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Big bang nucleosynthesis and CMB constraints on dark energy

James P. Kneller
Department of Physics, The Ohio State University, Columbus, Ohio 43210

and Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202*

Gary Steigman
Department of Physics, The Ohio State University, Columbus, Ohio 43210†

and Department of Astronomy, The Ohio State University, Columbus, Ohio 43210
~Received 4 November 2002; published 10 March 2003!

Current observational data favor cosmological models which differ from the standard model due to the
presence of some form of dark energy and, perhaps, by additional contributions to the more familiar dark
matter. Primordial nucleosynthesis provides a window on the very early evolution of the universe and con-
straints from big bang nucleosynthesis~BBN! can bound the parameters of models for dark matter or energy
at redshifts of the order of ten billion. The spectrum of temperature fluctuations imprinted on the cosmic
microwave background~CMB! radiation opens a completely different window on the universe at epochs from
redshifts of the order of ten thousand to nearly the present. The CMB anisotropy spectrum provides constraints
on new physics which are independent of and complementary to those from BBN. Here we consider three
classes of models for the dark matter or energy: extra particles which were relativistic during the early
evolution of the universe~‘‘ X’’ !; quintessence models involving a minimally coupled scalar field~‘‘ Q’’ !;
models with a non-minimally coupled scalar field which modify the strength of gravity during the early
evolution of the universe~‘‘ G’’ !. We constrain the parameters of these models using data from BBN and the
CMB and identify the allowed regions in their parameter spaces consistent with the more demanding joint
BBN and CMB constraints. For ‘‘X’’ and ‘‘ Q’’ such consistency is relatively easy to find; it is more difficult for
the ‘‘G’’ models with an inverse power law potential for the scalar field.
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I. INTRODUCTION

Current and ongoing space-based and ground-based
servational programs have provided increasingly precise
enabling us to view the present and recent universe w
hitherto unprecedented clarity and detail. These data have
to a current ‘‘standard’’ model of cosmology in which ‘‘dar
matter’’ and ‘‘dark energy’’ of unknown origins play signifi
cant roles. At the same time, the earlier, radiation domina
~RD! evolution of the universe remains largely hidden fro
view. These early epochs, which may harbor valuable cl
to the nature of the dark matter or energy are shrouded by
huge optical depth of the prerecombination plasma. As a
sult, they can only be explored indirectly, through compa
sons with observations of the predictions of primordial n
cleosynthesis@‘‘big bang nucleosynthesis’’~BBN!# and of
the temperature fluctuations in the spectrum of the cos
microwave background~CMB! radiation. Studies of BBN
and the CMB offer a valuable complement to probes of
recent structure and evolution of the universe and, in c
junction with them, may provide unique constraints on co
peting models for the dark energy. For example, although
abundances of the light elements produced during BBN
pend largely on the universal density of baryons, they
also sensitive to the early universe expansion rate which
turn, is determined by the energy density in relativistic p

*Present address.
†Mailing address.
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ticles, and to the strength of gravity. Thus, BBN not only c
constrain the contribution of additional energy density b
yond that predicted for the standard model of particle ph
ics, it can also probe the strength of the gravitational int
action during such early epochs. Similarly, the CM
fluctuation spectrum depends not only on the total ene
density and the magnitude of its relativistic component,
also on the expansion rate and the strength of gravity. A
result, BBN and the CMB have the potential to distingui
among—or at least constrain—competing models for
dark energy, some of which leave the strength of the gra
invariant while adding to the energy density, while othe
may modify both.

In this paper we compare and contrast the modificati
to the standard model BBN and CMB predictions in the pr
ence of extra, relativistic energy~‘‘equivalent neutrinos’’!,
for those models of ‘‘quintessence’’ which, during RD e
ochs, contribute a fixed fraction of the relativistic ener
density, and for non-minimally coupled scalar fields~one of
whose effects is to alter the strength of the gravitational c
stant G). After an introduction to and an overview of th
non-standard cosmologies explored here~Sec. II!, the BBN
predictions for these three general models are compared
contrasted and current data are employed to provide c
straints on them in Sec. III. In Sec. IV an overview is pr
vided of the physical origin of the CMB fluctuations in th
standard model as a prelude to our discussion of the pre
tions in the non-standard cosmologies~Sec. V!. The CMB
constraints are presented in Sec. VI and in Sec. VII they
combined with those from BBN to provide joint constrain
©2003 The American Physical Society01-1
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on the non-standard cosmologies considered here. Ou
sults on the joint BBN-CMB constraints are summarized
Sec. VIII. Unless otherwise stated, we use units in which\
5c58pG51.

II. NON-STANDARD COSMOLOGIES

Before we begin discussing the implications for BBN a
the CMB of the ‘‘new physics’’ we are considering it i
worth spending some time investigating the effects of e
upon cosmology in general. As a reference we take the s
dard model to be geometrically flat, containing three lig
neutrinos, baryons along with cold dark matter~CDM!,
and a cosmological constant (L). For numerical estimate
we will often adopt the so-called concordance values for
density parameters:VM50.3, VL512VM50.7, and for
the present value of the Hubble parameter: H0572
km s21 Mpc21.

‘‘ X ’’

In many extensions of the standard models of cosmol
and of particle physics there can be ‘‘extra’’ energy dens
contained in new particles or fields,rX . Adding energy al-
ways results in an increase of the expansion rate,H, at a
given redshift since

H25
r

3
~1!

wherer is the total energy density. The increased expans
rate in turn implies that the age of the universe at a giv
scale factor,

t~a!5E
0

a 1

aH
da, ~2!

is younger than in the standard model. If the stress ene
tensor forX is conserved then the rate of change of the
ergy density forX obeys

ṙX13H~rX1PX!50 ~3!

where the overdot denotes the derivative with respect to
mic time andPX is the pressure. The equation of state,wX
5PX /rX , is therefore all that is required to determine t
evolution ofrX .

WhenX behaves like radiation, that is whenwX51/3, this
additional energy density varies with the scale factor,a, as
rX}a24. In the remainder of this paper we shall assume t
behavior for ‘‘X. ’’ Of course, other equations of state a
possible, leading to different scalings of theX density witha
but, because this evolution ofrX for wX51/3 is exactly the
same as that for the photon and neutrino energy densit1

extra relativistic energy is a simple extension of the stand
model.

1Except during phases when the number of degrees of freedo
changing such as when a massive particle species decays or
hilates.
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‘‘ Q’’

Another example of ‘‘new physics’’ is the positing of
quintessence field to replace the cosmological constant
source of the dark energy in the standard model@1#. Quin-
tessence has become an increasingly attractive alternativ
L because, by making the dark energy dynamic, it he
alleviate the large discrepancy between the matter or ra
tion and vacuum energy densities most apparent during
early universe. Virtually all quintessence models are taken
be a minimally coupled scalar fieldf with an energy density

rQ5ḟ2/21V(f) and a pressurePQ5ḟ2/22V(f) where
V(f) is the potential energy. If the field only interacts wi
the other constituents of the cosmic fluid gravitationally th
Eq. ~3! also applies torQ but the characteristic of quintes
sence is a non-trivial equation of state that is not knowna
priori . However by substituting the expression forrQ and
PQ into Eq. ~3! we obtain the Klein-Gordon equation forf:

f̈13Hḟ1Vf50 ~4!

whereVf[dV/df. Here, onceV(f) is specified, there are
no unknown functions. For many potentials there exist so
tions to this equation to which the field converges from
wide range of initial conditions. Solutions of this type a
generically dubbed ‘‘tracker’’ solutions even though th
term was originally introduced to distinguish a specific cla
of models@1#. We shall assume that the field has reached
tracker solution long before BBN. The evolution of the fie
is controlled by the form of the potential and there are ma
different models in the literature from which to choose. Th
is unfortunate because there is then no generic behavio
consequence of a dynamic dark energy except that we
state that if the quintessence equation of statewQ is ever
larger than21, then the total energy density at a given re
shift must be larger than in the standard model. If we rest
ourselves to tracker potentials then, very roughly, we m
divide them into those where the quintessence energy den
during the radiation dominated epoch is significant and th
where it is not. Examples of the latter type include the pop
lar inverse power law potentials,V}f2a @2–5#. If a model
is of the former type then its equation of state must be si
lar to the equation of state of the other components of
cosmic fluidwf and, indeed, it is even possible during som
epochs for the two to be equal. The quintessence models
are considering are exactly of this type.

Any potential that satisfies the relationshipwQ5wf must
reduce to the exponential potential2 @5# V}exp(2l f)
although the inverse power law potential satisfies this
quirement whena→` as may other potentials in appropria
limits. This popular potential has been investigated by F
reira and Joyce@6#, Liddle and Scherrer@5# and Copeland,
Liddle, and Wands@7#, among others, who showed that th

is
ni-

2The equality of the equations of state is temporarily violated
the;10% level, during the transition from a radiation dominated
a matter dominated fluid.
1-2
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density parameter of the tracker solution for the field3 is
given by VQ53 (wf11)/l2. Note that the value ofVQ is
larger during radiation domination than during matter dom
nation: VQ

(RD).VQ
(MD) . The increase in energy density r

sults in a swifter expansion and the age of the universe
fixed scale factor, again given by Eq.~2!, is smaller than that
of the standard model by the approximate factor 1/A12VQ.
However, by itself, the exponential potential is incapable
leading to an accelerating universe dominated by dark en
if the quintessence field has reached its tracker solution
order to account for this observation the potential must
part from this simple form as the field and the univer
evolve. More precisely, the field must become dominated
its potential energy in order forwQ,21/3. There are many
ways to achieve this result by modifying the potential fro
its pure exponential form. One modification, which we w
not discuss here, was proposed by Dodelson, Kaplinghat,
Stewart@8#. Instead, for our analysis we have selected
Albrecht-Skordis~AS! model @9# where the potential is o
the form of a product of a polynomial~quadratic in this case!
in f and the exponential,

V~f!5@~f2f0!21A#exp~2lf!. ~5!

The polynomial introduces a local minimum and maximu
into the potential and the parameterA must satisfyA<1/l2

in order for the minimum to be at a real value off @10#: for
specificity we have chosenA l251/100. With this choice for
Al2 the two extrema are then very close tof0 and f0
12/l. The tracker solution forf thus evolves according to
the pure exponential potential at early times whenf!f0.
As f evolves and approaches the minimum atf0 the poly-
nomial steepens the potential relative to the exponential
sulting in an increase ofḟ and a simultaneous decline in th
potential energy. This phase ofwQ.wf leads to a significan
decrease inVQ . The field passes throughf0 whereuponwQ
begins to decrease as the field climbs out of the minimu
WhenwQ5wf againVQ reaches its minimum value. If th
local maximum of the potential is sufficiently high the fie
is unable to pass over the maximum atf012/l and resume
the exponential scaling behavior; instead it becomes trap
and begins oscillating aroundf0 with an ever decreasing
amplitude. After several oscillations the kinetic energy h
decreased sufficiently andwQ;21 at which point the field
begins to mimic a cosmological constant.

On a technical note, while it may appear that we have t
remaining free parameters inV(f) after specifyingAl2, the
solution of Eq.~4! depends uponH which in turn is a func-
tion of VM0 andH0. If we fix the geometry of the univers
to be flat then we have specified the energy density of
field at the present time and so introduced a constraint
eliminated another degree of freedom. This leaves only
remaining free parameter which we choose to bel. Then,
assuming the amplitude of the oscillations around the m
mum are negligible at the present time, the imposition of

3The radiation-matter transition causes a slight deviation from
formula at the;5% level.
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boundary conditions leads to the result thatlf0}22 lnl.
Also, from our numerical calculations, we find that the min
mum value ofVQ is proportional tol2 which implies that
the redshift at which the field begins to resemble a cosm
logical constant,zL , increases withl. We find that roughly
zL'4.7l2/3 or equivalentlyzL'7.5 (VQ

(RD))21/3.

‘‘ G’’

A third example of ‘‘new physics’’ is the more radica
proposal of a non-minimal coupling between the Ricci sca
R, and a scalar field which we will further promote to th
role of a quintessence dark energy. This extension there
requires the postulation of the form of the coupling in ad
tion to the potentialV(f). Again there are many differen
models in the literature from which to choose, each invo
ing a different form the coupling and the potential. A ve
interesting general feature of this class of models is that
strength of the effective gravitational constant during t
early evolution of the universe may differ from its curre
value, which is fixed by terrestrial and solar system expe
ments. For this reason, we label these models by ‘‘G. ’’ While
it is possible to derive a general formalism for the cosmolo
and the evolution of perturbations@11–13# there is no uni-
versal behavior and therefore it becomes necessary to re
ourselves to a specific example. The model we have ado
here is the minimal extension of the nonminimally coupl
model investigated by Chen, Scherrer, and Steigman@14#
and Baccigalupi, Matarrese, and Perrotta@15# among others.
In this model the action takes the form

S5E d4xA2gFF~f!R

2
2

f ;mf ;m

2
2V~f!1Lf G ~6!

where F(f)511j(f22f0
2), f0 is the value of the field

today, andj is the coupling constant. From the action we c
define the cosmological gravitational parameter to be 1F
and so the evolution of the field, and thereforeF, will lead to
an evolution of the strength of gravity. The potential is tak
to be the previously mentioned inverse power lawV
5V0f2a which is known to be a viable quintessence mod
in the minimally coupled limit@5#. There are two distinct
approaches to modifications that arise in these scenarios
define the energy density and pressure of the field leaving
cosmological equations unaltered, or adopt the minima
coupled definitions and work with the modified cosmologic
equations. Both approaches are, of course, equivalent
here we adopt the latter. As a result, the Friedmann equa
is modified, becoming

H21
HḞ

F
5

r

3F
~7!

and, after introducing the functionE, defined by

E[11
3Ff

2

2F
, ~8!

the field evolves according to the equation
is
1-3
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f̈13Hḟ1Vf5
FfR

2
5

Ff

2FE
~r23P13FfVf23Fffḟ2!.

~9!

The presence of the right hand side of Eq.~9! has been
dubbed theR boost @15#. Examining the right hand side o
Eq. ~9! we discover that the last two terms in parentheses
the right-hand side of the equation combine to give a con
bution of

FfVf2Fffḟ252j~11a!rG2j~12a!PG ~10!

for this potential and coupling. Again we must enforce
self-consistent cosmology because the Hubble paramet
still a function of VM0 and H0 so we must adjust the nor
malization constant in the potential,V0, to ensure that the
boundary conditions are matched.

The inverse power law potential in the minimally coupl
limit ( j→0) is a well known and frequently studied quinte
sence model@5#. The energy density of the field is negligibl
small during the early universe so thatH is dominated by the
radiation and matter densities until close to the present ti
The tracker solution forf is f}a3(wf11)/(a12) and for a
5O(1) we can immediately see that, for the tracker soluti
f!f0 during much of the evolution of the universe. Th
equation of state for the field is

wG5
awf22

a12
~11!

which is always smaller thanwf and so the quintessenc
energy density grows relative to the matter1 radiation
fluid.4 This solution is also stable in the sense that pertur
tions from the tracker behavior are damped@5#. The energy
density of the field scales asrG}a23a(wf11)/(a12). As we
approach the present era the equation of state for the
begins to deviate from the analytic formula in Eq.~11! and
begins to approachwG521. The emergence ofrG , to-
gether with the descendingwG , launches a phase of cosm
logical acceleration. Asa increases the redshift at which th
departure from Eq.~11! occurs also increases but the redsh
at which the universe begins to accelerate falls because w
the quintessence equation of state is no longer given by
~11! its present value is still correlated witha, with smaller
a leading to values ofwG that are closer to21 @16#. For the
concordance model parametersVM050.3, VG0512VM0
50.7, H0572 km s21 Mpc21, the equation of state at th
present time is larger than21/3 for a*8 while the require-
ment that the universe be accelerating requiresa&4 @16#.

As with our minimally coupled case ‘‘Q’’ we shall assume
that the field has reached its tracker solution long bef
BBN and so our initial condition forf is this limit during the
radiation dominated epoch. This may seem a minor point
the evolution of the field in its non-tracker state will be ve
different from its behavior in the tracker solution. We po

4This confirms our previous statement thatwQ→wf in the limit
a→`.
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that the tracker solutions for non-zeroj are the same as in
the minimally coupled limit and so we must show that theR
boost is negligibly small at early times~i.e., it diverges with
a at a slower rate thanVf as a→0). The couplingF is
almost constant andFf}f is very small so the scaling of th
R boost during this phase is controlled by whetherrM
}a23 or rG}a24a/(a12) is the more divergent: fora,6 it
is rM , otherwise it isrG . So we see that the two terms i
Eq. ~9! scale as Vf}a24(a11)/(a12) while FfR
}a2(213a)/(a12) for a,6, FfR}a(424a)/(a12) for a.6.
Thus the derivative of the potential diverges more rapi
than theR boost whatever the value ofa and the tracker
solution during radiation domination is identical to the so
tion in the minimally coupled limit. It could be argued tha
rM→0 as a→0 because there are no non-relativistic p
ticles at such high temperatures in which caseR
}a24a/(a12) independent ofa but this makes no difference
to our conclusion. This tracker solution is also stable for a
value ofj as shown by Baccigalupi, Matarrese, and Perro
@15# who relied on the fact thatF is virtually constant in
order to generalize the result of Uzan@17#. During matter
domination the situation is slightly different:f}a3/(a12) so
bothVf andFfR scale asa23(a11)/(a12) and, therefore, the
tracker solution is again the minimally coupled tracker b
the normalization changes to account for the presence of
R boost.

SinceFfR scales more slowly than the derivative of th
potential during the radiation dominated epoch it might
expected that eventually anR boost phase will occur: we ca
estimate the scale factor at which the two are equal to ba
;aeq /j where aeq is the scale factor at radiation-matte
equality. AnR boost phase will only occur ifj*1 and, once
initiated, will continue into matter domination. Ifj is small
then noR boost phase will occur during radiation dominatio
and neither will it commence during the matter dominat
epoch.R boost phases can occur when the initial value off
differs from the tracker value. In this case, if we again a
sumeF is almost constant and again approximateR as R
5rM /F, the solution forf during the radiation dominated
epoch is

f5
f!

b
Aa!

a
J1S 2bA a

a!
D for j,0, ~12!

f5
f!

b
Aa!

a
I 1S 2bA a

a!
D for j.0 ~13!

whereb253ujuVM! , f! is the value of the field ata!, and
J1 andI 1 are the Bessel and modified Bessel functions of
first kind with index 1. In either case, when the argument
the Bessel function is smallf evolves as

f'f!H 17
b2

2 S a

a!
D1•••J ; ~14!

the minus~plus! sign is forj,0 (j.0). Note that whenj
,0 the field moves backward. The very slow change off
justifies the assumption thatF is almost constant but, in con
1-4
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trast with the tracker solution, here the behavior arises
causef is essentially fixed rather than becausef!f0. Dur-
ing this R boost phaseḟ}1/a and the potential energy i
much smaller than the kinetic energy so thatwG→1 but
rG}1/a2, very different from the minimally coupled limit
Eventually anyR boost phase will terminate and the fie
will follow the tracker solution but, iff! is much larger than
the tracker value, there may be a very long delay before
occurs. The approximate scale factor at which theR boost
phase ends is given bya5a!@f! /f(a!)# (a12)/4.

With the couplingF almost constant during the early un
verse and the quintessence energy density entirely neglig
Eq. ~7! essentially reduces to the Friedmann equation of
standard model except for an effective gravitational stren
G85G/F. Therefore the only change is to the age of t
universe at a given scale factor, once again given by Eq.~2!,
which is simply rescaled by the factorAF. If F were not
constant, and could be adequately described by a power
function of the scale factor, then we would attain the circu
stances investigated by Carroll and Kaplinghat@18#.

The evolution of the field becomes more complicated
the present epoch is approached: theR boost is no longer
negligible,F starts to change noticeably and the field’s e
ergy density becomes important. Again the equation of s
for the field begins to descend towardwG521 but the exact
evolution is now also a function ofj. This can be understoo
from the evolution ofrG which is

ṙG13H~rG1PG!5
ḞR

2
. ~15!

The power sourceḞR/2 is proportional toj so if j.0 then
the field gains energy relative to a field in the minima
coupled limit if R.0. The power source will become a dra
if or when R switches sign as the universe begins to acc
erate. The increase in energy density results in an increa
the equation of state relative to the minimal case and thu
relative increase inḟ and f. The increased energy densi
will terminate matter domination at a higher redshift.

Finally we impose the constraints on the model para
eters from the timing experiment using the Viking probe a
from limits to the evolution of the strength of gravity@19#.
The first constraint, the more severe of the two, is

jf0,0.022 ~16!

while the second limits

2jf0ḟ0,10211 yr21 ~17!

where ḟ0 is the time derivative of the field at the prese
epoch. As shown by Chen, Scherrer, and Steigman@14#, f0
is very weakly dependent uponj so that it is essentially
determined bya andV0. Therefore, with fixed values ofa
andV0, the limit in Eq.~16! is essentially a limit onj or, if
FBBN is the~almost constant! value ofF during BBN and if
f during this epoch is much smaller thanf0, then
06350
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j5
12FBBN

f0
2

~18!

and the limit onj therefore becomes a limit onFBBN or,
equivalently, onG8/G. From our numerical calculations
again with the concordance model parameters, we find
G8/G is restricted to lie between

0.976<G8/G<1.025, a51,

0.964<G8/G<1.040, a52,

0.942<G8/G<1.067, a54. ~19!

III. BIG BANG NUCLEOSYNTHESIS

To better appreciate the similarities and differenc
among the three candidates for ‘‘new’’ physics under cons
eration here~equivalent neutrinos ‘‘X’’; quintessence ‘‘Q’’;
non-minimal coupling ‘‘G’’ ! it will be helpful to briefly re-
view ‘‘standard’’ BBN ~SBBN!. To this end the discussion
may begin when the universe is a few tenths of a second
and the temperature is a few MeV. The energy density
ceives its dominant contributions from the relativistic pa
ticles present; prior toe6 annihilation these are cosmic bac
ground radiation~CBR! photons,e6 pairs, and three flavors
of neutrinos,

rR5rg1re13rn5
43

8
rg . ~20!

At this time (T;few MeV) the neutrinos are beginning t
decouple from the photon-e6 plasma and the neutron to pro
ton ratio, crucial for the primordial abundance of4He, is
decreasing. As the temperature drops below;2 MeV, the
two-body collisions interconverting neutrons and protons
come too slow to maintain equilibrium and the neutron-
proton ratio begins to deviate from~exceeds! its equilibrium
value @(n/p)eq5exp(2Dm/T)#. Prior to e6 annihilation, at
T'0.8 MeV when the universe is'1 s old, the two-body
reactions regulating then/p ratio become too slow compare
to the universal expansion rate and this ratio ‘‘freezes i
although it actually continues to decrease due to the em
ing importance of ordinary beta decay (tn5885.7 s). Since
there are several billion CBR photons for every nucle
~baryon!, no complex nuclei exist at these early times.

BBN begins in earnest aftere6 annihilation, at T
'0.08 MeV (t'3 min), when the number density of CMB
photons with enough energy to photodissociate deuter
~those in the tail of the blackbody distribution! is comparable
to the baryon density. By this time then/p ratio has further
decreased due to beta decay, limiting~mainly! the amount of
helium-4 which can be synthesized. As a result, the pre
tions of primordial nucleosynthesis depend sensitively on
early expansion rate. In SBBN it is assumed that the neu
nos are fully decoupled prior toe6 annihilation and do not
share in the energy transferred from the annihilatinge6 pairs
to the CMB photons. Thus, in the post-e6 annihilation uni-
verse the photons are hotter than the neutrinos and
1-5
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rR5rg13rn51.6813rg . ~21!

During these RD epochs the age and the energy density
related by 4

3 rRt251 ~recall that we have chosen units
which 8pG51), so that the age of the universe is known~as
a function of the CMB temperature! once the particle conten
(rR) is specifiedand the strength of the gravitational inte
action ~G! is fixed. In the standard model,

Pre–e6 annihilation: tTg
250.738 MeV2 s, ~22!

Post–e6 annihilation: tTg
251.32 MeV2 s. ~23!

The BBN-predicted abundances of deuterium, helium-3
lithium are determined by the competition between vario
two-body production and destruction rates and the unive
expansion rate, while the helium-4 abundance depends m
directly on the neutron abundance at the time BBN beg
As a result, the D,3He, and Li abundances are sensitive
the post–e6 annihilation expansion rate, while that of4He
depends onboth the pre– and post–e6 annihilation expan-
sion rates; the former determines the ‘‘freeze-in’’ and t
latter the importance of beta decay. Of course, the B
abundances do depend on the baryon density (h10
[1010nB /ng5274VBh2), so that the abundances of at lea
two different relic nuclei are needed to break the degener
between the baryon density and a possible non-standard
pansion rate resulting from new physics or cosmology.

A. Non-standard BBN

Our simplest alternative to the standard cosmology is
scenario of extra relativistic energy denoted by ‘‘X. ’’ When
X is decoupled in the sense that it does not share in
energy released ine6 annihilation, it is convenient to ac
count for this extra contribution to the standard-model
ergy density by normalizing it to that of an extra,‘‘equiv
lent’’ neutrino flavor@20#,

rX[DNnrn5
7

8
DNnrg . ~24!

For each such ‘‘neutrino-like’’ particle~i.e., a two-
component fermion!, if TX5Tn , then DNn51; if X is a
scalar,DNn54/7. However, it may well be thatX has decou-
pled earlier in the evolution of the universe and has failed
profit from the heating when various other particl
antiparticle pairs annihilated~or unstable particles decayed!.
In this case, the contribution toDNn from each such particle
will be ,1 (,4/7). Since we are interested in differe
models of non-standard physics resulting in modifications
the standard model energy density and expansion r
henceforth this case will be identified by a superscript,X;
DNn5DNn

X .
In the presence of this extra component, the pre–e6 an-

nihilation energy density in Eq.~20! is modified to

~rR!pre
X 5

43

8 S 11
7DNn

X

43 D rg . ~25!
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The extra energy density speeds up the expansion of
universe so that the right hand side of the time-tempera
relation in Eq.~22! is smaller by the square root of the fact
in parentheses in Eq.~25!:

Spre
X [~ t/t8!pre5S 11

7DNn
X

43 D 1/2

5~110.1628DNn
X!1/2.

~26!

In the post–e6 annihilation universe the extra energy dens
contributed by theX’s is diluted by the heating of the pho
tons, so that

~rR!post
X 51.6813~110.1351DNn

X!rg ~27!

and

Spost
X [~ t/t8!post5~110.1351DNn

X!1/2. ~28!

These relations@Eqs.~25!–~28!# may now be generalized to
the two other cases under consideration.

For our minimally coupled quintessence model ‘‘Q’’ the
energy density of the field during radiation domination~rel-
evant to BBN!, is VQ

(RD)54/l2. This extra energy density
may be written in terms of an equivalentDNn

Q ,

DNn
Q[

43

7 S VQ
(RD)

12VQ
(RD)D . ~29!

For this quintessence model, the scalar field contributes
same fractionof the total~radiation! energy density pre– and
post–e6 annihilation,

~rR!pre
Q 5~rR!post

Q 5
43

8 S 11
7DNn

Q

43 D rg ~30!

and

Spre
Q 5Spost

Q [SQ5~110.1628DNn
Q!1/2. ~31!

Thus for this class of quintessence models the speed-up
tor (SQ) in the universal expansion rate prior toe6 annihi-
lation is thesameas the speed-up factor aftere6 annihila-
tion. In comparing with the equivalent neutrino case, we
that for DNn5DNn

X5DNn
Q , the post–e6 annihilation uni-

verse expands faster for ‘‘Q’’ than for ‘‘ X; ’’ alternatively, for
the samepost–e6 annihilation speed-up,DNn

Q'0.83DNn
X .

In our non-minimally coupled quintessence model, ‘‘G, ’’
the quintessence energy density during BBN, is entirely n
ligible and hence the total energy density at a given reds
is unaltered,

~rR!G5rR ~32!

whererR is given by Eqs.~25! and ~27! for the pre– and
post–e6 annihilation universe respectively. However, sin
t}(GrR)21/2,
1-6
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Spre
G 5Spost

G 5~G8/G!1/2[S 11
7DNn

G

43 D 1/2

. ~33!

For this case we have defined an equivalent number of e
neutrinos by

DNn
G[

43

7 S DG

G D . ~34!

As with quintessence, the non-minimally coupled sca
fields result in faster expansion of the post–e6 annihilation
universe for thesameincrease in the pre–e6 annihilation
expansion rate. Thus, for the sameDNn the effects on BBN
of ‘‘ Q’’ and ‘‘ G’’ are identical, but they do have the potenti
to be different from those due to the usual example of ex
energy density in the form of equivalent neutrinos~‘‘ X’’ !.
However there is one important difference between ‘‘Q’’ and
‘‘ G, ’’ namely that DNn

Q is unconstrained~at the moment!
while the limits expressed in Eqs.~16! and~17! translate to a
restricted range forDNn

G . The range forDNn
G is a function

of a, the exponent of the inverse power law potential and
shown by Chen, Scherrer, and Steigman@14#, the limits in-
crease with the exponent.

On the basis of the above discussion the results of
detailed BBN calculations may be understood. Since the
mordial abundances of D,3He, and Li freeze in late, wel
after e6 annihilation has occurred, they mainly provide
probe ofSpost. In contrast, the4He mass fraction,YP , re-
tains sensitivity toboth Spre and Spost. Furthermore, while
the abundances of D,3He, and Li are most sensitive to th
baryon density, the4He mass fraction provides the be
probe of the expansion rate. This is illustrated in Fig.
where in theDNn-h10 plane are shown isoabundance co
tours for D/H andYP ~the isoabundance curves for3He/H
and for Li/H, omitted for clarity, are similar in behavior t
that of D/H!. While the solid curves are for the ‘‘usual’’ extr
energy density in relativistic particles, the dashed cur

FIG. 1. Isoabundance curves for D and4He in the DNn-h10

plane. The solid curves are forDNn5DNn
X , while the dashed

curves correspond to the minimally and non-minimally coupled s
lar field cases whereDNn5DNn

G5DNn
Q . For 4He the curves

~nearly horizontal! are for, from top to bottom,Y50.25, 0.24, 0.23.
For D the curves~nearly vertical! are for, from left to right,
105(D/H)54.0, 3.0, 2.0.
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show, for the same equivalentDNn @see Eqs.~29! and~34!#,
the modifications to SBBN for both minimally and non
minimally coupled scalar fields. The trends illustrated in F
1 are easy to understand in the context of our discuss
above of SBBN. The higher the baryon density (h10), the
faster primordial D is destroyed, so D/H is anticorrelat
with h10. But, the faster the universe expands (DNn .0),
the less time is available for D destruction, so D/H is po
tively correlated withDNn . Since for thesameDNn , the
post–e6 annihilation universe expands more rapidly for ‘‘f ’’
and ‘‘G’’ than for ‘‘ X, ’’ the D isoabundance curves diffe
slightly as shown in Fig. 1. In contrast to D~and to 3He and
Li !, the 4He mass fraction is relatively insensitive to th
baryon density, but is very sensitive to both the pre– a
post–e6 annihilation expansion rates~which control the
neutron-to-proton ratio!. The faster the universe expands, t
more neutrons are available for4He. Again, the effect onYP
of the sameDNn is slightly different for ‘‘X’’ than for ‘‘ Q’’
and ‘‘G, ’’ as seen in Fig. 1.

B. Primordial abundances

It is clear from Fig. 1 that any BBN constraints on ne
physics will be data driven. While D~and/or 3He and/or Li!
largely constrain the baryon density and4He plays the same
role for DNn , there is an interplay betweenh10 and DNn

which is quite sensitive to the adopted abundances. For
ample, a lower primordial D/H increases the BBN-inferr
value of h10, leading to a higher predicted primordial4He
mass fraction. If the primordial4He mass fraction derived
from the data is ‘‘low,’’ then a low upper bound onDNn will
be inferred. It is, therefore, crucial that we make every eff
to avoid biasing our conclusions by underestimating the
certainties at present in the primordial abundances der
from the observational data. To this end, first of all we co
centrate on deuterium as the baryometer of choice since
observed abundance should have only decreased since
@21# and the deuterium observed in the high redshift, lo
metallicity quasistellar object~QSO! absorption line systems
~QSOALS! should be very nearly primordial. The post-BB
evolution of 3He and of Li are likely more complicated
involving competition between production, destruction, a
survival.

Even so, inferring the primordial D abundance from t
QSOALS has not been without its difficulties, with som
abundance claims withdrawn or revised. At present there
4–5 QSOALS with reasonably firm deuterium detectio
@22–26#. However, when D/H is plotted as a function o
metallicity or redshift, there is significant dispersion and t
data fail to reveal the anticipated ‘‘deuterium plateau’’@27#.
Furthermore, subsequent observations of the D’Odor
et al. @26# QSOALS by Levshakovet al. @28# revealed a
more complex velocity structure and led to a revised—a
uncertain—deuterium abundance. This sensitivity to the
ten poorly constrained velocity structure in the absorber
also exposed by the analyses of published QSOALS data
Levshakov and collaborators@29–31#, which lead to consis-
tent but somewhat higher deuterium abundances than t
inferred from ‘‘standard’’ data reduction analyses. Given th

-
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current state of affairs we believe that while the O’Mea
et al. @24# estimate for the primordial abundance is like
accurate (D/H53.031025), their error estimate (60.4
31025) may be too small. At the risk of erring on the side
caution, here we adopt a range which encompasses the
certainties referred to above: D/H53.020.5

11.031025. Although
permitting a larger than usual range in baryon density,
choice has little direct effect on the probe of new phys
~constraints onDNn) which is the focus of this study.

A similarly clouded situation exists for the primordia
abundance of4He. At present there are two estimates for t
primordial abundance of4He based on large, nearly indepe
dent data sets and analyses of low-metallicity, extragala
H II regions: the ‘‘IT’’ @32,33# estimate ofYP(IT) 50.244
60.002 and the ‘‘OS’’ determination@34–36# of YP(OS)
50.23460.003 which is nearly 3s lower. Recent high qual-
ity observations of a relatively metal-rich HII region in the
small Magellanic cloud~SMC! by Peimbert, Peimbert, an
Ruiz ~PPR! @37# reveal an abundanceYSMC50.2405
60.0018. When this abundance is extrapolated to zero
tallicity, PPR findYP(PPR)50.234560.0026, lending some
support to the lower OS value. These comparisons am
different observations suggest that unaccounted system
errors may dominate the statistical uncertainties. Inde
Gruenwald, Steigman, and Viegas@38# argue that if unseen
neutral hydrogen in the ionized helium region of the o
served HII regions is accounted for, the IT estimate of t
primordial abundance should be reduced toYP(GSV)
50.23860.003~see also@39,40#!. Here, we adopt this latte
estimate for the central value but, as we did with deuteriu
the uncertainty is increased in an attempt to account
likely systematic errors:YP50.23860.005, leading to a
95% C.L. range, 0.228<YP<0.248; this is in agreemen
with the estimate adopted by Olive, Steigman, and Wal
@41# in their review of SBBN.

C. Constraints from BBN

Using the abundance ranges adopted above, we have
culated theDNn-h10 likelihood contours which are shown i

FIG. 2. Likelihood contours~68%, 95% and 99% respectively!
in the DNn-h10 plane. The solid curves are forDNn5DNn

X , while
the dashed curves correspond to the minimally and non-minim
coupled scalar field cases whereDNn5DNn

G5DNn
Q . The best fit

points are indicated by the cross for ‘‘X, ’’ and the square for ‘‘Q’’
and ‘‘G. ’’
06350
un-

is
s

ic

e-

ng
tic
d,

-

,
r

r

al-

Figs. 2 and 3. A simple, semi-quantitative analysis can se
to shed light on the detailed results shown in Figs. 2 and
As revealed in Fig. 1, the baryon density is primarily fixe
by deuterium. For D/H53.031025, h10'5.6 (VB

'0.020). In contrast,DNn is most sensitive to4He: DY
'0.013DNn . Forh10'5.6 andDNn50, YP 50.247. Com-
paring this with the central value~0.238! or the 2s upper
bound~0.248! inferred from the data, it can be expected th
DNn'20.7 andDNn&10.1 respectively. In fact, the de
tailed calculations reveal that the ‘‘best’’ value for ‘‘X’’ is
DNn520.65, while for ‘‘G’’ and ‘‘ Q’’ DNn520.58; the
2s upper bounds areDNn<10.04 in all three cases, corre
sponding to the boundVQ

(RD)<0.007 for the quintessenc
model (l>25). If in place of our adopted central value an
range forYP , those from IT were chosen, the contours
Figs. 2 and 3 would shift upward byDNn'0.5 and they
would be narrower in the vertical direction. However, sin
at 95% C.L. the two estimates forYP agree, the upper
bounds toDNn will be closely equal. While we are mos
concerned with the BBN constraints onDNn , we note in
passing that the best estimate for the baryon density ish10

'5.2 (VBh2'0.019).
We must point out that there is a logical inconsistency

the above analysis. First, for two of the cases we~and others
before us! have been considering, ‘‘X’’ and ‘‘ Q, ’’ the energy
density and expansion rate during BBN are onlyincreased
compared to those for SBBN.5 Since it is well established
that there are three, very light~hence, relativistic at BBN!
neutrinos,Nn>3 andDNn>0. Only our ‘‘G’’ case can natu-
rally accommodateS,1 and, hence,DNn,0 ~see, e.g.,
Chen, Scherrer, and Steigman@14#!. In Fig. 3 are displayed

5There is an exception provided by the type II Randall-Sundr
model @42# which modifies the Friedmann equation through t
addition of two extra terms, one of which behaves exactly l
‘‘radiation’’ ( w51/3) but whose sign may be positive or negativ
For a recent analysis of the constraints on such models and
further references, see@43#.

ly

FIG. 3. Likelihood contours as in Fig. 2, but with the restrictio
thatDNn>0. The best fit points are indicated by the cross for ‘‘X, ’’
and the square for ‘‘Q’’ and ‘‘ G. ’’
1-8



io

r

L.

e
n

o
he

he

ni
ly
ac
a

nu
th
m
de

th
w
ar
n

n
ct

bl

fte
to
ec

e

uc
g
o

the
ase
tion,

e

tric
ices
lar
ared
y

e
o.
sed

ons
ials
r-
and

e
av-
mi-
ting
or
in
ons

in

e-
on

e
gths
rs
r

i-
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the corresponding likelihood contours when the restrict
DNn>0 is imposed. The ‘‘best fit’’ now occurs forDNn

50 and h1055.0 (VBh250.019). In this case the uppe
bounds onDNn are increased relative to those whenDNn is
left free to be negative as well as positive; at 95% C.
DNn<0.43 for ‘‘X’’ and DNn<0.39 for ‘‘Q. ’’ For the quin-
tessence model this corresponds to the boundVQ

(RD)<0.060
(l>8.2). From a similar analysis (DNn>0), but using the
narrower range of the IT4He abundance as well as th
O’Mearaet al. @24# narrow deuterium range, Bean, Hanse
and Melchiorri@44# find a 95% upper bound ofVQ<0.045
(l>9.4).

Secondly, as mentioned before in Sec. II, the range
DNn

G is constrained by the experimental limits on t
present-day deviation from general relativity~GR! as indi-
cated by the allowed ranges ofG listed in Eq. ~19!. The
permitted ranges ofDNn

G are, therefore, a function ofa.
Without ~yet! imposing a restriction on this parameter, t
range inDNn is otherwise unconstrained.

As the results here demonstrate, BBN can impose sig
cant constraints on these non-standard models, noticeab
stricting the choice of the additional parameters which
company the new physics. The changes in the dynamics
evolution of the universe imposed by these models conti
after BBN, up to the present epoch. We turn next to
effects on the formation of the CMB anisotropy spectru
and the constraints which may be imposed on these mo
by the current observational data.

IV. STANDARD CMB

In order to understand the effects of new physics upon
formation of the anisotropies in the CMB we briefly revie
the formation of temperature fluctuations in the stand
model. More extensive reviews may be found in Ma a
Bertschinger@45#, Hu and Sugiyama@46# and elsewhere so
we will only outline the general procedure and importa
results. Hereafter overdots denote derivatives with respe
conformal timet wherea(t)dt5dt and overbars indicate
unperturbed quantities. We shall write the conformal Hub
parameter asH so thataH5da/dt and therefore

t~a!5E
0

a 1

aHda. ~35!

The CMB anisotropies observed today are the redshi
temperature fluctuations that occurred in the baryon-pho
fluid prior to recombination. The stress energy for a perf
fluid with energy densityr and pressureP is simply Tn

m

5Pgn
m1(r1P)umun and the perturbations in the fluid ar

introduced asr5 r̄1dr5 r̄(11d), P5 P̄1dP and um

5ūm1vm but also an anisotropic stressSmn5 P̄Pmn is in-
cluded in order to account for shear, viscosity and other s
processes@45#. For multiple components the stress ener
tensor is the sum of the stress energy tensors of each c
ponenti, in our case vacuum (L), CDM ~C!, baryons~B!,
photons (g) and neutrinos (n), so thatr5( ir i , etc. For the
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relativistic components, such as photons and neutrinos,
treatment as a fluid is unrealistic and, instead, the ph
space description must be used. The temperature fluctua
or brightness function,Q i5dTi /T̄i , is introduced for each
relativistic species; theQ i are functions of timet, positionx
and the direction cosinesn̂ of the particle momenta. Ther
are no fluctuations in the vacuum energy.

The manner in which scalar perturbations in the me
are introduced defines the gauge and many different cho
have appeared in the literature. Two of the most popu
gauges, the synchronous and the Newtonian, were comp
by Ma and Bertschinger@45# and others are discussed b
many authors including Hwang@47#. The synchronous gaug
is chosen so that the peculiar velocity of the CDM is zer

The perturbations in all quantities may be decompo
into their Fourier modes~with wave numberk) and, in ad-
dition, the angular dependence in the brightness functi
may expanded as an infinite sum of Legendre polynom
with coefficientsQ, . In terms of these moments, the the
modynamic equivalents of the energy density, pressure,
anisotropic stress are

dr i54Q i0 , v i5Q i1 , P i5
12

5
Q i2 ~36!

for each relativistic componenti.
All that remains is to specify the initial conditions for th

perturbations: this is accomplished by examining the beh
ior on superhorizon scales deep within the radiation do
nated epoch, retaining only the growing modes, and rela
the perturbations with some ‘‘principle’’ such as adiabatic
isocurvature conditions. For adiabatic initial conditions
the synchronous gauge we have the well known relati
@45#

dC5dB5
3

4
dg5

3

4
dn5C~kt!2,

r̄BvB5
4

3
r̄gvg5

1514 f n

2314 f n
r̄nvn5

ktdC

9
,

Pn5
216dC

3~1514 f n!
~37!

where f n is the fraction of the relativistic energy density
neutrinos andC is a dimensionless constant.

The evolution of each mode is a function of its wav
length and of the gauge. All modes begin at superhoriz
scale, kt!1, and the CDM perturbations evolve asdC
}k2t2 during both matter and radiation domination. As tim
progresses the horizon becomes bigger than the wavelen
of different modes; modes with larger wave numbe
~smaller wavelengths! enter the horizon before the smalle
wavenumber~larger wavelength! modes. The evolution of
dC for modes that enter the horizon during radiation dom
1-9
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J. P. KNELLER AND G. STEIGMAN PHYSICAL REVIEW D67, 063501 ~2003!
nation is stunted; they grow only as lnt. This stagnation
continues until matter domination whereupon the modes
gin to grow again ast2. Prior to recombination the behavio
of the baryon-photon fluid changes radically as a mode
ters the sound horizonsgB , which is given by

sgB~t!5E
0

t

dtcgB5E
0

a da

aHA r̄g1 P̄g

r̄g1 P̄g1 r̄B

~38!

wherecgB is the baryon-photon fluid sound speed. Note
presence of the baryon density in the denominator of
~38!. The perturbations present in the fluid drive oscillatio
in the baryon density, the peculiar velocity, and the pho
brightness function for moments,P$0,1%. There are no fluc-
tuations for,.2 because of the tight coupling between t
photons and baryons and because the isotropizing effec
Thompson scattering suppresses these moments. The os
tions are forced by the CDM perturbations via the met
potentials and their amplitude increases with the ratio of
baryon and photon densities. Once initiated, the oscillati
continue until recombination at which point the photo
baryon/electron interaction ceases and the photons f
stream. The phase of each mode at recombination is reco
in the anisotropy angular power spectrumC, . Recombina-
tion, which occurs att! ,a!, introduces an important modi
fication to theC, known as Silk damping@48# that is due to
the increase in photon mean free path as the number of
electrons crashes. The subsequent increase in photon d
sion smooths temperature fluctuations on scales smaller
this diffusion length. Modification of theQ, does not end a
recombination: the evolution of the universe after this tim
will imprint itself upon brightness function moments throug
the evolution of the potentials. This change, known as
integrated Sachs-Wolfe~ISW! effect, is initiated by the fad-
ing importance of the radiation density~the early ISW effect!
and the growing importance of the vacuum energy tow
the present epoch~the late ISW effect!. Both cause an in-
crease in the photon temperature variance on the scale
which these processes occur.

What emerges from the detailed calculations is the so
tion for the evolution of the perturbations, for a given co
mology. The perturbations for each wave number are sc
according to an initial power spectrum and normalized, u
ally to the Cosmic Background Explorer~COBE!. The pho-
ton temperature variance vectorC, , or C,5,(,
11)C,/2p, is then constructed. The spectrum of theC, con-
sists of a series of peaks at specific, and so the gross fea
tures of a model can be characterized by the positions of
peaks, the height of the first peak relative to the COBE n
malization point and then the relative heights of all oth
peaks to the first@49,50#. Regardless of the curvature of th
universe, the position of the peaks is proportional to the ra
of the comoving angular diameter distance and the size
the sound horizon at last scattering@49#. The height of the
first peak is a measure of change in the universe since
scattering, while the relative heights of the other peaks
the ratios of their separations are set by the astrophysics
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to and during recombination. In general there is a comp
interplay between the different elements contributing to
formation of the temperature fluctuation spectrum, but wh
ever possible we shall try to couch the changes to the C
in this language.

V. NON-STANDARD CMB

‘‘ X ’’

The inclusion of extra relativistic energy into the CM
calculation is relatively straightforward. As for the photo
and the three known neutrino flavors, a brightness functio
introduced that is Fourier transformed and the angular
pendence expanded in a basis of Legendre polynomial
we do not allow the extra energy density to interact with t
other components~except through gravity! then the set of
equations governing the evolution of the brightness funct
coefficients is exactly the same as for the neutrinos and th
is no suppression of the higher moments of the brightn
function. The initial conditions for the extra energy dens
are taken to be exactly those of the neutrinos so thatNn

→Nn1DNn
X and f n→ f n1 f X . The effects of extra relativis-

tic energy density ‘‘X’’ upon the CMB anisotropy power
spectrum are then equivalent to an amplification of the n
trino sector. The extra energy will increase the expansion
H, with the largest changes, relative to the standard mo
occurring during the early, radiation dominated, epoch. T
swifter expansion both modifies the time-temperature re
tionship and leads to an earlier decoupling of the phot
since the scattering rate now becomes smaller thanH at an
earlier epoch. Therefore both the age of the universe,t!, and
the scale factor,a!, at recombination are smaller and fro
Eq. ~38! we see that this will lead to a smaller sound horizo
sgB(t!). The increase inH due to the extra energy densit
will shift in the CMB peaks to smaller angular scales~higher
, values! and increase the peak separation. The extra ra
tion also lowers the redshift of matter-radiation equal
which will increase the suppression of the growth of CD
perturbations on subhorizon scales prior to matter dom
tion and cause an increase in the temperature variance@51#.
The increase in the Hubble parameter also reduces the
tribution to the anisotropy spectrum from the velocity pertu
bation and the Silk damping is also less effective, furth
increasing the peak enhancement at large,. Lastly, since the
extra energy density associated with ‘‘X’’ can cluster under
the influence of gravity, increasingDNn enhances the early
integrated Sachs-Wolfe effect, leading to a significant
crease in the height of the first peak relative to the other

‘‘ Q’’

In general the perturbations in the quintessence ene
density, pressure, and peculiar velocity after Fourier tra
forming to k space are

drQ5
1

a2
ḟ̄dḟ1V̄fdf, ~39!
1-10
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dPQ5
1

a2
ḟ̄dḟ2V̄fdf, ~40!

vQ5kdf/ ḟ̄ ~41!

and the Klein-Gordon equation for the evolution of the p
turbations is simply

df̈12Hdḟ1~k21a2V̄ff!df2 ḟ̄ ḋC50. ~42!

There is no shear term for the quintessence field. The den
perturbations in the field are not adiabatic@52–54#. That is,
dPQ2cQ

2 drQÞ0 where cQ
2 5dPQ /drQ is the adiabatic

sound speed, a fact which according to Ratra and Pee
@54# is ‘‘exceedingly fortunate’’ since pressure fluctuatio
can resist the collapse of quintessence density fluctuat
even if the equation of state is zero. In principle the CM
anisotropy spectrum emerging from a quintessence mod
very different from the case of ‘‘X, ’’ but certain effects may
be missing or small depending on the exact behavior of
field.

The changes wrought upon the CMB anisotropy spectr
from replacement of the vacuum energy (L) with a quintes-
sence dark energy that follows the exponential potential w
investigated by Ratra and Peebles@54#, Ferreira and Joyce
@6# and Skordis and Albrecht@52#. Deep in the radiation
dominated epoch the AS potential may be approximated b
pure exponential and for this potential, on superhoriz
scales and with adiabatic initial conditions, there is
change to the evolution of perturbations, i.e.,dC}k2t2 @6#,
which is wholly expected because during this period
quintessence equation of state is exactly the same as th
the radiation. The adiabatic initial density fluctuation inQ is
simply @6,52#

dQ5
4

15
dC ~43!

which translates to a perturbation in the field@52#

df54dC/5l, dḟ54ḋC/5l. ~44!

Although we have used Eqs.~43! and ~44! in all our calcu-
lations the evolution of the quintessence perturbations
largely independent of the exact initial conditions of the fie
when the equation of state is a constant@55#.

Life becomes more interesting on subhorizon scales,kt
@1. Like Ferreira and Joyce@6#, we take the potential de
rivative and gravitational feedback terms in Eq.~42! to be
negligible relative to thek2dQ piece so that, after using
3(w̄f11)2252/Ht, we obtain

t2df̈1
4t

3~w̄f11!22
dḟ1k2t2df'0. ~45!
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The solutions of this equation are linear combinations
Jp(kt)/tp, Np(kt)/tp with p51/2 during radiation domina-
tion andp53/2 during matter domination@6#. The subhori-
zon perturbations in the field oscillate with decaying amp
tudes and so quintessence does not cluster. The de
contrast of the CDM continues to grow as lnt during radia-
tion domination, but during matter domination the evoluti
changes todC}t21e where

2e55A1224VQ
(MD)/2525<0. ~46!

The lack of clustering in the quintessence energy dens
along with its contribution toH, inhibit growth in the CDM.

These results apply when the Albrecht-Skordis poten
may be approximated by a pure exponential but when
polynomial prefactor becomes important, these results br
down. However we can anticipate some of the effects of
field from the simple fact that the effect of a significant qui
tessence energy density is to drive a swifter expansion
this regard the ‘‘Q’’ model we have adopted bears som
similarity to ‘‘X’’ in that the effect of the extra energy densit
in the early universe leads to a smaller sound horiz
sgB(t!) at recombination driving the anisotropy spectru
peaks to smaller scales and increasing their separation. A
same time the increase inH also leads to a decrease in th
Silk damping, thus increasing the temperature variance
large, relative to the first peak. However, unlike ‘‘X, ’’ quin-
tessence may also significantly reduce the conformal ang
diameter distance to last scattering thus partially mitigat
the shift in the location of the first CMB peak@50#. For the
AS potential, this is not expected to be a large effect beca
the field becomes trapped in its minimum atz;zL which, for
VQ

(RD)&0.1, is abovezL*16. Another major difference be
tween ‘‘X’’ and ‘‘ Q’’ is the absence of clustering on subho
rizon scales; hence there is no enhanced early ISW effec
quintessence. But there is an ISW effect for this poten
@52# because of the dramatic decrease inrQ as the minimum
of the quintessence potential is approached before;zL .
This results in an intermediate-to-late ISW effect reducing
the peak amplitudes in the power spectrum because
COBE normalization fixes the amplitude of the power sp
trum at large scales.

‘‘ G’’

Here, once again, there are two different approache
perturbations in the field depending upon the preference
unmodified forms of the geometric quantities or for unmo
fied stress-energy terms. As before, we adopt the latter
proach. From this vantage point the perturbations in the
ergy density, pressure, and velocity divergence are the s
as in Eqs.~39!, ~40!, and ~41!, but the Klein-Gordon equa
tion for the perturbations now assumes the form
1-11
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df̈12Hdḟ1~k21a2V̄ff!df2 ḟ̄ ḋC5
a2

2
@ F̄fdR1F̄ffR̄df#5

a2R̄

2Ē
F F̄ff2

F̄f
2

F̄
2

3F̄f
2 F̄ff

2F̄
Gdf1

a2F̄f

2F̄Ē
F dr23dP

13~ F̄fV̄ff1F̄ffV̄f!df2
6F̄ffḟ̄dḟ

a2 G ~47!
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and we have dropped theFfff term. Note that for this po-
tential and coupling

3~ F̄fV̄ff1F̄ffV̄f!df2
6F̄ffḟ̄dḟ

a2

523j~11a!drG23j~12a!dPG . ~48!

The minimally coupled limit of this model is another fre
quently studied quintessence potential@54,56,57#. This po-
tential is in some respects the opposite of the Albrec
Skordis model where the energy density during the ea
universe can be considerable and may lead to a swifter
pansion prior to its entrapment atzL . In contrast, for the
inverse power law potential the opposite occurs: the quin
sence energy density is inconsequential during much of
evolution of the universe, only becoming important as
present epoch is approached.

In the minimal-coupling limit the superhorizon perturb
tions during the radiation dominated epoch may be deri
in the usual way, leading to

dG5
4a

3~5a126!
dC , ~49!

df

f̄
5

4

5a126
dC ,

dḟ

ḟ̄
5

812a

5a126
dC ~50!

with no change indC . Note that whena→` we regain the
results of the exponential potential@see Eq.~43!# and, when
a50, the vacuum resultdL50. Again, on superhorizon
scales there is no change in the evolution ofdC during either
matter or radiation domination and similarly, on subhoriz
scales, the quintessence perturbations decay@6,54# but unlike
‘‘ Q’’ there is no suppression in the growth of matter pert
bations. The negligible quintessence energy density
means that there is no change in the size of the sound h
zon at recombination. There is, however, a significant
crease in the angular diameter distance because of the
tribution from the quintessence energy density at l
redshifts that causes a shift in the peak positions to small,
and decreases their separation. This effect increases wia
because the equation of state and, thus, the energy densirG
are correlated with the exponent: smallera correspond to
smaller rG at a fixed redshift. The peak heights are su
pressed relative to the COBE normalization point beca
the larger quintessence energy density terminates m
domination at an earlier epoch. This enhances the late
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effect, increasing the variance on large scales and there
lowering the initial amplitude of the power spectrum. On
again, this effect increases witha for exactly the same rea
son.

For the non-minimally coupled case,jÞ0, the situation is
much more complex. All the effects discussed above for
minimally coupled limit apply but now we must also tak
into account the change inF. A reduction in the strength o
gravity, F>1, now slows the expansion, leading to a larg
sound horizon at recombination. IfF remained constant ther
would be a compensating change in the distance to the
scattering surface and the peak positions would be u
fected. HoweverF must decrease in order to attainF51 at
the present time, so this distance can only be smaller t
that required to leave the peak positions unaltered. Hen
decrease inG shifts the CMB anisotropy spectrum peaks
even smaller,. The changingF also reduces the ratio of th
amplitude of the first peak to the others by partially canc
ling the early ISW effect. Simultaneously, the decrease inH
shifts the peaks to larger scales due to the fact that ther
contact between the baryon-photon fluid can be maintai
down to a lower the redshift. The slower expansion a
increases the duration of recombination leading to more
fective photon diffusion, decreasing the temperature varia
on small scales.

VI. CONSTRAINTS FROM THE CMB

Unlike their similarities for BBN, the three cases we a
considering here, extra relativistic energy density~‘‘ X’’ !, a
minimally coupled scalar field~‘‘ Q’’ !, and a non-minimally
coupled scalar field~‘‘ G’’ !, all influence the formation of the
CMB anisotropy spectrum differently, albeit with some fe
tures in common. To explore the CMB constraints we u
modified versions ofCMBFAST @58# to construct the anisot
ropy spectra and varyDNn and the baryon density paramet
h10. We compare the models to the data from t
BOOMERANG @59#, MAXIMA @60#, and DASI@61# detec-
tors, employingRADPACK @62# to determine the goodness o
fit and we assign the confidence level based onDx2. RAD-

PACK also allows us to adjust the calibration of each data
at the cost of ax2 penalty. The current data cover the fir
three peaks in theC, with reasonable accuracy, so whi
subtle effects may be missed, this approach is sufficien
extract the gross features of each model. Sin
here we are concentrating on constraints in
DNn-h plane, we have limited the priors, adopting those
the ‘‘concordanceLCDM’’ model: V tot51, VM50.3, H0
572 km s21 Mpc21, along with no ‘‘tilt’’ ( n51). As in
1-12
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related, earlier work~see, e.g.,@63–66#! here we explore the
constraints onDNn derived from the CMB anisotropy.

Because the CMB constraints in the non-minima
coupled case ‘‘G’’ differ from those for ‘‘X’’ and ‘‘ Q’’ we
discuss this case,G, separately. We note here that Chen a
Kamionkowski@67# have discussed how constraints from t
CMB may be used to provide a test of Brans-Dicke cosm
ogy, which bears some relation to our case ‘‘G.’’

First, we consider ‘‘X. ’’ In general, there is an intimate
interplay betweenh10 andDNn

X as shown by the solid curve
in Fig. 4 where our results reveal that anincreasein DNn

can, to some extent, be compensated by areduction in h.
This degeneracy is the result of similar effects upon the r
tive heights of the first and second peaks and is only bro
by the presence of the third peak in the spectrum. Increa
DNn

X leads to a larger early ISW effect boosting the varian
at the first peak relative to the rest, while increasingh10
changes the relative heights of the odd and even peaks
the same time increasingDNn

X reduces the sound horizon b
reducing the conformal age of the universe at last scatter
but the presence ofr̄B in Eq. ~38! reveals that a reduction in
h10 can compensate this change by increasing the bar
photon sound speed which overwhelms the simultaneous
crease in redshift at which recombination occurs.

The dashed curves in Fig. 4 show the contours for ‘‘Q. ’’
In this case they lack the strong anticorrelation betweenDNn

and h that ‘‘X’’ exhibited. Despite the differences betwee
‘‘ X’’ and ‘‘ Q, ’’ the bounds from the CMB are quite similar i
both cases, with best fit values ofh10'6.2–6.5 (VBh2

'0.02320.024) and non-zeroDNn '1.2–1.6, while the
99% upper bound toDNn in both cases isDNn&3.2
(VQ

(RD)&0.34,l*3.4).
For comparison with the CMB fluctuation data, the ca

of non-minimally coupled fields has several unique featu
which distinguish it from the other two cases conside
above. The confidence contours shown in Fig. 5 compare
results for two choices ofa. A comparison of Figs. 4 and 5
reveals that the anticorrelation betweenh10 andDNn

G is very
strong for the non-minimally coupled caseG, with the cen-
troid of the contours dependent ona as is the elongation o

FIG. 4. CMB likelihood contours, 68%, 95%, and 99%, for ‘‘X’’
~solid! and ‘‘Q’’ ~dashed!. The best fit points are indicated by th
cross for ‘‘X, ’’ and by the square for ‘‘Q. ’’
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the contours. We also note that thex2 at the best fit point
decreases with decreasinga, i.e., a52 is a better fit than
a54 anda51 is a better fit thana52. The large shift in
and the sensitivity ofh10 to a can be understood as follows
Inverse power law potential models genericallyreduce the
heights of all the peaks because of the late ISW effect
this suppression decreases witha. The peak suppression fa
vors shifts in the experimental calibrations, so by increas
the baryon to photon ratio there is a deflection of some of
x2 penalty by improving the fit to the first and third peaks
the expense of making the fit to the second peak wo
Additionally, raisingh10 suppresses the Silk damping boos
ing the temperature variance at large, relative to that at the
first peak. Lastly, as we noted before for ‘‘X, ’’ raising h10
will also reduce the sound horizon at last scattering wh
will compensate for the reduction of the angular diame
distance in these models. The shift in the centroid of
contours is due to the reduction of the strength of the l
ISW effect asa decreases since the increase inh10 needed to
raise the peak amplitudes becomes smaller. The anticor
tion of h10 andDNn

G is largely the result of the change in th
early ISW effect. AsDNn

G increases the ratio of the first t
second peak amplitudes also increases which, likeDNn

X , can
be compensated by reducingh10.

Clearly, in this case the best fit values and the bounds
h10 and DNn

G are functions ofa. For a54 we haveh10

510.9, DNn
G520.84 with a 99% upper bound ofDNn

G

&1.8, for a52 we find h10510.0, DNn
G520.90 with a

99% upper bound ofDNn
G&0.2 while for a51 we find

h1058.8, DNn
G520.63 with a 99% upper bound ofDNn

G

&0.3. However, as we mentioned earlier, thex2 at the
minima for a54 is large~130 for 39 degrees of freedom!
and we can rule out this model as incompatible with the d
an extremely high confidence level~formally, at ;10211).
The case ofa52 is only marginally CMB compatible, at the
99% confidence level, while thea51 model is perfectly
acceptable. These results are in agreement with prev
studies on limits toa: Malquarti and Liddle@68# find a
,2 at 95% in the minimal limit while Bean and Melchior

FIG. 5. CMB likelihood contours, 68%, 95%, and 99%, for ‘‘G’’
and two values ofa, the IPL exponent. The solid contours are f
a54 and the dashed contours are fora51. The best fit points are
indicated by the diamond fora54 and the cross fora51.
1-13
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J. P. KNELLER AND G. STEIGMAN PHYSICAL REVIEW D67, 063501 ~2003!
@69#, Hannestad and Mo¨rtsell @70# and Melchiorriet al. @71#,
have found that the effective equation of state for quint
sence must be close to21, which imposes a similar con
straint ona @16#.

As in our discussion of BBN, we must discuss some
veats to our CMB results. WhenDNn

X.0, the enhancedrela-
tivistic energy density keeps the early universe radiat
dominated to a lower redshift. To some extent this can
compensated by an increase in thematterdensityVM . How-
ever, since in our CMB fits we have fixedVM at 0.3, the
ranges ofDNn

X shown in Fig. 4 are overly restrictive~com-
pare, e.g., with@66#!. However, this bias will be ameliorate
in the combined BBN-CMB likelihood distributions since, a
may be seen by comparing Figs. 3 and 4, the dominant c
straint onDNn

X is provided by BBN. We must again point ou
that the solar system limits toG8 will further restrict the
allowed range ofDNn

G and indeed the best fit points show
in Fig. 5 are all outside the allowed range corresponding
the bounds onG in Eq. ~19!. For non-minimally coupled
scalar fields the upper and lower bounds toDNn

G are func-
tions of the inverse power law exponenta in the adopted
scalar field potential.

VII. COMBINING BBN AND CMB

For a self-consistent cosmology any modifications
SBBN at redshift;1010 must be consistent with those d
viations from the standard-model predictions for the la
evolution of the universe as probed by the CMB (104*z
*0). While BBN and the CMB favor slightly different re
gions in theDNn-h plane, there is, indeed, overlap for mo
els with new particles~‘‘ X’’ ! and for those with minimally
coupled scalar fields~‘‘ Q’’ !. In Fig. 6 are shown the join
BBN-CMB likelihood contours for these two cases. A
though the best fits do occur for small, nonzero values
DNn (DNn'0.1,h10'6.6⇔VBh2'0.024), the deviation
from DNn50 is not statistically significant and the ‘‘stan
dard’’ model (DNn50) is entirely consistent with the BBN
and CMB data. For both ‘‘X’’ and ‘‘ Q, ’’ the minimum x2 in
our combined BBN-CMB fit is 47 for 39 degrees of freedo
for these cases there is consistency between the models

FIG. 6. Joint BBN and CMB likelihood contours, 68%, 95%
and 99%, for ‘‘X’’ ~solid! and ‘‘Q’’ ~dashed!. The best fit points are
indicated by the cross for ‘‘X’’ and by the square for ‘‘Q. ’’
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the universe atz'1010 and atz'0.
In the top panel of Fig. 7 are shown the joint BBN-CM

likelihood contours for the ‘‘G’’ case, but only fora51: we
do not show likelihood contours for the other twoa values
since these models (a52,4) are ruled out at better than 99%
confidence. Fora51 the x2 at the minimum for the joint
BBN-CMB fits is slightly larger than for ‘‘X’’ and ‘‘ Q, ’’ at
57 for 39 degrees of freedom; this non-minimally coupl
model is compatible with the data at 97% confidence lev
The minimum for this model occurs atDNn

G'20.51, h10

'8.2 (VBh2'0.030), with a significant autocorrelation be
tween the two quantities. The deviation fromDNn50 is now
rather large: the minimum alongDNn50 is located on the
90% confidence contour.

Finally, in the bottom panel of Fig. 7 we impose the limi
to G8 we have mentioned so frequently. The minimum fro
the top panel is outside the allowed regionDNn

G560.15 and
now resides on the boundary atDNn

G'20.15, h10'7.6
(VBh2'0.028). Thex2 at the minimum is such that th
goodness of fit of the model is only compatible with the da
at the 98% level.

VIII. SUMMARY

BBN and the CMB provide complementary constraints
models for the dark matter and energy at completely dist

FIG. 7. Joint BBN and CMB likelihood contours, 68%, 95%
and 99%, for ‘‘G, ’’ a51. The top panel is with noG constraints
Eq. ~19!, the bottom is with those constraints. The best fit points
indicated by the crosses.
1-14
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BIG BANG NUCLEOSYNTHESIS AND CMB . . . PHYSICAL REVIEW D 67, 063501 ~2003!
epochs in the evolution of the universe. Consistency w
both sets of constraints can help in distinguishing amo
different models for new physics beyond the standard mo
of cosmology and particle physics. As discussed here, m
els with extra particles which are relativistic during the ea
evolution of the universe~‘‘ X’’ ! and those with minimally
coupled scalar fields~‘‘ Q’’ ! yield similar predictions for
BBN (h10'5.0 andDNn'0; see Sec. III, especially Figs.
and 3! and for the CMB (h10'6.2–6.5 andDNn'1.2–1.6;
see Sec. VI and Fig. 4!. As a result, they also provide simila
good fits to the joint BBN-CMB constraints~see Sec. VII
and Fig. 6! with the baryon density being largely determin
by the CMB constraints andDNn by BBN. While the best
fits to the data for these two options are in fact compati
with DNn50 ~at VBh2'0.024 in both cases!, some dark
energy is permitted: at 99% confidence levelDNn

X&1.07
while DNn

Q&0.85 (VQ
(RD)&0.12,l*5.7). In contrast, the

new physics associated with non-minimally coupled sca
fields ~‘‘ G’’ ! induces some unique behavior, leading to qu
different BBN and CMB constraints which, in general, a
quite difficult to satisfy simultaneously. Because such mod
generally modify the strength of gravity during the earl
evolution of the universe,DNn

G,0 is not only allowed, it is
favored by both the BBN and CMB constraints~see Sec. III,
especially Fig. 2, and Sec. VI, especially Fig. 5!. However,
for ‘‘ G’’ the allowed regions in theDNn-h plane are sensi
tive to the form of the scalar field potential~see Fig. 5!. For
inverse power law potentials, only those models witha&1
have CMB-identified regions which have significant overl
with the regions compatible with the BBN constraints~com-
pare Figs. 2 and 5!. Furthermore, since there are solar syst
constraints on the possible variation ofG, there are non-BBN
and non-CMB constraints onG8/G @see Eq.~19!# which
provide independent constraints onDNn

G . When these are
combined~for a51) with the BBN and CMB constraints th
best fit value ofDNn

G is at20.15 andVBh2'0.028~see Fig.
7!. However, we note that there is less than a 2% probab
that this model is, in fact, compatible with the current BB
and CMB data.

The two models for quintessence we have investigate
this paper are by no means the only plausible example
dynamic dark energy. What distinguishes the two cases
have considered is their importance during BBN and th
role in the generation of the primary anisotropies in t
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CMB. In fact, in this regard, these two models are uniq
since it is much more common for quintessence models
become important only at low redshifts. In such cases B
provides few, if any, constraints and the primary anisotrop
of the CMB are unaffected. The influence of the dark ene
is via the change in redshift of matter–dark energy equa
and thus the corresponding COBE normalization of the m
ter power spectrum. For the CMB this translates into a glo
stretching of the peaks in the spectrum and a reduction
their amplitudes but for large~and small! scale structure
~LSS!, type Ia supernovae observations, and weak lens
surveys the change in the extent of matter perturba
growth is more important and their observation will provid
valuable additional and complimentary constraints upon
models@72–74#. The minimally coupled IPL potential falls
into this category. The CMB already constrainsa,2 @68#
and including LSS and type Ia supernova data yieldswG&
20.7 at the present time which translates intoa,1.5 for the
concordance model values ofH0 andVM .

These same cosmological tests also furnish constra
upon the two models we have examined: ‘‘Q’’ and‘‘ G. ’’ For
the pure exponential potential these signatures were
cussed by Ferreira and Joyce@6# and the Albrecht-Skordis
modification~our case ‘‘Q’’ ! by Skordis and Albrect@52#. In
contrast with typical quintessence models the AS poten
modifies the matter power spectrum mainly by inhibiting t
growth of density perturbations rather than changing
COBE normalization. The essentially stationary field belo
the redshift ofzL*15 ~corresponding tol*5.7) leads to
little change in the magnitude-redshift relation that could
probed by type Ia supernovae. For the non-minima
coupled inverse power law model the effects are supplem
tary to those in the minimal limit. A non-zeroj will intro-
duce additional effects through the change in gravitatio
strengthF that in turn will alter the growth of density per
turbations by directly influencing their growth in addition
the change in the normalization.
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