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Quantum dynamics of phase transitions in broken symmetrylf4 field theory
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We perform a detailed numerical investigation of the dynamics of a single component ‘‘explicitly broken
symmetry’’lf4 field theory in 111 dimensions, using a Schwinger-Dyson equation truncation scheme based
on ignoring vertex corrections. In an earlier paper, we called this the bare vertex approximation~BVA !. We
assume here that the initial state is described by a Gaussian density matrix peaked around some nonzero value
of ^f(0)&, and characterized by a single particle Bose-Einstein distribution function at a given temperature.
We compute the evolution of the system using three different approximations: the Hartree approximation, the
BVA, and a related two-particle irreducible~2PI! 1/N expansion, as a function of coupling strength and initial
temperature. In the Hartree approximation, the static phase diagram shows that there is a first order phase
transition for this system. As we change the initial starting temperature of the system, we find that the BVA
relaxes to a new final temperature and exhibits behavior consistent with a second order phase transition. We
find that the average fields equilibrate for arbitrary initial conditions in the BVA, unlike the behavior exhibited
by the Hartree approximation, and we illustrate how^f(t)& and^x(t)& depend on the initial temperature and
on the coupling constant. The Fourier transform of the two-point functions at late times can be fitted by a
Bose-Einstein distribution function whose temperature is independent of momentum. We interpret this as
evidence for thermalization.

DOI: 10.1103/PhysRevD.67.056003 PACS number~s!: 11.15.Pg, 03.65.2w, 11.30.Qc, 25.75.2q
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I. INTRODUCTION

Recently there has been much effort in finding appro
mation schemes to study the dynamics of phase transit
that go beyond leading order in the large-N mean field theory
approach. This is an important endeavor if one wants a
principles understanding of the dynamics of quantum ph
transitions. In a previous set of papers, we studied in qu
tum mechanics@1#, as well as 111 dimensional field theory
@2#, the validity of a 1/N motivated resummation schem
which we called the bare vertex approximation~BVA !.

The long-term goal of this work is finding approximatio
schemes which are accurate at the small values ofN relevant
to the case of realistic quantum field theories:N54 for the
linear sigma model, andN52 for the Walecka model. In
order to maximize the possible differences between appr
mation schemes we choose to study the O(N) model forN
51. Based on our previous studies of the quantum mech
cal version of this model@1#, we expect that by increasingN
the differences will diminish. This is due to the fact that t
Schwinger-Dyson~SD! formalism is related, but not identi
cal, to approximations based on the large-N expansion.

This paper presents the first quantum-mechanical dyna
cal calculation in 111 dimensions, using the BVA, for th
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case when̂ f(0)&Þ0. This is usually calledexplicitly bro-
ken symmetry—the resulting SD equations in this case a
much more elaborate than when^f(0)&50.

In 111 dimensions, it is known that there is no pha
transition in this model except at zero temperature@3#. On
the other hand, in two dimensional systems hav
Berezinski-Kosterlitz-Thouless type transitions@4–6#, the
large-N expansion can give a qualitatively good understa
ing of the correlation functions, even when it gives t
wrong phase transition behavior@7#. As the dimensions in-
crease, the mean field critical behavior becomes exact in
dimensions and thus we expect that the approximation
sented here should improve as we increase the dimensio
ity. Thus we should think of the model used here as a ‘‘to
model for demonstrating some of the features expected t
true in 311 dimensions such as the restoration of symme
breakdown at high temperatures and equilibration of corre
tion functions. The model we are ultimately interested in
the linear sigma model in 311 dimensions for the case o
broken symmetry at finite temperature. This model we st
ied earlier using a large-N approximation@8–10#. Since the
BVA contains scattering contributions, it cures many of t
problems associated with mean field methods. Here we
able to follow the evolution of the system through a pha
transition and study the thermalization of the system. Si
the Fourier transform of the two-point functions at late tim
can be fitted by a Bose-Einstein distribution function who
temperature is independent of momentum, we interpret
as evidence for thermalization.
©2003 The American Physical Society03-1
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A parallel set of investigations by Bergeset al. @11–15#,
have looked at a related approximation based on the t
particle irreducible expansion~which they call 2PI21/N).
These investigators have pointed out that, when there is
ken symmetry, the BVA contains terms not included in t
1/N resummation at next to leading order. In this paper,
present the firstquantumcalculations which compare th
BVA with the 2PI21/N expansion for the broken symmetr
case. Recently we were able to show that for aclassicalfinite
temperaturelf4 field theory in 111 dimensions, the BVA
gave a better description of the time evolution of^f(t)& than
the 2PI21/N expansion and provided reasonable agreem
with exact Monte Carlo simulations@2,16#. Both methods
suffer from deficiencies when describing the equilibrati
time of the two-point function̂ f2(t)& with the 2PI21/N
expansion being qualitatively better at larger values of
initial symmetry breaking.

In this paper we look at quantum evolution in 111 dimen-
sions, starting with a Gaussian density matrix, and study h
the evolution of̂ f(t)& depends on the initial conditions an
the value of the coupling constant. In the classical dom
the coupling constant dependence can be scaled out, whi
not possible in the quantum case we consider here. Since
have not determined the effective potential in the BVA a
proximation, we rely on the Hartree approximation effecti
potential to guide our study. The Hartree potential, howev
indicates that the system should undergo a first order ph
transition. In addition, in the Hartree approximation, t
fields never equilibrate. We find that the BVA cures the
serious problems. In this paper, we show evolution of
system as a function of the initial ‘‘temperature’’ parame
and the coupling constant, and since in the BVA the fie
equilibrate, we can follow the system through what appe
to be a second order phase transition. We also compare
results with those of the 2PI21/N expansion in the quantum
domain. The 2PI21/N expansion does not exhibit a pha
transition for non-zero temperatures. Thus at low initial te
perature, where the BVA relaxes to a non-zero value
^f(t)&, the two approaches give quite different results.

We derive the BVA equations for the gener
N-componentl@f i

2(x)#2 field theory in Secs. II and III. We
then specialize to the caseN51 and in Sec. IV we derive the
phase diagram in the Hartree approximation. In Sec. V,
discuss our initial conditions. Numerical results are shown
Sec. VI, and conclusions discussed in Sec. VII.

II. THE CLASSICAL ACTION AND TIME EVOLUTION
IN THE BVA

The classical action forlf4 with N fields (i 51, . . . ,N)
is

S@f#5E d2xH 1

2
@]mf i~x!]mf i~x!1m2f i

2~x!#

2
l

8N
@f i

2~x!#22
Nm4

2l J . ~1!
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For the purposes of our resummation scheme which is m
vated by 1/N considerations it is useful to consider the alte
native action

Scl@f i ,x#5E d2xH 1

2
@]mf i~x!]mf i~x!2x~x!f i

2~x!#

1
N

l Fx2~x!

2
1m2x~x!G J , ~2!

which leads to the Heisenberg equations of motion

@h1x~x!#f i~x!50 ~3!

and the constraint~‘‘gap’’ ! equation forx(x):

x~x!52m21
l

2N
f i~x!f i~x!. ~4!

Throughout this paper, we use the Einstein summation c
vention for repeated indices.

The BVA truncation scheme of the Schwinger-Dys
equations is most easily obtained from the 2PI effective
tion @17–19#. Other approaches leading to these equati
are found in @1,15#. Using the extended fields notation
fa(x)5@x(x),f1(x),f2(x), . . . ,fN(x)#, the effective ac-
tion for the evolution can be written as

G@fa ,G#5Scl@fa#1
i

2
Tr ln@G21#1

i

2
Tr@G0

21G#1G2@G#,

~5!

whereG2@G# is the generating functional of the 2-PI graph
and the classical action in Minkowski space is

Scl@fa#5E d2xH 2
1

2
f i~x!@h1x~x!#f i~x!1

x2~x!

2g

1
m2

g
x~x!J . ~6!

Here and in what follows we letg5l/N.
The integrals and delta functionsdC(x,x8) are defined on

the closed time path contour, which incorporates the ini
value boundary condition@20–23#. The approximations we
are studying include only the two-loop contributions toG2.

The Green functionG0ab
21 @f#(x,x8) is defined as follows:

G0ab
21 @f#~x,x8!52

d2Scl

dfa~x! dfb~x8!

5S D0
21~x,x8! K̄0 j

21~x,x8!

K0i
21~x,x8! G0i j

21~x,x8!
D ,

~7!

where

D0
21~x,x8!52gdC ~x,x8!,

G0i j
21@x#~x,x8!5@h1x~x!#d i j dC~x,x8!,
3-2
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QUANTUM DYNAMICS OF PHASE TRANSITIONS IN . . . PHYSICAL REVIEW D67, 056003 ~2003!
K0i
21@f#~x,x8!5K̄0i

21@f#~x,x8!5f i~x!dC~x,x8!.

The exact Green functionGab@ j #(x,x8) is defined by

Gab@ j #~x,x8!5S D~x,x8! K j~x,x8!

K̄ i~x,x8! Gi j ~x,x8!
D .

The exact equations following from the effective action E
~5!, are

@h1x~x!#f i~x!1Ki~x,x!/ i 50, ~8!

x~x!52m21
g

2 (
i

@f i
2~x!1Gii ~x,x!/ i #,

and

Gab
21~x,x8!5G0ab

21 ~x,x8!1Sab~x,x8!, ~9!

where

Sab~x,x8!5
2

i

dG2@G#

dGab~x,x8!

5S P~x,x8! V j~x,x8!

V̄ i~x,x8! S i j ~x,x8!D .

~10!

In the BVA, we keep inG2@G# only the graphs shown in Fig
1, which is explicitly

G2@G#52
1

4E E dxdy@Gi j ~x,y!Gji ~y,x!D~x,y!

12K̄ i~x,y!K j~x,y!Gi j ~x,y!#. ~11!

The self-energy, given in Eq.~10!, then reduces to

P~x,x8!5
i

2
Gmn~x,x8!Gmn~x,x8!, ~12!

V i~x,x8!5 iK̄ m~x,x8!Gmi~x,x8!,

V̄ i~x,x8!5 iGim~x,x8!Km~x,x8!,

S i j ~x,x8!5 i @Gi j ~x,x8!D~x,x8!

1K̄ i~x,x8!K j~x,x8!#.
As discussed in detail in Ref.@15#, the second graph in

Fig. 1 is proportional to 1/N2 and is ignored in the 2PI21/N
expansion. Our recent simulations in the classical dom

FIG. 1. Graphs included in the 2PI effective actionG2.
05600
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showed that the BVA gave a more accurate determination
^f(t)&, and we will concentrate in this paper on the BV
except to point out with explicit results that in the quantu
domain the differences between the BVA and the 2PI21/N
expansion grow with increasing coupling constantg ~for the
case N51 studied here! and that, unlike the BVA, the
2PI21/N expansion does not track the average of the H
tree result.

III. UPDATE EQUATIONS FOR THE GREEN FUNCTIONS

We notice from the definitions of the matrices represe
ing Gab(x,x8) andGab

21(x,x8), that the matrix elements ar
not inverses of one another, but instead satisfy schematic

D21D1K̄k
21K̄k5dC ,

Ki
21D1Gik

21K̄k50,

D21K j1K̄k
21Gk j50,

Ki
21K j1Gik

21Gk j5d i j dC . ~13!

Inverting Eq.~9!, we find

D~x,x8!52gdC~x,x8!1gE
C
dx1P8~x,x1!D~x1 ,x8!,

~14!

Gi j ~x,x8!5G0i j ~x,x8!d i j 2E
C
dx1EC

dx2

3G0ik~x,x1!Skl8 ~x1 ,x2!Gl j ~x2 ,x8!, ~15!

Ki~x,x8!52E
C
dx1EC

dx2@D0
211P#21~x,x1!

3@K̄0k
211Vk#~x1 ,x2!Gki~x2 ,x8!, ~16!

with

P8~x,x8!5P~x,x8!2E
C
dx1EC

dx2@K̄0k
211Vk#~x,x1!

3@G0kl
211Skl#

21~x1 ,x2!@K0l
211V̄ l #~x2 ,x8!,

~17!

S ik8 ~x,x8!5S ik~x,x8!2E
C
dx1EC

dx2@K0i
211V̄ i #~x,x1!

3@D0
211P#21~x1 ,x2!@K̄0k

211Vk#~x2 ,x8!.

~18!

These update equations must be solved in conjunction w
the one-point functions, Eqs.~8!.

For a practical implementation of the above approach
need to solve forD2(x,x8) andG2,i j (x,x8), the inverses of
@D0

211P#(x,x8) and @Gi j
211S i j #(x,x8), respectively. We

have
3-3
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D2~x,x8!52gdC~x,x8!1gE
C
dx1P~x,x1!D2~x1 ,x8!, ~19!

2,i j ~x,x8!5G0i j ~x,x8!2E
C
dx1

3E
C
dx2G0ik~x,x1!Skl~x1 ,x2!G2,l j ~x2 ,x8!.

~20!

We also perform the following substitutions:

D~x,x8!52gdC~x,x8!1D̄~x,x8!, ~21!
05600
D2~x,x8!52gdC~x,x8!1D̄2~x,x8!,

Ki~x,x8!5gfk~x!Gki~x,x8!1K̄ i~x,x8!.

Thus we obtain the equations of motion

$@h1x~x!#d ik1gGki~x,x!/ i %fk~x!1K̄ i~x,x!/ i 50,

x~x!52m21
g

2
f i

2~x!1
g

2
@Gii ~x,x!/ i # ~22!

and the update equations for the Green functions
D̄~x,x8!52g2P8~x,x1!1gE
C
dx1P8~x,x1!D̄~x1 ,x8!, ~23!

D̄2~x,x8!52g2P~x,x1!1gE
C
dx1P~x,x1!D̄2~x1 ,x8!, ~24!

Gi j ~x,x8!5G0i j ~x,x8!2gE
C
dx1G0ik~x,x1!@fk~x1!f l~x1!1Gkl~x1 ,x1!/ i #Gl j ~x1 ,x8!

2E
C
dx1EC

dx2G0ik~x,x1!S̄kl8 ~x1 ,x2!Gl j ~x2 ,x8!, ~25!

G2i j ~x,x8!5G0i j ~x,x8!2gE
C
dx1G0ik~x,x1!@G2kl~x1 ,x1!/ i #G2l j ~x1 ,x8!

2E
C
dx1EC

dx2G0ik~x,x1!S̄kl~x1 ,x2!Gl j ~x2 ,x8!, ~26!

K̄ i~x,x8!52E
C
dx1D̄2~x,x1!fk~x1!Gki~x1 ,x8!1gE

C
dx1Vk~x,x1!Gki~x1 ,x8!

2E
C
dx1EC

dx2D̄2~x,x1!Vk~x1 ,x2!Gki~x2 ,x8!, ~27!

P8~x,x8!5P~x,x8!2fk~x!G2,kl~x,x8!f l~x8!2E
C
dx1EC

dx2Vk~x,x1!G2,kl~x1 ,x2!V̄ l~x2 ,x8!

2E
C
dx1fk~x!G2,kl~x,x1!V̄ l~x1 ,x8!2E

C
dx1Vk~x,x1!G2,kl~x1 ,x8!f l~x8!, ~28!

S̄ ik~x,x8!5 i @Gik~x,x8!D̄~x,x8!1K̄ i~x,x8!Kk~x,x8!#, ~29!

S̄ ik8 ~x,x8!5S̄ ik~x,x8!2f i~x!D̄2~x,x8!fk~x8!2E
C
dx1EC

dx2V̄ i~x,x1!D̄2~x1 ,x2!Vk~x2 ,x8!

2E
C
dx1f i~x!D̄2~x,x1!Vk~x1 ,x8!2E

C
dx1V̄ i~x,x1!D̄2~x1 ,x8!fk~x8!1g@f i~x!Vk~x,x8!

1V̄ i~x,x8!fk~x8!#1gE
C
dx1V̄ i~x,x1!Vk~x1 ,x8!. ~30!
3-4
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For computational purposes, it is suitable to make one m
transformation of thef i , Gi j andG2 i j equations. We write
the equivalent integro-differential equation forGi j as

$@h1x~x!#d ik1g@f i~x!fk~x!1Gik~x,x!/ i #%Gk j~x,x8!

5dC~x,x8!d i j 2E
C
dx1S̄ ik~x,x2!Gk j~x2 ,x8!. ~31!

We specialize now to the caseN51. It is convenient then to
introduce the following equations:

@h1x1~x! # f~x!1K̄~x,x!/ i 50, ~32!

x1~x!52m21
g

2
f2~x!1

3g

2
G~x,x!/ i , ~33!

together with redefinitions forG0(x,x8) to work with the
equations forG(x,x8) andG2(x,x8), respectively. We have

@h1x2~x! # Ḡ0~x,x8!5dC~x,x8!, ~34!

@h1x1~x!#G% 0~x,x8!5dC~x,x8!, ~35!

with

x2~x!52m21
3g

2
@f2~x!1G~x,x!/ i #. ~36!

Finally, the modified equations are given by

G~x,x8!5Ḡ0~x,x8!

2E
C
dx1EC

dx2Ḡ0~x,x1!S̄8~x1 ,x2!G~x2 ,x8!,

~37!

G2~x,x8!5G% 0~x,x8!

2E
C
dx1EC

dx2G% 0~x,x1!S̄~x1 ,x2!G2~x2 ,x8!.

~38!

IV. HARTREE PHASE DIAGRAM

It would be useful to have available the effective poten
for the BVA approximation from Eq.~5! to use as a guide fo
starting out the BVA solutions. However, solving the se
consistent equations of the BVA and constructing the ther
effective potential is a formidable task, and has only be
recently considered for the simpler loop approximation
lf4 for N51 ~see Refs.@24,25#!. Therefore in this section
we find the effective potential for the simpler Hartree a
proximation for a single field, and use this as a guide
choosing initial conditions.

The effective action in the Hartree approximation can
written in the form
05600
re

l

al
n

-
r

e

S@f,x#5E d2xH 2
1

2
f@h1x#f1

l

4
f41

1

3l S x2

2
1m2x D

1
i

2
Tr@ ln~h1x!#J . ~39!

This action gives the Hartree equations of motion:

@h1x~x!2lf2~x!#f~x!50, ~40!

x~x!52m21
3l

2
f2~x!1

3l

2
Tr@G0 / i #,

with G0
21(x,x8)5@h1x(x)#d(x,x8).

The effective potential for this action is given by

VH@f,x#5Vcl@f,x#1E
0

1` dk

2p

3H vk1
2

b
ln@12exp~2bvk!#J ,

Vcl@f,x#5
1

2
xf22

1

3lS x2

2
1m2x D2

l

4
f4,

wherevk5Ak21x. We note that the requirement

]VH@f#

]x
5

f2

2
2

1

3l
~x1m2!1E

0

1` dk

2p

2nk11

2vk
50

leads to the gap equation

x52m21
3l

2
f21

3l

2 E
0

1` dk

2p

2nk11

vk

wherenk51/@ebvk21#. The above equations are infinite, s
to renormalize them we introduce a cutoff atk56L, and
introduce a quantitym2.0, defined by

2m252m21
3l

2 E
0

L dk

2p

1

Ak21m2

'2m21
3l

4p
ln~L/m!. ~41!

Recall thatm2.0. Subtracting Eq.~41! from the gap equa-
tion gives

x52m21
3l

2
f21

3l

2 E
0

L dk

2p S 2nk11

Ak21x
2

1

Ak21m2 D
'2m21

3l

2 Ff21
1

4p
ln~m2/x!1E

0

Ldk

p

nk

vk
G ,

~42!

which is now finite. The Hartree potential is renormalized
T50 by first renormalizing the partial derivative:
3-5
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]VH@f,x#

]x
5

f2

2
2

1

3l
~x1m2!

1E
0

L dk

2pS 1

2Ak21x
2

1

2Ak21m2D
'

f2

2
2

1

3l
~x1m2!1

1

8p
ln~m2/x!,

where we have used Eq.~41! to make the equation finite
Partially integrating, we obtain the renormalized Hartree
fective potential:

VH@f,x#5
1

2
xf22

l

4
f42

1

3lS x2

2
1m2x D

1
1

8p
@x2x ln~m2/x!#

1E
0

`dk

p

1

b
ln@12exp~2bvk!#, ~43!

where we have added back in the finite temperatu
dependent part. This equation is to be solved withx satisfy-
ing the renormalized gap equation~42!. In practice, it is use-
ful to solve both of these equations parametrically as
function of x.

The physical~renormalized! mass is given by the secon
derivative of the effective potential, evaluated at the mi
mum. The minimum occurs at

F dVH@f,x#

df G
f5v

5v~x2l v2!50.

This implies that for the symmetry-breaking solution,x
5lv2. Thus, from the gap equation~42!, the position of the
minimum and the mass parameterm2 are related by

m25
l

2
v21

3l

2 F 1

4p
lnS m2

lv2D 1E
0

Ldk

p

nk~lv2!

vk~lv2!
G .

~44!

The renormalized massmR
2 is defined by:

mR
25Fd2VH@f,x#

df2 G
f5v

5Fx23lf21f
]x

]fG
f5v

.

From the gap equation~42!, we find

F ]x

]fG
f5v

5
3lv

113@11 f ~lv2!#/~8pv2!
,

where f (lv2) is the finite integral

f ~x!5xE
0

L

dk
2nk~x!

vk
3~x!

@11bvk~x!nk~x!ebvk(x)#.
05600
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Thus the renormalized mass can be computed from

mR
25l

v223@11 f ~lv2!#/~4p!

113@11 f ~lv2!#/~8pv2!
.

The critical temperatureTcr is defined by the simultaneou
solutions of

v25
3

4p
@11 f ~lv2!#

and Eq.~44!. At T50, we notice that unlessv2.3/(4p) one
cannot have a symmetry-breaking solution in this appro
mation. The effective potential as a function of temperaturT
can be computed numerically. In Fig. 2 we show the eff
tive potential dependence on the coupling constant at a fi
temperature,T50.1. In Fig. 3 we fix the coupling constant a
l57.3, and show the dependence of the effective poten
on the temperature. This particular value ofl was used in
our study of the dynamics of disoriented chiral condensa
in 311 dimensions in the leading order in large-N approxi-
mation @8,10#. Here, the phase transition occurs withTcr
'0.878. We see that the phase transition is first order w
the vacuum valuev'0.635. The value ofx at this value of
the field islv2'2.94.

FIG. 2. We setT51, and plot the Hartree effective potential a
a function of the coupling constant.

FIG. 3. We setl57.3, and plot the Hartree effective potenti
as a function of temperature.
3-6
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V. INITIAL CONDITIONS

For the purpose of this study, we will assume that initia
~at t50) the system is described by a Gaussian density
trix. Thus initially the field equation and two-point equatio
are those of the Hartree approximation. The field equa
obeys Eq.~40!, with G0(x,x8) satisfying

@h1x~ t !#G0~x,x8!5dC~x,x8!. ~45!

We can solve this Green function equation by introducin
set of quantum fieldsf0(x), satisfying canonical commuta
tion relations@f0(x),ḟ0(x8)#5 id(x2x8), and obeying the
homogeneous differential equation

@h1x~ t ! #f0~x!50. ~46!

In terms of these fields we have

G0~x,x8!5 i ^TC$f0~x!f0~x8!%&

5G.~x,x8!QC~ t,t8!

1G,~x,x8!QC~ t8,t !

5E
2`

1` dk

2p
G̃0~k;t,t8!eik(x2x8).

~47!

We next expand these operators in Fourier mode functio

f0~x!5E
2`

1` dk

2p
@a0kf k~ t !eikx1a0k

† f k* ~ t !e2 ikx#, ~48!

where the mode functionsf k(t) satisfy

@] t
21vk

2~ t !# f k~ t !50,vk~ t !5Ak21x~ t !, ~49!

and the Wronskian conditionf k* (t) ḟ k(t)2 ḟ k* (t) f k(t)52 i .
The operatorsa0 k and a0 k

† satisfy the usual commutatio
relations@ a0 k ,a0 k8

†
#52p d(k2k8). We will take our ini-

tial density matrix such that

^a0 k
† a0 k8&5nk2pd~k2k8!, ^a0ka0k8&50,

^a0ka0k8
† &5~nk11!2pd~k2k8!, ^a0k

† a0k8
† &50, ~50!

wherenk51/$exp@b0vk(0)#21%. HereT051/b0 is just a pa-
rameter for the initial Gaussian density distribution, and
not thetrue temperature of the interacting system. In fact, t
system will not be in equilibrium att50, but will arrive at a
final temperatureT after it has come to equilibrium.

Solutions for the mode functionsf k(t) are of the form

f k~ t !5
e2 i *0

t Vk(t8)dt8

A2Vk~ t !
, ~51!

whereVk(t) satisfies the non-linear differential equation
05600
a-

n

a

:

s

1

2
S V̈k~ t !

Vk~ t !
D 2

3

4
S V̇k~ t !

Vk~ t !
D 2

1Vk
2~ t !5vk

2~ t !. ~52!

The first order WKB solution forf k(t) is then given by
Vk(t)5vk(t). We take these solutions for our initial cond
tions, so that att50,

Vk~0!5vk~0!5Ak21x~0!,

V̇k~0!5v̇k~0!5ẋ~0!/2vk~0!. ~53!

This means that

f k~0!51/A2vk~0!,

ḟ k~0!52F v̇k~0!

2vk~0!
1 ivk~0!G f k~0!.

~54!

We still need to find the value ofx0(0). This is given by the
Hartree self-consistent solutions of

x~0!52m21
3l

2
f2~0!1

3l

2 E
0

1` dk

2p

2nk11

Ak21x~0!

52m21
3l

2
f2~0!1

3l

2 E
0

L dk

2pF 2nk11

Ak21x~0!

2
1

Ak21m2G , ~55!

where we have used Eq.~41!.
So, for our case, Fourier transforms of the Green fu

tions att50 are given by

G̃0.~k;t,t8!/ i 5 f k~ t ! f k* ~ t8!~nk11!1 f k* ~ t ! f k~ t8!nk ,

G̃0,~k;t,t8!/ i 5 f k* ~ t ! f k~ t8!~nk11!1 f k~ t ! f k* ~ t8!nk .
~56!

These results, together with Eq.~54!, determine the values o
G̃0 .(k;t,t8), and all its derivatives, att5t850.

VI. NUMERICAL RESULTS

We choose initial conditions for the two-point function
as described in the last section. In all our simulations we
the renormalized mass parameterm, as defined in Eq.~41!, to
unity. The calculations are carried out entirely in momentu
space, and the results are free of artifacts related to the fi
volume of a lattice in coordinate space.~For a discussion of
differences between the continuum and the periodic lat
approach, respectively, we refer the reader to our previ
paper, Ref.@28#.! We have verified numerically that our re
sults are independent of the cutoff parameterL for values of
L between 3p and 4p.

The numerical procedure for solving the BVA equations
described in detail in Refs.@26,27#. We summarize here
3-7
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COOPER, DAWSON, AND MIHAILA PHYSICAL REVIEW D67, 056003 ~2003!
some of the highlights: The unknown functions are tim
evolved using a multi-step approach. The numerical met
relies on a series expansion of the unknown functions
terms of Chebyshev polynomials, on a nonuniform grid. T
resulting algorithm possess spectral convergence, and al
a drastic reduction of the number of grid points, from tens
thousands of grid points in prior leading-order lattice calc
lations@37#, to only 32 and 128 points, for the time step a
the momentum domain discretization, respectively. The h
dling of the momentum variable requires a dual-grid a
proach, where the convolution integrals for the self-ene
calculations are done using standard fast-Fourier transf
algorithms on a uniform 1024 point grid. We employ a cub
spline interpolation technique to perform the necessary tra
formation between the two grids. The results presented h
are converged with respect to the choice of grid, and
energy is numerically conserved to better than five sign
cant figures.

We start by choosing an initial temperatureT050.1 so as
to bring out the quantum nature of the dynamics. The Har
effective potential for this value ofT0 is a slowly varying
function of the coupling constant, with the minimum valu
of f at largel being between 0.6 and 1.0~see Figs. 2 and 3!.
Thus we want to choose small initial values off(0)50.4
and takep(0)5ḟ(0)50 so that we start below the height o
the barrier. Then we should seef moving to the opposite
side of the well and then settling down at the potential mi
mum position. We show the results of this calculation
Figs. 4 and 5 for several values of the coupling constant.
notice that the position of the BVA minimum is located b
tween 0.55 and 0.60 instead of the Hartree average valu
0.8. We also see that the final value ofx does seem to be
linear in l as in the Hartree result. However, the ra
x/(lv2) is one for the Hartree approximation, but is abo
2.4, with a less than 1% error, for the BVA simulations.

Next we set l57.3, which is the phenomenologica
choice for the the linear sigma model, withf(0)50.4 and
p(0)5ḟ(0)50, and study the dependence of^f(t)& and
^x(t)& as a function of the initial temperatureT0. The results
are shown in Figs. 6 and 7. We note immediately from Fig
that for small values ofT0 , ^f(t)& equilibrates to non-zero

FIG. 4. Coupling constant dependence: We setT050.1, and plot
^f(t)& for various values ofl.
05600
d
n
e
ws
f
-

n-
-
y
m
-
s-
re
e
-

e

-

e

of

t

6

values, but for large values ofT0 , ^f(t)& equilibrates to
zero, as expected from the Hartree effective potential. Fig
7 shows thatx(t) equilibrates to different values which de
pend onT0.

Since we have chosen the casep(0)5ḟ(0)50, with
f(0) just under the barrier height, the transition to t
equilibration point is very slow, i.e. equilibration is reache
without too many exciting features. It is interesting to gi
the system a little initial kinetic energy so that structure
introduced in the dynamics but the equilibration value
^f(t)& remains the same. We illustrate this in Fig. 8.

The plots of the BVA order parameter in Fig. 6 indica
that for very low values ofT0, the order parameter̂f(t)&
approaches a non-zero constant. For very large values ofT0,
the order parameter goes to zero, as expected. Somew
betweenT051.0 andT052.5, there seems to be a pha
transition. In order to study this in more detail, we ha
carried out BVA simulations for temperatures betweenT0
51.5 andT052.5 at 0.1 intervals. The results for the ord
parameter and its first derivative are shown in Figs. 9 and

The equilibration points for the order parameter in Fig
are at almost equally spaced intervals forT0,2.4, and there
is no evidence of a jump in the value of the order parame
from a finite value to zero, as would be required by a fi

FIG. 5. Coupling constant dependence: We setT050.1, and plot
^x(t)& for various values ofl.

FIG. 6. Temperature dependence: We setl57.3, and plot
^f(t)& for various values ofT0.
3-8
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QUANTUM DYNAMICS OF PHASE TRANSITIONS IN . . . PHYSICAL REVIEW D67, 056003 ~2003!
order phase transition. The plot of^ḟ(t)&, shown in Fig. 10,
reveals the complex nature of the dynamics:^ḟ(t)& oscil-
lates and gradually approaches zero, when equilibration
curs. Oscillations around a zero value of^ḟ(t)& suggest trap-
ping in a potential well, while the wiggles at negative valu
of ^ḟ(t)& may be due to changes in the position of the lo
minimum of the effective potential as a function of tempe
ture and time. Since the chosen initial conditions do not r
resent an equilibrium state for the interacting system,
dynamics toward a final state of equilibrium is accompan
by changes in the effective temperature. In other words,
effective potential is not such a good guide to the dynam
In analyzing these figures, it becomes apparent that~a! there
is no abrupt change that would support the first-order lab
ing of the phase transition, and~b! there is a qualitative
change happening nearT052.4, where thê ḟ(t)& plot be-
gins crossing the lower temperature curves, and the lo
oscillations in ^ḟ(t)& completely disappear. Therefore, w
conclude that the phase transition, as calculated using
BVA, is probably not first order.

It is known that this model in two dimensions has
phase transition at finite temperature@29#. At zero tempera-
ture, there is a second order phase transition@30–32#. Ex-

FIG. 7. Temperature dependence: We setl57.3, and plot
^x(t)& for various values ofT0.

FIG. 8. We are increasing the kinetic energy: We setl57.3,
T050.1, and plot̂ f(t)&.
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plicit Monte Carlo lattice calculations@33,34# have shown
that indeedlf4 theory in two dimensions and at zero tem
perature is nontrivial at least when the continuum limit
reached from the broken symmetry phase, and that the s
metry is fully restored at high temperature. It is known ho
ever that approximate lattice calculations~such as the
variational-cumulant expansion method@35,36#!, which are
designed to study scalarf4 theory in 311 dimensions on the
lattice, may erroneously indicate the presence of a seco
order phase transition at finite temperature in 111 dimen-
sions. This is probably due to the fact that the expansio
only carried out to third order. Much in the same way, t
Hartree approximation exhibits a first order phase transit
with Tcr'0.878. When going beyond the Hartree appro
mation ~using the BVA! we still find a phase transition, bu
the BVA relaxes the order of the phase transition. At ve
low temperature, we do~apparently! find a non-zero value of
the order parameter ast→`, which is the exact result at zer
temperature. So we conclude that the BVA at low tempe
ture is seeing effects that might occur in higher dimensio
even though it is not technically correct in 111 dimensions.

We next compare three different approximation metho
the Hartree approximation, the 2PI21/N expansion, and the
BVA. Here we choose a very low initial temperature ofT0

FIG. 9. Detailed temperature dependence: We setl57.3, and
plot ^f(t)&.

FIG. 10. Detailed temperature dependence: We setl57.3, and
plot ^p(t)&.
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COOPER, DAWSON, AND MIHAILA PHYSICAL REVIEW D67, 056003 ~2003!
50.1 in order to emphasize quantum effects in the dynam
Again, we start witĥ f(0)&50.4 and^ḟ(0)&50. We show
results forl51 in Figs. 11 and 12 andl57.3 in Figs. 13
and 14. As expected, we find that the Hartree approxima
leads to oscillation about the Hartree minimum witho
equilibration. The BVA results track the Hartree curve, e
cept with damping, and go to a non-zero value ast→`,
which is the exact result at zero temperature. The 2PI21/N
expansion goes to a zero value of the order paramete
agreement with the exact result of no phase transition
finite temperature. Results for̂x(t)& are similar for both
approximations, in agreement with expectations based on
experience with the classical limit of these approximatio
@16#. The disagreement between 2PI21/N and BVA is more
pronounced at larger values ofl, as shown in Figs. 13
and 14.

VII. EQUILIBRATION

The BVA leads to equilibration of the system. In order
have a measure of the semi-static thermodynamic prope
of the system, it is reasonable to fit our time-depend
Green functions to those appropriate to a free field with f
quencyvk(t) and Bose-Einstein distribution functionnk(t)
~see also@12#!. That is, we equate the Fourier transform

FIG. 11. Comparison of various methods: We setl51.0 and
T050.1, and plot̂ f(t)&.

FIG. 12. Comparison of various methods: We setl51.0 and
T050.1, and plot̂ x(t)&.
05600
s.

n
t
-

in
r

ur
s

es
t
-

the BVA Green functionsG̃k(t,t) and ]2G̃k(t,t8)/]t ]t8 to
the corresponding free-field cases:

G̃k~ t,t !5@2nk~ t !11#
1

2vk~ t !
, ~57!

]2G̃k~ t,t8!

]t ]t8
U

t5t8

5@2nk~ t !11#
vk~ t !

2
. ~58!

So we can determinenk(t) andvk(t) from the relations

vk~ t !5F ]2G~ t,t8;k!

]t ]t8
U

t5t8

Y G~ t,t;k!G 1/2

, ~59!

nk~ t !5
1

2
1F ]2G~ t,t8;k!

]t ]t8
U

t5t8

G~ t,t;k!G 1/2

. ~60!

From Eq.~59!, we notice thatvk is a ratio of Green func-
tions, and thus any~finite! wave function renormalization
will cancel. However, from Eq.~60!, nk is directly propor-
tional to the Green function, which will have a finite wav
function renormalization when restricted to the single p
ticle contribution.

FIG. 13. Comparison of various methods: We setl57.3 and
T050.1, and plot̂ f(t)&.

FIG. 14. Comparison of various methods: We setl57.3 and
T050.1, and plot̂ x(t)&.
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QUANTUM DYNAMICS OF PHASE TRANSITIONS IN . . . PHYSICAL REVIEW D67, 056003 ~2003!
First let us concentrate onvk(t). We show in Fig. 15 a
plot of vk(t) as a function ofk for various values oft, as
calculated from Eq.~59!, for l57.3 andT052.5, which is
close to the critical temperature. We use these data to
meff

2 (t), wheremeff
2 (t) is defined by

vk~ t !5Ak21meff
2 ~ t !. ~61!

The values ofmeff
2 (t) computed in this way are shown in Fig

16 and compared to the value ofx(t). We see here tha
self-energy corrections to the effective mass reducex(t) by
about 25–40 %. Additional calculations for different initi
temperatures show that the correction slowly decreases
increasing initial temperature.

Now that we have an effectivevk , we can determine if
the particle number densitynk(t) has a simple Bose-Einstei
form given by

nk~ t !5
A~ t !

evk(t)/Teff(t)21
, ~62!

with Teff(t) the effective~global! temperature at timet. The
factor A(t) comes from a wave function renormalization
each timet. We use a nonlinear fitting procedure to obta

FIG. 15. Time evolution ofvk(t), as defined by Eq.~59!, for
l57.3 andT052.5.

FIG. 16. Time evolution ofx(t) andm2(t)eff as defined in Eq.
~61!, for l57.3 andT052.5.
05600
d

ith

the parametersTeff(t) and A(t) from the data generated b
Eq. ~60!. The results fornk(t) are shown in Fig. 17. In Fig.
18, we extractrenormalizeddensities, defined bynren k(t)
5nk(t)/A(t). Notice thatnk(t) is very similar to a Bose-
Einstein distribution which starts out at a temperature
Teff5T0, increases in amplitude due to a temperature
crease, then falls back to a lower temperature, but lar
mass.

In Fig. 19 we show the dependence ofTeff(t), defined by
Eq. ~62! and extracted from this~global! analysis, on the
initial temperatureT0, for fixed l57.3. In Fig. 20, we show
the dependence ofTeff(t) on the coupling constantl for
fixed initial temperatureT050.1.

Next, we can use the renormalized density distribut
function, shown in Fig. 18, to obtain a momentum depend
effective temperature functionTk,ren(t), defined by

Tk,ren~ t !5vk~ t !/ ln$ @nk,ren~ t !11#/@nk,ren~ t !# %. ~63!

We show these results in Fig. 21. We notice that for this ca
at short times,Tk,ren(t) has to readjust to the effects of th
non-Gaussian corrections, but after a timet*10, it settles
down to a new temperature which is independent of
momentumk. We take this as evidence that the two-po

FIG. 17. Time evolution ofnk , defined by Eq.~60!, for l
57.3 andT052.5.

FIG. 18. Time evolution of the renormalizednk,ren, for l57.3
andT052.5.
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COOPER, DAWSON, AND MIHAILA PHYSICAL REVIEW D67, 056003 ~2003!
function has thermalized. Of course, this final temperat
agrees with the global temperature fit for late times. N
also that we have substantial particle production here: a
an initial spike, the particle density number relaxes to
equilibrium value.

VIII. CONCLUSIONS

In conclusion, we have shown that the BVA indeed lea
to equilibration of the one- and two-point functions and th
remedies this deficiency of the Hartree approximation. T
nature of the phase transition changes from first to sec
order when going from Hartree to BVA which is the corre
behavior~as a function of coupling constant! at zero tem-
perature but is incorrect at higher temperature. Howe
such a phase transition at finite temperature is expecte
the 311 dimensional case that we are interested in mode
in the future. The 2PI21/N approximation does not see th
phase transition~which is not present in the exact theor!
and does not track the average of the Hartree result. In hig
dimensions, one expects the Hartree result for the order
rameter to be correct on the average but not to have
property of equilibrating. So deciding which approximatio
is more physical will have to wait for a 311 dimensional
simulation to see if both approximations show the expec
second order phase transition.

In the classical regime, where we could do an ex
Monte Carlo calculation, we found that the BVA works bett
than the 2PI21/N expansion in capturing the dynamics
^f(t)&, but that the difference was not very great. In t
quantum domain, however, these two approximations
verge at low temperature with the strength of the coupl
constant, and the 2PI21/N approximation no longer track
the average of the results of the Hartree approximation. S
we do not have exact calculations in the quantum regime
cannot make any strong conclusions about this divergen

It is interesting to note that technical issues related to
nature of the phase transitions in 111 dimensions are no
uncommon. There is a previous example of just this v
type of reasoning being successful. In trying to underst
the QCD chiral phase transition at finite chemical poten
and temperature, it was important to have a model where

FIG. 19. Forl57.3 we plot the time evolution ofTeff(t) for
various initial temperaturesT0.
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phase transition mimicked what is known in 311 dimen-
sions. Such a model was a four-Fermi model~the Gross-
Neveu model! in 111 dimensions in leading order in larg
N, which had a similar phase structure to two-flavor QC
This model was then used as a testing ground for study
the effect of first and second order phase transitions, wit
critical point, and showed some qualitative differences
tween the two types of transitions~see Ref.@37#!. Once
again, the exact 111 dimensional model does not have
phase transition. But this warm-up problem then allowed
to go to 211 dimensions@38#, where it is known that the
leading order large-N approximation and the exact theor
have similar phase diagrams, as verified by lattice simu
tions in 211 dimensions@39#. We submit that this is the way
these 111 dimensional results should be understood: a
model having certain properties when treated in this appro
mation and as a testing ground for codes which will then
generalized to higher dimensions where it is expected
approximation will correspond to the known behavior. T
main purpose of the quantum simulations we present her
to get experience in getting codes working in lower dime
sions that qualitatively do what we expect to see in 311
dimensions.

FIG. 20. ForT050.1 we plot the time evolution ofTeff(t) for
various values of the coupling constantl.

FIG. 21. Time evolution of the temperatureTk,ren(t) defined in
Eq. ~63!, for l57.3 andT052.5.
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QUANTUM DYNAMICS OF PHASE TRANSITIONS IN . . . PHYSICAL REVIEW D67, 056003 ~2003!
As a result of the simulations presented here, we are c
fident that we can now study the chiral phase transit
in 311 dimensions in the linear sigma model and descr
the competition between the expansion of the plasma
the equilibration tendencies. This will allow us to s
whether some of the phenomena present in the Har
~and/or large-N) approximation, such as production of di
oriented chiral condensates and distortion of pion and di
ton spectra, are still present in spite of the forces that lea
thermalization.
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