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Electromagnetic cavities and Lorentz invariance violation
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Within the model of a Lorentz violating extension of the Maxwell sector of the standard model, modified
light propagation leads to a change of the resonance frequency of an electromagnetic cavity, allowing cavity
tests of Lorentz violation. However, the frequency is also affected by a material-dependent length change of the
cavity due to a modified Coulomb potential arising from the same Lorentz violation as well. We derive the
frequency change of the cavity taking both into account. The new effects derived are negligible for present
experiments, but will be more pronounced in future tests using novel resonator materials.
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[. INTRODUCTION model[15]. The standard model extension starts from a La-
grangian formulation of the standard model, adding all pos-
Einstein’s special relativitySR) and the underlying prin- sible Lorentz violating terms that can be formed from the
ciple of Lorentz invariance are among the foundations ofknown particles together with Lorentz violation parameters
modern physics. In the past, they have been tested frequentijiat form Lorentz tensors. In the purely electromagnetic sec-
with increasing precision. Among others, optical me@ng.,  tor, these parameters are given by a tensg) (, ., which
[1-3)) are used for such tests. Today, space-borne instrumehas 19 independent componefit$,20. These Lorentz vio-
tation (SUMO [5] and OPTIS[6], for example as well as lation parameters can be viewed as remnants of Planck-scale
terrestrial experimentg7—9] using ultrahigh precision opti- physics of an underlying fundamental theory, such as string
cal and microwave techniques are performed or proposed theory, at an attainable energy scale. Cavity tests are inter-
explore the validity of this fundamental theory even further.esting, since they can in principle access all 19 components
One reason to continue testing SR is because it is one of t@f (Kg) .., . The relative change of is calculated in15]
pillars of modern physics. Another reason is that most apassuming-=const, so this can be interpreted as a modifica-
proaches towards a quantum theory of gravity such as stringon of the phase velocity of light in vacuuo cy+ oc with
theory and loop gravity predict Lorentz violation at some[21]

level [10-13. sc 1
Electromagnetic radiation has provided the first glimpse =~ 2 _ R x E* NxE)— E* £ 1
of Lorentz invariance in the famous Michelson-Morley ex- Co oL ) (K)ol ) (kog)upE]. (1

periment[1,8], establishing the direction invariance of the R

speed of lightt. Kennedy-Thorndike tes{,7] establish the Here, N is a unit vector pointing along the length of the
invariance ofc under observer Lorentz boosts. These expericavity andE is a unit vector perpendicular o that specifies
ments have been performed with increasing accuracy, todaye polarization(Fig. 1). The asterisk denotes complex con-
using electromagnetic cavities instead of interferometergugation. (kyg)iap and (kpe)iap are 3< 3 matrices resulting
They are based on the modificationadrising from Lorentz  from a decomposition OfKg) ., i the laboratory frame
violation (depending on the observer frame, direction of[15]. Comparison of Eq(1) to the experiments leads to up-

propagation, and polarizatignwhich in turn changes the per limits on some of the Ke) .y in the range of
resonance frequency=nc/(2L) of a cavity of the Fabry-
Paot type, wheren=1,2,3 ... andL is the cavity length.
(This applies for cavities where the radiation propagates in
vacuum, i.e., the index of refraction is) A change ofv can

be detected sensitively due to the potentially very high fre-
quency stabilitydv/ v~ 10~ 1° possible with cavities.

Tests of Lorentz invariance can be analyzed within an
extension of the standard model developed by Kostélecky A
and co-workerg14,15. The classical test theories, such as FIG. 1. Left: Optical(Fabry-Peot) cavity. The unit vectoN is
the Robertson-Mansouri-Sex| test the¢f—19 or the c? parallel to the cavity axis; the unit vectgris the polarization of the
formalism [19], can be recovered as special cases of thiglectromagnetic radiation inside the cavity. Right: Microwave cav-

ity. The ring denotes the electromagnetic cavity mode, parametrized
by an angle & ¢<27. The polarizatior‘é is parallel to thez axis;
*Electronic address: holger.mueller@physik.hu-berlin.de Faxthe unit vectolN is a tangent denoting the direction of the mode for
+49 (30) 2093-4718 eachd.
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10 8---715 Because these values are small, here anave will treat ionic crystals; we discuss the generalization of
throughout the paper it is sufficient to work to lowest orderthe result to covalent bonds later.
in the components ofkg) ) ., - A lattice is formed so that equilibrium between the attrac-
However, a modification of the Coulomb potentib{x)  tive and repulsive forces between the atoms is reached. In
arising from Lorentz violation in general affects the length ionic crystals, attraction is caused by Coulomb interactions
of the cavity and thus the cavity resonance frequency. Thi§€tween the ions. The repulsive potential is due to the over-
has already been pointed out in the literat[6,19,22,2%  lap of.thelr orbitals. Both the attractive andl the. repulsive
Sincesv/v=dc/c— SLIL, a length changéL connected to  Potential may be changed due to Lorentz violation. In the

®(X) might alter or even compensate the Lorentz-violatingappend'X’ we will find that the modification of the repulsive

signal of the experiments. Owing to the different eIectromagJ:’OtenﬁaI is negl_igible COmPﬁred to _the modification of the_
netic composition of different solidsiL will depend on the attractive potential, so that it is possible to assume nonmodi-

material. Indeed, very early Michelson-Morley experimentsﬂed repu_ls,lve forqes for the rest of this paper. .
have been repeated using exotic mater{gise wood and For this ana}IyS|s we consider a.cube, which IS sma]l com-
sandstongfor the interferometer to exclude that an acciden—pared to the dimensions of the solid under consideration, but
tal cancellation was responsible for the once puzzling nul,arge compar_ed to the Iattlce,_ S0 _that boundar),/ terms can be
result[24]. _neg!ected. Wlthout -Lorentz V|olat|qn, the cuibes side-length
Within the standard model extension, modificationscof ' L; Lorentz violation changes_ this -+ 5L (the super-

- 5 - scripti=1,2,3 denotes the spatial components in the labora-
as well as®(x)=e*/(4m|x])+V(x) can be treated on a tory frame, thus distorting the cube. The solid consists of a
common basis. For many-particle systems, like solids, number of these cubes, and the fractional chaigéL of
the solid’s length are the same as the fractional change for a

1 e? iab. KDE')_()ab single cube. It is thus sufficient to consider a cube of side-
V== 2 lee (2)  lengthL. The total energy of the lattice depending &l can
2 8w ab |X |3 .
ab be written as

1
2

[15]. Here, e is the electron’s charge arg}, an integer, so

thatee, is the charge of thath particle. The vectoﬁab is
the displacement between tla¢h and thebth charge. The
factor 1/2 corrects the double-counting of pairs, the primewhereEy is the Young modulu$25]. The term proportional
denotes thata=b is excluded from the summation. This to Ey is Hooke’s law(for simplicity, we restrict ourselves to
equation shows that in the case of a modifiedls given by isotropic elasticity. WhereasL minimizes E(L) without
Eq. (1), modifications of the Coulomb potenti@I(i) neces- Lorentz vio_IationzL+ sL! is_ obtained by minimizing the to-
sarily arise. This is due to the covariance of the Maxwell t&l €nergy includingv as given by Eq(2). In that equation,
equation, i.e., a modified wave equation implies a modifie¢h€ summatiorE,,, can be replaced by summing oweonly
Poisson equation. an(_j multiplying with t_he tqtal nu_mper of_mteractlng charges
In this work, the influence of this modified Coulomb po- N i-. the number of ions in an ionic lattice. Denoting)gy,
tential to the length of the cavity is derived. As a result, wethe i-th spatial component of,,, andl; the vector compo-
find a somewhat increased sensitivity of experiments to somgents of the primitive translatiorfq , we have K'),,= njl}
of the parameterskg) . ., . That increase is not more than a
few percent for materials commonly uségluartz and sap-
phire), but more pronounced for ionic materials. As a main n*n
conclusion, we thus confirm that it is possible to neglect V= N(KDE)iHL'fz e ——————. (4)
effects due to Lorentz violation in the Coulomb potential in w no (ndignPI)3?
the interpretation of present cavity tests of SR.
In Sec. Il A, we derive the length changi. for ionic ~ The summation is carried out over all ions. For computing
crystals, giving explicit numbers for cubic crystals in Sec.the length change, we need the derivative
Il B. The case of covalent bonds is discussed in Sec. Il C.

_ R\ VA
E(L+ 6L =const+ EYL(5L')2+55L' ®)

with a vectorn=(n*,n%,n3) e R3; thus

2 kil

N -
m|(D

The result is discussed in Sec. lll. In the Appendix, we show NV  1Né , ,
i : : — == ——[(kpe)njl|S™+ (kpE)inl (S
that in our model, the repulsive potential between the atoms g0 2 8 - " DEMI DE/in'k
in the lattice is almost not changed due to Lorentz violation, m
so we need to consider only the modification of the Coulomb —3(kpp)jj! L|f‘|g“tk'”°], (5)
potential.
where

Il. LENGTH CHANGE OF CRYSTALS nkm

N i api 32
(nPIonAly)

(6

. . km__ ’
A. General considerations 5= E e
n

The hypothetical Lorentz violating length change of a
cavity depends on the material it is made of. As a first modeland
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KAl ANHO NAV
n"nnan AVP
kno_ S /¢ N=N,——, 13
t - en(nplinqli)5/2' (7) m M ( )
p q

We haves™ =s" andt<!"° is invariant under permutations of WhereNx is Avogadro’s constanty the crystal’'s volumep
all indices. its density,M its molecular weight, and the factél, is the
The lengthL of the sample is a linear combination of the NUmber of atomsions, in an ionic crystalper molecule, we

primitive translations|. Thus, the derivativesly/dL; can obtain

be obtained. We express
oL,

N oV dly, o L
FIRPTT @®

:A[(20_3TH)(KDE)||_3H(KDE)¢] (14

with (kpg)|= (kpe)zz» (kpe) 1 = (Kkpe)xxt+ (kpe)yy @and

and insert this into Eq3). From that,SL; can be obtained by
minimizing the energyE given by Eq.(3). We will do that A=
explicitly for a cubic crystal in the next section.

1 €%?v1v5 NpNap
2 87E, Ma

(15

Here, we included a dimensionless facityrwhich measures

the effective charge of the ions. For most crystais,1, for
To give an explicit result we consider a crystal that with- nonionic materials, 6.:<1 (see Sec. || ¢ We also in-

out Lorentz violation has cubic symmettilaCl structur¢  cluded factors); andv,, the number of valence charges for

Lorentz violation will in general break this symmetry. For o atoms. Using the dreibef.E NXE. this gives
the crystal without Lorentz violation){) =as! with a lattice T ’

B. Cubic symmetry

constanta. Since next neighbors have opposite charggs, SL R R R o
=(—1)”1+”2+”3, we find T:allN(KDE)IabN+aJ_[E*(KDE)IabE+(NXE*)
w_ Ly SO L X (ke NXE)]. (16
= En) oo Fr=io 55" 9

Here,aj=A(20—37)) anda, = —3Ar, . This is now a vec-
The summation is carried out OV&?’\O}. tabedig only non- tor equation which will hold in any coordinatéhis does not
zero if the indices are two pairs of equal indices. Thusmean that the cavity length depends on the polarizatieor

taabb_ tabab_ tabba_ .tab \\ith this equation, it is not necessary to make some assumption
about the orientation of the cavity axis relative to the lattice,
1 (—1)m* ”2+”3nin§ 1 since cubical lattices are isotropic. For lattices of lower sym-
J— = | T e y y i ’ ’
5 2 N =TI a#b metry, the parameters in E¢L6) would, however, become
) a n (n*n%) a dependent on the angle between the crystal axes and the
ab_ } i A
= i 4 cavity orientationN.
iE (pm7reny 1 azb In practical experiments, the material might not be a
a5 < (nknk)52 =7 a5’ ' single crystal, but a noncrystalline material. These consist of

(10) a large number of microscopic crystals that are randomly
oriented. If these microscopic crystals are cubical, however,

Numerical summatiotisumming from—50...50)giveso  Eq. (16) will hold for any of them as well as for the macro-
~—0.587,~0.23, and7j=—1.04. Using these equations, scopic body, since in this case the equation makes no refer-

we obtain(no summation oven) ence to the orientation of the lattice.
The coefficientsa|,a, , and A for some materials are
oV 1 Ne€ given in Table I. Without Lorentz violation, the ionic model

e EE[ZaU(KDE)nn_3a3(KDE)aatan]- (1D predicts the correct distance of ions within a few percent
n error. Thus, we can expect a similar precision for the
Lorentz-violating length change of ionic materials. At
present, such materials are uncommon for cavities in high
precision physics, but their use has been prop$2éti be-
2 cause of the availability of ultra-pure specimens.
ﬂ: ﬂ ﬂ: ﬂ i (12) Materials of other than cubic structure will show a length
L, s dL, aZ Mz change of similar magnitude: The structure enters this com-
putation via the constants and 7. These are in analogy to
where the(constant 7,=L/a is the number of unit cells the Madelung-constanis of solid-state physics, which are
making upL with the lattice parametea. Setting to zero the of order unity and do not depend very much on the actual
derivative of Eq.(3) we obtain the fractional length change crystal structure(see e.g[27] for some values This also
in z direction. Substituting holds for o and r. However, lattices with lower symmetry

Let thez axis be parallel toN [as it was defined below Eq.
(1)]. Thus, we have
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TABLE |. Length change coefficients. The first part of the table crystalc axis is parallel to the axis (provided that, andaH
contains cubical two-atom crystals, for which the calculation wasare computed for the particular mateyial
performed. The length-change coefficiedisa|, anda, are ob- In whispering-gallery resonators, a dependency of the in-
tained from Eqgs(14) and(15). The second part contains crystals of dex of refraction on Lorentz violation would also have to be
other structure with nonionic bindings. Quartz and sapphire havgzken into account. Compared to the length change, this
two lattice constants; the axis of highest symmetry is given. probably is a small correction, since in whispering-gallery
resonators only a part of the electromagnetic field energy

P travels within the material.
Ey [ 9 ) a
Material (GP3 \cm®) M t'vv, (A) A a a C. Covalent bonds
NaCl 40 21 58 0.64 2.841-0.14 -0.28 0.10 The materials quartzused, for example, in3,4]) and
LiF 64.8 264 26 1 2.015-0.54 —1.06 0.37 sapphire(e.g.,[7,8,28) are based on covalent bonds. These

NaF 64.8 273 32 1 2135-0.43 —-0.83 0.29 bonds have a partial ionic character, i.e., the effective
sapphire 497 4.0 102 1.5 13.6-0.02 —0.03 0.01 charges of the atoms arev (as beforep denotes the num-
quartz 107 22 60 072 54-0.06 -0.11 0.04 ber of valence charggswhere :<1 can be determined
roughly from the difference of the electronegativities of the
atoms(see, e.g9.[29]). From Eq.(15), we thus obtain length-

will lead to a more complicated expression than Ed)), in  change coefficients in the percent rar@able ). Since the

which also nondiagonal terms okfg);; enter. concept of partial ionic character is not an exact concept,
: these values have limited accuracy. They suggest, however,
Length Change for microwave resonators that the relat've Iength Chan@/L Of a CaV|ty made from

. . . ) .. quartz or sapphire is negligible compared to the relative
Sometimes, especially in microwave experiments, Cav't'e%hangeac/c of the speed of light.

are used where the electromagnetic radiation of the cavity 5. we give some arguments indicating that the length

mode goes along the circumference of an annulus or 8panae of a covalent crystal may be derived in analogy to
sphere. For cubic crystals, it is straightforward to generahzq

| it of Theref onic crystals. Covalent bonds are given by Coulomb inter-
our result to a cavity of any geometry. Therefore, we paramzqijons hetween delocalized electrons, and between the elec-

etrize the closed path of the mode by means of a parameter ons and the atom cores. For our calculation, the main dif-

We denote the length of the resonator mode dafh Its  forence to jonic bonds is that the electrons are not localized;

relative change is given by integrating E@6) along the instead, they are described by a symmetrizegdectron state

closed path of the mode: nooo - . . .
Y"(X1,Xy, ... X,). This state is formed from the single-

sL, 1 A A A A o electron states ¢; as the Slater determinant

T =% % [aN(kpe)iaN+a, E* (kpe)aE+a, (NXE*)  (1/yNI) Det(yi(x;)). The covalent potentialVe="Vec

m +Vggt+ Ve is then the sum of the core-core interactions
X(kpe)a NXE)]ds 17 Vec

with S=$ds. Here, the dreibeirN,E, and NXE is used, V=2 X @Y (x,—xp) (19
where N gives the local orientation of the wave vector at a b

each value of andEL N gives the polarization. This equa- [wherea and b enumerate the cores, ade @™ (X,—%,) is
tion holds for cubic latticegthat have no preferred aYist  the coulomb potential between the coeeandb at the lo-

also holds for uniaxial crystalssuch as sapphire, for ex- cations, andx,], the electron-core interactions
ample, as long as the mode is orthogonal to the crystal axis a bl

for all values of the parametex In this case, however, the L
values ofa, andaj have to be computed specifically for the VEczz Z f (PM* D (x;—x,) y"d3x, . . . d3x,
uniaxial crystal. oa

For example, for a cavity where the mode has the geom- (20
etry of a ring with thez axis being the symmetry axis, we (wherei numerates the electrons add'® is the Coulomb
identify the parametes as the angle & <2 (Fig. 1); we potential between the cora and the electrori) and the

have N=(cos@,sin¢,0). ChoosingE=(0,0,1) parallel to glectron-electron interactions
the z direction,

VEEZZ 2 f (w”)*d>“”(>?i—>2j)¢“d3xl . d3x,
T
(21)

oL, a||+aL
T. =73 [(kpe)xt (kpE)yyltai (kpe)zz (18)
m

for the path length of a microwave cavity mode like it is with ®{1), the Coulomb potential between the electrans
shown in Fig. 1. This result is valid for a cavity made from a andj. Since" is symmetrized, these expressions contain all
cubic crystal; for a uniaxial crystal, it is valid as long as thethe terms usually found in the treatment of covalent systems,
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like the hydrogen molecule. Although the electron wave-forces (see Table )i here, it is necessary to analyze them
functions are spread over the whole crystal volume, theiusing Eq.(24) rather than Eq(1).

centers of mass are localized at some point within a distance We note that a cavity experiment is mainly sensitive to the
a from the cores, wher@ is of atomic dimensiong30],  Parity-odd coefficient$15] of the standard model extension,

smaller than the typical distance of atoms in a lattice. As &ince both the change of the phase velocity of light, &g.

toy model, we thus assume centers of charge at pﬁ'mtl‘:t as well as the cavity length change Ed6) are dominated

di o f he | . fh c by these coefficients. Parity-even coefficients that are not
some distanca from the locations of the nearest cores. COU-yiapiiy constrained by astrophysical birefringence measure-
lomb forces between these centers of charge and the cor

. LI ts[15] ent it i t I By,
make up an important part of the covalent binding force. The[hen SL15] enter cavity experiments only suppresse

del reduces/ dv Coulomb i velocity of the laboratory with respect to the frame in
model reduced/gc andVee to a sum over Coulomb Inter- pich one defines the parametesg and xyg. For experi-
actions, i.e., we have

ments4 on Earth and using a sun-centered framdg,
~10°.
VEc~E E q)«a_a)(;g_ ;a) (22) \/_\/_e have calculated_ _the length change o_f eIe(_:t_romagnetic
a a cavities due to a modified Coulomb potential arising neces-
sarily from a Lorentz violating velocity of light, as it follows
— .. from an extension of the standard model. As a first model,
Vee~ 2 2 PE0G—xp). (23 we have assumed that the cavity is made of an ionic crystal.
a b We then extended the model to the covalent bonds of prac-
_ tical materials using the approximate concept of partial
The distancea between the centers of mass of the delocalcharges. Taking this into account for the interpretation of
ized electrons and the cores gives rise to an effective charggvity tests of Lorentz invariance, we have shown that the
of the cores. A calculation of the Lorentz-violating length ength change effect adds to the hypothetical Lorentz-
change could now start from these sums and proceed as fQ[olating signal derived from a change of the speed of light
ionic Crystals. While this is a S|mpI|f|ed model, it indicates and increases somewhat the Sensiti\/ity of experiments_ How-
that the effect of a Lorentz violating Coulomb potential for ever, for materials used in present experiments, the increase
covalent bonds will be in analogy to ionic crystals. Thus,is at the percent level and thus negligible, as all the Lorentz
estimates for covalent crystals made above should at leaftvariance tests are null tests. As a result, the classical inter-

give the correct order of magnitude. pretation that neglects the length change is justifibis also

holds for microwave cavities and for the classic interferom-

ll. CONCLUSION AND SUMMARY eter tests For future experiments using ionic crystals as a
resonator material, however, the effects derived here are

The contributions from Eq(1) and Eq.(16) give larger and must be taken into account.

As an outlook, we note that the properties of matter and

ov N ~ (1 -, T thus the dimensions of cavities also depend on Lorentz-

o ~aN(kpg)iaoN — §+ai [E* (kpe)ianE + (NXE®) violating terms in the fermionic equations of motion, i.e., a

modified Dirac equatior{14,31]. Strong upper limits on
X(kpe)ias NXE)]. (24)  some of these terms have been placed by, e.g., comparisons
between atomic clockE32]. In this work, we have focused

This has been simplified by noting that astrophysical test§n the purely electromagnetic sector; the effect of the fermi-
lead to (kyg)= —(xpg) With an accuracy many orders of onic terms in cavity experiments will be treated elsewhere. It
magnitude higher than attainable in cavity experim¢h&. ~ Might be possible to access Lorentz violating fermionic
The second part of E¢24) is equivalent to the speed of light terms in cavity experiments due to the length change they
change(l) times 1+2a, , a, ~0.01 . .. 0.4 for thenaterials ~ cause. One would compare cavities made fror_n different ma-
in Table I. Additionally, the frequency is sensitive to a term terials, in order to separate the electromagnetic from the fer-
proportional toa~ —0.03 . . .— 1. For both coefficients, the MIONIC terms.
small coefficients in the per-cent range are for covalent ma-
terials (quartz and sapphiygalthough they are based on a ACKNOWLEDGMENT
simplified model, they should be accurate enough to con- i
clude that the relative length change of a cavity made from We are grateful to V.A. Kosteleckfpr discussions. It is a
quartz or sapphire is negligible against the change of th@leasure to acknowledge the ongoing cooperation with S.
speed of light. Since present experiments use these materiafsghiller.
it is indeed possible to analyze them as if the cavity length
would not be affected by Lorentz violation. This holds for
cavities of any structure, includingnicrowave cavities us-
ing radial or whispering-gallery modes. Their length change
is given by Eq.(17). However, future experiments using  Here, we calculate the modification of the repulsive force
resonators out of ionic materials, as proposef2#]| will be  due to Lorentz violation. It is caused by the modified wave
affected more strongly by the Lorentz violating Coulomb functions of the ions arising from the modified Coulomb

APPENDIX: THE REPULSIVE FORCE OF THE IONIC
BOND
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potential between the nucleus and the outer electrons. The e? _ _
repulsive force is a short-range force, so it is sufficient to V= ﬁ[(KxxSlnzfi’Jr KyyCOS })SIN? 6+ K, L0 6].

consider next neighbors only.
Since in ionic crystals, the positive ions are usually small

compared to the negative ong&9], we assume as a model . o )
that the positive ions are pointlike. The repulsive potential Since in first orderlperturbatmn theory, the change of the
wave function|nim)®) for a sum of perturbation¥;V; is a

linear combination of the changes for each single perturba-
tion V;, it is sufficient to consider the term proportional to
K,5. In configuration space,

is then proportional to the probability density of the outer

electrons of the negative iong{®(R) is the unperturbed (nim|r~‘cog6|n’'l’m’)

wave function at the locatioR of the positive ion without
Lorentz violation (we assume that the ion-ion interaction
does not change appreciably the wave function, which
should be satisfied to reasonable accuracy in ionic crystals
The wave function)(R) is proportional tee~ 4Rl for large

|R] with a constant/~1/a, with the Bohr radiusay; the

(A4)

Pgy(R)=constyO(R)|? (A1)

1
:f Rnl(r)FRn’l’(r)rzdr

x f YI(6,)coL0YTT (6,4)sin0dod (A5)

er

r
2— 2§—
n

n

21+1
n—I-

nl—

potential®gy is thus a Born-Mayer potenti@e 2" (B as  \ith the normalized radial functions
well as ¢ are phenomenological parameters that are deter-
mined by fitting the model to the measuremegntghich is
frequently used as a model of the repulsive fdi2€. In the 2 [B(n—-1-1) )' _grin
case of Lorentz violationy(r) = {9+ () with a correc- n? (n+1)! et 1(
A6

lated for hydrogenlike atoms. (A0)

For this calculation, we denote the unperturbed state of K . : )
hydrogen|nim)(© with a principal quantum number, an- yvhereLp(z) are associated Laguerre polyn0m|als as d_eflned
gular momentuni and magnetic quantum number The " [33]. For the treatment of hydrogenlike atondss Z/a, is
corresponding wave functiog(®) (F) can be factorized into given by the core charge numbir Here, we takg'=1/a.
a radial functionR,(r) that depends solely on the radius
coordinater, and spherical harmonic¥["(¢,¢). Only the
ground staten=1 is not degenerate; for the=2 states, the
use of the perturbation theory of nondegenerate states is still
possible since, due to the nature of the matrix elements cal-

tion ¢ that is proportional tacpg, which will be calcu-
nim Using
[21+1 (I=m)! :
Y6, ¢)= A (Eml P"(cosp)e™?, (A7)
culated below, the degenerate=2 states do not mix. For

POTENTIAL
n=1,2, the statgnim)=|nIm)@+|nIim)1) in first order |
perturbation theory is given by 0.00% ;
\
\
nim\Vin’'l'm’ —] RADIUS
Inimy®=> AnimfVin’t’m’) >|n’|’m’> (A2) Y S I
n'1’'m’ En_En’ . /_,—\'\’__— ’—___._-—‘
-0.00% < e
with V given by Eq.(2). Inserted into Eq(A1), this leads to )
a correction to the Born-Mayer potential 5./ 00

oPgu(R) FIG. 2. lon-ion potentials fon=1,=0m=0 (for other quan-
nIm|V|n’I ’m’) tum numbers, a similar situation is found'he x axis givesR in
-2 constz ,<—|,/,§](|Jr)n(§) wﬁ??,m,(ﬁﬂ_ units of ag; they axis gives the potential in arbitrary units. Solid
n’l’m’ En—En line: 3005dP g (R), i.e. the correction to the Born-Mayer potential,
(A3) assuming kpe)?%= 1, enlarged by a factor of 300. Doté(R), i.e.

the correction to the Coulomb interaction between two ions for
comparison. Dashes: unperturbed ion-ion potentidigy,

We apply coordinates in whickpg is diagonal with the
diagonal elements,, , x,,, andx,,. Applying polar coordi-
nates with the#=0 axis parallel to the axis, the Lorentz
violating correction to the Coulomb potentiican be writ-
ten as

—1/(47|R|). The constant const15 has been inserted as to obtain
a minimum of the total unperturbed ion-ion potential arot5,

as commonly found in ionic crystalg.g.,R=5.3a, for NaCl). The
correction to the repulsive potential is negligible compared to the
correction of the Coulomb potential.
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[where P["(x) are the associated Legendre functiprisis
easy to verify that thep integration givesrdy, . For thed
integration, we substitutexc=cosé. Applying the relation
[33]

X(21+1)P"(x)=(I—=m+ )P ;(X)+ (I +m)P" ;(x)

PHYSICAL REVIEW D 67, 056006 (2003

two times and using the normalization

fl P"(x) P (X)x?dx=
-1

T m B (I4+m)!
f—lpl (X)Pl,(X)dX— 2111 (I_—m)!5||r , (Ag)
(A8) it can be shown that
J
412— 1+ (1 +m)(412+4m—3) 2(I +m)! o
(2l-1)(2l+1)%21+3) (I—m)!”’
(A10)
(I+m+1+1)! I —|+2

(2l'=1)(2I' +1)(21"+3) (I=m=1=1)!"

and zero otherwise. That means, the matrix element is nortained and compared to the correction of the Coulomb po-

zero only forl=1" or |=1"+2. However, forl=1’, the ra-
dial integral is nonzero only fon=n’; that term is not

needed for this calculation. Combining these results leads t
the more simple expression for the correction of the Born

Mayer potential
5Peu(R)

(nIm|V|n'l +2m)
En_En/

=2 constD,

n'=3

R U (R
(A11)

(for n=1,2, O<l<n, and |m|<I). Formally, the series

should be summed up to infinity. However, the terms decaf

rapidly with increasingn’. The correction of the Born-

tential due to the same Lorentz violatigRig. 2). Here, R

was assumed parallel to tizedirection. If R is not perpen-
dicular to thez direction, the correction to the Born-Mayer

potential is smaller. From this calculation, it can be con-
cluded that the Lorentz-violating modification of the repul-
sive potentiald® gy, is negligible compared to the modifica-
tion of the Coulomb potential, at least for time=1 and 2
states that have been considered in this simple model. This is
due to the small magnitude of the matrix elements
(nIm|V|n’l’m"), which are also small for higim and n’
(they even decrease with increasimgndn’). So, although
for n=3, the perturbation theory for degenerate states
hould be applied, this will not dramatically change the mag-
nitude of &gy, and thus our conclusion thadg,, is neg-

Mayer potential due to Lorentz violation can thus be ob-ligible remains valid.
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