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Current observational data favor cosmological models which differ from the standard model due to the
presence of some form of dark energy and, perhaps, by additional contributions to the more familiar dark
matter. Primordial nucleosynthesis provides a window on the very early evolution of the universe and con-
straints from big bang nucleosynthe$BBN) can bound the parameters of models for dark matter or energy
at redshifts of the order of ten billion. The spectrum of temperature fluctuations imprinted on the cosmic
microwave backgrounfCMB) radiation opens a completely different window on the universe at epochs from
redshifts of the order of ten thousand to nearly the present. The CMB anisotropy spectrum provides constraints
on new physics which are independent of and complementary to those from BBN. Here we consider three
classes of models for the dark matter or energy: extra particles which were relativistic during the early
evolution of the universg“ X”); quintessence models involving a minimally coupled scalar fiel@" );
models with a non-minimally coupled scalar field which modify the strength of gravity during the early
evolution of the univers¢” G” ). We constrain the parameters of these models using data from BBN and the
CMB and identify the allowed regions in their parameter spaces consistent with the more demanding joint
BBN and CMB constraints. ForX” and “ Q” such consistency is relatively easy to find; it is more difficult for
the “G” models with an inverse power law potential for the scalar field.
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[. INTRODUCTION ticles, and to the strength of gravity. Thus, BBN not only can
constrain the contribution of additional energy density be-
Current and ongoing space-based and ground-based opend that predicted for the standard model of particle phys-
servational programs have provided increasingly precise dafas, it can also probe the strength of the gravitational inter-
enabling us to view the present and recent universe witlaction during such early epochs. Similarly, the CMB
hitherto unprecedented clarity and detail. These data have ldtlictuation spectrum depends not only on the total energy
to a current “standard” model of cosmology in which “dark density and the magnitude of its relativistic component, but
matter” and “dark energy” of unknown origins play signifi- also on the expansion rate and the strength of gravity. As a
cant roles. At the same time, the earlier, radiation dominatedesult, BBN and the CMB have the potential to distinguish
(RD) evolution of the universe remains largely hidden fromamong—or at least constrain—competing models for the
view. These early epochs, which may harbor valuable cluedark energy, some of which leave the strength of the gravity
to the nature of the dark matter or energy are shrouded by thavariant while adding to the energy density, while others
huge optical depth of the prerecombination plasma. As a remay modify both.
sult, they can only be explored indirectly, through compari- In this paper we compare and contrast the modifications
sons with observations of the predictions of primordial nu-to the standard model BBN and CMB predictions in the pres-
cleosynthesig“big bang nucleosynthesis{BBN)] and of ence of extra, relativistic energf/equivalent neutrinos},
the temperature fluctuations in the spectrum of the cosmifor those models of “quintessence” which, during RD ep-
microwave backgroundCMB) radiation. Studies of BBN ochs, contribute a fixed fraction of the relativistic energy
and the CMB offer a valuable complement to probes of thedensity, and for non-minimally coupled scalar fieldse of
recent structure and evolution of the universe and, in conwhose effects is to alter the strength of the gravitational con-
junction with them, may provide unique constraints on com-stant G). After an introduction to and an overview of the
peting models for the dark energy. For example, although theon-standard cosmologies explored hésec. I), the BBN
abundances of the light elements produced during BBN depredictions for these three general models are compared and
pend largely on the universal density of baryons, they areontrasted and current data are employed to provide con-
also sensitive to the early universe expansion rate which, istraints on them in Sec. Ill. In Sec. IV an overview is pro-
turn, is determined by the energy density in relativistic par-vided of the physical origin of the CMB fluctuations in the
standard model as a prelude to our discussion of the predic-
tions in the non-standard cosmologi€ec. \j. The CMB
*Present address. constraints are presented in Sec. VI and in Sec. VIl they are
"Mailing address. combined with those from BBN to provide joint constraints
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on the non-standard cosmologies considered here. Our re- “Q”
sults on the joint BBN-CMB constraints are summarized in
Sec. VIII. Unless otherwise stated, we use units in which
=c=87G=1.

Another example of “new physics” is the positing of a
quintessence field to replace the cosmological constant as a
source of the dark energy in the standard mdd¢l Quin-
tessence has become an increasingly attractive alternative to
A because, by making the dark energy dynamic, it helps

Before we begin discussing the implications for BBN andalleviate the large discrepancy between the matter or radia-
the CMB of the “new physics” we are considering it is tion and vacuum energy densities most apparent during the
worth spending some time investigating the effects of eaclearly universe. Virtually all quintessence models are taken to
upon cosmology in general. As a reference we take the stame a minimally coupled scalar fielgl with an energy density
dard model to be geometrically flat, containing three I|ghth:¢z/2+V(¢) and a pressur@Q=¢2/2—V(¢) where

neztrinos, balryo_nsl alongt Vn\g[h ICZOId dark _ma}tt@t[_)M)t, V(¢) is the potential energy. If the field only interacts with
and a cosmological consta J. For numerical estimates the other constituents of the cosmic fluid gravitationally then
we will often adopt the so-called concordance values for theEq. (3) also applies tgg but the characteristic of quintes-

density parameters)y,=0.3, Q,=1-0=0.7, and for . o . .
o sence is a non-trivial equation of state that is not kn@vn
the present value of the Hubble parametery=H2 L o .
1 priori. However by substituting the expression fag and

_1 -
kms = Mpc =, P into Eq.(3) we obtain the Klein-Gordon equation fgr.

II. NON-STANDARD COSMOLOGIES

X $+3HG+Vy=0 (4)

In many extensions of the standard models of cosmology
and of particle physics there can be “extra” energy density
contained in new particles or fieldsy. Adding energy al- whereV ,=dV/d¢. Here, onceV(¢) is specified, there are
ways results in an increase of the expansion reteat a  no unknown functions. For many potentials there exist solu-
given redshift since tions to this equation to which the field converges from a
wide range of initial conditions. Solutions of this type are
1) generically dubbed “tracker” solutions even though this
term was originally introduced to distinguish a specific class
. . , . of models[1]. We shall assume that the field has reached this
wherep is the total energy density. The increased expansion,cker solution long before BBN. The evolution of the field
rate in turn implies that the age of the universe at a givens controlled by the form of the potential and there are many
scale factor, different models in the literature from which to choose. This
a1 is unfortunate because there is then no generic behavior or
t(a):f —da, (2) consequence of a dynamic dark energy except that we may
oaH state that if the quintessence equation of staggis ever

is younger than in the standard model. If the stress energ rger than—1, then the total energy density at a given red-

tensor forX is conserved then the rate of change of the en- hift TUSt ?e Largir thantm tt_hle s:r?ndard model. r|1f| we restrict
ergy density forX obeys ourselves to tracker potentials then, very roughly, we may

divide them into those where the quintessence energy density
px+3H(py+Py)=0 (3) during _th.e radiation dominated epoch is sig_nificant and those
where it is not. Examples of the latter type include the popu-
where the overdot denotes the derivative with respect to codar inverse power law potential¥,« ¢~ ¢ [2-5]. If a model
mic time andPy is the pressure. The equation of statg, is of the former type then its equation of state must be simi-
=Py /px, is therefore all that is required to determine thelar to the equation of state of the other components of the
evolution of py . cosmic fluidw; and, indeed, it is even possible during some
WhenX behaves like radiation, that is whary=1/3, this  epochs for the two to be equal. The quintessence models we
additional energy density varies with the scale factpras  are considering are exactly of this type.
px=a 4. In the remainder of this paper we shall assume this Any potential that satisfies the relationslvig,=w; must
behavior for “X.” Of course, other equations of state are reduce to the exponential potenfia]5] Vocexp(—X\ ¢)
possible, leading to different scalings of tKalensity witha  although the inverse power law potential satisfies this re-
but, because this evolution pf; for wy=1/3 is exactly the quirement wherx— o as may other potentials in appropriate
same as that for the photon and neutrino energy densitiesimits. This popular potential has been investigated by Fer-
extra relativistic energy is a simple extension of the standardeira and Joyc€6], Liddle and Scherref5] and Copeland,
model. Liddle, and Wandg7], among others, who showed that the

H?=

WD

1Except during phases when the number of degrees of freedom is?The equality of the equations of state is temporarily violated, at
changing such as when a massive particle species decays or anttie ~10% level, during the transition from a radiation dominated to
hilates. a matter dominated fluid.
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density parameter of the tracker solution for the fleisl boundary conditions leads to the result thapy<— 2 In\.
given by Qo=3 (w;+1)/\?. Note that the value oflg is  Also, from our numerical calculations, we find that the mini-
larger during radiation domination than during matter domi-mum value of()q is proportional ton2 which implies that
nation: QP> QE"® . The increase in energy density re- the redshift at which the field begins to resemble a cosmo-
sults in a swifter expansion and the age of the universe at kgical constantz, , increases with.. We find that roughly
fixed scale factor, again given by E@), is smaller than that ~ z,~4.7\%3 or equivalentlyzy,~7.5 (Q®) 13,

of the standard model by the approximate factaf1tf Qq.

However, by itself, the exponential potential is incapable of ey

leading to an accelerating universe dominated by dark energy ) . _ )

if the quintessence field has reached its tracker solution. In A third example of “new physics” is the more radical
order to account for this observation the potential must deProposal of a non-minimal coupling between the Ricci scalar,
part from this simple form as the field and the universeR and a scalar field which we will further promote to the
evolve. More precisely, the field must become dominated by°!€ of @ quintessence dark energy. This extension therefore
its potential energy in order fawo< — 1/3. There are many requires the postglatlon of the.form of the couplmg_ in addi-
ways to achieve this result by modifying the potential fromtion to the potentiaV(¢). Again there are many different
its pure exponential form. One modification, which we will Mmodels in the literature from which to choose, each involv-
not discuss here, was proposed by Dodelson, Kaplinghat, arl@9 @ different form the coupling and the potential. A very
Stewart[8]. Instead, for our analysis we have selected thdnteresting general fea_ture of t_hls_class of models |s_that the
Albrecht-Skordis(AS) model [9] where the potential is of strength of _the effectlve_grawtatlonal_constant _dunng the
the form of a product of a polynomigjuadratic in this cage early evolution of the universe may differ from its current

in ¢ and the exponential value, which is fixed by terrestrial and solar system experi-
’ ments. For this reason, we label these models®y’‘'While
V(p)=[(d— o)’ +Alexp(—\ ). (5) it is possible to derive a general formalism for the cosmology

and the evolution of perturbatiod1-13 there is no uni-
The polynomial introduces a local minimum and maximumversal behavior and therefore it becomes necessary to restrict
into the potential and the paramet®must satisfyA<1/A\?  ourselves to a specific example. The model we have adopted
in order for the minimum to be at a real value f10]: for here is the minimal extension of the nonminimally coupled
specificity we have choseh\?=1/100. With this choice for model investigated by Chen, Scherrer, and Steigifriaf
A\? the two extrema are then very close ¢ and ¢, and Baccigalupi, Matarrese, and Perr¢t&] among others.
+2/\. The tracker solution forp thus evolves according to In this model the action takes the form
the pure exponential potential at early times whes ¢,. .
As ¢ evolves and approaches the minimumggtthe poly- =f a, [— [F(¢)R_¢'M¢;u _
. _ : : S= | d*/—g V(¢)+Li|  (6)
nomial steepens the potential relative to the exponential re- 2 2
sulting in an increase ap and a simultaneous decline in the 5 2 . )
potential energy. This phase wf>w; leads to a significant where F(#) =1+&(¢"— ¢p), ¢o is the value of the field
decrease if)o. The field passes through, whereuponv, todgy, anct is the couplmg con.sta.nt. From the action we can
begins to decrease as the field climbs out of the minimumdefine the cosmological gravitational parameter to be 1/
Whenwo=w; againQ, reaches its minimum value. If the and so th_e evolution of the field, anq thereférewill !ea_d to
local maximum of the potential is sufficiently high the field @ evolution of the strength of gravity. The potential is taken
is unable to pass over the maximumda+ 2/ and resume [0 be the previously mentioned inverse power law
the exponential scaling behavior; instead it becomes trapped Yo® “ wWhich is known to be a viable quintessence model
and begins oscillating around, with an ever decreasing N the minimally coupled limit[5]. There are two distinct
amplitude. After several oscillations the kinetic energy has2PProaches to modifications that arise in these scenarios: re-
decreased sufficiently andg~— 1 at which point the field define the_energy de_n5|ty and pressure of the field Iea_\v_mg the
begins to mimic a cosmological constant. cosmologlcz_il_gquatlons unaltgred, or ad_o_pt the mlnlmally
On a technical note, while it may appear that we have twd;ouplt_ad definitions and work with the modified cosmologlcal
remaining free parameters () after specifyingA\?2, the equations. Both approaches are, of course, equivalent gnd
solution of Eq.(4) depends upoi which in turn is a func- here we adopt the I_atter. As a result, the Friedmann equation
tion of Oy andH,. If we fix the geometry of the universe IS modified, becoming
to be flat then we have specified the energy density of the .
field at the present time and so introduced a constraint and HF »p 7)

2
.. . 4+ —=—
eliminated another degree of freedom. This leaves only one H F 3F

remaining free parameter which we choose tonbeThen, _ _ _ _
assuming the amplitude of the oscillations around the miniand, after introducing the functioB, defined by
mum are negligible at the present time, the imposition of the

E=1 —BFE/) 8
=1+
2F L ( )
3The radiation-matter transition causes a slight deviation from this
formula at the~5% level. the field evolves according to the equation
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. . FsR Fy - that the tracker solutions for non-zegoare the same as in
¢+3HP+V=——=5-(p=3P+3F,Vy=3F44¢%).  the minimally coupled limit and so we must show that Re
boost is negligibly small at early timdse., it diverges with
9 ; .
a at a slower rate thav, as a—0). The couplingF is
The presence of the right hand side of Ef) has been almost constant anid,x ¢ is very small so the scaling of the
dubbed theR boost[15]. Examining the right hand side of R boost during this phase is controlled by whethsy
Eq. (9) we discover that the last two terms in parentheses orxa > or pgxa *(@*2) js the more divergent: for<6 it
the right-hand side of the equation combine to give a contriis py,, otherwise it ispg. So we see that the two terms in
bution of Eg. (9) scale as Vjca @D+ while F,R
g (2730/(@*2) for o< 6, F Roca™49/(«2) for ¢>6.
F¢V¢—F¢,¢¢2= —é(1+a)ps—€(1—a)Pg (100  Thus the derivative of the potential diverges more rapidly
than theR boost whatever the value af and the tracker
for this potential and coupling. Again we must enforce asolution during radiation domination is identical to the solu-
self-consistent cosmology because the Hubble parameter iion in the minimally coupled limit. It could be argued that
still a function of Qo andH, so we must adjust the nor- p,,—0 asa—0 because there are no non-relativistic par-
malization constant in the potentialy, to ensure that the ticles at such high temperatures in which cage
boundary conditions are matched. acq~4/(«+2) independent ofr but this makes no difference
The inverse power law potential in the minimally coupled to our conclusion. This tracker solution is also stable for any
limit (§—0) is a well known and frequently studied quintes- value of ¢ as shown by Baccigalupi, Matarrese, and Perrotta
sence moddl5]. The energy density of the field is negligibly [15] who relied on the fact thaF is virtually constant in
small during the early universe so thats dominated by the order to generalize the result of Uz&h7]. During matter
radiation and matter densities until close to the present timejomination the situation is slightly differengtoca®(@*2) so

The tracker solution for is ¢oca3™1*D/(=*2) and fora  bothV,, andF 4R scale as~3(**D/(**2) and, therefore, the
=0(1) we can immediately see that, for the tracker solutiontracker solution is again the minimally coupled tracker but
$<< ¢y during much of the evolution of the universe. The the normalization changes to account for the presence of the

equation of state for the field is R boost.
SinceF 4R scales more slowly than the derivative of the
W :‘VWf_2 (11) potential during the radiation dominated epoch it might be
¢ a+2 expected that eventually &boost phase will occur: we can

estimate the scale factor at which the two are equal ta be
which is always smaller thaw; and so the quintessence ~aeq/& Where a.q is the scale factor at radiation-matter
energy density grows relative to the matter radiation  equality. AnR boost phase will only occur =1 and, once
fluid.* This solution is also stable in the sense that perturbamitiated, will continue into matter domination. ¥ is small
tions from the tracker behavior are damgé&dl The energy then noR boost phase will occur during radiation domination
density of the field scales ggxa 3™ D/(**2) As we  and neither will it commence during the matter dominated
approach the present era the equation of state for the fielehoch.R boost phases can occur when the initial valuepof
begins to deviate from the analytic formula in E§1) and  differs from the tracker value. In this case, if we again as-
begins to approachvg=—1. The emergence ops, t0- sumeF is almost constant and again approxim&eas R
gether with the descending , launches a phase of cosmo- =p,, /F, the solution for¢ during the radiation dominated
concordance model parametell,;=0.3, Qgog=1—Quo
radiation dominated epoch. This may seem a minor point but

logical acceleration. Ag increases the redshift at which the epoch is
[a
2B a_> for £<0, (12
=0.7, Hy=72 kms ! Mpc™?%, the equation of state at the
the evolution of the field in its non-tracker state will be very b~ ( Bz( a

the quintessence equation of state is no longer given by Eq.
(12) its present value is still correlated with, with smaller
«a leading to values ofvg that are closer te- 1 [16]. For the & \/7
P= B Py
As with our minimally coupled caseQ” we shall assume J; andl are the Bessel and modified Bessel functions of the
that the field has reached its tracker solution long befordirst kind with index 1. In either case, when the argument of
BBN and so our initial condition fos is this limit during the ~ the Bessel function is smad evolves as

departure from Eq(11) occurs also increases but the redshift
[a
2B a_> for £>0 (13
present time is larger than 1/3 for «=8 while the require-
. : L ) ) 15— +.
different from its behavior in the tracker solution. We posit

at which the universe begins to accelerate falls because while o, |a,
¢= B 20
ment that the universe be accelerating requires4 [16]. where?=3|& Q. , ¢, is the value of the field a,, and
2

; (14

*

the minus(plus) sign is foré<0 (¢£>0). Note that wherg
“This confirms our previous statement thag—w; in the limit <O the field moves backward. The very slow changepof
a—o, justifies the assumption th&tis almost constant but, in con-
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trast with the tracker solution, here the behavior arises be- 1—Fgan
causeg is essentially fixed rather than becaus& ¢,. Dur- b=——5— (19
ing this R boost phasep>=1/a and the potential energy is b0

much smaller than the kinetic energy so that—1 but

) Y -2"and the limit on¢ therefore becomes a limit oR or,
ps*1/a?, very different from the minimally coupled limit. ¢ BEN

equivalently, onG’'/G. From our numerical calculations,

E\.llffmlllja"y hanyR iOOSt Iph'asebwnl_ term|nateh:a|nd thehfleld again with the concordance model parameters, we find that
will follow the tracker solution but, ip, is much larger than 7/ is restricted to lie between

the tracker value, there may be a very long delay before this

occurs. The approximate scale factor at which Ehboost 0.976<G'/G<1.025, a=1,
phase ends is given ly=a,[ ¢,/ ¢(a,)] @2
With the couplingF almost constant during the early uni- 0.964<G’'/G=1.040, a=2,
verse and the quintessence energy density entirely negligible
Eq. (7) essentially reduces to the Friedmann equation of our 0.942<G'/G=<1.067, «a=4. (19
standard model except for an effective gravitational strength
=G/F. Therefore the only change is to the age of the IIl. BIG BANG NUCLEOSYNTHESIS
universe at a given scale factor, once again given by(Bg.
which is simply rescaled by the factafF. If F were not To better appreciate the similarities and differences

constant, and could be adequately described by a power lagmong the three candidates for “new” physics under consid-
function of the scale factor, then we would attain the circum-€ration here(equivalent neutrinos X”; quintessence Q”;
stances |nvest|gated by Carroll and Kap“ng[‘@]_ non-minimal coupling G”) it will be helpful to briefly re-

The evolution of the field becomes more complicated ayiew “standard” BBN (SBBN). To this end the discussion
the present epoch is approached: Ridoost is no |0nger may begin when the universe is a few tenths of a second old
negligible, F starts to change noticeably and the field’s en-and the temperature is a few MeV. The energy density re-
ergy density becomes important. Again the equation of statéeives its dominant contributions from the relativistic par-
for the field begins to descend towasgs= — 1 but the exact ticles present; prior te™ ann|h|lat|on these are cosmic back-
evolution is now also a function @f This can be understood ground radiationlCBR) photons,e pairs, and three flavors
from the evolution ofpg which is of neutrinos,

43

b+ 3H(pa+Po) = ?_ (15 PR=Py T Pet3p, =5 Py (20
' At this time (T~few MeV) the neutrinos are beginning to
The power sourc&R/2 is proportional to¢ so if £>0 then  decouple from the photoe* plasma and the neutron to pro-
the field gains energy relative to a field in the minimally ton ratio, crucial for the primordial abundance e, is
coupled limit if R>0. The power source will become a drain decreasing. As the temperature drops belo@ MeV, the
if or when R switches sign as the universe begins to acceltwo-body collisions interconverting neutrons and protons be-
erate. The increase in energy density results in an increase @gome too slow to maintain equilibrium and the neutron-to-
the equation of state relative to the minimal case and thus proton ratio begins to deviate frofexceedsits equilibrium

relative increase inp and #. The increased energy density Value[(n/p)eq=exp(—Am/T)]. Prior toe™ annihilation, at

will terminate matter domination at a higher redshift. T~0.8 MeV when the universe is-1 s old, the two-body
Finally we impose the constraints on the model paramfeactions regulating the/p ratio become too slow compared

eters from the timing experiment using the Viking probe andto the universal expansion rate and this ratio “freezes in,”

from limits to the evolution of the strength of gravifg9]. although it actually continues to decrease due to the emerg-

The first constraint, the more severe of the two, is ing importance of ordinary beta decay,&885.7 s). Since
there are several billion CBR photons for every nucleon
£¢p<0.022 (16)  (baryon, no complex nuclei exist at these early times.
BBN begins in earnest aftee™ annihilation, atT
while the second limits ~0.08 MeV (~3 min), when the number density of CMB

photons with enough energy to photodissociate deuterium
: _ _ (those in the tail of the blackbody distributipis comparable
2£poo=<10 1 yr (17 o the baryon density. By this time thep ratio has further
decreased due to beta decay, limitimgainly) the amount of
where ¢, is the time derivative of the field at the present helium-4 which can be synthesized. As a result, the predic-
epoch. As shown by Chen, Scherrer, and Steighddh ¢, tions of primordial nucleosynthesis depend sensitively on the
is very weakly dependent upof so that it is essentially early expansion rate. In SBBN it is assumed that the neutri-
determined by andV,. Therefore, with fixed values of  nos are fully decoupled prior te* annihilation and do not
andV,, the limit in Eq.(16) is essentially a limit ort or, if  share in the energy transferred from the annihilagingairs
Fgen is the (almost constantvalue of F during BBN and if  to the CMB photons. Thus, in the post- annihilation uni-
¢ during this epoch is much smaller than, then verse the photons are hotter than the neutrinos and
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pr=p,+3p,=1.681P,. (21) The extra energy density speeds up the expansion of the
universe so that the right hand side of the time-temperature

During these RD epochs the age and the energy density arelation in Eq.(22) is smaller by the square root of the factor
related by%pgt?=1 (recall that we have chosen units in in parentheses in E¢25):
which 8wG=1), so that the age of the universe is knofas
a function of the CMB temperaturence the particle content
(pRr) is specifiedand the strength of the gravitational inter-
action (G) is fixed. In the standard model,

S?)(reE (t/t,)pre:

ANX 1/2
1+ ”)

43

=(1+0.162&8N%)*2
Pre-e* annihilation: tT5=0.738 MeV s, (22 (26)

Post-e™ annihilation: thy: 1.32 MeV? s. (23 In the post-e* annihilation universe the extra energy density
contributed by theX’s is diluted by the heating of the pho-

The BBN-predicted abundances of deuterium, helium-3 andions, so that
lithium are determined by the competition between various X X
two-body production and destruction rates and the universal (PR)posi= 1.68131+0.1351AN})p,, (27
expansion rate, while the helium-4 abundance depends most
directly on the neutron abundance at the time BBN begins®nd
As a result, the D2He, and Li abundances are sensitive to
the poste™ annihilation expansion rate, while that 6He
depencs obol lhe pre and ozt amihlaton eXpen These reklionfis (2526 may now be generazed
latter the importance of beta decay. Of course, the BBI\Ihe two other cases under consideration.

abundances do depend on the baryon densiby ( For our minimally coupled quintessence mod&)™the
101 energy density of the field during radiation dominatioel-
ElolonB/ny=274QBh2), so that the abundances of at least 9y 4 ) ong a inati

. (RD): 2 . .
two different relic nuclei are needed to break the degeneracevant o B.BN’ 1S g =4\~ Th'.s extraQenergy density
ﬁlay be written in terms of an equivaleAtN:,

between the baryon density and a possible non-standard e
pansion rate resulting from new physics or cosmology.

SX =) os= (1+0.135IANX) 2 (28)
post p v

43
AN9= —
A. Non-standard BBN 7

Our simplest alternative to the standard cosmology is th%or this quintessence model, the scalar field contributes the

scenario of extra relativistic energy_denoted by. Wher_1 same fractiorof the total(radiation energy density pre— and
X is decoupled in the sense that it does not share in thsost_et annihilation

energy released ie™ annihilation, it is convenient to ac-

(RD)
Qg

—2 . (29
—QFD)
1-08

count for this extra contribution to the standard-model en- 43 7ANQ
ergy density by normalizing it to that of an extra,“equiva- (pR)grEZ(pR)Sostzg( T”)p,/ (30)
lent” neutrino flavor[20],
7 and
pXEANvaz_ANpr' (24)
8 R =S%,=S0=(1+0.162N9) 2 (31)

For each such “neutrino-like” particle(i.e., a two-
component fermiop if Ty=T,, thenAN,=1; if X is a
scalarAN,=4/7. However, it may well be that has decou- - o451 s thesameas the speed-up factor aftef annihila-
pled earlier in the evolution of the universe and has failed Qion. In comparing with the equivalent neutrino case, we see
profit from the heating when various other particle- . ¢ AN,=AN*=AN®, the poste™ annihilation uni-
antiparticle pairs annihilate@br unstable particles decayed PN .

. I . verse expands faster foQ” than for “ X;” alternatively, for
In this case, the contribution N, from each such particle th et inilai d N~ 0,83\ NX
will be <1 (<4/7). Since we are interested in different elsamepos—e. gnn;l |a|onlsgee .'l:m v o deh -
models of non-standard physics resulting in modifications toher:qt?ilrjlruens?sg-r:?:glgaeréycggﬁ;ty ?jﬂlgn?;s;%nl\?eismeontﬁi,ly neg-

the standard model energy density and expansion rate, ; . ) ;
henceforth this case will be identified by a superscrit, igible and hence the total energy density at a given redshift

AN,=AN%. is unaltered,

Thus for this class of quintessence models the speed-up fac-
tor (S9) in the universal expansion rate prior ¢ annihi-

In the presence of this extra component, the pfe-an-

G:
nihilation energy density in Eq20) is modified to (PR)™=PR (32

where pg is given by Eqgs.(25) and (27) for the pre— and
(25) post-e* annihilation universe respectively. However, since
t(Gpr) 2,

43
(PR):J(reZE 1+ —=

43

7AN%
Py
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show, for the same equivaleAiN, [see Eqs(29) and(34)],
the modifications to SBBN for both minimally and non-
minimally coupled scalar fields. The trends illustrated in Fig.
1 are easy to understand in the context of our discussion
above of SBBN. The higher the baryon density,§), the
faster primordial D is destroyed, so D/H is anticorrelated
with 749. But, the faster the universe expandsN, >0),
the less time is available for D destruction, so D/H is posi-
tively correlated withAN, . Since for thesameAN,, the
post-e* annihilation universe expands more rapidly fap™
and “G” than for “ X,” the D isoabundance curves differ
slightly as shown in Fig. 1. In contrast to @nd to *He and
o Li), the *He mass fraction is relatively insensitive to the
baryon density, but is very sensitive to both the pre— and
FIG. 1. Isoabundance curves for D afile in the AN,-,,  post-e™ annihilation expansion rateévhich control the
plane. The solid curves are fakN,=ANX, while the dashed neutron-to-proton ratjo The faster the universe expands, the
curves correspond to the minimally and non-minimally coupled scamore neutrons are available féHe. Again, the effect oiYp

lar field cases whereA\N,=ANS=ANS. For “He the curves of the sameAN, is slightly different for “X” than for * Q”
(nearly horizontalare for, from top to bottomY=0.25, 0.24,0.23.  and “G,” as seen in Fig. 1.

For D the curves(nearly vertical are for, from left to right,

10°(D/H)=4.0, 3.0, 2.0.

B. Primordial abundances

?)1/2 (39 It is clear from Fig. 1 that any BBN constraints on new

physics will be data driven. While Dand/or *He and/or L)
largely constrain the baryon density afide plays the same
For this case we have defined an equivalent number of extri@le for AN,, there is an interplay between,q and AN,
neutrinos by which is quite sensitive to the adopted abundances. For ex-
ample, a lower primordial D/H increases the BBN-inferred
4_3(A_G) (34) value of 7,4, leading to a higher predicted primordi&He
7\ G mass fraction. If the primordiafHe mass fraction derived
from the data is “low,” then a low upper bound akN,, will
'be inferred. It is, therefore, crucial that we make every effort
' - ' > el to avoid biasing our conclusions by underestimating the un-
universe for thesameincrease in the pree= annihilation  certainties at present in the primordial abundances derived
expansion rate. Thus, for the saiél, the effects on BBN 5 the observational data. To this end, first of all we con-
of “Q"and “ G” are identical, but they do have the potential centrate on deuterium as the baryometer of choice since its
to be different from those due to the usual example of extrghserved abundance should have only decreased since BBN
energy density in the form of equivalent neutrinGsX”).  [21] and the deuterium observed in the high redshift, low
However there is one important difference betwe@tand  metallicity quasistellar obje¢QSO absorption line systems
“G,” namely that AN7 is unconstrainedat the moment  (QSOALS should be very nearly primordial. The post-BBN
while the limits expressed in EqEL6) and(17) translate to @ evolution of 3He and of Li are likely more complicated,
restricted range foANS . The range forANS is a function  involving competition between production, destruction, and
of a, the exponent of the inverse power law potential and, asurvival.
shown by Chen, Scherrer, and Steignia#d], the limits in- Even so, inferring the primordial D abundance from the
crease with the exponent. QSOALS has not been without its difficulties, with some
On the basis of the above discussion the results of ousbundance claims withdrawn or revised. At present there are
detailed BBN calculations may be understood. Since the pri4—5 QSOALS with reasonably firm deuterium detections
mordial abundances of D’He, and Li freeze in late, well [22-26. However, when D/H is plotted as a function of
after e* annihilation has occurred, they mainly provide a metallicity or redshift, there is significant dispersion and the
probe ofS,,s:. In contrast, the’He mass fractionYp, re-  data fail to reveal the anticipated “deuterium plateda?].
tains sensitivity toboth §,,. and S;,,¢;. Furthermore, while  Furthermore, subsequent observations of the D’Odorico
the abundances of D’He, and Li are most sensitive to the et al. [26] QSOALS by Levshakowet al. [28] revealed a
baryon density, the*He mass fraction provides the best more complex velocity structure and led to a revised—and
probe of the expansion rate. This is illustrated in Fig. luncertain—deuterium abundance. This sensitivity to the of-
where in theAN,-7,o plane are shown isoabundance con-ten poorly constrained velocity structure in the absorbers is
tours for D/H andY; (the isoabundance curves féHe/H  also exposed by the analyses of published QSOALS data by
and for Li/H, omitted for clarity, are similar in behavior to Levshakov and collaboratof29—-31], which lead to consis-
that of D/H). While the solid curves are for the “usual” extra tent but somewhat higher deuterium abundances than those
energy density in relativistic particles, the dashed curvesnferred from “standard” data reduction analyses. Given this

1+

Shre=Spos=(G'1G)=| 1+ —

G
v

As with quintessence, the non-minimally coupled scala
fields result in faster expansion of the post—annihilation
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AN,

FIG. 2. Likelihood contour§68%, 95% and 99% respectively FIG. 3. Likelihood contours as in Fig. 2, but with the restriction
in the AN -7, plane. The solid curves are fdrNV:ANf, while thatAN,=0. The best fit points are indicated by the cross f&r™
the dashed curves correspond to the minimally and non-minimallyand the square forQ” and * G.”
coupled scalar field cases whes®,=AN®=AN?. The best fit

points are indicated by the cross foK;” and the square for Q”

and “G.” Figs. 2 and 3. A simple, semi-quantitative analysis can serve

to shed light on the detailed results shown in Figs. 2 and 3.
current state of affairs we believe that while the O’MearaAs revealed in Fig. 1, the baryon density is primarily fixed
et al. [24] estimate for the primordial abundance is likely by deuterium. For D/H3.0x10°° #2,0~5.6 (Qp
accurate (D/H-3.0x107°), their error estimate £0.4  ~0.020). In contrastAN, is most sensitive td*He: AY
X 10"°) may be too small. At the risk of erring on the side of ~0.013AN, . For ,0~5.6 andAN,=0, Yp =0.247. Com-
caution, here we adopt a range Whiclho encompasses the UBaring this with the central valué0.238 or the 2 upper
certainties referred to above: DA#8.0_5x 10 °. Although bound(0.248 inferred from the data, it can be expected that
permitting a larger than usual range in baryon density, th'sAN ~—0.7 andAN,=+0.1 respectively. In fact, the de-
choice has little direct effect on the probe of new physicst i Vd I. lati v | :[h t the “b t”l | f’ X" i
(constraints om\N,) which is the focus of this study. aled caicuiations revea“ “a ? ”es vaiue Ton-1s

A similarly clouded situation exists for the primordial AN»=—0.65, while for “G” and “Q" AN,=-0.58; the
abundance ofHe. At present there are two estimates for the2o Upper bounds araN,= +0.04 in all three cases, corre-
primordial abundance dfHe based on large, nearly indepen- sponding to the boun@{:®<0.007 for the quintessence
dent data sets and analyses of low-metallicity, extragalactimodel \ =25). If in place of our adopted central value and
H 1 regions: the “IT" [32,33 estimate ofYp(IT)=0.244 range forYp, those from IT were chosen, the contours in
+0.002 and the “OS” determinatiof34—36 of Yp(OS)  Figs. 2 and 3 would shift upward bsN,~0.5 and they
:yobiiitrvoéggr?swc?flzhrlglgt?\?erllz ":1 (la(i\glerri.c Eﬁre;éig:??nqt%ael- would be narrower in the vertical direction. However, since

; . 4 at 95% C.L. the two estimates fofp agree, the upper
small Magellanic cloudSMC) by Peimbert, Peimbert, and bounds toAN,, will be closely equaI.P Wh%le we are Fr)r?ost

Ruiz (PPR [37] reveal an abundanceYgyc=0.2405 . ) .
+0.0018. When this abundance is extrapolated to zero mé:_oncerned with the BBN constraints atN,, we note in

tallicity, PPR findYp(PPR)=0.2345+0.0026, lending some Passing that the best estimate for the baryon density;ds
support to the lower OS value. These comparisons amongy 2-2 ((2gh“~0.019).

different observations suggest that unaccounted systematic We must point out that there is a logical inconsistency in
errors may dominate the statistical uncertainties. Indeedhe above analysis. First, for two of the cases(amd others
Gruenwald, Steigman, and Viegg38] argue that if unseen before ug have been consideringX” and “ Q,” the energy
neutral hydrogen in the ionized helium region of the ob-density and expansion rate during BBN are oirigreased
served Hil regions is accounted for, the IT estimate of thecompared to those for SBBNSince it is well established
primordial abundance should be reduced Y@(GSV)  that there are three, very liglthence, relativistic at BBN
=0.238+0.003(see alsd39,40). Here, we adopt this latter neytrinosN,=3 andAN,=0. Only our “G” case can natu-
estimate for the central value but, as we did with deuteriumra"y accommodateS<1 and, henceAN,<O (see, e.g.,
the uncertainty is increased in an attempt to account fobhen, Scherrer, and Steigmft]). In Fig.V3 are displayed
likely systematic errorsYp=0.238+0.005, leading to a

95% C.L. range, 0.228Y,=<0.248; this is in agreement

with the estimate adopted by Olive, Steigman, and Walker
[41] in their review of SBBN. *There is an exception provided by the type Il Randall-Sundrum

model [42] which modifies the Friedmann equation through the
addition of two extra terms, one of which behaves exactly like
“radiation” (w=1/3) but whose sign may be positive or negative.

Using the abundance ranges adopted above, we have c&er a recent analysis of the constraints on such models and for
culated theAN -7, likelihood contours which are shown in further references, sdd3].

C. Constraints from BBN
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the corresponding likelihood contours when the restrictiorrelativistic components, such as photons and neutrinos, the
AN,=0 is imposed. The “best fit" now occurs foAN, treatment as a fluid is unrealistic and, instead, the phase
=0 and 5;,=5.0 (gh?=0.019). In this case the upper space description must be used. The temperature fluctuation,
bounds orAN,, are increased relative to those wheN, is  or brightness function®;= 5T;/T;, is introduced for each
left free to be negative as well as positive; at 95% C.L.relativistic species; th@; are functions of timer, positionx
AN,=0.43 for *X” and AN,=0.39 for “Q.” For the quin- 5,4 the direction cosines of the particle momenta. There
tessence model this corresponds to the boff?’<0.060  ,1e no fluctuations in the vacuum energy.
(A=8.2). From a similar analysisAN,=0), but using the The manner in which scalar perturbations in the metric
narrower range of the IT*He abundance as well as the gre introduced defines the gauge and many different choices
O'Mearaet al. [24] narrow deuterium range, Bean, Hansen,have appeared in the literature. Two of the most popular
and Melchiorri[44] find a 95% upper bound d?=<0.045  gayges, the synchronous and the Newtonian, were compared
(A=9.4). . _ by Ma and Bertschingef45] and others are discussed by
Secondly, as mentioned before in Sec. Il, the range ofany authors including Hwar{g7]. The synchronous gauge
AN? is constrained by the experimental limits on theijs chosen so that the peculiar velocity of the CDM is zero.
present-day deviation from general relativitgR) as indi- The perturbations in all quantities may be decomposed
cated by the allowed ranges @ listed in Eq.(19). The into their Fourier modegwith wave numbek) and, in ad-
permitted ranges oANS are, therefore, a function ok. dition, the angular dependence in the brightness functions
Without (yet) imposing a restriction on this parameter, the may expanded as an infinite sum of Legendre polynomials
range inAN, is otherwise unconstrained. with coefficients®,. In terms of these moments, the ther-
As the results here demonstrate, BBN can impose signifimodynamic equivalents of the energy density, pressure, and
cant constraints on these non-standard models, noticeably renisotropic stress are
stricting the choice of the additional parameters which ac-
company the new physics. The changes in the dynamics and
evolution of the universe imposed by these models continue @ — 6 .
after BBN, up to the present epoch. We turn next to the opi=40i0, vi=0i1, I,
effects on the formation of the CMB anisotropy spectrum

and the constraints which may be imposed on these modefer each relativistic componet
by the current observational data. All that remains is to specify the initial conditions for the

perturbations: this is accomplished by examining the behav-
IV. STANDARD CMB ior on superhorizon scales deep within the radiation domi-
nated epoch, retaining only the growing modes, and relating
In order to understand the effects of new physics upon théne perturbations with some “principle” such as adiabatic or
formation of the anisotropies in the CMB we briefly review isocurvature conditions. For adiabatic initial conditions in
the formation of temperature fluctuations in the standardhe synchronous gauge we have the well known relations
model. More extensive reviews may be found in Ma and[45]
Bertschingel{45], Hu and Sugiyam46] and elsewhere so
we will only outline the general procedure and important
results. Hereafter overdots denote derivatives with respect to
conformal timer wherea(7)dr=dt and overbars indicate
unperturbed quantities. We shall write the conformal Hubble
parameter ag{ so thataH=da/dr and therefore

12
:€®i2 (36)

3 3 ,
Sc=8a=7 8,=7 8,=C(k)?,

_ 4_  15+4f,  Krdc
PeUB™ 3Py 23y af P 9

al
T(a)— joada. (35)
_ —166c a7
The CMB anisotropies observed today are the redshifted ©3(15+4f,)
temperature fluctuations that occurred in the baryon-photonh f s the fracti fth lativisti density i
fluid prior to recombination. The stress energy for a perfech eret, Is he Iraction ot the refalivistic energy density in

fluid with energy densityp and pressureé® is simply T4 heutrinos ancC is a dimensionless constant. .
v The evolution of each mode is a function of its wave-

=Pg,+(p+P)u*u, and the perturbations in the fluid are length and of the gauge. All modes begin at superhorizon
introduced asp=p+dp=p(1+05), P=P+4SP and u*  gcale kr<1, and the CDM perturbations evolve a%
=ut+v* but also an anisotropic stred8*’=PII*" is in-  «k?72 during both matter and radiation domination. As time
cluded in order to account for shear, viscosity and other sucprogresses the horizon becomes bigger than the wavelengths
processe$45]. For multiple components the stress energyof different modes; modes with larger wave numbers
tensor is the sum of the stress energy tensors of each cortsmaller wavelengthsenter the horizon before the smaller
ponenti, in our case vacuum/X), CDM (C), baryons(B), wavenumber(larger wavelengthmodes. The evolution of
photons ) and neutrinos %), so thato=2,p,;, etc. Forthe ¢ for modes that enter the horizon during radiation domi-
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nation is stunted; they grow only as 4nThis stagnation 0 and during recombination. In general there is a complex
continues until matter domination whereupon the modes benterplay between the different elements contributing to the
gin to grow again as?. Prior to recombination the behavior formation of the temperature fluctuation spectrum, but when-
of the baryon-photon fluid changes radically as a mode enever possible we shall try to couch the changes to the CMB
ters the sound horizos,g, which is given by in this language.

V. NON-STANDARD CMB
“yn

T ada
SyB(T): JO dTC.yB: JO ﬁ

The inclusion of extra relativistic energy into the CMB
wherec,g is the baryon-photon fluid sound speed. Note thecalculation is relatively straightforward. As for the photons
presence of the baryon density in the denominator of Edand the three known neutrino flavors, a brightness function is
(38). The perturbations present in the fluid drive oscillationsintroduced that is Fourier transformed and the angular de-
in the baryon density, the peculiar velocity, and the photorpendence expanded in a basis of Legendre polynomials. If
brightness function for moments= {0,1}. There are no fluc-  we do not allow the extra energy density to interact with the
tuations for¢>2 because of the tight coupling between theother componentgexcept through gravilythen the set of
photons and baryons and because the isotropizing effect @fquations governing the evolution of the brightness function
Thompson scattering suppresses these moments. The oscillvefficients is exactly the same as for the neutrinos and there
tions are forced by the CDM perturbations via the metricis no suppression of the higher moments of the brightness
potentials and their amplitude increases with the ratio of théunction. The initial conditions for the extra energy density
baryon and photon densities. Once initiated, the oscillationgre taken to be exactly those of the neutrinos so Mat
continue until recombination at which point the photon- _,N +AN* andf,—f,+fy. The effects of extra relativis-
baryon/electron interaction ceases and the photons fregy energy density X” upon the CMB anisotropy power
stream. The phase of each mode at recombination is recordeglectrum are then equivalent to an amplification of the neu-
in the anisotropy angular power spectr@p. Recombina-  tring sector. The extra energy will increase the expansion rate
tion, which occurs atr, ,a,, introduces an important modi- ¢ with the largest changes, relative to the standard model,
fication to theC, known as Silk dampin48] that is due to  occurring during the early, radiation dominated, epoch. The
the increase in photon mean free path as the number of fregyifter expansion both modifies the time-temperature rela-
electrons crashes. The subsequent increase in photon diffyonship and leads to an earlier decoupling of the photons
sion smooths temperature fluctuations on scales smaller thafjnce the scattering rate now becomes smaller fHaat an
this diffusion length. Modification of thé, does not end at  earlier epoch. Therefore both the age of the universeand
recombination: the evolution of the universe after this timeine scale factora,, at recombination are smaller and from
will imprint itself upon brightness function moments through g (38) we see that this will lead to a smaller sound horizon,
the evolution of the potentials. This change, known as the s(7,). The increase irH due to the extra energy density
integrated Sachs-WolféSW) effect, is initiated by the fad- il shift in the CMB peaks to smaller angular scalésgher
ing importance of the radiation densityie early ISW effedt ¢ vajueg and increase the peak separation. The extra radia-
and the growing importance of the vacuum energy towardion also lowers the redshift of matter-radiation equality
the present epoctthe late ISW effegt Both cause an in- \yhich will increase the suppression of the growth of CDM
crease in the photon temperature variance on the scales gértyrbations on subhorizon scales prior to matter domina-
which these processes occur. o tion and cause an increase in the temperature varigide
~ What emerges from the detailed calculations is the soluThe jncrease in the Hubble parameter also reduces the con-
tion for the evolution of the perturbations, for a given cos-tripytion to the anisotropy spectrum from the velocity pertur-
mology. The perturbations for each wave number are scalegation and the Silk damping is also less effective, further
according to an |_n|t|al power spectrum and normalized, USUincreasing the peak enhancement at latgeastly, since the
ally to the Cosmic Background Explore€€OBE). The pho-  ayira energy density associated with™can cluster under
ton temperature variance vectoCy, or C,=€(€  the influence of gravity, increasingN, enhances the early
+1)C,/2m, is then constructed. The spectrum of thecon-  jntegrated Sachs-Wolfe effect, leading to a significant in-

sists of a series of peaks at specifi@nd so the gross fea- crease in the height of the first peak relative to the others.
tures of a model can be characterized by the positions of the

peaks, the height of the first peak relative to the COBE nor- “Q

malization point and then the relative heights of all other

peaks to the firsf49,50. Regardless of the curvature of the  In general the perturbations in the quintessence energy
universe, the position of the peaks is proportional to the ratiglensity, pressure, and peculiar velocity after Fourier trans-
of the comoving angular diameter distance and the size dPrming tok space are

the sound horizon at last scatterifgf]. The height of the

first peak is a measure of change in the universe since last

scattering, while the relative heights of the other peaks and Spo= £g5¢+v¢5¢’ (39)

the ratios of their separations are set by the astrophysics prior a2
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1— . _ The solutions of this equation are linear combinations of
OPo= —¢dp—V459, (40 J_p(kq-)/rp, Np(ka-)/a_-p with p=1/2 dgrin_g radiation domin_a—

S tion andp=3/2 during matter dominatiof6]. The subhori-
zon perturbations in the field oscillate with decaying ampli-
tudes and so quintessence does not cluster. The density

vo=kdgld (42) contrast of the CDM continues to grow asrlduring radia-
and the Klein-Gordon equation for the evolution of the per_tlon domlnatlonT,zlJJrL:t during matter domination the evolution
turbations is simply changes tajc where

b+ b+ (K2+a?V, — $5.=0.
P9+2Hog+ (ICHaNgg) 09— 9020 (42 2¢=5\1-2400"™/25-5<0. (46)
There is no shear term for the quintessence field. The density
perturbations in the field are not adiabdt&2—-54. That is,
SPo—CH3pg#0 where c5=dPg/dpg is the adiabatic The lack of clustering in the quintessence energy density,
sound speed, a fact which according to Ratra and Peeblegong with its contribution td<, inhibit growth in the CDM.
[54] is “exceedingly fortunate” since pressure fluctuations  These results apply when the Albrecht-Skordis potential
can resist the collapse of quintessence density fluctuationfay be approximated by a pure exponential but when the
even if the equation of state is zero. In principle the CMB polynomial prefactor becomes important, these results break
anisotropy spectrum emerging from a quintessence model igown. However we can anticipate some of the effects of the
very different from the case ofX,” but certain effects may fie|d from the simple fact that the effect of a significant quin-
be missing or small depending on the exact behavior of thgsssence energy density is to drive a swifter expansion. In

field. this regard the Q" model we have adopted bears some

fro;hreecrair;%::;"oofut%zt y;gunutmheegxgy;u?&”;p{jisnrt’:g_trun%imilarity to “X”in that the effect of the extra energy density
P . quint in the early universe leads to a smaller sound horizon
sence dark energy that follows the exponential potential were

investigated by Ratra and Peeb[@l], Ferreira and Joyce S,s(7.) at recombination driving the anisotropy spectrum
[6] and Skordis and Albrechi52] Déep in the radiation peaks to smaller scales and increasing their separation. At the

dominated epoch the AS potential may be approximated by game time the increase i also leads to a decrease in the

pure exponential and for this potential, on superhorizorP!lk damping, thus increasing the temperature variance at
scales and with adiabatic initial conditions, there is nolarget relative to the first peak. However, unlik&;” quin-
change to the evolution of perturbations, i.8zk?72 [6],  tessence may also significantly reduce the conformal angular
which is wholly expected because during this period thediameter distance to last scattering thus partially mitigating
quintessence equation of state is exactly the same as that fe shift in the location of the first CMB pedk0]. For the

the radiation. The adiabatic initial density fluctuationQris ~ AS potential, this is not expected to be a large effect because

simply [6,52] the field becomes trapped in its minimuneatz, which, for
QfP<0.1, is abovez, = 16. Another major difference be-
4 tween “X” and “ Q” is the absence of clustering on subho-
5Q:1—5 Sc (43)  rizon scales; hence there is no enhanced early ISW effect for

quintessence. But there is an ISW effect for this potential
[52] because of the dramatic decreasednas the minimum

of the quintessence potential is approached befem, .

. _ This results in an intermediate-to-late ISW effect reducing all
Op=46cI5\, OSp=465cI5\. (44)  the peak amplitudes in the power spectrum because the

. COBE normalization fixes the amplitude of the power spec-
Although we have used Eqe43) and(44) in all our calcu-  ym at large scales.

lations the evolution of the quintessence perturbations is
largely independent of the exact initial conditions of the field

which translates to a perturbation in the fi¢&2]

when the equation of state is a constgsh). ‘g
Life becomes more interesting on subhorizon scales,
>1. Like Ferreira and Joycg5], we take the potential de-  Here, once again, there are two different approaches to

rivative and gravitational feedback terms in H42) to be  perturbations in the field depending upon the preference for
negligible relative to thek?s, piece so that, after using nmodified forms of the geometric quantities or for unmodi-
3(wi+1)—2=2/H7, we obtain fied stress-energy terms. As before, we adopt the latter ap-
proach. From this vantage point the perturbations in the en-
ergy density, pressure, and velocity divergence are the same
_—5¢+k2725¢m0. (45) as in Eqgs.(39), (40), and(41), but the Klein-Gordon equa-
3(wi+1)—2 tion for the perturbations now assumes the form

725&’)-1—
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) R — @ _  _ __  aR|— Fj 3FF,, a’F
Sh+2HSp+ (K*+a V¢¢)5q§—¢5C=7[F¢6R+F¢¢R5¢]=E FM—?— = —2| 5p—35P
. 6F 4yp 0

and we have dropped tte,,, term. Note that for this po- effect, increasing the variance on large scales and therefore

tential and coupling lowering the initial amplitude of the power spectrum. Once
o again, this effect increases with for exactly the same rea-
_ 6F yppS¢ son.
3(FyVygtFypVy)dd— a2 For the non-minimally coupled casg# 0, the situation is

much more complex. All the effects discussed above for the
=—3&1+a)dpg—3&(l—a)SPg. (48)  minimally coupled limit apply but now we must also take
into account the change iA. A reduction in the strength of
The minimally coupled limit of this model is another fre- gravity, F=1, now slows the expansion, leading to a larger
guently studied quintessence potenfia#,56,57. This po-  sound horizon at recombination.Afremained constant there
tential is in some respects the opposite of the Albrechtwould be a compensating change in the distance to the last
Skordis model where the energy density during the earlyscattering surface and the peak positions would be unaf-
universe can be considerable and may lead to a swifter exected. Howevel must decrease in order to attdii=1 at
pansion prior to its entrapment aj . In contrast, for the the present time, so this distance can only be smaller than
inverse power law potential the opposite occurs: the quinteghat required to leave the peak positions unaltered. Hence a
sence energy density is inconsequential during much of théecrease irG shifts the CMB anisotropy spectrum peaks to
evolution of the universe, only becoming important as theeven smalle. The changind- also reduces the ratio of the
present epoch is approached. amplitude of the first peak to the others by partially cancel-
In the minimal-coupling limit the superhorizon perturba- ling the early ISW effect. Simultaneously, the decreasg(in
tions during the radiation dominated epoch may be derivedhifts the peaks to larger scales due to the fact that thermal

in the usual way, leading to contact between the baryon-photon fluid can be maintained
down to a lower the redshift. The slower expansion also
S da s (49) increases the duration of recombination leading to more ef-
¢ 3(5a+26) ¢’ fective photon diffusion, decreasing the temperature variance
on small scales.
S5¢ 4 S5¢ 8+2a
% 5a+26 dc, i ~Ea126°C (50) VI. CONSTRAINTS FROM THE CMB

Unlike their similarities for BBN, the three cases we are
with no change indc. Note that where— o we regain the considering here, extra relativistic energy dengitx” ), a
results of the exponential potenti@ee Eq(43)] and, when minimally coupled scalar field Q" ), and a non-minimally
a=0, the vacuum resul,=0. Again, on superhorizon coupled scalar field G” ), all influence the formation of the
scales there is no change in the evolutionsgfduring either  CMB anisotropy spectrum differently, albeit with some fea-
matter or radiation domination and similarly, on subhorizontures in common. To explore the CMB constraints we use
scales, the quintessence perturbations dgg®¢] but unlike  modified versions ofMBFAST [58] to construct the anisot-
“ Q" there is no suppression in the growth of matter pertur-ropy spectra and varXN, and the baryon density parameter
bations. The negligible quintessence energy density alsg,,. We compare the models to the data from the
means that there is no change in the size of the sound holBOOMERANG [59], MAXIMA [60], and DASI[61] detec-
zon at recombination. There is, however, a significant detors, employingRADPACK [62] to determine the goodness of
crease in the angular diameter distance because of the coiit and we assign the confidence level basedAgyf. RAD-
tribution from the quintessence energy density at lowpACK also allows us to adjust the calibration of each data set,
redshifts that causes a shift in the peak positions to sméller at the cost of ay? penalty. The current data cover the first
and decreases their separation. This effect increasesawith three peaks in th&, with reasonable accuracy, so while
because the equation of state and, thus, the energy degsity subtle effects may be missed, this approach is sufficient to
are correlated with the exponent: smallercorrespond to extract the gross features of each model. Since
smaller pg at a fixed redshift. The peak heights are sup-here we are concentrating on constraints in the
pressed relative to the COBE normalization point becaus&N,-» plane, we have limited the priors, adopting those of
the larger quintessence energy density terminates matténe “concordanceACDM” model: Q=1, Qy=0.3, H
domination at an earlier epoch. This enhances the late ISW72 kms * Mpc™!, along with no “tilt” (n=1). As in
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FIG. 4. CMB likelihood contours, 68%, 95%, and 99%, fof™ FIG. 5. CMB likelihood contours, 68%, 95%, and 99%, f&™
(solid) and “Q” (dashedl The best fit points are indicated by the and two values ofy, the IPL exponent. The solid contours are for
cross for “X,” and by the square for Q.” a=4 and the dashed contours are for 1. The best fit points are

indicated by the diamond fak=4 and the cross for=1.

related, earlier worksee, e.9.[63—66]) here we explore the
constraints om\N,, derived from the CMB anisotropy. the contours. We also note that tiy@ at the best fit point
Because the CMB constraints in the non-minimally decreases with decreasieg i.e., «=2 is a better fit than
coupled case G” differ from those for “X” and “ Q" we a=4 anda=1 is a better fit tharw=2. The large shift in
discuss this casés, separately. We note here that Chen andand the sensitivity of,, to @ can be understood as follows.
Kamionkowski[67] have discussed how constraints from thelnverse power law potential models genericaigducethe
CMB may be used to provide a test of Brans-Dicke cosmolheights of all the peaks because of the late ISW effect and
ogy, which bears some relation to our cage.™ this suppression decreases with The peak suppression fa-
First, we consider X.” In general, there is an intimate vors shifts in the experimental calibrations, so by increasing
interplay betweeny;o andA Nf as shown by the solid curves the baryon to photon ratio there is a deflection of some of the
in Fig. 4 where our results reveal that arcreasein AN,  x° penalty by improving the fit to the first and third peaks at
can, to some extent, be compensated beductionin 5.  the expense of making the fit to the second peak worse.
This degeneracy is the result of similar effects upon the relaAdditionally, raising»,, suppresses the Silk damping boost-
tive heights of the first and second peaks and is only brokeing the temperature variance at largeelative to that at the
by the presence of the third peak in the spectrum. Increasinfifst peak. Lastly, as we noted before foX,” raising 7,9
ANL‘ leads to a larger early ISW effect boosting the variancewill also reduce the sound horizon at last scattering which
at the first peak relative to the rest, while increasing, will compensate for the reduction of the angular diameter
changes the relative heights of the odd and even peaks. Alistance in these models. The shift in the centroid of the
the same time increasingN* reduces the sound horizon by contours is due to the reduction of the strength of the late
reducing the conformal age of the universe at last scatteringSW effect ase decreases since the increaseyig needed to
but the presence Q_fB in Eq. (38) reveals that a reduction in raise the peak amplitudes becomes smaller. The anticorrela-

710 €an compensate this change by increasing the baryorlii—On of 710 andANf is Iaég_ely the result of the change_in the
photon sound speed which overwhelms the simultaneous irfa"y ISW effect. ASAN," increases the ratio of the first to

crease in redshift at which recombination occurs. second peak amplitudes also increases which ik , can
The dashed curves in Fig. 4 show the contours fr™  be compensated by reducing,.
In th|s case they |ack the Strong anticorre'ation betmm Clearly, N th|S case the beSt f|t Values and the bounds fOI’

and 7 that “X” exhibited. Despite the differences between 710 and ANS are functions ofa. For =4 we havery,
“X”and “ Q,” the bounds from the CMB are quite similarin =10.9, ANS=—-0.84 with a 99% upper bound akN$
both cases, with best fit values of;~6.2-6.5 Qgh? =1.8, for =2 we find 7,,=10.0, AN®=—0.90 with a
~0.023-0.024) and non-zerdN, ~1.2-1.6, while the 99% upper bound oﬁNst.Z while for a=1 we find
99% upper bound toAN, in both cases isAN,<3.2  7,,=8.8, AN®=—0.63 with a 99% upper bound a@fN®
(Q§P=<0.340=3.4). <0.3. However, as we mentioned earlier, tyé at the
For comparison with the CMB fluctuation data, the caseminima for =4 is large(130 for 39 degrees of freedom
of non-minimally coupled fields has several unique featuresaind we can rule out this model as incompatible with the data
which distinguish it from the other two cases consideredan extremely high confidence levébrmally, at ~1071%).
above. The confidence contours shown in Fig. 5 compare thEhe case ofv=2 is only marginally CMB compatible, at the
results for two choices ofr. A comparison of Figs. 4 and 5 99% confidence level, while thee=1 model is perfectly
reveals that the anticorrelation between, andANf isvery  acceptable. These results are in agreement with previous
strong for the non-minimally coupled ca&: with the cen-  studies on limits toa: Malquarti and Liddle[68] find «
troid of the contours dependent anas is the elongation of <2 at 95% in the minimal limit while Bean and Melchiorri
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FIG. 6. Joint BBN and CMB likelihood contours, 68%, 95%, 05
and 99%, for ‘X" (solid) and “Q” (dashedl The best fit points are
indicated by the cross forX” and by the square for Q.”

[69], Hannestad and Mtsell[70] and Melchiorriet al.[71],

have found that the effective equation of state for quintes-»
sence must be close te 1, which imposes a similar con- <
straint ona [16].

As in our discussion of BBN, we must discuss some ca-
veats to our CMB results. WhekiN>0, the enhancetla-
tivistic energy density keeps the early universe radiation
dominated to a lower redshift. To some extent this can be ‘°-55
compensated by an increase in thatterdensityQ,,. How-
ever, since in our CMB fits we have fixed,, at 0.3, the
ranges ofANf shown in Fig. 4 are overly restrictiieom- FIG. 7. Joint BBN and CMB likelihood contours, 68%, 95%,
pare, e.g., witH66]). However, this bias will be ameliorated and 99%, for ‘G,” @=1. The top panel is with n& constraints
in the combined BBN-CMB likelihood distributions since, as Eqg.(19), the bottom is with those constraints. The best fit points are
may be seen by comparing Figs. 3 and 4, the dominant corirdicated by the crosses.
straint onAfo is provided by BBN. We must again point out
that the solar system limits &’ will further restrict the the universe ax~10" and atz~0.
allowed range oAN® and indeed the best fit points shown In the top panel of Fig. 7 are shown the joint BBN-CMB

in Fig. 5 are all outside the allowed range corresponding tdikelihood contours for the G” case, but only fora=1: we
the bounds orG in Eq. (19). For non-minimally coupled do not show likelihood contours for the other twiovalues

scalar fields the upper and lower boundsAtN® are func- ~ Since these modelsy(= 2,4) are ruled out at better than 99%
tions of the inverse power law exponeatin the adopted ~confidence. Forr=1 the x* at the minimum for the joint
scalar field potential. BBN-CMB fits is slightly larger than for X" and “ Q,” at
57 for 39 degrees of freedom; this non-minimally coupled
model is compatible with the data at 97% confidence level.
The minimum for this model occurs me%—O.Sl, 710

For a self-consistent cosmology any modifications to~8.2 ((1gh?~0.030), with a significant autocorrelation be-
SBBN at redshift~10'"° must be consistent with those de- tween the two quantities. The deviation fratiN,=0 is now
viations from the standard-model predictions for the laterather large: the minimum alongN,=0 is located on the
evolution of the universe as probed by the CMB {2@  90% confidence contour.
=0). While BBN and the CMB favor slightly different re- Finally, in the bottom panel of Fig. 7 we impose the limits
gions in theAN, -7 plane, there is, indeed, overlap for mod- to G’ we have mentioned so frequently. The minimum from
els with new particleg X” ) and for those with minimally  the top panel is outside the allowed regidN®= +0.15 and
coupled scalar field$* Q”). In Fig. 6 are shown the joint now resides on the boundary Ath%—O.15, Mo~7.6
BBN-CMB likelihood contours for these two cases. Al- ((;h?~0.028). They? at the minimum is such that the
though the best fits do occur for small, nonzero values ofjoodness of fit of the model is only compatible with the data
AN, (AN,~0.1,7,0~6.6=0h?~0.024), the deviation at the 98% level.
from AN,=0 is not statistically significant and the “stan-
dard” model (AN,=0) is entirely consistent with the BBN
and CMB data. For bothX” and “ Q,” the minimum x? in
our combined BBN-CMB fit is 47 for 39 degrees of freedom; BBN and the CMB provide complementary constraints on
for these cases there is consistency between the models ambdels for the dark matter and energy at completely distinct

0

Mo

VIl. COMBINING BBN AND CMB

VIlIl. SUMMARY
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epochs in the evolution of the universe. Consistency withCMB. In fact, in this regard, these two models are unique
both sets of constraints can help in distinguishing amongsince it is much more common for quintessence models to
different models for new physics beyond the standard modelbecome important only at low redshifts. In such cases BBN
of cosmology and particle physics. As discussed here, moddrovides few, if any, constraints and the primary anisotropies
els with extra particles which are relativistic during the earlyof the CMB are unaffected. The influence of the dark energy
evolution of the universg“ X”) and those with minimally is via the change in redshift of matter—dark energy equality
coupled scalar fieldg“ Q") yield similar predictions for and thus the corresponding COBE normalization of the mat-
BBN (7,0~5.0 andAN,~0; see Sec. lll, especially Figs. 1 ter power spectrum. For the CMB this translates into a global
and 3 and for the CMB {,0~6.2-6.5 andAN,~1.2—-1.6;  stretching of the peaks in the spectrum and a reduction in
see Sec. VI and Fig.)4As a result, they also provide similar their amplitudes but for largéand small scale structure
good fits to the joint BBN-CMB constraintsee Sec. VII  (LSS), type la supernovae observations, and weak lensing
and Fig. 6 with the baryon density being largely determined surveys the change in the extent of matter perturbation
by the CMB constraints andN, by BBN. While the best growth is more important and their observation will provide
fits to the data for these two options are in fact compatiblevaluable additional and complimentary constraints upon the
with AN, =0 (at Qgh?~0.024 in both cas¢ssome dark models[72-74. The minimally coupled IPL potential falls
energy is permitted: at 99% confidence leveN =<1.07 into this category. The CMB already constrains:2 [68]
while AN9=0.85 Q®=<0.12\=5.7). In contrast, the @and including LSS and type la supernova data yieldss
new physics associated with non-minimally coupled scalar-0-7 at the present time which translates inta 1.5 for the
fields (“ G” ) induces some unique behavior, leading to quiteconcordance model values By and(Qy, .
different BBN and CMB constraints which, in general, are These same cosmological tests also furnish constraints
quite difficult to satisfy simultaneously. Because such model$iPon the two models we have examine@™and“ G.” For
generally modify the strength of gravity during the earlierthe pure exponential potential these signatures were dis-
evolution of the universeAN®<0 is not only allowed, it is cussed by Ferreira and Joypé] and the Albrecht-Skordis
favored by both the BBN and CMB constrairitee Sec. lll, modification(our case Q") by Skordis and Albrecf52]. In
especially Fig. 2, and Sec. VI, especially Fig. Bowever, ~contrast with typical quintessence models the AS potential
for “ G” the allowed regions in thé\N -7 plane are sensi- Mmodifies the matter power spectrum mainly by inhibiting the
tive to the form of the scalar field potentiadee Fig. 5 For ~ 9rowth of density perturbations rather than changing the
inverse power law potentials, only those models wits1 ~ COBE normalization. The essentially stationary field below
have CMB-identified regions which have significant overlapthe redshift ofzy=15 (corresponding ta\=5.7) leads to
with the regions compatible with the BBN constraiftem-  little change in the magnitude-redshift relation that could be
pare Figs. 2 and)5Furthermore, since there are solar systemProbed by type la supernovae. For the non-minimally
constraints on the possible variation®fthere are non-BBN ~ coupled inverse power law model the effects are supplemen-
and non-CMB constraints 06'/G [see Eq.(19)] which  tary to those in the minimal limit. A non-zerg will intro-
provide independent constraints &iN®. When these are duce addltlona! effects _through the change in grgwtaﬂonal
combined(for o= 1) with the BBN and CMB constraints the strengthF that In turn_W|II alte_r the growth of _densn_y_ per-
best fit value ofANf is at —0.15 and) gh?~0.028(see Fig. turbations by directly influencing their growth in addition to
7). However, we note that there is less than a 2% probabilit)}
that this model is, in fact, compatible with the current BBN
and CMB data. _ _ _ _ ACKNOWLEDGMENTS
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