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Initial state effects on the cosmic microwave background and trans-Planckian physics

Kevin Goldsteiff and David A. Lowé
Department of Physics, Brown University, Providence, Rhode Island 02912
(Received 3 September 2002; published 13 March 2003

There exists a one complex parameter family of de Sitter invariant vacua, knowrasia. In the context
of slow roll inflation, we show that all but the Bunch-Davies vacuum generates unacceptable production of
high energy particles at the end of inflation. As a simple model for the effects of trans-Planckian physics, we
go on to consider non—de Sitter invariant vacua obtained by patching modes in the Bunch-Davies vacuum
above some momentum scédlk., with modes in arw vacuum belowM .. ChoosingM . near the Planck scale
Mp;, we find acceptable levels of hard particle production, and corrections to the cosmic microwave pertur-
bations at the level dfl MP,/Mﬁ, whereH is the Hubble parameter during inflation. More general initial states
of this type withH<M <My, can give corrections to the spectrum of cosmic microwave background pertur-
bations at order 1. The parameter characterizingatacuum during inflation is a new cosmological observ-
able.
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I. INTRODUCTION with k<M a(7;) are placed in a nontriviat vacuum. These
states have a particularly simple evolution in de Sitter
Inflation magnifies quantum fluctuations at fundamentalspace—the length scale at which the patching occurs simply
length scales to astrophysical scales, where their imprint igxpands as the scale factor grows. Many more complicated
left on the formation of structure in the universe. In conven-initial states asymptote to such states as the universe ex-
tional slow roll inflation, the universe undergoes an expan{ands.
sion of at least 1% during the inflationary phase. With such ~ For M. of orderMp, it is possible to find initial states that
a huge expansion factor, modes which give rise to observabldo not overproduce hard particles, and produce corrections to
structures apparently started out with wavelengths muclthe cosmic microwave background spectrum at otdévi
smaller than the Planck length. This is the so-called transin agreement wit7]. For H<M_ <Mp, there are initial
Planckian problem in inflatiohl-5]. states that produce corrections to the spectrum at order 1.
In the past year, there has been much debate about In [11,13 an initial state was constructed by placing
whether potential modifications to physics above the Plancknodes in their locally Minkowskian vacuum states as the
scale could actually be observgg-18]. By considering the proper wave number passed through the scale of new physics
local effective action at the Hubble scdte(which we will M. . This turns out to be a special case of the class of initial
take to be 18-10“ GeV), [14] has argued that trans- states we consider. To avoid large back-reaction problems in
Planckian corrections to the spectrum of cosmic microwavehis case, we show the conditidvi.<Mp; must hold. This
background perturbations could at best be of or¢iV p)? condition is rather easy to satisfy. Our more general initial
which is typically far too small to be observed in conven- states may be viewed in a similar way as an initial state that
tional inflationary models. However, othdi—13] have ob-  puts modes in &independent Bogoliubov transformation of
tained a correction of ordet/Mp, by considering a variety the locally Minkowskian vacuum as the proper wave number
of methods for modeling trans-Planckian effects. Such a corpasses through the scag, .
rection is potentially observable in the not too distant future.
In the present work we represent the effect of trans- Il. GENERAL SETUP
Planckian physics simply by allowing for nontrivial initial
vacuum states for the inflaton field, which we treat as a free We will conduct our analysis using linearized perturbation
scalar field moving in a de Sitter background. The most natutheory in a de Sitte(dS) background. Planar coordinates,
ral vacuum states to consider are the de Sitter invarianthich cover half of the dS background with flat spatial sec-
vacuum states constructed [ih9,20,2]. The vacuum states tions, result in the metric
are known asa vacua. We find these all lead to infinite N N
energy production at the end of inflation, with the exception ds’=dt*—e*M'dx®=dt*~a’(t)d %’ (2.9
of the Bunch-DaviegEuclidean vacuum state. ) ] )
We go on to consider non—de Sitter invariant vacuum't_ v_wII be more convenient to use conformal coordinates,
states constructed by placing modes with comoving wav&'VIng
numberk>M_.a(#;) in the Bunch-Davies vacuum, where

a(#n;) is the expansion factor at the end of inflation. Modes ds?= S (d72—d®)=a2(p)(d72—d®) (2.2
(nH) '
*Email address: kevin@het.brown.edu where »= [{dt'/a(t’) = —exp(—=Ht)/H. Sot— —»~ as p—
"Email address: lowe@het.brown.edu —o, andt—~ as7n—0.
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The Klein-Gordon equation in curved space is duced in the modek defined with respect to thexe=0
vacuum. This is simply equal to

(O+m?+¢(R)¢$p=0 (2.3

. . . . ng=sini? a. 2.1
for a scalar field with mass and nonminimal coupling t& k “ (2.13

given by . In momentum space we can solve this equationrpis vill be a good approximation to the number of particles

by defining produced at the end of inflation, when a transition is made to
) a much more slowly expanding universe, provided the wave-
glk-X lengths of the modes in question are much smaller than the
¢k:(277)3 Za )Xk( 7) (2.4 Hubble radius. This follows simply from the fact that at high
" wave number the wave equation fgy reduces to that of flat
which leads to space, so we can approximate the final geometry by
Minkowski space. We wish to count particles with respect to
5 the Lorentz invariant vacuum state, which corresponds to the
74l k24 _) -0 2. a=0 vacuum in this regime.
Ak H%7* Ak @9 The second physical quantity of interest is the contribu-
) tion of this mode to the spectrum of cosmic microwave back-
with ground radiatiofCMBR) perturbations. We compute this by
examining| ¢, ( »)|? in the distant futurey— 0 for the mass-
_— 1 less scalaf2.10. The contribution is then
Me=m-+| {— 6 R (2.6
3 2
soM? is not necessarily positive. The general solution is pk:%ukpz (%) |cosha—e'?sinhal?.
1 (2.12
X(m) =5 mpH P (k)= xe(7) 2.7

Il. INITIAL STATE EFFECTS
together with its complex conjugate, where= 9/4— m?/H?

—127=1/4—M?2. We begin by reviewing what happens for the usual
Such a complete set of orthonormal modes may be used funch-Davies vacuure= 0. Clearly the particle production
define a Fock vacuum state by taking the field operator ~ at high frequencie&.11) vanishes. Fluctuations in the scalar
field modes mean that different regions of spacetime expand
at slightly different rates, which gives rise to density pertur-
=2 x(ma+xi(mpal, (2.9 bation; aftgr inflation_has ended. The amplitude of the§e per-
k turbations is frozen in as these modes expand outside the
_ ) Hubble radius during inflation, and become density perturba-
and demandingy|0)=0. As shown in[19,20,2], the gen-  ons once they reenter the horizon after the end of inflation.
eral family of de Sitter invariant vacuum states can be defor =0, P, = (H/27)? is independent ok and hence scale
fined using the modes invariant. When one allows for the detailed shape of the
inflation potentialH becomes effectivelk dependent, lead-

Xk=coshaye(7)+e'?sinha Xe(m) (2.9 ing to small deviations from the scale invariant spectrum of
perturbations, which in general are highly model dependent.
with @«e[0>) and de(—m,7). «=0 is the Bunch- For a nontriviala# 0 vacuum we immediately see a prob-

Davies vacuuntotherwise known as the Euclidean vacyum lem. At the end of inflation there will be a large amount of
For a massless minimally coupled scalar, this solutiorparticle production at wavelengths smaller than the Hubble
takes a particularly simple form: radius(2.11). Since this production is independentlof20],
this will lead to an infinite energy density, and singular back
“iky reaction on the geometry. We conclude then that at wave-
_c 1— . 21 lengths below some scale the modes must be in a lacal
Xex(7) Kl (2.10
J2k 7 =0 vacuum staté Actually, « need not be exactly zero for

the high wavenumber modes. We will return to this point at
As discussed if20] this case gives rise to difficulties in the end of this section.

canonical quantization, and there is no de Sitter invariant

Fock vacuum. Nevertheless, we will use this simple example————

in the following with the understanding that a small mass !Reference[22] also concludes that the Euclidean vacuum

term could be added to eliminate this problem, and the exsmoothly patches onto the Lorentz invariant Minkowski vacuum, in

pressions we derive will not be substantially changed. the context of two-dimensional de Sitter space. They also point out
We will need to extract two physical quantities from the that for all«+ 0 the vacuum state picks up a nontrivial phase under

expression(2.9). The first is the number of particles pro- de Sitter isometries, which cancels in the expectation values.
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Nevertheless, we can still consider initial states that in- ) 2B—i
volve modes in are#0 state, provided their wavelengths cosha=¢'(7"#) 28
are sufficiently large. Perhaps the simplest such initial state is
to place modes at some fixed conformal timg in the « _
=0 state fqu> Mca(r;f) Wherenf is the conformal time gt 6% sinha= _ei<v+ﬁ)L 3.2
the end of inflation, and/ . is some scale at which physics 2B’ '
changes, and we have in mind takivMg.>H. Modes fork
<M_a(7;) can be placed in an#0 state. In the next sec- With =M./H and y real, can be interpreted as an initial
tion we will see such a state arises na[ura”y from time-State that places modes in their IocaIIy Minkowskian vacuum
independent boundary conditions placed at proper wavas the proper wave numblefa passes through the scaik, .
number M., which represents the generic effect of new This is seen by noting that at timg= —M_/Hk the field ¢
physics that comes into play above the sddlg. [with x, given by Eq.(2.9)] satisfiesm = —ik ¢ wherem

In order that the particle production at the end of inflationis the conjugate momentum. Such a relation is satisfied by
be irrelevant versus the energy stored in the inflaton, wéhe Lorentz invariant vacuum in Minkowski space. One may
must havé also interpret the state at timg=—M_./Hk as a minimum

uncertainty stat¢11].
For sufficiently largek, the above prescription does not
3|\/|§|H2 apply, because the relevant timewill be after the end of

A 3.1 inflation. These modes may safely be placed in the Bunch-
Davies vacuum.

This initial state is a special case of the type described
above. High frequency particle creation at the end of infla-
tion gives an energy density of ordb’r;':1 sini? «. Since here
sinha~H/M., we require

M2 sint? a<A =

where Mp, is the Planck mas$lIf we saturate this bound,
sinha~HMp /M2, The correction to the CMBR spectrum
Py (2.12 will then be of ordeHM F,,/Mﬁ. This is linear inH

in agreement with the estimates[@&f 7,11 and is potentially
observable. Of course, since we have done the computation - -

in pure de Sitter space, the effect appears ksnalependent McH*<MpH*. (3.3
modulation of thea=0 result, which on its own would re- L L .

quire an independent determinationtbto measure directly. Th!s will hp_ld wheneveM ;< MP" which is easy to safisly.
However, in inflationH is actually slowly changing, which ThiS condition was also obtained 6]. .
will translate intok dependence dfl, and hencex. This will Note that the' general c[ass of initial states descrll:.)e.d
show up as-dependent corrections to the cosmic microwave2P0Ve may be reinterpreted in the same way as states arising
background spectrur®, which are potentially more easily from a boundary C_Ond't'(_m placed at a fixed Proper energy
distinguishable from the-=0 case[6,17. scale. Rather than imposing the condition that the initial state

To obtain an upper bound on the size of the correction td:orresponds to a locally MkaWSk'. vacuum as the wave
the CMBR spectrum, we can imagine takikt, to be much numberk/a passes throug ., one instead demands that

smaller tharM p,, which is certainly plausible. This allows € mode be in a generilindependent Bogoliubov transfor-
to be of order 1 and still consistent with negligible hard mation of the locally Minkowski vacuum. This corresponds

particle production(3.1). This limit will lead to corrections toa generic boundary condition at the sciillg th"?‘t IS mde—' .
to the CMBR spectruni2.12 at order 1. pendent of time. In this way, modes are placed in a nontrivial

a vacuum wherk/a(7¢) at the end of inflation is below the
B scaleM .. Higherk modes will remain in the Bunch-Davies
Transition at proper energy M. vacuum. This is precisely the type of state we described

Now let us consider a more detailed model for the initial@boVve. _
state where we assume the initial condition is fixed due to AS an aside, note that the vacua may be regarded as
some change in physics at the proper energy siale We squeezed states on top qf the Bunch—'DaV|es'vac[mtj1
are primarily interested in the constraints observations giveUch squeezed states arise naturally in nonlinear quantum
us on this new physics, so we wish to make as few assumystems[23]. The states described above might then be
tions about the details of this new physics as possible. Let uiought of as arising due to nonlinear effects above the scale

review the computation dfL1,13. The essential idea was to M placing modes in ar vacuum as they descend below the
note that thex vacuum satisfying scaleM. However, we emphasize that our goal is to find a

generic way to parametrize the effects of trans-Planckian
physics and is not tied to any particular model of these ef-

?Reference [5] previously considered constraints on trans- €CtS:

Planckian physics which are required to prevent excessive particle |t IS interesting to view this boundary condition in the
production. context of the nice slice argument {24] used to define

3This condition is necessary to avoid large back reaction on th&ffective field theory in a curved background. The conformal
geometry. It would also be interesting to consider the limit whentime slicing (2.2) satisfies the criteria for a “nice slicing.”
this energy is not irrelevant, and to use this particle production as 4 his means we may define fields with, for example, a spatial
source for reheating. lattice cutoff on proper wavelengths belowMl/. As one
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moves forward on these time slices, the proper wavelengtimight have objected that the comoving wave number at
of a given modg2.7) expands, so new modes descend fromwhich the & vacua was patched was fine-tuned to the dura-
above the cutoff scale, and we assume these are placed tien of inflation. However, now we see this can naturally
their ground state. Note that prior to passing below the cutoffirise as a consequence of new physics above the btale
scale the modes are simply fictitious from the effective fieldand a relation betweea andV(¢).
theory viewpoint. The main difference from asymptotically =~ The value ofa during inflation may be selected by local
flat space is that we now have the option of placing thes@hysics at Planckian energies, but in generahay also be
modes in one of the nontrivial de Sitter invariamtvacua. influenced by the initial state of the universe. This initial
Any other choice would lead to continuous creation of par-state is not necessarily completely determined by physics at
ticles at the cutoff scale which would cause drastic backPlanckian energies. For example, the initial state may emerge
reaction on the geometfy. as a special state of very high symmetry as a result of dy-
Provided the interacting quantum field theory in de Sitternamics on much higher energy scales, which will leave their
space is consistent in a genetavacuum, there seems to be imprint on the value ofx in the de Sitter phase.
no dynamics that prefers one value@bver another. In the
context of sloyv rc_)II inf_Iation, we should therefore regard the IV. CONCLUSIONS
value of« during inflation as a new cosmological observable
which encodes information about trans-Planckian physics. ~ We have constructed a very simple class of initial states
At the end of inflation we make a transition from the de for the inflaton field which can be used to model effects of
Sitter geometry to a standard cosmological geometry. To de¥ans-Planckian physics. A new cosmological observable
scribe the UV cutoff in this more general context, we need teemerges from this analysis in the context of slow roll infla-
replace the simple vacuum suitable for de Sitter space, by tion, namely, thea parameter characterizing the vacuum
a boundary condition fixed by some more general dynamicagtate during inflation.
condition such as the locally Minkowskian boundary condi- Other previous approaches have typically assumed some
tion of [11,13 described abov§¢Eq. (3.2)]. The effective  definite model for the trans-Planckian physics which led to
value of « will then change as the effective value Bf  particular states of this type at momenta much below the
changes. Note that for ud is not in general the Hubble Planck scale. We have found for certain ranges of param-
parameter, but is determined by the vacuum energy densitgters, the initial states do not lead to excess particle produc-
V(¢). In the limit that the cosmological constant becomestion at the end of inflation, and lead to potentially observable
very small(the effectiveH decreases by a factor of 18 or ~ corrections to the cosmic microwave background spectrum.
so to match with today’s vacuum energy densitye make a
smooth transition to a~ 10" °°H/M boundary condition at ACKNOWLEDGMENTS
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