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Scaling law in signal recycled laser-interferometer gravitational-wave detectors
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By mapping the signal-recyclingSR) optical configuration to a three-mirror cavity, and then to a single
detuned cavity, we express the SR optomechanical dynamics, input—output relation, and noise spectral density
in terms ofonly three characteristic parameters: {ifi@e) optical resonant frequency and decay time of the
entire interferometer, and the laser power circulating in the arm cavities. These parameters, and therefore the
properties of the interferometer, are invariant under an appropriate scaling of SR-mirror reflectivity, SR detun-
ing, arm-cavity storage time, and input power at the beam splitter. Moreover, so far the quantum-mechanical
description of laser-interferometer gravitational-wave detectors, including radiation-pressure effects, has been
obtained only at linear order in the transmissivity of arm-cavity internal mirrors. We relax this assumption and
discuss how the noise spectral densities change.
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[. INTRODUCTION “optical spring.” The dynamics of the whole optomechanical
system, composed of arm-cavity mirrors and an optical field,
A network of broadband ground-based laser interferomresembles that of a free test massrror motion connected
eters, aimed at detecting gravitational wa¥@Ws) in the to a massive springoptical fieldg. When the test mass and
frequency band 10—f(Hz, is already operating. This net- the spring are not connect¢el.g., for very low laser powgr

work is composed of GEO, the Laser Interferometerthey have their own eigenmodes: the uniform translation
Gravitational-wave Observatory(LIGO), TAMA, and Mmode for the free mode and the longitudinal-wave mode for

VIRGO (whose operation will begin in 20041]. The LIGO  the spring. However, for LIGO-Il laser power the test mass is

Scientific CollaborationLSC) [2] is currently planning an ETM
upgrade of LIGO starting from 2008, called advanced LIGO '
or LIGO-II. In addition to the improvement of the seismic 8
isolation and suspension systems, and the increkszease g 2
of light power(shot noisgcirculating in the arm cavities, the g 8
LIGO community has planned to introduce an extra mirror, £ g
called a signal-recycling mirrdiSRM) [3,4], at the dark-port _<_ BN
output(see Fig. 1 The optical system composed of the SR A —
cavity and arm cavities forms a composite resonant cavity, S !
: ; X PRM i IT™ ! ETM

whose eigenfrequencies and quality factors can be controlle ! ! :
by the position and reflectivity of the SR mirror. These Laser : | +| 1 Arm cavity
eigenfrequenciegresonancescan be exploited to reshape | ~**¢ o A
the noise curves, enabling the interferometer to work either ' © i I Antisvm. mode -
in broadband or in narrowband configurations, and improv- :_ bl SRM | ym
ing in this way the observation of specific GW astrophysical - Al e
sourceq5]. Fluctuation 1y Quantum Noise

The initial theoretical analysd$8,4] and experiment§6] Photodetection

of SR interferometers refer to configurations with low laser . .
power, for which the radiation pressure on the arm-cavity. FIG. 1. .A signal-(and power} recycled LIGO interferometer.

. ) .. . The laser light enters the interferometer from the (bfight por},
mirrors is negligible .and the quantum-noise §pgctra ar rough the power-recycling mimofPRM), and gets split by a
dominated _by shot noise. When the laser powgr '_S‘ INCreasegn 5o peam splittefBS) into the two identicalin the absence of
the shoF noise decreases while the effect of rad|at|on-pressubgavitational waves arm cavities. Each of the arm cavities is
fluctuation increases. LIGO-II has been planned to work at §o;med by the internal test-mass mir@FM) and the end test-mass
laser power for which the two effects are comparable in thenirror (ETM). No light leaves the interferometer from below the
observational band 40-200 H2]. Thus, to correctly de- gs (dark por, except the lights induced by the antisymmetric mo-
scribe the quantum optical noise in LIGO-II, the results hav&jon of the test-mass mirrors, e.g., due to a passing-by gravitational
been complemented by a thorough investigation of the influwave, or due to vacuum fluctuations that originally enter the inter-
ence of radiation-pressure force on mirror motidh-10..  ferometer from the dark port. A SRM is placed at the dark port,
The analyses revealed that SR interferometers behave as fafming a SR cavitymarked by thick dashed linpwith the ITMs.
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connected to the massive spring and the two free modes gate the parameters used in the original descript&8]. An
shifted in frequency, so the entire coupled system can resanteresting scaling law among the practical parameters is
nate at two pairs of finite frequencies. Near these resonancéen obtained. In Secs. Ill and IV A the input—output rela-
the noise curve can beat the free mass standard quantui@ns, noise spectral density, and optomechanical dynamics
limit (SQL) for GW detector$11]. Indeed, the SQL is not by are expressed in terms of those characteristic parameters. In
itself an absolute limit, it depends on the dynamical properS€c. IV B we map the SR interferometer to a single detuned
ties of the test objector probe which we monitor. This cavity of the kind analyzed by Khali[i13]. In Sec. IVC we
phenomenon is not unique to SR interferometers; it is a geshow that c_orre!at|ons .between shot noise anq radiation-
neric feature of detuned cavitiéd2,13 and was used by Pressure noise in SR interferometers are equivalent to a
Braginsky, Khalili, and colleagues in conceiving the “optical change of the optomechanical dynamics, as discussed in a
bar” GW detector§14]. However, because the optomechani-More general context by Syrtsev and Khalili7]. In Sec.

cal system is by itself dynamically unstable, a careful and" - using fluctuation-dissipation theorem, we explain why
precise study of the control system should be carried oupPtical spring detectors hawery lowintrinsic noise, and are
[10]. then preferable to mechanical springs in measuring very tiny

The quantum mechanical analysis of SR interferometerfrces. In Sec. V we derive the input—output relation of SR
given in Refs.[8—10 was built on results obtained by interferometers at all orders in the transmissivity of internal

Kimble, Levin, Matsko, Thorne, and WatchaniKLMTV ) test-mass mirrors. Finally, Sec. VI summarizes our main con-
[7] for conventional interferometers, i.e., without SRM. For €lusions. Appendix A contains definitions and notations, Ap-

this reason, both the SR input—output relatj8r9] and the pendix B discusses the Stokes relations in our optical system,

SR optomechanical dynami§$0] were expressed in terms 2nd in Appendix C we give the input—output relation includ-

of parameters characterizing conventional interferometerdnd @/S0 next-to-leading order terms in the transmissivity of
such as the storage time in the arm cavities, instead of p&rM-cavity internal mirrors. _

rameters characterizing SR interferometers as a whole, such /" this paper we shall be concerned only with quantum
as the resonant frequencies and the storage time of the entif@iS€: though in realistic interferometers seismic and thermal

interferometer. Therefore, the analysis given in RESs:10] noises are also present. Moreover, we shall neglect optical

is not fully suitable for highlighting the physics in SR inter- 0SSes(see Ref[9] where optical losses in SR interferom-
ferometers. eters were discussgd

In this paper, we first map the SR interferometer into a
three-mirror cavity, as originally done by Mizundl5], Il. DERIVATION OF SCALING LAW
though in the low power limit and neglecting radiation-
pressure effects, and by Rachmand] in classical re-
gimes. Then, as first suggested by MizUd®], we regard
the very short SR cavitjformed by SRM and internal test- In Fig. 1, we draw a signal- and power-recycled LIGO
mass mirroITM)] as oneeffective mirror and we express interferometer. The Michelson-type optical configuration
input—output relation and noise spectral denfly and op-  makes it natural to decompose the optical fields and the me-
tomechanical dynamid®] as well, in terms of threeharac-  chanical motion of the mirrors into modes that are either
teristic parameters that have more direct physical meaningsymmetric (i.e., equal amplitude or antisymmetric(i.e.,
the free optical resonant frequency and decay time of theequal in magnitude but opposite in sigms the two arms, as
entire SR interferometer, and the laser power circulating irdone in Refs[7—-10], and briefly explained in the following.
arm cavities. By free optical resonant frequency and decaln order to understand this decomposition more easily, let us
time we mean the real and inverse imaginary part of thdor the moment ignore the power-recycling mirr®RM)
(complex optical resonant frequency when all the test-massand the signal-recycling mirrdiSRM).
mirrors areheld fixed.These parameters can then be repre- First, let us suppose all mirrors are held fixed in their
sented in terms of the mogactical parameters: the power equilibrium positions. The laser light, which enters the inter-
transmissivity of ITM, the amplitude reflectivity of SRM, SR ferometer from the left of the beam splitt€BS), excites
detuning, and the input power. An appropriate scaling of thestationary, monochromatic carrier light inside the two iden-
practical parameters can leave the characteristic parametedrsal arm cavities with equal amplitudémarked with two
invariant. plus signs in Fig. Land thereby drives the symmetric mode.

In addition, in investigating SR interferometefl8—10]  To maximize the carrier amplitude inside the arm cavities,
the authors restricted the analyses to linear order in the tranthe arm lengths are chosen to be on resonance with the laser
missivity of arm-cavity internal mirrors, as also done by frequency. When the carrier lights leave the two arms and
KLMTV [7] for conventional interferometers. In this paper recombine at the BS, they have the same magnitude and
we relax this assumption and discuss how results change. sign, and, as a consequence, leak out the interferometer only

The outline of this paper is as follows. In Sec. Il we from the left port of the BS. No carrier light leaks out from
explicitly work out the mapping between a SR interferometerthe port below the BS. For this reason, the left port is called
and a three-mirror cavity, expressing the free oscillation frethe bright port, and the port below the BS is called the dark
guency, decay time, and laser power circulating in arm cavport. Obviously, were there any other light that enters the
ity, i.e., the characteristic parameters, in terms of SR-mirrobright port, it would only drive the symmetric mode, which
reflectivity, SR detuning, and arm-cavity storage time, whichwould then leak out only from the bright port. Similarly,

A. Equivalent three-mirror —cavity description
of signal-recycled interferometer
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lights that enter from the dark port would only drive the P.TIsRM M, P- T ETM
antisymmetric optical mode, which have opposite signs at b Yy k k
the BS(marked in Fig. 1 and would leak out the interfer- T N B A
ometer only from the dark port. : rymd I . ,

Now suppose the mirror§TMs and external test-mass A LN :_! I,
mirrors (ETMs)] move in an antisymmetriémechanical : _p+ _T+:

mode (shown by arrows in Fig. )Lsuch that the two arm - ~-~-~-=---

lengths change in opposite directions—for example, driven FIG. 2. We draw the three-mirror cavity which is equivalent to a
by a gravitational wave. This kind of motion would pump the SR interferometer in describing the antisymmetric optical/
(symmetrig carriers in the two arms into sideband lights mechanical modes and dark-port optical fields. The SR cavity,
with opposite signs, which lie in the antisymmetric mode,which is mapped into a two-mirror cavityn the dashed bgxcan
and would leak out the interferometer from the dark portbe viewed as an effective mirror, with four effective reflectivities
(and thus can be detecje®n the contrary, symmetric mir- and transmissivitieg’, 7' (for fields entering from the right sidle
ror motions that change the two arm lengths in the same wajind 5, 7 (for fields entering from the left side The input and
would induce sidebands in the symmetric mode, whichoutput fields,a andb, corresponds to those at the dark port of the
would leave the interferometer from the bright port. More-real SR interferometer.

over, sideband lights inside the arm cavities, combined with

the strong carrier lights, exert forces on the test massesavity, a andb (shown in Fig. 2. Because of the presence of
Since the carrier lights in the two arms are symmetric, sidethe BS in real interferometegiand the absence in effective
bands in the symmetriantisymmetri¢ optical mode drive  one), the optical fields inside the two real arms is1/\2
only the symmetric(antisymmetri¢ mechanical modes. In times the fields in the effective cavity composed of the ef-
this way, we have two effectively decoupled systems in ouffective ITM and ETM. As a consequence, fields in this ef-
interferometer:(i) ingoing and outgoing bright-port optical fective cavity are\2 times as sensitive to mirror motions as

fields, symmetric optical and mechanical modes, @)dn-  those in the real arms, and the effective power in the effec-
going and outgoing dark-port optical fields, antisymmetrictive cavity must be

optical and mechanical modes.

When the PRM and SRM are present, since each of them larm=2l . (N
only affects one of the bright/dark ports, the decoupling be-
tween the symmetric and antisymmetric modes is still valid.Therefore, both the carrier amplitude and the sideband am-
Nevertheless, the behavior of each of the subsystems belitude in the effective cavity ar¢2 times stronger than the
comes richer. The PRM, along with the two ITMs, forms aones in each real arm. In order to have the same effects on
power recycling cavityfor symmetric optical modes, shown the motion of the mirrors, we must impose the effective
by solid lines in Fig. L In practice, in order to increase the ETM and ITM to be twice as massive as the real ones, i.e.,
carrier amplitude inside the arm cavitig3], this cavity is
always set to be on resonance with the input laser light. More Mam=2M. (2
specifically, if the input laser power at the PRMljs, then
the power input at the BS ig=41;,/T,, and the circulating We denote byl andR=1—T the power transmissivity and
power inside the arms ig=214/T, whereT, andT are the reflectivity of the ITMs,L=4 km is the arm length, and we
power transmissivities of the PRM and the ITM. The SRM, assume the ETMs to be perfectly reflecting. The arm length
along with the two ITMs, forms a SR cavitfor the anti- iS on resonance with the carrier frequenay,=1.8
symmetric optical modes, shown by dashed lines in Fig. 1 X 10" s, i.e.,, woL/c=Nm, with N an integer. We denote
By adjusting the length and finesse of this cavity, we carPy p andl the reflectivity of the SRM and the length of the
modify the resonant frequency and storage time of the antiSR cavity, andp=[ wol/C]meq 2 the phase gained by lights
symmetric optical mod¢4], and affect the optomechanical Wwith carrier frequency upon one trip across the SR cavity. We
dynamics of the entire interferometgt0]. These changes assume the SR cavity to be very short10 m) compared
will reshape the noise curves of SR interferometers, and cawith the arm-cavity length. Thus, we disregard the phase
allow them to beat the SQI8,9]. gained by lights with sideband frequency while traveling

Henceforth, we focus on the subsystem made up of darkacross the SR cavity, i.()l/c—0. The three-mirror cavity
port fields and antisymmetric optical and mechanical modessystem can be broken into two parts. The effective arm cav-
in which the detected GW signal and quantum noises residéty, which is the region to the right of the SR cavity, includ-
In light of the above discussions, it is convenient to identifying the ETM (but excludingthe ITM), where the light inter-
the two arm cavities as one effective arm cavity, and map thacts with the mechanical motion of the ETM. This region is
entire interferometer to a three-mirror cavity, as shown incompletely characterized by the circulating power the
Fig. 2. In particular, the SR cavity, formed by the SRM andarm lengthL, and the mirror massn. The (very shor} SR
ITMs is mapped into a two-mirror cavitfinside the dashed cavity, made up of the SRM and the ITM, which does not
box of Fig. 2 or one effectivdTM. The antisymmetric me- move. This part is characterized By p, and ¢.
chanical motions of the twaeeal arm cavities is equal or Henceforth, we assume the radiation pressure forces act-
opposite in sign to those of this system. The input and outpuing on the ETM and ITM to be equal, and the contribution of
fields at the dark port correspond to those of the three-mirrothe radiation-pressure—induced motion of the two mirrors to
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the output light, or the radiation-pressure noises due to thgom which we infer that the output fields. (Q) depend
two mirrors, to be equal(These assumptions introduce er- only onp’ or equivalently orf). Thus, if we vary the inter-
rors on the order of mg&L/c,T}.) As a consequence, we can ; h . & ' d h thats’
equivalently hold the ITM fixed and assume the ETM has aerometer characteristic parametdtsp, andé such thaip

reduced mass of Is preserved, the input—output relation does not change. We
refer to the transformation among the interferometer param-
1 eters having this property as tkealing law
Marm— E Marm- ©)

C. The scaling law in terms of interferometer parameters

In this section we give the explicit expression of the scal-
ing law in terms of the practical parameters of the SR inter-

As first noticed by Mizund15], when the SR cavity is  ferometer. We start by deriving the effective transmissivities
very short, we can describe it as a single effective mirror, 4 reflectivities, 7, p’, and7 in terms of T, R=1—T, p

with frequency-independertbut complex effective trans-  5n44 By imposing transmission and reflection conditions at
missivities and reflectivitiessee Fig. 2 p, 7 (for fields en-  the ITM and SRM, and propagating the fields between these

tering from the leftandp’, 7' (for fields entering from the mirrors (see Fig. 2, we get the following equations:
right), and write the following equations for the annihilation

B. The scaling law in generic form

(and creation, by taking Hermitian conjugateperators of 7. (Q)+pe'ly.(Q)=x.(Q),

the electric field(see Appendix A for notations and defini- _

tions): VTke (0) = VReE %, (Q)=y.(Q), ©)
j=(Q)=p'k:(Q)+1aL(Q), — AL (Q)+ %y, (Q)=D.(Q),
b.(Q)=7"k.(Q)+pa.(Q). @) VRK.(Q)+ VT 9%, (Q)=j.(Q), (10)

Among these four complex coefficienis,, the effective re- where the (amplitude transmission and reflection coeffi-
flectivity from inside the arms, determines t(feee) optical ~ cients of ITM and SRM are chosen to be real, more specifi-
resonan{compley frequencywo-+ & of the system through cally, {+T,— R} are chosen for light that impinges the
the relation: ITM from outside the arm cavity,+ T, + YR} for light that
impinges the ITM from inside the arm cavitls- 7,— p} for
;rez@uc: 1. (5) light that impinges the SRM from outside the SR cavity, and
{+ 7,4+ p} for light that impinges the SRM from inside the

(Note that the carrier frequenay, is assumed to be on reso- SR cavity.-(Here VR, T, p, and T are positive real num-
nance in the arm cavity, i.ewoL/wc=integer) It turns out  bers) Solving Eq.(9) for x.. andy. in terms ofa.. andb.,
that if we keep fixed the arm-cavity circulating power the  plugging these expressions into EQ.0), and comparing
mirror massam, and the arm-cavity length, the input—output ~ with Eq. (4) we obtain
relatllon (é—E)) of the two-po-rt systengd) is completely de- (R peit | R
termined byp’ alone or equivalently by thécomplex free ' p ~__ P

i 1) i 1 i 2ip” P 2ig’
optical resonant frequendy. To show this, we first redefine 1+Rpe 1+JRpe
the ingoing and outgoing dark-port fields as

~ o~ T\/?eidj
* =

D). © 1+ VRpe?'?
It can be easily verified that these coefficients satisfy the
This redefinition is always possible since we can freelyStokes relation$B8) and (B9). The scaling law can be ob-

choose anothefcommon) reference point for the input and tained by imposing thas’ does not vary. This gives
output fields. Second, using the Stokes relations given in

=g

!

11)

[
91

a.(M)==2a.(Q), b.(Q)=

=
3

Appendix B, we derive the following equations: JR+ pe?i®
m =const. (12)
J=(Q)=p"k(Q) +[7[E(Q) pe
=B’ki(ﬂ)+ [1— |73’|2~¢(Q). @ Using Eq.(5), we derive the(compleg free optical resonant
frequency in terms of, p, and ¢:
b..(Q)=[7lk.(Q)~p"*E.(Q) - ic  JR+pe?? _
- _ Q=5-log ——=——=—\-le, (13
=V1-[p'|?k.(Q)—p'*E.(Q), 8 2L 77 14 JRpe?®
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FIG. 3. We plotp and ¢— m/2 vs € for A=2mXx100 Hz (solid line), 277X 200 Hz (dotted ling, 277X 500 Hz (dashed ling and 2=
X 1000 Hz(dashed-dotted ling having fixedT=0.033.

where we trad@ for two real numbersy the resonant fre- ample of a Configuration with narrow-band SenSitiVity around
quency\ and decay ratéinverse decay timee. For any @ high frequency. A3, p, and¢ vary along these curves, the
choice of T, the parameterp and ¢ can be expressed in input—output relation is preserved.

terms of\ ande by solving Eq.(13) in terms ofpe?¢. The As done in Refs[8,9], we now expand all the quantities
result is in T and keep only the first nontrivial ordéihe accuracy of
this procedure will be discussed in Sec) For the crucial
2o g 2ellcg2irtie_ quantityp’ a straightforward calculations gives
Pe T 11— JRe 2ebicg2intic’ (14)
~, T 1-pe?
In Fig. 3 we plotp (left pane) and ¢— /2 (right pane] as p'=1- 2 m' (19
functions of e for four typical values ofA: 27x100 Hz
(solid liney, 2mx200 Hz (dotted liney, 2500 Hz So the scaling law at linear leading orderTiris
(dashed linegs and 27X 1000 Hz (dashed-dotted lings
while fixing T=0.033. In Fig. 4 we plop and ¢— 7/2 as %ig
functions of T, as obtained from Eq.14), for three sets of 1-pe — const (16)
optical resonances:\(e€)=(2mX194.5 Hz,2rX 25.4 Hz), 1+ped® '

plotted in solid lines, which goes through the point
(T,p,¢)=(0.033,0.97/2-0.47) (marked by a squaje \joreover, applying Eq(15) to Eq. (5), we derive the fol-

which is the configuration selected in Ref8—101; (\.€)  |owing expression for théree) optical resonant frequency at
=(27x228.1 Hz,2rx 69.1 Hz), plotted in dotted lines, leading order infT:
which goes through the pointT(p,¢)=(0.005,0.967/2

—0.06) (marked by a triangle which is the current LIGO-II 11— pe?% To  —2psin 26—i(1—p?)

reference design[18]; and (\,€)=(27X900 Hz,2r 0== _ y, (17)
X 30 Hz), plotted in dashed-dotted lines, which is an ex- I 1+pe?¢ 4L 1+ p?+2p cos 2p
IS ==F===F o= d- = &~ o= _ 0 ===l 1 - T T 1
'A’ E —01l .."' ~~~~__~~ i
095 . 4 ~———
. -02f .
09k . ~03F 1
P : o2 ]
-04f -
0.85|- . I ]
- -0.5F RN
0.8 .".... - —0.6F _
P T T B B I R R R
0 0.01 002003 0.04 0.05 0 0.01 00z 003 0.04 0.05

FIG. 4. We plotp and ¢— w/2 vs T for three sets of optical resonancek; €) = (27X 194.48 Hz,2r X 25.42 Hz) (solid lines, (\,¢€)
=(27Xx228.10 Hz,2r X 69.13 Hz)(dotted line$, and (\,e) = (27X 900 Hz, 27X 30 Hz) (dashed-dotted lingsWe mark with a square and
a triangle the special configurations selected in Rgs:10], with (T,p,¢)=(0.033,0.97/2—0.47), and the current LIGO-II reference
design[18], with (T,p,¢)=(0.005,0.967/2—0.06), respectively.
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wherey=Tc/4L is the half-bandwidth of the arm cavity. The b, 1
frequencyQ coincides with the frequenc§) _ introduced in (~ ) = >
Ref.[10]. [Since the authors of Rgf10] used the quadrature bo)  V1+2pcos2p+p
formalism, they had to introduce anothéree) optical reso-

(1+p)coseo

nant frequency which they denoted By, = — Q* . See dis-
cussion around EqA12) in Appendix A] Thus, at linear
order inT we have

(1—p)sind>)<b1>
—(1—p)sing (1+p)cose)\ b,/ @3

Inserting the above expressions into E¢g.20—(2.24) of
Ref.[8], and using Eqs(18)—(21), we get the input—output

__ 2pysin2¢ - (1-p%)y relation depending only on the characteristic or scaling in-
1+p%+2pcos2p’ 1+p%+2pcos2p variant quantities\, €, and:
(19 B ~ 5 5
b,y 1 [(CH C¥ (él) L(PP) h
F.lnally, usm.g_Eqs(BS) and Eq.(15) we 0btam the cqefﬂ- b, VISARY ) ”(:(212) ER 5(21) hso|
cients redefining the fields. () andb-(Q) in Eq. (6): (24)
7 (1+p)cose+i(l—p)sing 9 where we define
- = . 19
7 V1+2p cos 2+ p? MO=[\2-(Q+ie)2]Q2— s, (25)
and
I1l. INPUT —OUTPUT RELATION AND NOISE
SPECTRAL DENSITY IN TERMS R)_RARL)_2/02_ 2 .2
OF CHARACTERISTIC PARAMETERS Cir=Ca =AD" =M+ )+ e,
A. Input —output relation '(:(112)_ 2ex02 '(:(211):26)\92_26%, (26)
In this section we shall express the input—output relation
of the SR interferometdat leading order~|rT) only |.n terms f)(ll): —o\ \/G_LCQ, 5(21)=2(e—iQ)Q \/E_LC (27)
of the (free) optical resonant frequency)=—\—ie, and
the parametet., defined by and
8wyl
fe™ mEcc’ 20 hsor="\/ 8h (28)
St N mo2L 2

where the circulating powdr; is related to the input power

at BSI, by is the free-mass SQL for the gravitational strdi(() in

LIGO detectord 11]. The quantity:. has the dimension of a
frequency to the third powet®). Since it is proportional to
2 the laser power circulating in the arm cavity, it provides a
(22) measure of radiation-pressure strength. In order that radiation
pressure influences interferometer dynamics in the frequency
range interesting for LIGO, we need

le=%1o.

As will be shown in greater detail below, the parameter

(which has the dimension of frequency cupéalls us when mLcO?3
radiation pressure becomes an important contributor to the L=0%, = 1= L (29)
interferometer’s noise. Using E(L9) and the results derived 8wy

in Appendix A[see Eqs(A8), (A10), and(All)] we trans- ) ) )
form Eqs.(6), which are given in terms of annihilation and Which givesl ;=100 kW for typical LIGO-II parameters and

creation operators, into equations for quadrature fields: ~ {ew= 27> 100 Hz. The input-output relatio24) is more
explicit in representing interferometer properties than that

and

given in Ref.[8], and can be quite useful in the process of

a _ 1 optimizing the SR optical configuratidri9]. From the last
A, > term of Eq.(24) we observe that as long as the SR oscillation
? \/1+2p cos 2+ p frequency\ # 0, both quadrature fields contain the GW sig-
(1+p)cos¢p —(1—p)sing) [a, nal. Moreover, the resonant structure, discussed in Refs.
: , (22 9], i ily di [ [ :
(1—p)sing  (1+p)cos ) az) (220 [8,9], is readily displayed in the denominator of E@4)

given by Eq.(25). As we shall see in Sec. IV, the shot noise
and radiation-pressure noise, and the fact that they are cor-
related, can also be easily worked out from E2f)).

062002-6



SCALING LAW IN SIGNAL RECYCLED LASER-. .. PHYSICAL REVIEW D 67, 062002 (2003

In Ref. [10] we found that one of the SR resonant fre- which exactly coincides with Eq16) of Ref.[7] for a con-

quencies, obtained by imposifg")=0, always has a posi- Ventional interferometer, but where
tive imaginary part, corresponding to an instability. This in-
stability has an origin similar to the dynamical instability
induced in a detuned Fabry-Perot cavity by the radiation- Q
pressure force acting on the mirrdrk2,14. To suppress it, B’:arctars— ,
we proposed10] a feedback control system that does not €
compromise the GW interferometer sensitivity. Although the

model we used to describe the servo system may be realist.il(:he simple relationg30), (31) nicely unify the SR optical

for an all-optical control loop, this might not be the case if an , . - .
electronic servo system is implemented. However, the resuIt%onf'gur"’mond’_O’Tr/2 (denoted by ESR/ERSE in R¢B])

shown in Ref[20] suggest that our model in fact turns out to with the conventional-interferometer optical configuration.
be adequately realistic for an electronic system as well. In

any case, a more thorough studying should be pursued to B. Noise spectral density

fully clarify this issue. In this paper, we always assume that
an appropriate control system of the kind proposed in Ref.

, 2€

=— 31
k Q?%(Q%+€?) 3

The noise spectral density can be calculated as follows

[10] is used. [7,8]. Assuming that the quadratube =D, sin¢{+b,cos{ is
Finally, when\ =0 (which corresponds to either=0, or ~ measured, and using E(R4), we can express the interfer-
p#0, ¢=0, w/2) Eq.(24) simplifies to ometer noise as an equivalent GW Fourier component:
o1 =e2iﬂ’( ! 0) ) e zK’(O)L hn=NsqAb;, (32
BZ _IC, 1 52 1 hSQL,
(30 where

-~ (C®sing+C¥ cost)a, +(CY sing+CLY cost)a,

& DM sing+DSM cost

(33

Then the(single-sidedl spectral densit)Sﬁ(f), with f=Q/27, associated with the noidg, can be computed by the formula
[see Eq(22) of Ref.[7]]:

2m8(Q—Q)S{(f) =(in[hy(2)h Q") +hi(Q)hy(2)]in). (34)
Assuming that the input of the whole SR interferometer is in its vacuum statdjnjes,|0x), and using
(043 (Q)3] () +3/(Q)&(0)|0g) =278~ Q') 5, (35)

we find that Eq(34) can be recast in the simple forfnote thatC{) e R):

(CWsing+CY cosg)?+ (CE sing+ T cosy)?

= = 36
DM sing+ DM cosy|? 39

Sg: héQL

Plugging into the above expression E¢&6) and (27) we get the very explicitand very simplg expression for the noise
spectral density:

0?h3
Siz SQL
4er [ Q2 coSL+ (ecosi—\ sing)?]

[(Q+\)2+ 62][(Q—>\)2+62]+%[92(x— €sin2{)

. 5 _
—N(€2+N\2+2€%cos ) — e(€?—N\?)sin 2] +§[262(1+ cos %) —2e\ sin2{+\?];. (37
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IV. OPTOMECHANICAL DYNAMICS IN TERMS [eTh (10— €)a,(Q)+2F,(Q)
OF CHARACTERISTIC PARAMETERS FOQ)= 2° O tio@Frsio" (44)
The scaling lawg14), (16) could have been equivalently
derived by imposing the invariance of the optomechanical _ (N2=€2—0%)A,(Q)+ 2N €8,(Q)
dynamics[10]. In this section we express all the relevant 21 (€)= (Q—Ntie)(Q+r+ie) ’ (45)
guantities characterizing the SR optomechanical dynamics in
terms of the scaling invariant parametarse, and .. 200~ — 2N €8y (Q) + (AN2— - 0)E,(Q)
o 2 (Q—N+ie)(Q+N+tie) ’
A. Radiation-pressure force (46)
In Ref. [9] we assumed that SR interferometers can be
artificially divided into two linearly coupled, but otherwise (€T, I
independent subsystems: the pr@hewhich is subject to the Rz,r())= 26 (QA—A+ie)(Q+N+ie)’ (47)
external classical GW forc& and the detectoD, which
yields a classical outpuf. The Hamiltonian of the overall T (e—iQ)
system is given bysee Sec. Il B in Ref.9] for notations and Ry ¢(Q)=— _¢ _ — (48)
definitions: 2 2 (A—N+ie)(Q+N+ie)
H=Hp+Hp—x(F+G), (38) The optical pumping field in a detuned Fabry-Perot resonator

converts the free test mass into an optical spring having very
wherex is the operator describing the antisymmetric mode ofow intrinsic noise[14]. The ponderomotive rigidit pong,
motion of four arm-cavity mirrors andf is the radiation- Which characterizes the optomechanical dynamics in SR in-
pressure or back-action force the detector applies on thierferometers, is also responsible of the beating of the free
probe. In the Heisenberg picture, using the superscript (1nass SQL(see Sec. llIC of Ref[10]) and its explicit ex-
for operators evolving under the total Hamiltoniah and ~ pression is given by
superscript (0) for operators evolving under the free Hamil-

tonian of the detectdr ,,, the equations of motion in Fourier Kpond 2) = —Rer(Q2)

domain read9]: - E N o
Z(l)(Q)IZ(O)(Q)+RZF(Q)X(]')(Q), (39) 4 (QA—N+ie)(Q+N+ie)
FD(Q) = FO(0) + Rep(Q)xD(Q), (40) As long as the free optical resonant frequencgiffers from

zero, Kyong is always nonvanishing. Moreover, in order to
Y i have a(nearly real mechanical resonant frequency at low
X(Q)=Lh(Q)+ R (Q)F(Q), (41) frequency, we requird <0 [as can be obtained by imposing
) _ o Kpond {2=0)>0].

where R,,(Q2) = —4/m/Q*° [21], h(Q) is the gravitational
strain[see Eq(2.15 of Ref.[10]] related to the GW force in
Fourier domain byG(Q)=—(m/4)LQ?h(Q), while the
various Fourier-domain susceptibilities are defined by

B. Equivalence between noise correlations and change
of dynamics

As derived in Refs[9,10], the output of SR interferom-
i [+ 0 eters, when the first or second quadrature of the outgoing
Ras(Q)= gfo d7e"™TA(0),B(— 1], (42)  dark-port field is measured, can also be written as

, 0i(Q)=Z (D) + R ([ F (D) +G(Q)], =12,
where[A(t),B(t’)] is the commutator between operatdrs (50)
andB. As discussed in Sec. |, LIGO-II has been planned to
work at a laser power for which shot noise and radiation-where
pressure noise are comparable in the observational band 40—
200 Hz. In Sec. Ill A of Ref[9] the radiation-pressure force z9Q)
was explicitly derived. Here, we want to express it, and the Z(Q)= Ryr(Q)’
other crucial quantities entering the equations of motion ‘

(39-(41) in terms of the characteristic parameters e, 2(0) Q)
and _(0) _ i P
F(Q)=F%(Q)—Rge(Q , 1=12. 51
( ) ( ) FF( ) RZiF(Q) ( )
8(1)0|C
Le=mu=—" (43 Expressing these quantities in scaling-invariant fdimere

the first or second quadrature refershtoor b,, so thez, ,
Using Eqgs(18) a straightforward calculation gives the rather discussed here are related to those in R&fby the rotation
simple expressions: (23)], we get

062002-8



SCALING LAW IN SIGNAL RECYCLED LASER-. .. PHYSICAL REVIEW D 67, 062002 (2003

2% 1 ~ ~ 1,
Z(Q)= zg[(?\z—EZ—QZ)al(Q)Jer)\az(Q)], Sf1f1(9)2§1 (61)
: (52
S - ()= 1, (4€*+\?) 62
- 2h 1 _ ) T 8e 2+02
Z,(Q)= \le—Icm[ZfKal(Q)
2 2 2= (\2—e*—-0?)
—(M—e"—0%3,(Q)], (53 SZlf-l(Q):ﬁTi (63)
and

RCOrER "
f1(9)=\/€°—fal(m, (54 %272 2e(21+0?)

Note that in our casSyr - is real, thusSfizizszifi. It is
straightforward to check that the following relation is also

Th 1 B -
fz(Q):\,gm[Zeal(Q)_)\az(Q)]- (55 satisfied:

— 32 i
The form of Eq.(50), along with the fact that the operators SZiZi(Q) Sfifi(ﬂ)_szifi(ﬂ) SfiZi(Q)_ﬁ , 1=1.2.
Z,(Q) andF(Q) are proportional to /1 and /I, made it (65)

natural to_refer 'Fo _thenﬁlO] as effectiveoutput fluctuatlon_ Since in SR interferomete®; » +0, the noise spectral den-
and effective radiation-pressure force. The quantum noise i’

embodied inZ(Q) is the shot noise, while the quantum SIY Sh,i is not Iimit%d by the free-mass SQL for GW inter-
noise described by (Q) is the radiation-pressure or back- ferometers $sq=hsq,), as derived and discussed in Refs.
action noise. The operatois;(}), F(Q) satisfy the fol- [8-10.

lowing commutation relationgl1,9,10: We want to show now that cross correlations between shot
noise and radiation-pressure noise are equivalent to some

[Zi(Q),ZiT(Q’)]:OZ[ﬁ(Q),f;V(Q’)]' modification of the optomechanical dynamics of the system
composed of probe and detector, as originally pointed out by

[Z(Q),F(Q)]=-27ia8Q-Q"), i=12. (56)  Syrtsev and Khalili in Sec. Il of Ref17]. More specifically,

we shall show that for linear quantum measurement devices,

If the output quadraturé is measured, the noise spectral at the cost of modifying the optomechanical dynamics, the
density (36), written in terms of the operator§; and 7,  Measurement process can be described in terms of new op-
reads[11] eratorsZ’ and 7’ with zero cross correlation.

In Ref.[9] the authors found that the most generic trans-

1 formation which preserves the commutation relati®) is
S$hi(Q2)= E{Szizi(QH2RXX(Q)5R[SfiZi(Q)] of the form[see Eq(2.25 in Ref.[9]]:
+R>2<X(Q)Sf,f,(ﬂ)}’ (57) (Zi,(Q)):eia( Lll L12><Zi(9))' (66)
F(Q) Lar Lo/ \ F(Q)

where thelone-sided cross spectral density of two operators ) )
is expressible, by analogy with E(B4), as with «,Lj; € R, and det;;=1. Under this transformation

the output(50) becomes
278(Q—Q")S,5(Q)=(04| AQ)BT(Q)

0i(Q)=e "[Lp—R(Q)Lx]Z/(Q)+e '

+B7(Q")AQ)|0z). (58

X[ = Lio+ R Q)L1a] F () + R () G(Q).

In Eq. (57), the terms containin@zizi, Sfifi and ,‘R[Sfizi] (67)
should be identified as shot noise, radiation-pressure noise,
and a term proportional to the correlation between the twd3y imposing that the system responds in the same way to
noises, respectivelyl1]. The noise spectral densities ex- electromagnetic and gravitational force’S,({2) andG((2),
pressed in terms of the scaling invariant quantilies, and  we find the two conditionse'“=*1 andR,,(Q)(L1;+1)

7. are rather simple and read =L4,. The transformation we have to apply so that the cor-
. . relations between new fieldg; (Q1) and F (Q) are zero,
s 20 [(Q+ M)+ e ][ (2 —N)"+ €] gives the following set of equations:
2,2, () =7 > : (59
c EN
Szz(Q2) Szx(Q) . Szi’zi’(Q) 0
21 [(Q+N)?+][(Q—N)?+ €] s o) st~ 0 Sp ()]
Sz,2,((1) = 7= Y ; (60) i i i
c e(e“+Q°) (68)
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When S;-=S € R, as it happens in SR interferometers, If the output quadratureis measured, the noise spectral
the above conditions can be solved in infinite ways. A simpledensity expressed in terms of the operatBfsand 7 can be
solution, suggested by Syrtsev and Khdlili7], is obtained  written as

by takinga=0 andLq;=1. In this case, a straightforward ,

calculation givesL,=0, Ly= ~Sz 1 /SZiZi’ and Ly,=1. R() 4 o

The output becomes S$h,i(Q)= 2 (DX ()] "S5z 2/ (D) + Sg 7 (D],

(79

O/ (Q)=Z/ (V) + X[ F () +G(Q)],

R.(Q) In order to make explicit the connection with RgL3], we
0/(Q)=0,(Q) XX 3 (69) evaluate the noise spectral density fqf,=Lh/2 and we

Xfff( Q denote it bnyGW. It reads:
where Xieﬁ, the effectivesusceptibility, is given by 1
Sk i ()=
_eff(Q): Rux(2) (70 ow! Iu“ezlm1Q4
X 1+ R(Q) Sz ~(0)/Sz () 01 1-2S0 2 (Q)
Xxi () 2 2
. X +4Sp 2 (Q) [,
The spectral densities of the new operatgfsand 7 are 4 4 i
76
S2121(0)=S;,2(), (76)
) where as discussed aboye,,=My,,/{2=m. By rewriting
SzF () the generalized susceptibility into the form,
Spr(M)=Srr(Q)———+, =12, (71)
P o Szizi(ﬂ) i
Xi(Q) 1 10 -
with 4 — a2+ 4K (Q) o
h, en? . . . o
S (Q)=— — 0 (720 Wwe introduce, as Khalili also difL3], the effectiverigidity
v 2 [(Q+N)2+2[(Q—N)2+ €] Ke(Q), defined by
ﬁIC 6(62+ Qz) Z.]-‘.( )
S ! ! Q - . eff =—I !
f2f2( ) 2 [(Q+)\)2+62][(Q_)\)2+62] Ki (Q)_SZZ(Q) . (78)
(73 s
These new operators satisfy the conditjsee Eq.(65)] More explicitly,
Sz 2 (Q)Spp(M)=H? =12 (74) ff Zc\ —2+\%2-0?
e K§(Q)=—- . (79
4 [ Q=N+ E[(Q+N)2+ €7
C. Equivalence to a single detuned cavity
and frequency-dependent rigidity . I 3e2+ 22— 2
At the end of Sec. Il B we discussed under which assump- K="~ [(Q=N)2+EI[(Q+N)2+ €]
tions radiation-pressure effects were included in the descrip- (80)

tion of SR interferometers in Ref$§8—10. There, the au-

thors assumed that radiation pressure forces acting on ETMy, <. expressions, in particular EqZ6), (80) agree with

Sthose derived by Khalili13] for a single detuned cavifisee

during the light round-trip time in arm cavities. In this case g 19) and (21) in Ref. (1311 if ke the followi
the ITM and SRM can be considered fixed, and as shown iri‘dqe?].ti(fic;t;r:]s( (t)h:g (;f;lr[)er]] LweKrE;”?). e)\i(;wulg

Sec. Il Aitis possible to map the SR optical configuration to _ : :

i : : v, 2Ll m/c=4Ll./c—& (energy stored in the single
a three mirror _caV|t_y with _only the E_TM movable. We shall cavity), X;gff/4_>X, and 4($ff_)K. Note that in Ref[13] it is
see explicitly in this section that, since the very short SR lways assumed that the second quadrature is measured
cavity can be regarded as a single effective mirror, we caf '

further map the SR interferometer to a single-detuned CaVit¥heTEﬁc?)?rSeﬁggg)?ie?;;g? ggza;yre;?jgts ?’;;3:2 r':v;(;rrg:f‘ of
i i

with only the ETM movable, which is exactly the system that . i .
Khalili discussed in Ref[13]. [More specifically, the single- understanding why in SR interferometers the free mass SQL,

_ : SQL_ 2 e -
detuned cavity ha&comple free optical resonant frequency Sh - = NsoLs Iosezs its significance. Indeed, by using E&),
wo—N—i€, ETM mass pqm=My{2=m, and circulating We getSZirZir:ﬁ /Sfirfir. Plugging this expression into Eq.
powerl ;= 2l.. See Eqgs(1), (2), and(3).] (75), minimizing with respect tcsjcirfir, we obtain
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FIG. 5. Plot of 'S, , (continuous linesand Sy’ (dashed lines FIG. 6. Plot of the square root of the noise spectral dergijtys

vs frequency f for T=0.033, e=27x25.0Hz, A\=27 frequencyf for (i) triple-zero casecontinuous ling with A =2
X 191.3 Hz, and two different values of the laser power circulatingx 123.2 Hz, e=27x13.8 Hz, andl,=320 kW and (ii) three-
in the arm cavities:I ,=300 kW (lighter-colored lines and I, single-zero casgdashed ling with N\=27X191.3 Hz, e=27
=600 kW (darker-colored lings The free-mass SQL linéblack X 25.0 Hz, andl =590 kW. For comparison we also show the

straight ling is also shown for comparison. free-mass SQL lingblack straight ling
mm 9.177-113 3
]: ]"( )_ eff R..(O)’ (81) [’022 49 A°,
|14 R (Q)KST(Q)] Rux(€2)

and the minimal noise spectral density is \V280-21y177
——N\

XX( )
x|

R Q)
x|’

SQL

SH )— (82

. Qtriple zero f)\- (85)
which can be formally regarded as a non-free-mass SQL for

the effectivedynamics described byf". To give an ex-
ample, in Fig. 5 we plot the square root of the noise spectragI
densitiesS, , and ST versus frequency having fixed e
=27X25.0 Hz, A= 277>< 191.3 Hz, for two different val-
ues of the laser power circulating in the arm cavitigs:
=300 kW andl .= 600 kW. For comparison we also plot the
free-mass SQL line. As we can see from the rﬁfﬁ'z” can go
quite below the free-mass SQL.

The effective dynamics can be also used to optimize th
performance of SR interferometef$3]. The roots of the
following equation,

Fig. 6 we plot the square root of the noise spectral density
, versus frequency for the triple-zero case having fixed
Qyiple zers= 27X 100 Hz, i.e., thefree) oscillation frequency
N=2m7X123.3 Hz ande=27X13.8 Hz. The SQL line is
also plotted. For comparison we also show the noise spectral
density S, , corresponding to a solution of E¢83) with
three-single zeros:A =27X191.3 Hz, e=2m7X25.0 Hz,

and|.=590 kW. As mentioned, the spectral density in the
?rlple -zero case is not significantly broadband, especially if
compared with the three-single-zero case.

This result originates from theonuniversahature of the
m curve S™". The SQL(28) does not change if we adjugty
Kieff(Q)— —0%=0, (83 varying the circulating powerthe balance between shot

4 noise and radiation-pressure noise and find the interferometer

arameters whose noise curve can touch it. By contrast, the
curve ST changes when we adjuéty varying the circulat-
ing power or the optical resonant frequentitd®e effective
Srr‘]niin(ﬂ)_)O' (84) shot and radiation-pressure noisé@,rzr and Sfrfr [The

change ofg"n 5 asl. is varied can be aIso seen from Fig] 5.

As observed by Khalil[13], we could expect that the more As a consequence, the fact tlﬁt‘, is low and broadband for
the roots of Eq(83) coincide, the more broadband the noisea certain configuration cannot guarantee the noise curve will
curve will be. For example, we could expect that interferom-also be optimal. In particular, in the triple-zero case, 868)
eter configurations with double or triple zeros be optimal.already fixes all the interferometer parameters, leaving no
However, as we shall see, those configurations are not mudreedom for the noise curve to really take advantage of the
better than some of the three-single-zero cases. triple zeros. The fact that only aonuniversalminimum

Assuming the second quadratuiie=@) is observed, we noise spectral density exists in SR interferometers arises in
obtain for the triple-zero cagsee also Eqsi29), (30), and  part because of the double role played by the carrier light.
(31 in Ref. [13]]: Indeed, the latter provides the means for measurement, and

correspond to resonances produced by the effective rrgrdrt)P
at which y*"— and, using Eq(82),
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therefore determines the balance between shot and radiation- 3.5¢ T T T T T T
pressure noises, but it also directly affects the optomechani- i

cal dynamics of the system, originating the optical-spring 37 .
effect. i

Finally, Braginsky, Khalili, and Volikov[22] have re- 2.5} ]
cently proposed a table-top quantum-measurement experi- g |

ment to (i) investigate the ponderomotive rigidity effect 2:
present in a single detuned cavity afiid beat the free mass
SQL. Although the table-top experiment will concern physi-
cal parameters very different from LIGO-II, e.g., the test
mass m~2x10"2g, L~1 cm, Q~10*s !, and I.~1 [ L -~ ]
—10 W, however, because of the equivalence we have ex- 1o 20 40 60 100 200 400600 1000
plicitly demonstrated between SR interferometers and single f(Hz)

detuned cavities, the results of the table-top experiment FIG. 7. Plot of R=S(f)/(24|3[x(f)]]) vs f when \=27
could shed new light and investigate various features of SR 191 3 Hz e=27% 25.0 Hz. and .—590 KW.
optomechanical configurations relevant for LIGO-II. ' ’ ¢

) =243 x(Q)]], 91
D. Optical spring equivalent to mechanical spring () ERS) )

but at zero temperature which can be regarded as a zero-temperature version of the

When proposing the optical-bar GW detectfid], Bra- fluctuation-dissipation theorem. For a mechanical system,
ginsky, Gorodetsky, and Khalili pointed out that the detuned®-9-» @ Mmechanical spring, with the same susceptibility, but in
optical pumping field in a Fabry-Perot resonator can convertermal equilibrium at temperatuie>#€/k, wherek is the
the free test mass into an optical spring havirgyy low Boltzmann constant, the standard version of fluctuation-
intrinsic noise. In this section, we illustrate this general phedissipation theorem says
nomenon using the example of SR interferometers, and ex- KT
plain in our formalism why optical springs are indeed pref- Sx(9)=4ﬁ|j[)((m]|' (92
erable to mechanical springs in measuring very tiny forces.

The Heisenberg operator in Fourier domai¥(Q) de-
scribing the antisymmetric mode of motion of a SR interfer-
ometer, satisfies the following equatifsee Eqs(39), (41)

If we assumeQ~2mx100 Hz, #Q/k~5x10 ° K, the
condition T>#Q/k is always valid for any practical me-

above and also Ed2.20 of Ref. [9]]: chanical system. As a consequence,
R (Q) mech sprin kT pt sprin
W)= 0) _ XX 0)~ -+ Q). (93
KD =XQFOD), X V=T"r (R S i >
89 u T=300 K, Q/2m=100 Hz, we get Sye°"sPm
Using Eq.(49) we get ~10MSPIsPINY Thys, because of the very large coefficient
kT/2Q in Eq. (99), fluctuating noise in an optical spring is
4 N+ (e—iQ)? always much smaller than in a mechanical spring.
x()= m Nee— QN2+ (e—i0Q)?] (87 For SR interferometers described in this paper, the fluctu-
¢ ating noiseS, does not saturate the inequality in E§1).
The noise spectral density associated witls This can be inferred from Fig. 7 where we pldt
=S (f)/(2h|3[ x(f)]|) versusf, whereS, has been obtained
S(Q)=|x(Q)|?Sx(Q), (88)  from Egs.(87), (88), and(90), for the following choice of the
physical parameters: m=30 kg, T=0.033, y=27
where X 98.5 Hz, withA=27X191.3 Hz, e=27X25.0 Hz, and

I.=560 kW. The minimum ofR is at the frequency corre-
sponding to thefree) oscillation frequency of the SR inter-
ferometer, i.e.f pin=N/(27)=191.3 Hz.

w5(0— Q) S,(Q) =(0axD(Q)xIT(Q)[05),

78— Q") S(Q)=(05]FO(Q)FOT(Q")[05). (89
More explicitly, V. INPUT —~OUTPUT RELATION AT ALL ORDERS IN
TRANSMISSIVITY OF INTERNAL TEST-MASS MIRRORS
S.(0)= Zh e(\N+e*+02) (90) To simplify the calculation and the modeling of GW in-
2 [(Q-N2+E[(Q+N)2+ €] terferometers, KLMTV 7] calculated the input—output rela-

tion of a conventional interferometer at leading orderTin
For the optical spring, which is made up of electromagnetiandQL/c. By taking only the leading order terms T they
oscillators in their ground statéthe vacuum stajewe have ignored the radiation-pressure forces acting on the ITM due
(see e.g., Chap. 6 in Rdfl1]) [23]: to the electromagnetic field present in the cavity made up of
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FIG. 8. We plot the fractional
error AN/\ (left pane) andAe/e
(right pane)] as a function of\
ande. The quantitiesAN andAe
are the difference between the
value of A and e obtained from
the first-order¥ free optical fre-

P ity -
i

S quency (94) and the exact one
(193.

1000
M2 (Hz) 2000 A2r (Hz) 2000

ITM and BS. By limiting their analysis to the leading order

! SIS ~ .. c[1+{R\* [QL

in QL/c, they assumed that the radiation-pressure forces act- Q(l)zt tar( —

ing on the ITM and ETM are equal. In conventional interfer- ¢

ometers,T alone determines the half-bandwiditof the arm ~ T oL\? 04L4
cavities (through y=Tc/4L), which fully characterizes the =Q[1— §+(’)(T2) 1+ — +(’)( n ”
interferometefsee Eq.(16) in Ref. [7] and Eqgs.(30), (31) ¢

above. Moreover, since()gy is comparable toy and T (94)

~0.005-0.033, the two small quantiti€3]./c andT are on
the same order, and the accuracy in expanding the inputFrom this equation we infer that sinf@L/c|<0.1, andT is
output relation in these two parameters is rather under corsmaller than a few percents, the error in ilfiee) optical
trol. [Note that if y~27 X100 Hz, we havel ~0.033] resonant frequency is not very significaifiess than a few
In describing SR interferometers, the authors of Refspercents In Fig. 8 we plot the fractional differencesle-
[8—1Q] build on the leading-order results of R¢7]. How-  noted byAX/\ and Ae/e) between the real and imaginary
ever, in SR interferometers the accuracy of expanding in parts of O and O as functions ofe and\ for T=0.033.
can be quite obscure, becauses not the only small quantity The fractional differences are always smaller than 2.5%.
characterizing SR-interferometer performances—for ex-
ample, the SRM transmissivity can also be a small quantity. B. Input —output relation and noise spectral density
Thus, to clarify the accuracy of the expansionTinwe now

derive the input-output relation at all ordersTinand com- rather easy to derive the exact input—output relation in terms
re with the leading order r 4 . Th Iculation . R
pare with the leading order resu24) [8,9]. The calculatio of \, €, and... The input—output relationj k) of the arm

is much ier if we view the SR cavit ingle effectiv : . .
S much easier it we vie €S cavily as a singie etiec ecaV|ty composed of the effective ITM and ETM is
mirror, as done in Sec. Il. However, in doing so, we still use

the assumptions mentioned at the beginning of this section
See also the end of Sec. Il A.

Using the formalism of Sec. Il and Appendix A, it is

Ky
ka

1

) _ 2i0L/c

. h (0
+elLie o — ( ) '
arnhgrénl_ 1
(95)

!
_’Carm 1 j2

A. Free optical resonant frequencies

. . . . . - where
It is interesting to investigate the error in the prediction of

the (free) optical resonant frequency introduced by using
only the leading order terms i and QL/c. For a generic jo— —
set ofT, p, and¢, it can be quite complicated to characterize M 02c? mO2c?

that error. For example, whep> R and ¢~ /2, p’ is

near —E (in the complex planeand the expansioril5) - 87 8%
aroundp’=1 totally breaks down. However, we are only hsqL= mQZLZZ mO2L2
concerned with those parameters meaningful for a GW de- Har

tector, and thus we limit our analysis to the region whereW iting Egs. (7) and () in t ¢ drat that |
|O|= W2+ 2~ Q gu<10* s, corresponding toOL/c| riting £qs. /) and{e) in terms of quadratures, that IS

=0.1. In this Way|?)’ —1| is always relatively small. To test i A cosy —sinyg\ [k
1 = 1 ~ 1
R R L pvty [
97)

8l arm®@o _ 16l cWo

(96)

the accuracy, we fiX, and for eacH)=—\—ie, we solve sing cosy ||k
Eq. (13) for p and ¢. Then, we insert these values into Eq. 2 2

(17) to get the first-ordeiF expression fof), which we de-
note byQ™®). The result is and

2
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b, ——(k;\ . [ cosy sing\(F - o . ,
(5 ): L=le'? k )_|p’|(—sinz// cosy/\a 2= 4.2 2672 sin2AL o) cog 201 /c)
2 2 2
(98 .
L
—e ?¢/ccog2nL/c)]— Q:
wherey=arg(p’), and using Eq(11), we obtain the input— ¢
output relation &—b) of the three-mirror cavity, and thus Cael/e
that of the equivalent SR interferometer. They can be repre- xX[1-e cos(2nL/c)] ¢, (102
sented in the same form as E@4), with M®, T, and
D™ replaced by
02%c?
'[")i)(: . [—2e_25"’°ei“"/csin(2)\L/c)]
(02c2e-2i0LIc 4L
MEX: [1_e2i(Q+)\+ie)L/C]
4L2 (1_e—4EL/C)LCL
2i(Q—\+ie)llc x 02¢ ' (103
X[1l—e ]
tcL : ) . .
+i c [eZI((Z+)\+I5)L/C_e2|(£)—)\+le)L/C]} (99) 02¢2
ZC ngz 4L2 [ZefiQL/c_2e72eL/ceiQL/C Cos(2)\L/C)]
and (1—e 4oy, L L
N 109
2C2
X Rex_ _9a—2¢llc
1= C2 412 [1-2e cog2nL/c)cog20L/c) In order to compare with the results obtained in Refs.

[8—10], we have also to relatd, b to a andb. The exact

+e4etie coganLic) ]+ ;;—ZLe“fL’C sin(4)\L/c)], transformationgto be compared with Eq$22), (23)] are
C

(100 ("al)_ 1
%) \1+2pRcos 26+ p?R
~ QZ 2
C?Z(: 4|_C2 {_Ze2€L/CSin(27\L/C)[COQZQL/C) ((1+p\/E)COS¢ —(l—p\/ﬁ)sin(ﬁ) a,
>< i)
— ' a
_ e 2ellecoganL/c)] (1 p\/ﬁ)smd) (1+p\/§)cos¢ 2
(109
E —4el/c o
+ 0 e S|nz(2>\L/c)}, (102 nd

1 1 1 1 1
20 40 100 200 400 20 40 100 200 400
f(Hz) f(Hz)

FIG. 9. Comparison of first-ordéf-expandeddashed lingand exactcontinuous ling noise spectral density'S;, vs frequencyf. In the
left panel we use the parametdrs-0.033,p=0.9, ¢=m/2—0.47,m=30 kg, and .=592 kW and show the curves for the two orthogonal

quadratured, (lighter-colored lines and b, (darker-colored linés In the right panel we us&=0.005, p=0.964, ¢=m/2—0.06, m
=40 kg, | ;=840 kW, and{=1.37/2.
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20 40 100 200 200 20 40 100 200 200
f(Hz) f(Hz)

FIG. 10. Comparison of first-order-e-Li’s-expandec(dashed lingand exactcontinuous ling noise spectral densityS, vs frequency

f. In the left panel we us&@=0.033, p=0.9, ¢=m/2—0.47, m=30 kg, andl.=592 kW, and show the curves for the two orthogonal

quadratured; (lighter-colored lines and b, (darker-colored linés In the right panel we us&=0.005, p=0.964, ¢=m/2—0.06, m
=40 kg, | ;=840 kW, and{=1.37/2.

B 1 eter[24].) Not surprisingly, doing so gives us right away the
(f) = scaling-invariant input—output relatiof24). In the left and
b, \/1+2p \/ECOS%JFPZR right panels of Fig. 10 we compare the exact and first-order
\-e-1*-expanded noise spectral densities for the two or-
(1+ pVR)cose (1—p\/ﬁ)8in¢) ( bl) thogonal quadraturds, ,, with the same parameters used in
—(1—p\/ﬁ)sin¢ (1+p\/ﬁ)cos¢ b,/ Fig. 9, i.e.,, T=0.033, p=0.9, ¢=7/2—0.47, m=30 kg,

and | .=592 kW (left pane) and T=0.005, p=0.964, ¢
(106 =7/2—0.06, m=40 kg, | .= 840 kW, and{=1.37/2 (right

pane). The first-orden -e-.2*expanded noise spectral den-

As an example, we compare in the left panel of Fig. 9 thegjyy is obtained using fon, e and the redefined output
exact and first-ordef-expanded noise spectral densities for g adratures Eq¢13), (105). The agreement between the ex-
the two orthogonal quadraturés andb,, having fixedT  act and first-ordek-e-:2*-expanded noise spectral densities
=0.033, p=0.9, ¢=n/2-0.47, m=30kg, and I is much better than the agreement between the exact and
=592 kW (which corresponds thy=1sq_at BS as used in  T-expanded noise spectral densities, given in Fig. 9.
Refs.[8—10]. TheT-expanded noise spectral density is given  when either\L/c, eL/c, .2°L/c, or QL/c is not small

by Eq.(37), where we used fok, e and the redefined out-  engugh, the first-ordex-e-.”* expansion fails. An interest-
put quadratures EqgL8), (19). The exact noise spectral den- jq example of astrophysical relevance is the configuration
sity is obtained from Eq(36) by replacingM®), C{", and  with largex and smalle, which has narrow-band sensitivi-
Bi(l) with M® C*, andD®. From Fig. 9, we see that there ties centered around a higbptica) resonant frequency. In

is a discernible difference. In the right panel of Fig. 9, wethe left panel of Fig. 11 we compare the first-order

compare the exact and first-ordBfexpanded noise spectral \-e-.f -expanded noise spectral density with the exact one,

densities using the reference-design parameters of LIGO-Hor the two quadratureglyz having fixed:\ = 27X 900 Hz,
[18]: T=0.005, p=0.964, ¢=m/2—0.06, m=40kg, I =20 Hz, m=30 kg, andl ;=600 kW. Near the lower op-
=840 kW, and/'=1.37/2. In this case, the two curves agree tomechanical resonant frequency, the first-order-i2° ex-
nicely with each other, presumably becailse rather small.  pansjon deviates from the exact one by significant amounts.
In the general case, if we want to trust the leading ordefjowever, it is sufficient to expand up to the second order in
calculation, it is not obvious how smallcan be, since and ) | /¢, eL/c, WPLic, andQL/c to get a much better agree-

¢ have to change along withito preserve the invariance of ment, as we infer from the right panel of Fig. 1The input—

interferometer performance. For this reason, it is more congytpyt relation expanded at second order is given in Appen-
venient to seek an expansion that is also scaling invariangjiy ¢ )
i.e., whose accuracy only depends on the scaling-invariant
properties of the interferometer. To this respect, the set of
quantities\L/c, eL/c, «}®L/c, and QL/c, which are all

small and on the same order, is a good choice. It is then In this paper we showed that, under the assumptions used
meaningful to expand with respect to these quantities antb describe SR interferometef8-10], i.e., radiation pres-
take the leading order terms. We denote the noise spectralire forces acting on ETMs and ITMs equally, and ETM and
density obtained in this way by first—ordEFe-Lé’g—expanded ITM motions neglected during the light round-trip time in
noise spectral densityThis technique of identifying and ex- arm cavities, the SR cavity can be viewed as a single effec-
panding in small quantities of the same order can be veryive (fixed) mirror located at the ITM position. We then ex-
convenient and powerful in the analysis of complicated in-plicitly map the SR optical configuration to a three-mirror

terferometer configurations, e.g., the speed meter interferoncavity [15,16 [see, e.g., Sec. Jllor even a single detuned

VI. CONCLUSIONS
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10 1 1 1 1 ] 1 0-24 1 L 1 1
20 40 100 200 400 1000 20 40 100 200 400 1000
f(Hz) f(Hz)

FIG. 11. For the two orthogonal quadraturks (lighter-colored lines and b, (darker-colored lingswe compare the first-order
)\-e-Lg’e‘-expanded noise spectral dengitiashed lingwith the exac{continuous ling noise spectral densiteft pane) and the second-order
)\-e-Lé’3-expanded noise spectral densitiashed lingwith the exactcontinuous ling noise spectral densitiyight pane). For all the cases

we fix A=27X900 Hz, e=27Xx20 Hz, m=30 kg, andl,=600 kW.

cavity [13] [see Sec. IV B The mapping has revealed an ACKNOWLEDGMENTS

inter_esting scaling Iaw'p'resent in SR intgrferometers. By We thank Vladimir Braginsky and Farid Khalili for stimu-
varying the SRM reflectivity, the SR detuningé, and the lating discussions on the material presented in Sec. IV D and

ITM transmissivity T in such a way that the circulating gecq |vB and IV C, respectively. It is also a pleasure to
powerl and the(free) optical resonant frequendpr more  hank peter Fritschel, Nergis Mavalvala, and David Shoe-
specifically its real and imaginary parks and €) remain  maker for exchange of information on the existence of the
fixed [see Eq(18)], the input—output relation and the opto- scaling law in SR interferometers, and Kip Thorne for his
mechanical dynamics remain invariant. continuous encouragement and for very useful interactions.

We expressed the input—output relati@4), noise spec- \We acknowledge support from NSF grant PHY-0099568.
tral density(36), and all quantities characterizing the optom- The research for A.B. was also supported by Caltech’s Rich-
echanical dynamics, such as the radiation-pressure {d#e ard Chace Tolman Fund. The research for Y.C. was also sup-
and ponderomotive rigidity49), in terms of the scaling in- ported by the David and Barbara Groce Fund of San Diego
variant quantities or characteristic parameters. The variousoundation.
formulas are much simpler than the ones obtained in the
original descriptiorf8—10]. The scaling invariant formalism
will be certainly useful in the process of optimizing the SR
optical configuration of LIGO-II[19] and for investigating
advanced LIGO configurations. Moreover, the equivalance As in Refs.[7,8] we describe the interferometer’s light by
we explicitly showed between the SR interferometer ancdhe electric field evaluated on the optic axis, i.e., on the cen-
single detuned cavity, could also make the table-top experiter of light beam. Correspondingly, the electric fields that we
ments of the kind recently suggested in R&2] more rel-  write down will be functions of time only. All dependence on
evant to the development of LIGO-II. spatial position will be suppressed from our formulas.

In this paper we also evaluated the input—output relation The input field at the bright port of the beam splitter,
for SR interferometers at all orders in the transmissivity ofwhich is assumed to be infinitesimally thin, is a carrier field,
ITMs [see Sec. V. So far, the calculations were limited to described by a coherent state with powgrand (angulajy
the leading order. We found that the differences betweelfrequencyw,. We denote byf ¢\v= /27 the GW frequency,
leading-order and all-order noise spectral densities for broadwhich lies in the range 10-fMHz. The interaction of a
band configurations of advanced LIGO do not differ muchgravitational wave with the optical system produces sideband
[see Fig. 9. However, for narrow-band configurations, which frequencieswy,* () in the electromagnetic field at the dark-
have an astrophysical interest, the differences can be quitgort output. We describe the quantum optics inside the inter-
noticeable[see the left panel of Fig. 11In any case, we ferometer using the two-photon formalism developed by
showed that by using thi@ery simple next-to-leading-order Caves and Schumakg25]. The quantized electromagnetic
input—output relation, explicitly derived in Appendix C, we field in the Heisenberg picture evaluated at some fixed point
can recover the all-order results with very high accuf@®e on the optic axis i$7,8]
the right panel of Fig. 1L

Finally, it will be rather interesting to investigate how the
results change if we relax the assumption of disregarding E(t)= /ZWﬁwO e—iwotf+°°[a (Q)e it
the motion of ITMs and ETMs during the light round-trip Ac 0 *
time in arm cavities andii) the radiation-pressure forces on
ITMs due to light power present in the cavity composed of
ITM and BS. This analysis is left for future work.

APPENDIX A: USEFUL RELATIONS
IN THE QUADRATURE FORMALISM

. dO
+a_(Q)e'“‘]E+H.c., (A1)
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where H.c. means Hermitian conjugate and we denoted b
a+(Q)an0+Q and a,(Q)anO,Q. Here A is the effec-

1) —F(Q)ei(V+ V)2
tive cross sectional area of the laser beam argdthe speed

b,

of light. The annihilation and creation operatas({2) in W+ S
Eq. (A1) satisfy the commutation relations: CoS— S (al)
[a.,a},]=278(Q-Q"), [a_,a  ]=278Q-Q"), R N S CY AL
2 2
(A2)
(A11)

[a,,a,]=0=[a_,a_], [al,a,]=0=[a’ a"],

[a,,a]=0=[a,,a,]. (A3)

Following the Caves-Schumaker two-photon formal[&],

we introduce the amplitudes of the two-photon modes as

+

a,+al a,—a’

a; =
TR

a.z = (A4)

a, anda, are called quadrature fields and they satisfy th

commutation relations:

[a;,a),]=—[a,,a], ]=27i 5(Q-Q"),

[a,.a},]=0=[a;,a;/], [a.a}]=0=[a,ay].
(AS5)

The electric field(Al) in terms of the quadratures reads

E(a;;t)=coqwot)Ej(ay;t) +sin(wot)Ex(ay;t),  (AB)
where
) _,/47Tﬁ“’0 A Ciat, atagon 92
Ej(aj;t)= o fo (a;e +aje )ﬁ =12
(A7)

Any linear relation among the fields. (1) of the kind:
b.(Q)=f.(Q)a.(Q), f.(Q)=fwe+Q),

f_(Q)=f(wo— ), (A8)

It is easily checked that the input—output relation for the
following processes(i) free propagation in spacéi) reflec-
tion and transmission from a thin mirrdiji) reflection and
transmission from ongor more Fabry-Perot cavity for
which wg is either resonant or antiresonant, dind reflec-
tion and transmission from on@r more FP cavity whose
bandwidth is much larger than the range of value$)oive
are interested iifiin this casef({}) can be considered as a
constant(compleX numbet are all special case®r linear
combination$ of the relation(A11).

The second case of interest for us is when therenis
Sesonance aby+ ., with O, complex. In this casé(() is
of the form:

9(w)

w—wg—,’

f(w)= (A12)

whereg(w) does not have poles. Fé6r>0, we have

+Q *(wo—
+:g((1)0 ), *__g ((1)0 ), (A13)
Q-0 Q+QF
and thus
fH*:(Q+Qf)g(wo+ﬂ)—(Q—Qr)g*(wo—ﬂ)
o (Q-Q)(Q+0F) ’
(A14)
. . (Q+07)g(wo+ Q) +(2—Q)g* (wo— Q)
+_ _ .

(Q-Q)(Q+Q7)
(A15)

Since the quadrature field & mixes the frequencies
+Q and wy—(Q, the single resonant frequen€y, appears

can be transformed into the following relation among thej, the above equation as a pair of resonant frequencies

quadrature fields:

(fL+1%)

<b1>_1 i(f,—f*)
by 2\ —i(f,+f*)

(f,+f*)

ai

) . (A9)

a

{Qn—Qf}-

APPENDIX B: THE STOKES RELATIONS

The transmission and reflection coefficients of a system of

In general, the above equation can be very complicated. INIMOrs, or more generally of a two-port linear optical sys-

this paper we restrict ourselves to two special cases. The fir

case is whenf, |=|f_| and we write

f . (Q)=F(Q)e"=® v >0, (A10)

and Eq.(A9) becomes:

tem, can always be expressed in terms of four effective trans-
missivities and reflectivitiesp, 7, p’, and 7' (see Fig. 12
These quantities are generally frequency dependemn-
plex) numbers. For the fields shown in Fig. 12, we have:

j,=p'k,+7a,, (B1)
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T BT BT T Pl =7 BReiy @9
e 4 RO er=g", ellrtr)=_g2v (B9)

APPENDIX C: INPUT —OUTPUT RELATIONS
FIG. 12. A two-port linear optical system can always be ex- AT SECOND ORDER IN TRANSMISSIVITY
pressed in terms of four effective transmissivities and reflectivities, OF INTERNAL TEST MASSES

v’ 7 (for fields entering from the right sidleandp, 7 (for fields . . .
entering from the left side By taking the complex conjugates of The input-output relation expanded up to second order in

13 ) )
the field amplitudes and inverting their propagation directions, a*L/C: €L/c, «"L/c, and QL/c can be obtained in a
new set of fields related by the same set of transmissivities andtraightforward way by expanding Eq89)—(104). The new

reflectivities is obtained. coefficientsM @), C?, andD® are very simple. In fact,
3 5 they can be represented in terms of the first-order dviés,
b,=7"k,+pa,. (B2) €M, andD™ given by Egs(25)—(27), through the follow-

Imposing that the two-port linear optical system satisfies the"9 formulas(truncated at the next-to-leading orgler

conservation of energy, we have

M@ =(1-2eL/c)M®), (C1)
[pl2+[r?=1, [p'?+[7'|*=1. (B3)
2 7@
If we take the complex conjugates of all the complex ampli- Civ G =(1—25L/c)( 1 M‘/C)
tudes and revert their propagation directions, the resulting \ ¢ C{2) —AL/lc 1

configuration is also a solution of the optical system, in the
sense that the new fields are also related by the same sets of
effective transmissivities and reflectivities. Thus, the system
is invariant under time reversal. By applying explicitly this

¢y ¢t

( 1 )\L/C)
cw e/i-atie 1)

symmetry, it is straightforward to derive (C2)
pp*+ 7T =1, p*r+7p' =0, (B4  and
Tk L T % T T T - -
p'p*+7T 1, p*7'+7*p=0. (B5) D(12) ) / 1 N D(ll)
Equations(B3)—(B5) are the well-known Stokes relations D@ =(1=2el/c) —A\L/c 1 DM
[26]. If we rewrite the transmissivity and reflectivity coeffi- 2 2 (C3)
cients as
~  lain (el It is quite remarkable that, at second order, the optomechani-
p=|p|e'*, 1=|7]€", (B6) _ S0y )
cal resonances, determined B/?’=0, remain unchanged
7)’=|7)’|e‘f", ;_,:|7_,|eiyr, (B7) with respect to the first order result obtained imposing

M®=0. Apart from a(frequency-independentotation of
and insert them into the Stokes relatiqi®!) and (B5), we  the quadrature phases, the input—output relation at next-to-

obtain leading order is very similar to the leading-order one.
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