since
equivalent to fixings;,. We use the combinatiogh, H;, to the universe has(t) ot _asymptotlcally, it follows that
construct a dimensionless parameter which indicates thi1€ré will be no future horizorifor some other attempts to
value of . é;,H,, should be of order unity if;, is com- eliminate the_ futurg horizon, sééeG])_. String theoretlc_ mod-
parable to the age of the Universe today. We shall study thg!S have difficulty in accommodating an asymptotically de

variation of the quantities of interest with time for a range of >'tte/-like universe and our model could help in this context.
values ofé and ¢ H The plot in Fig. 10 show§),,,{1, as functions of redshift
in"lin -

: : . nd shows thaf) , increases monotonically with time.
In the case of the exponential potential, the equation 0? ¢ y

state for the tachyon field approaches that of dust-as. Aplot of ¢ as a function of, in Fig. 11 shows that all
Thus any accelerating phase that we might get will be foldnitial conditions lead togp=1. The function$H increases
lowed by a dustlike phase. The accelerating phase occuith 1+z. It is clear that all initial conditions lead to a
when the tachyon field dominates the energy density of th@arrow range of asymptotic values for this product.

universe since it is only in this case that we can get3p If we keep the value o# fixed and increase;,H;,, the
<0. For an accelerating phase to exist at all, the tachyowuration of the accelerating phase increases. This is illus-
field should begin to dominateeforeit enters the dustlike trated in Fig. 12. A plot of the density parameters is shown in
phase. Thus the duration of the accelerating phase will deFig. 13.

1+z

B. Exponential potential
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FIG. 13. This plot shows density parameters for matter and

FIG. 11. Plot of ¢ vs Q. The asymptotic valuep=1 is  tachyon for a fixed value op=0.38 and varyingp;,H;,. The mod-
reached irrespective of the initial conditions. The models are theys are same as these in Fig. 12.

same as these in the previous figure.
redshift and luminosity distance observations of these super-
IV. COMPARISON WITH SUPERNOVA IA novae, collected by the Supernova Cosmology Project, con-
OBSERVATIONS clude that the universe is currently going through an accel-
erating phase of expansion. This is a powerful constraint on
cosmological models, e.g., it rules out the Einstein—de Sitter
model at a high confidence level. The obvious contender is a
positive cosmological constant, though more exotic matter
™ ] driving the accelerated expansion is also a possibility. Since
currently the energy density of the universe is dominated by
a form of matter with negative pressure, the presence of a
tachyon source is thus expected to be consistent with these
observations.
The results of theoretical model and observations are
compared for luminosity measured in logarithmic units, i.e.,
magnitudes defined by

We now compare the results with supernova type la ob
servations by Perlmutteet al. [12,13. The data from the

(=]
—

a(t)

mMg(z) =M+5logo(Dy), (15

where M=M -5 log;(Hy) and D, =Hyd, , the factorM
being the absolute magnitude of the object ahdis the
luminosity distance,

dt
d =(1+2)a(ty)r(z); r(z)=cf% (16)

L L RN wherez is the redshift.
0.01 0.1 1 10 We perform they? test of goodness of fit on the model
. with V()= ¢~ 2. For our analysis, we have used all the 60
a(t) supernovae quoted in R¢fL2]. Of these 42 are high redshift
, e . supernovae reported by the supernova cosmology project
FIG. 12. Phase plot for a fixed value ¢gf=0.38 and varying .
dinHi, (present day The solid line is for¢;,H;,=1/3, and the (12,13 "’ﬂdlw I\C;VW rﬁdshli':]supernovaetotéhe_Callan-To(IonIo
dashed, dot-dashed, dotted, and dot-dot-dashed linessfot, ~ Survey[14.19. We have three parametei@;y(in), n, an

=5/3, 7/3, 3, and 11/3, respectively. As we increase the value of?inHin (With “in” referring to the present epooh An addi-
$inHin the duration of accelerated phase increases. tional freedom is the choice of sign af(x=t;,H;,). We
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FIG. 14. Comparison of the model with=6 and the present FIG. 15. Contours of)y, at z=10 (dashed lingsand reduced
¢$H=2.56 with supernova type la data. X2 (solid lineg for V(¢$)x1/¢?. There is a small region where a
small x? overlaps Q,,>0.9. This region is nean=1.2 and
freeze)\y(in) at 0.3 and we find that for any choicemfwe  109(¢inHin/ $iniHin) =0.05. The values along theaxis are ratios
can get a reasonably low value for reduo@%jby choosing of ¢i,H, to the minimum value of;,H;, for a particular value of
éoH, judiciously. In addition, the value of? does not vary ~ POWern
much over the range of parameter values that we have stud- . . . . . .
ied. The minimum value of? per degree of freedom that we insignificant in comparison with the density parameter for
encountered is around 1.93. This test does not isolate ar:[%;atter In most r_nod_els. This has Important |mpI|c§tlons for
particular region in parameter space so we shall refrain fro tructure formation in these moc_zlels since the density param-
guoting any particular values of parameters as our best ﬁf?ter of the matter_that clusters_ Is always ;maller than unity,
Suffice it to say that a large range of each of these paramete?é‘d tthe drat((ja at V\c'jh'l(:h pr(ra]rturbatlo?.s gr?wt\;]v_nl beI S'T‘a”er thar|1|
is allowed by the supernova observations. This discussioff' Stanhdard modeis. 1he exception 1o this rule 1s a sma
holds for both the potentials discussed above. subset of models whe® , approaches values much smaller
We have plotted the distance moduliis(z)=m—M as than unity beyond&~1. As can be seen in the contour plots
a function of redshift for one of the models in Fig. 14 Thein the previous section, these are a small subset of the mod-
data points for the 60 supernovae are plotted as well. ThSIS that satisfy the constraints set by supernova observations.

contours of reduceg? and the value of),, at redshiftz r?ltvenr: t?"ﬁi tEer %e?]?f':y p:;r;angterv\tor m:tte:\/'sfalr”:ﬁﬁ a
=10 are illustrated in Fig. 15. This is of interest while study- fot S 6} rawtk?f r?dsn i? 63 nir 2[,in (;:hca”nso relin?it Teh
ing structure formation in these models. ate or gro or density contras € inea - 1he

We also did ay? analysis of models with a range of pa- equation for the density contrast is given ]
rameters for the exponential potential. Here again the theo-

retical models satlsf_y_ the supernova constraints and we can- 5+2-5=47Gps, (17)
not rule out a specific model by this analysis. We plot the a
contours of, atz=10 andy? in Fig. 16. We obtain results o o
similar to those for 1$? potential. where 6= (p—p)/p, the factorp being the average density.
Rescaling in the same manner as the cosmological equations
V. STRUCTURE FORMATION IN TACHYONIC MODELS we have
Cosmological models with tachyons and nonrelativistic H 3 ag
matter have a significantly different behavior as compared to o'+ 2H— 8= EQMo_s d. (18
quintessence or the cosmological constant models. The most 0

important difference here is that the source of acceleration in . ) L
the Universe makes an insignificant contribution to the enHere(y is the density parameter for nonrelativistic matter

ergy density of the universe beyomd-1 in quintessence or at the epoch when the scale factorag and the Hubble
cosmological constant models, whereas in tachyon modelgarameter iH,. Since()y, is nearly constant at high red-
the density parameter for the scalar field does not becomshift, we getset™, and m=(1/6)(y1+24Q,,—1) for the

063504-9



BAGLA, JASSAL, AND PADMANABHAN PHYSICAL REVIEW D 67, 063504 (2003

©
o

0.1

“©
=i
(@]
o
«©
=1 10 100 1000
1+z
$in Hin FIG. 17. Evolution of the density contrast with redshift. The

curves correspond t9;,= 0.3 (present day valye The solid curve

is for the ACDM model given for comparison. The density param-
eter )y~0.98 atz=10 for the dashed line anfly,~0.56 atz
=10 for the dotted line.

FIG. 16. Contours of), at z=10 (dashed linesand reduced
x? (solid lineg. The favored region is aroungl,H;,=1 and 0.25

<¢=<0.4.

growing mode. The unique feature here is that at high red- It is clear from the figure that one can indeed construct
shift, the matter density parameter does not saturate at unityodels in which the growth of perturbation is very similar to

for all the models. This is true for both exponential an@?/ that ACDM models. Such models are clearly viable. It is

potentials. For models in which the matter density parametelso obvious that these models are confined to a narrow
does not reach unity, the growth of perturbations is slow, agange of parameters, as described in the figure captions; if
can be seen from the above equation. For models in whicRne moves out of this range, then the perturbations grow
the density parameter is unity at high redshifts, the growth ofnore slowly and should have higher amplitude in the past in
perturbations is closer to that in the cold dark matter modefrder to maintain a given amplitude today. These are ruled

with a cosmological constantACDM) model. The slower out by CMBR observations. The following caveat, however,

growth of perturbation implies that rms fluctuations in mass"€€ds to be kept in mind when ruling out such models. It was

distribution were larger at the time of recombination as Com_suggested in Re{2] that one can construct models with a

pared to conventional models. This will have an impact or]tachyomc scalar field in which the equation of state is differ-
the temperature anisotropies in the microwave background iﬁm ?t s_mall gﬁales land llargelscales. Iln suchdmodeli, ofur

. o . conclusions will a only at large scales, and growth o
these models. Since the latter is tightly constrained from cos: bply onty 9 g

) . back d radiatiofCMBR structure at small scales will still be possible, i.e., inhomo-
mic microwave background radiatiofC ) measure- geneities in the tachyon field will play a role and may offset

ments, models with slow growth of perturbations can bene conclusions about the growth of perturbations at small

ruled out. _ _ o scales, whereas our results for the expansion of the universe
We use the solution outlined above to set the initial conyj|| remain valid at sufficiently large scales.

ditions for Eq.(18) and evolve forward through the regime
where tachyons begin to dominate and matter becomes irrel-
evant. As the universe begins to accelerate, at late times we V1. CONCLUSIONS

anticipate that the growing mode would slow down and e have shown that it is possible to construct viable mod-
eventually saturate. This is indeed true. The rate of growtlels with tachyons contributing significantly to the energy
for 6 slows down once the universe begins to accelerate. ldensity of the universe. In these models, matter, radiation
comes to a halt around the epoch where the acceleratingnd tachyons coexist. We show that a subset of these models
phase begins. This late time behavior is similar to what hapsatisfies the constraints on the accelerating expansion of the
pens in most models in which the universe begins to acceluniverse. For the accelerating phase to occur at the present
erate at late times. The evolution is illustrated in Fig. 17.epoch, it is necessary to fine-tune the initial conditions.

Here we have plotted two different models, one in which the We have further demonstrated that the density parameter
density parameter saturates at a small value and the other for tachyons does not become negligible at high redshifts,
which it approaches unity. hence the growth of perturbations in nonrelativistic matter is

063504-10
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