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Electromagnetic cavities and Lorentz invariance violation
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Within the model of a Lorentz violating extension of the Maxwell sector of the standard model, modified
light propagation leads to a change of the resonance frequency of an electromagnetic cavity, allowing cavity
tests of Lorentz violation. However, the frequency is also affected by a material-dependent length change of the
cavity due to a modified Coulomb potential arising from the same Lorentz violation as well. We derive the
frequency change of the cavity taking both into account. The new effects derived are negligible for present
experiments, but will be more pronounced in future tests using novel resonator materials.
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I. INTRODUCTION

Einstein’s special relativity~SR! and the underlying prin-
ciple of Lorentz invariance are among the foundations
modern physics. In the past, they have been tested freque
with increasing precision. Among others, optical means~e.g.,
@1–3#! are used for such tests. Today, space-borne instrum
tation ~SUMO @5# and OPTIS@6#, for example! as well as
terrestrial experiments@7–9# using ultrahigh precision opti
cal and microwave techniques are performed or propose
explore the validity of this fundamental theory even furth
One reason to continue testing SR is because it is one o
pillars of modern physics. Another reason is that most
proaches towards a quantum theory of gravity such as st
theory and loop gravity predict Lorentz violation at som
level @10–13#.

Electromagnetic radiation has provided the first glimp
of Lorentz invariance in the famous Michelson-Morley e
periment @1,8#, establishing the direction invariance of th
speed of lightc. Kennedy-Thorndike tests@2,7# establish the
invariance ofc under observer Lorentz boosts. These exp
ments have been performed with increasing accuracy, to
using electromagnetic cavities instead of interferomet
They are based on the modification ofc arising from Lorentz
violation ~depending on the observer frame, direction
propagation, and polarization!, which in turn changes the
resonance frequencyn5nc/(2L) of a cavity of the Fabry-
Pérot type, wheren51,2,3, . . . andL is the cavity length.
~This applies for cavities where the radiation propagates
vacuum, i.e., the index of refraction is 1.! A change ofn can
be detected sensitively due to the potentially very high f
quency stabilitydn/n;10215 possible with cavities.

Tests of Lorentz invariance can be analyzed within
extension of the standard model developed by Kostele´
and co-workers@14,15#. The classical test theories, such
the Robertson-Mansouri-Sexl test theory@16–18# or the c2

formalism @19#, can be recovered as special cases of
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model @15#. The standard model extension starts from a L
grangian formulation of the standard model, adding all p
sible Lorentz violating terms that can be formed from t
known particles together with Lorentz violation paramete
that form Lorentz tensors. In the purely electromagnetic s
tor, these parameters are given by a tensor (kF)klmn which
has 19 independent components@15,20#. These Lorentz vio-
lation parameters can be viewed as remnants of Planck-s
physics of an underlying fundamental theory, such as str
theory, at an attainable energy scale. Cavity tests are in
esting, since they can in principle access all 19 compone
of (kF)klmn . The relative change ofn is calculated in@15#
assumingL5const, so this can be interpreted as a modifi
tion of the phase velocity of light in vacuumc5c01dc with
@21#

dc

c0
5

1

2
@~N̂3Ê* !~kHB! lab~N̂3Ê!2Ê* ~kDE! labÊ#. ~1!

Here, N̂ is a unit vector pointing along the length of th
cavity andÊ is a unit vector perpendicular toN̂ that specifies
the polarization~Fig. 1!. The asterisk denotes complex co
jugation. (kHB) lab and (kDE) lab are 333 matrices resulting
from a decomposition of (kF)klmn in the laboratory frame
@15#. Comparison of Eq.~1! to the experiments leads to up
per limits on some of the (kF)klmn in the range of

:

FIG. 1. Left: Optical~Fabry-Pe´rot! cavity. The unit vectorN̂ is

parallel to the cavity axis; the unit vectorÊ is the polarization of the
electromagnetic radiation inside the cavity. Right: Microwave ca
ity. The ring denotes the electromagnetic cavity mode, parametr

by an angle 0<f,2p. The polarizationÊ is parallel to thez axis;

the unit vectorN̂ is a tangent denoting the direction of the mode f
eachf.
©2003 The American Physical Society06-1
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1028 . . .215. Because these values are small, here
throughout the paper it is sufficient to work to lowest ord
in the components of (kF)klmn .

However, a modification of the Coulomb potentialF(xW )
arising from Lorentz violation in general affects the lengthL
of the cavity and thus the cavity resonance frequency. T
has already been pointed out in the literature@15,19,22,23#.
Sincedn/n5dc/c2dL/L, a length changedL connected to
F(xW ) might alter or even compensate the Lorentz-violat
signal of the experiments. Owing to the different electrom
netic composition of different solids,dL will depend on the
material. Indeed, very early Michelson-Morley experime
have been repeated using exotic materials~pine wood and
sandstone! for the interferometer to exclude that an accide
tal cancellation was responsible for the once puzzling n
result @24#.

Within the standard model extension, modifications oc

as well asF(xW )5e2/(4puxuW )1V(xW ) can be treated on a
common basis. For many-particle systems, like solids,

V5
1

2

e2

8p (
ab

8eaeb

xWab•kDE•xWab

uxWabu3
~2!

@15#. Here,e is the electron’s charge andea an integer, so
that eea is the charge of theath particle. The vectorxWab is
the displacement between theath and thebth charge. The
factor 1/2 corrects the double-counting of pairs, the pri
denotes thata5b is excluded from the summation. Th
equation shows that in the case of a modifiedc as given by
Eq. ~1!, modifications of the Coulomb potentialF(xW ) neces-
sarily arise. This is due to the covariance of the Maxw
equation, i.e., a modified wave equation implies a modifi
Poisson equation.

In this work, the influence of this modified Coulomb p
tential to the length of the cavity is derived. As a result,
find a somewhat increased sensitivity of experiments to so
of the parameters (kF)klmn . That increase is not more than
few percent for materials commonly used~quartz and sap-
phire!, but more pronounced for ionic materials. As a ma
conclusion, we thus confirm that it is possible to negl
effects due to Lorentz violation in the Coulomb potential
the interpretation of present cavity tests of SR.

In Sec. II A, we derive the length changedL for ionic
crystals, giving explicit numbers for cubic crystals in Se
II B. The case of covalent bonds is discussed in Sec. I
The result is discussed in Sec. III. In the Appendix, we sh
that in our model, the repulsive potential between the ato
in the lattice is almost not changed due to Lorentz violati
so we need to consider only the modification of the Coulo
potential.

II. LENGTH CHANGE OF CRYSTALS

A. General considerations

The hypothetical Lorentz violating length change of
cavity depends on the material it is made of. As a first mod
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d
r

is

-

s

-
ll

e

l
d

e

t

.
.

s
,
b

l,

we will treat ionic crystals; we discuss the generalization
the result to covalent bonds later.

A lattice is formed so that equilibrium between the attra
tive and repulsive forces between the atoms is reached
ionic crystals, attraction is caused by Coulomb interactio
between the ions. The repulsive potential is due to the o
lap of their orbitals. Both the attractive and the repulsi
potential may be changed due to Lorentz violation. In t
appendix, we will find that the modification of the repulsiv
potential is negligible compared to the modification of t
attractive potential, so that it is possible to assume nonm
fied repulsive forces for the rest of this paper.

For this analysis we consider a cube, which is small co
pared to the dimensions of the solid under consideration,
large compared to the lattice, so that boundary terms can
neglected. Without Lorentz violation, the cube’s side-leng
is L; Lorentz violation changes this toL1dLi ~the super-
script i 51,2,3 denotes the spatial components in the labo
tory frame!, thus distorting the cube. The solid consists o
number of these cubes, and the fractional changedLi /L of
the solid’s length are the same as the fractional change f
single cube. It is thus sufficient to consider a cube of si
lengthL. The total energy of the lattice depending ondLi can
be written as

E~L1dLi !5const1
1

2
EYL~dLi !21

]V

]Li
dLi ~3!

whereEY is the Young modulus@25#. The term proportional
to EY is Hooke’s law~for simplicity, we restrict ourselves to
isotropic elasticity!. WhereasL minimizes E(L) without
Lorentz violation,L1dLi is obtained by minimizing the to-
tal energy includingV as given by Eq.~2!. In that equation,
the summation(ab can be replaced by summing overa only
and multiplying with the total number of interacting charg
N, i.e. the number of ions in an ionic lattice. Denoting (xi)ab

the i-th spatial component ofxWab , and l j
i the vector compo-

nents of the primitive translationslW j , we have (xi)ab5nj l j
i

with a vectornW 5(n1,n2,n3)PR3; thus

V5
1

2

e2

8p
N~kDE! i j l k

i l l
j(

nW
8enW

nknl

~nql q
nnpl p

n!3/2
. ~4!

The summation is carried out over all ions. For computi
the length change, we need the derivative

]V

] l m
n

5
1

2

Ne2

8p
@~kDE!n jl l

j sml1~kDE! inl k
i skm

23~kDE! i j l k
i l l

j l o
mtklno#, ~5!

where

skm5(
nW

8enW
nknm

~npl p
i nql q

i !3/2
~6!

and
6-2
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tklno5(
nW

8enW
nknlnnno

~npl p
i nql q

i !5/2
. ~7!

We havesnl5sln andtklno is invariant under permutations o
all indices.

The lengthL of the sample is a linear combination of th
primitive translationsl j

i . Thus, the derivatives] l m
n /]Li can

be obtained. We express

]V

]Li
5

]V

] l m
n

] l m
n

]Li
~8!

and insert this into Eq.~3!. From that,dLi can be obtained by
minimizing the energyE given by Eq.~3!. We will do that
explicitly for a cubic crystal in the next section.

B. Cubic symmetry

To give an explicit result we consider a crystal that wit
out Lorentz violation has cubic symmetry~NaCl structure!.
Lorentz violation will in general break this symmetry. F
the crystal without Lorentz violation, (l i

j )5ad i
j with a lattice

constanta. Since next neighbors have opposite chargesenW

5(21)n11n21n3
, we find

sab5
1

a3 (
nW

~21!n11n21n3n1
2

~nknk!3/2
dab5:s

1

a3
dab. ~9!

The summation is carried out over$Z3\0%. tabcd is only non-
zero if the indices are two pairs of equal indices. Th
taabb5tabab5tabba5:tab with

tab55
1

a5 (
nW

~21!n11n21n3n1
2n2

2

~nknk!5/2
5:t'

1

a5
, aÞb,

1

a5 (
nW

~21!n11n21n3n1
4

~nknk!5/2
5:t i

1

a5
, a5b.

~10!

Numerical summation~summing from250 . . . 50)givess
'20.58,t''0.23, andt i521.04. Using these equation
we obtain~no summation overn)

]V

] l n
n

5
1

2

Ne2

8p
@2as~kDE!nn23a3~kDE!aat

an#. ~11!

Let thez axis be parallel toN̂ @as it was defined below Eq
~1!#. Thus, we have

]V

]Lz
5

]V

] l z
z

] l z
z

]Lz
5

]V

] l z
z

1

hz
~12!

where the~constant! hz5L/a is the number of unit cells
making upL with the lattice parametera. Setting to zero the
derivative of Eq.~3! we obtain the fractional length chang
in z direction. Substituting
05600
,

N5Nm

NAVr

M
, ~13!

whereNA is Avogadro’s constant,V the crystal’s volume,r
its density,M its molecular weight, and the factorNm is the
number of atoms~ions, in an ionic crystal! per molecule, we
obtain

dLz

L
5A@~2s23t i!~kDE! i23t'~kDE!'# ~14!

with (kDE) i5(kDE)zz, (kDE)'5(kDE)xx1(kDE)yy and

A52
1

2

e2i2v1v2

8pEY

NmNAr

Ma
. ~15!

Here, we included a dimensionless factori2, which measures
the effective charge of the ions. For most crystals,i51, for
nonionic materials, 0,i,1 ~see Sec. II C!. We also in-
cluded factorsv1 andv2, the number of valence charges fo
the atoms. Using the dreibeinN̂,Ê,N̂3Ê, this gives

dL

L
5aiN̂~kDE! labN̂1a'@Ê* ~kDE! labÊ1~N̂3Ê* !

3~kDE! lab~N̂3Ê!#. ~16!

Here,ai5A(2s23t i) anda'523At' . This is now a vec-
tor equation which will hold in any coordinates~this does not
mean that the cavity length depends on the polarization!. For
this equation, it is not necessary to make some assump
about the orientation of the cavity axis relative to the lattic
since cubical lattices are isotropic. For lattices of lower sy
metry, the parameters in Eq.~16! would, however, become
dependent on the angle between the crystal axes and
cavity orientationN̂.

In practical experiments, the material might not be
single crystal, but a noncrystalline material. These consis
a large number of microscopic crystals that are random
oriented. If these microscopic crystals are cubical, howe
Eq. ~16! will hold for any of them as well as for the macro
scopic body, since in this case the equation makes no re
ence to the orientation of the lattice.

The coefficientsai ,a' , and A for some materials are
given in Table I. Without Lorentz violation, the ionic mode
predicts the correct distance of ions within a few perc
error. Thus, we can expect a similar precision for t
Lorentz-violating length change of ionic materials. A
present, such materials are uncommon for cavities in h
precision physics, but their use has been proposed@26# be-
cause of the availability of ultra-pure specimens.

Materials of other than cubic structure will show a leng
change of similar magnitude: The structure enters this co
putation via the constantss andt. These are in analogy to
the Madelung-constantsa of solid-state physics, which ar
of order unity and do not depend very much on the act
crystal structure~see e.g.@27# for some values!. This also
holds for s and t. However, lattices with lower symmetr
6-3
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will lead to a more complicated expression than Eq.~14!, in
which also nondiagonal terms of (kDE) i j enter.

Length change for microwave resonators

Sometimes, especially in microwave experiments, cavi
are used where the electromagnetic radiation of the ca
mode goes along the circumference of an annulus o
sphere. For cubic crystals, it is straightforward to genera
our result to a cavity of any geometry. Therefore, we para
etrize the closed path of the mode by means of a parames.
We denote the length of the resonator mode pathLm . Its
relative change is given by integrating Eq.~16! along the
closed path of the mode:

dLm

Lm
5

1

S R @aiN̂~kDE! labN̂1a'Ê* ~kDE! labÊ1a'~N̂3Ê* !

3~kDE! lab~N̂3Ê!#ds ~17!

with S5rds. Here, the dreibeinN̂,Ê, and N̂3Ê is used,
where N̂ gives the local orientation of the wave vector
each value ofs and Ê'N̂ gives the polarization. This equa
tion holds for cubic lattices~that have no preferred axis!; it
also holds for uniaxial crystals~such as sapphire, for ex
ample!, as long as the mode is orthogonal to the crystal a
for all values of the parameters. In this case, however, th
values ofa' andai have to be computed specifically for th
uniaxial crystal.

For example, for a cavity where the mode has the geo
etry of a ring with thez axis being the symmetry axis, w
identify the parameters as the angle 0<f,2p ~Fig. 1!; we
have N̂5(cosf,sinf,0). ChoosingÊ5(0,0,1) parallel to
the z direction,

dLm

Lm
5

ai1a'

2
@~kDE!xx1~kDE!yy#1a'~kDE!zz ~18!

for the path length of a microwave cavity mode like it
shown in Fig. 1. This result is valid for a cavity made from
cubic crystal; for a uniaxial crystal, it is valid as long as t

TABLE I. Length change coefficients. The first part of the tab
contains cubical two-atom crystals, for which the calculation w
performed. The length-change coefficientsA, ai , and a' are ob-
tained from Eqs.~14! and~15!. The second part contains crystals
other structure with nonionic bindings. Quartz and sapphire h
two lattice constants; the axis of highest symmetry is given.

Material
EY

~GPa!

r

S g

cm3D M tvv1v2

a
~Å! A ai a'

NaCl 40 2.1 58 0.64 2.84120.14 20.28 0.10
LiF 64.8 2.64 26 1 2.01520.54 21.06 0.37
NaF 64.8 2.73 32 1 2.13520.43 20.83 0.29
sapphire 497 4.0 102 1.5 13.020.02 20.03 0.01
quartz 107 2.2 60 0.72 5.4 20.06 20.11 0.04
05600
s
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-

crystalc axis is parallel to thez axis~provided thata' andai
are computed for the particular material!.

In whispering-gallery resonators, a dependency of the
dex of refraction on Lorentz violation would also have to
taken into account. Compared to the length change,
probably is a small correction, since in whispering-galle
resonators only a part of the electromagnetic field ene
travels within the material.

C. Covalent bonds

The materials quartz~used, for example, in@3,4#! and
sapphire~e.g.,@7,8,28#! are based on covalent bonds. The
bonds have a partial ionic character, i.e., the effect
charges of the atoms areiev ~as before,v denotes the num-
ber of valence charges!, where i,1 can be determined
roughly from the difference of the electronegativities of t
atoms~see, e.g.,@29#!. From Eq.~15!, we thus obtain length-
change coefficients in the percent range~Table I!. Since the
concept of partial ionic character is not an exact conce
these values have limited accuracy. They suggest, howe
that the relative length changedL/L of a cavity made from
quartz or sapphire is negligible compared to the relat
changedc/c of the speed of light.

Here, we give some arguments indicating that the len
change of a covalent crystal may be derived in analogy
ionic crystals. Covalent bonds are given by Coulomb int
actions between delocalized electrons, and between the
trons and the atom cores. For our calculation, the main
ference to ionic bonds is that the electrons are not localiz
instead, they are described by a symmetrizedn-electron state
cn(xW1 ,xW2 , . . .xWn). This state is formed from the single
electron states c i as the Slater determinan
(1/AN!) Det„c i(xW j )…. The covalent potentialVC5VEC
1VEE1VCC is then the sum of the core-core interactio
VCC

VCC5(
a

(
b

F (ab)~xWa2xWb! ~19!

@wherea and b enumerate the cores, andF (ab)(xWa2xWb) is
the Coulomb potential between the coresa andb at the lo-
cationsxWa andxWb], the electron-core interactions

VEC5(
i

(
a
E ~cn!* F ( ia)~xW i2xWa!cnd3x1 . . . d3xn

~20!

~where i numerates the electrons andF ( ia) is the Coulomb
potential between the corea and the electroni ) and the
electron-electron interactions

VEE5(
i

(
j
E ~cn!* F ( i j )~xW i2xW j !c

nd3x1 . . . d3xn

~21!

with F ( i j ), the Coulomb potential between the electroni
andj. Sincecn is symmetrized, these expressions contain
the terms usually found in the treatment of covalent syste

s

e

6-4
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like the hydrogen molecule. Although the electron wav
functions are spread over the whole crystal volume, th
centers of mass are localized at some point within a dista
ā from the cores, whereā is of atomic dimensions@30#,
smaller than the typical distance of atoms in a lattice. A
toy model, we thus assume centers of charge at pointsxW ā at
some distanceā from the locations of the nearest cores. Co
lomb forces between these centers of charge and the c
make up an important part of the covalent binding force. T
model reducesVEC and VEE to a sum over Coulomb inter
actions, i.e., we have

VEC;(
a

(
ā

F (aā)~xW ā2xWa! ~22!

VEE;(
ā

(
b̄

F (āb̄)~xW ā2xW b̄!. ~23!

The distanceā between the centers of mass of the deloc
ized electrons and the cores gives rise to an effective ch
of the cores. A calculation of the Lorentz-violating leng
change could now start from these sums and proceed a
ionic crystals. While this is a simplified model, it indicate
that the effect of a Lorentz violating Coulomb potential f
covalent bonds will be in analogy to ionic crystals. Thu
estimates for covalent crystals made above should at l
give the correct order of magnitude.

III. CONCLUSION AND SUMMARY

The contributions from Eq.~1! and Eq.~16! give

dn

n
52aiN̂~kDE! labN̂2S 1

2
1a'D @Ê* ~kDE! labÊ1~N̂3Ê* !

3~kDE! lab~N̂3Ê!#. ~24!

This has been simplified by noting that astrophysical te
lead to (kHB)52(kDE) with an accuracy many orders o
magnitude higher than attainable in cavity experiments@15#.
The second part of Eq.~24! is equivalent to the speed of ligh
change~1! times 112a' , a';0.01 . . . 0.4 for thematerials
in Table I. Additionally, the frequency is sensitive to a ter
proportional toai;20.03 . . .21. For both coefficients, the
small coefficients in the per-cent range are for covalent m
terials ~quartz and sapphire!; although they are based on
simplified model, they should be accurate enough to c
clude that the relative length change of a cavity made fr
quartz or sapphire is negligible against the change of
speed of light. Since present experiments use these mate
it is indeed possible to analyze them as if the cavity len
would not be affected by Lorentz violation. This holds f
cavities of any structure, including~microwave! cavities us-
ing radial or whispering-gallery modes. Their length chan
is given by Eq.~17!. However, future experiments usin
resonators out of ionic materials, as proposed in@26# will be
affected more strongly by the Lorentz violating Coulom
05600
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forces ~see Table I!; here, it is necessary to analyze the
using Eq.~24! rather than Eq.~1!.

We note that a cavity experiment is mainly sensitive to
parity-odd coefficients@15# of the standard model extension
since both the change of the phase velocity of light, Eq.~1!,
as well as the cavity length change Eq.~16! are dominated
by these coefficients. Parity-even coefficients that are
tightly constrained by astrophysical birefringence measu
ments@15# enter cavity experiments only suppressed byb lab,
the velocity of the laboratory with respect to the frame
which one defines the parameterskDE andkHB . For experi-
ments on Earth and using a sun-centered frame,b lab
;1024.

We have calculated the length change of electromagn
cavities due to a modified Coulomb potential arising nec
sarily from a Lorentz violating velocity of light, as it follows
from an extension of the standard model. As a first mod
we have assumed that the cavity is made of an ionic crys
We then extended the model to the covalent bonds of p
tical materials using the approximate concept of par
charges. Taking this into account for the interpretation
cavity tests of Lorentz invariance, we have shown that
length change effect adds to the hypothetical Loren
violating signal derived from a change of the speed of lig
and increases somewhat the sensitivity of experiments. H
ever, for materials used in present experiments, the incre
is at the percent level and thus negligible, as all the Lore
invariance tests are null tests. As a result, the classical in
pretation that neglects the length change is justified~this also
holds for microwave cavities and for the classic interfero
eter tests!. For future experiments using ionic crystals as
resonator material, however, the effects derived here
larger and must be taken into account.

As an outlook, we note that the properties of matter a
thus the dimensions of cavities also depend on Loren
violating terms in the fermionic equations of motion, i.e.,
modified Dirac equation@14,31#. Strong upper limits on
some of these terms have been placed by, e.g., compar
between atomic clocks@32#. In this work, we have focused
on the purely electromagnetic sector; the effect of the fer
onic terms in cavity experiments will be treated elsewhere
might be possible to access Lorentz violating fermion
terms in cavity experiments due to the length change t
cause. One would compare cavities made from different m
terials, in order to separate the electromagnetic from the
mionic terms.
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APPENDIX: THE REPULSIVE FORCE OF THE IONIC
BOND

Here, we calculate the modification of the repulsive for
due to Lorentz violation. It is caused by the modified wa
functions of the ions arising from the modified Coulom
6-5
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potential between the nucleus and the outer electrons.
repulsive force is a short-range force, so it is sufficient
consider next neighbors only.

Since in ionic crystals, the positive ions are usually sm
compared to the negative ones@29#, we assume as a mode
that the positive ions are pointlike. The repulsive potentia

FBM~RW !5constuc (0)~RW !u2 ~A1!

is then proportional to the probability density of the ou
electrons of the negative ions.c (0)(RW ) is the unperturbed
wave function at the locationRW of the positive ion without
Lorentz violation ~we assume that the ion-ion interactio
does not change appreciably the wave function, wh
should be satisfied to reasonable accuracy in ionic cryst!.
The wave functionc (0)(RW ) is proportional toe2zuRuW for large
uRuW with a constantz;1/a0 with the Bohr radiusa0; the
potentialFBM is thus a Born-Mayer potentialBe22zur uW (B as
well as z are phenomenological parameters that are de
mined by fitting the model to the measurements!, which is
frequently used as a model of the repulsive force@27#. In the
case of Lorentz violation,c(rW)5c (0)1c (1) with a correc-
tion c (1) that is proportional tokDE , which will be calcu-
lated for hydrogenlike atoms.

For this calculation, we denote the unperturbed state
hydrogenunlm& (0) with a principal quantum numbern, an-
gular momentuml and magnetic quantum numberm. The
corresponding wave functioncnlm

(0) (rW) can be factorized into
a radial functionRnl(r ) that depends solely on the radiu
coordinater, and spherical harmonicsYl

m(u,f). Only the
ground staten51 is not degenerate; for then52 states, the
use of the perturbation theory of nondegenerate states is
possible since, due to the nature of the matrix elements
culated below, the degeneraten52 states do not mix. Fo
n51,2, the stateunlm&5unlm& (0)1unlm& (1) in first order
perturbation theory is given by

unlm& (1)5 (
n8 l 8m8

8
^nlmuVun8l 8m8&

En2En8

un8l 8m8& ~A2!

with V given by Eq.~2!. Inserted into Eq.~A1!, this leads to
a correction to the Born-Mayer potential

dFBM~RW !

52 const (
n8 l 8m8

8
^nlmuVun8l 8m8&

En2En8

ucnlm
(0) ~RW !cn8 l 8m8

(0)
~RW !u.

~A3!

We apply coordinates in whichkDE is diagonal with the
diagonal elementskxx ,kyy , andkzz. Applying polar coordi-
nates with theu50 axis parallel to thez axis, the Lorentz
violating correction to the Coulomb potentialV can be writ-
ten as
05600
he
o

ll

r

h
s

r-

of

till
l-

V5
e2

8pr
@~kxxsin2f1kyycos2f!sin2u1kzzcos2u#.

~A4!

Since in first order perturbation theory, the change of
wave functionunlm& (1) for a sum of perturbations( iVi is a
linear combination of the changes for each single pertur
tion Vi , it is sufficient to consider the term proportional
kzz. In configuration space,

^nlmur 21cos2uun8l 8m8&

5E Rnl~r !
1

r
Rn8 l 8~r !r 2dr

3E Yl
m~u,f!cos2uYl 8

m8~u,f!sinududf ~A5!

with the normalized radial functions

Rnl5
2

n2
Az3~n2 l 21!!

~n11!! S 2
zr

n D l

e2zr /nLn2 l 21
2l 11 S 2

zr

n D
~A6!

whereLp
k(z) are associated Laguerre polynomials as defin

in @33#. For the treatment of hydrogenlike atoms,z5Z/a0 is
given by the core charge numberZ. Here, we takez51/a0.
Using

Yl
m~u,f!5A2l 11

4p

~ l 2m!!

~ l 1m!!
Pl

m~cosu!eimf, ~A7!

FIG. 2. Ion-ion potentials forn51,l 50,m50 ~for other quan-
tum numbers, a similar situation is found!. The x axis givesR in
units of a0; the y axis gives the potential in arbitrary units. Soli

line: 300dFBM(RW ), i.e. the correction to the Born-Mayer potentia

assuming (kDE)zz51, enlarged by a factor of 300. Dots:V(RW ), i.e.
the correction to the Coulomb interaction between two ions
comparison. Dashes: unperturbed ion-ion potentialFBM

21/(4puRu). The constant const515 has been inserted as to obta
a minimum of the total unperturbed ion-ion potential aroundR55,
as commonly found in ionic crystals~e.g.,R55.3a0 for NaCl!. The
correction to the repulsive potential is negligible compared to
correction of the Coulomb potential.
6-6
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@where Pl
m(x) are the associated Legendre functions#, it is

easy to verify that thef integration givespdm,m8 . For theu
integration, we substitutex5cosu. Applying the relation
@33#

x~2l 11!Pl
m~x!5~ l 2m11!Pl 11

m ~x!1~ l 1m!Pl 21
m ~x!

~A8!
o

s
rn

ca

b

05600
two times and using the normalization

E
21

1

Pl
m~x!Pl 8

m
~x!dx5

2

2l 11

~ l 1m!!

~ l 2m!!
d l l 8 , ~A9!

it can be shown that
E
21

1

Pl
m~x!Pl 8

m
~x!x2dx55

4l 2211~ l 1m!~4l 214m23!

~2l 21!~2l 11!2~2l 13!

2~ l 1m!!

~ l 2m!!
, l 85 l

2

~2l 821!~2l 811!~2l 813!

~ l 1m1161!!

~ l 2m2161!!
, l 85 l 62

~A10!
po-

r
n-
l-
-

is is
ts

tes
g-
and zero otherwise. That means, the matrix element is n
zero only forl 5 l 8 or l 5 l 862. However, forl 5 l 8, the ra-
dial integral is nonzero only forn5n8; that term is not
needed for this calculation. Combining these results lead
the more simple expression for the correction of the Bo
Mayer potential

dFBM~RW !

52 const(
n853

`
^nlmuVun8l 12m&

En2En8

ucnlm
(0) ~RW !cn8 l 12m

(0)
~RW !u

~A11!

~for n51,2, 0< l ,n, and umu< l ). Formally, the series
should be summed up to infinity. However, the terms de
rapidly with increasingn8. The correction of the Born-
Mayer potential due to Lorentz violation can thus be o
n-

to
-

y

-

tained and compared to the correction of the Coulomb

tential due to the same Lorentz violation~Fig. 2!. Here,RW

was assumed parallel to thez direction. If RW is not perpen-
dicular to thez direction, the correction to the Born-Maye
potential is smaller. From this calculation, it can be co
cluded that the Lorentz-violating modification of the repu
sive potentialdFBM is negligible compared to the modifica
tion of the Coulomb potential, at least for then51 and 2
states that have been considered in this simple model. Th
due to the small magnitude of the matrix elemen
^nlmuVun8l 8m8&, which are also small for highn and n8
~they even decrease with increasingn andn8). So, although
for n>3, the perturbation theory for degenerate sta
should be applied, this will not dramatically change the ma
nitude ofdFBM and thus our conclusion thatdFBM is neg-
ligible remains valid.
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