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We perform a detailed numerical investigation of the dynamics of a single component “explicitly broken
symmetry” \ ¢* field theory in 11 dimensions, using a Schwinger-Dyson equation truncation scheme based
on ignoring vertex corrections. In an earlier paper, we called this the bare vertex approxit@tion We
assume here that the initial state is described by a Gaussian density matrix peaked around some nonzero value
of (¢(0)), and characterized by a single particle Bose-Einstein distribution function at a given temperature.
We compute the evolution of the system using three different approximations: the Hartree approximation, the
BVA, and a related two-patrticle irreducib{@PI) 1/N expansion, as a function of coupling strength and initial
temperature. In the Hartree approximation, the static phase diagram shows that there is a first order phase
transition for this system. As we change the initial starting temperature of the system, we find that the BVA
relaxes to a new final temperature and exhibits behavior consistent with a second order phase transition. We
find that the average fields equilibrate for arbitrary initial conditions in the BVA, unlike the behavior exhibited
by the Hartree approximation, and we illustrate h#(t)) and(x(t)) depend on the initial temperature and
on the coupling constant. The Fourier transform of the two-point functions at late times can be fitted by a
Bose-Einstein distribution function whose temperature is independent of momentum. We interpret this as
evidence for thermalization.
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I. INTRODUCTION case wher ¢(0))#0. This is usually calleaxplicitly bro-
ken symmetrthe resulting SD equations in this case are
Recently there has been much effort in finding approxi-much more elaborate than whé#(0))=0.
mation schemes to study the dynamics of phase transitions In 1+1 dimensions, it is known that there is no phase
that go beyond leading order in the larjemean field theory transition in this model except at zero temperatigg On
approach. This is an important endeavor if one wants a firsthe other hand, in two dimensional systems having
principles understanding of the dynamics of quantum phasBerezinski-Kosterlitz-Thouless type transitiofé—6], the
transitions. In a previous set of papers, we studied in quantargeN expansion can give a qualitatively good understand-
tum mechanic$l], as well as ¥ 1 dimensional field theory ing of the correlation functions, even when it gives the
[2], the validity of a 1N motivated resummation scheme, wrong phase transition behaviff]. As the dimensions in-
which we called the bare vertex approximati@vA ). crease, the mean field critical behavior becomes exact in four
The long-term goal of this work is finding approximation dimensions and thus we expect that the approximation pre-
schemes which are accurate at the small valugé r@levant  sented here should improve as we increase the dimensional-
to the case of realistic quantum field theoribs=4 for the ity. Thus we should think of the model used here as a “toy”
linear sigma model, antN=2 for the Walecka model. In  model for demonstrating some of the features expected to be
order to maximize the possible differences between approxitrue in 3+1 dimensions such as the restoration of symmetry
mation schemes we choose to study théNDmodel forN breakdown at high temperatures and equilibration of correla-
=1. Based on our previous studies of the quantum mechantion functions. The model we are ultimately interested in is
cal version of this moddll], we expect that by increasifg  the linear sigma model in-81 dimensions for the case of
the differences will diminish. This is due to the fact that thebroken symmetry at finite temperature. This model we stud-
Schwinger-Dysor{SD) formalism is related, but not identi- ied earlier using a largh+ approximation/8—10]. Since the
cal, to approximations based on the lafgexpansion. BVA contains scattering contributions, it cures many of the
This paper presents the first quantum-mechanical dynamproblems associated with mean field methods. Here we are
cal calculation in #1 dimensions, using the BVA, for the able to follow the evolution of the system through a phase
transition and study the thermalization of the system. Since
the Fourier transform of the two-point functions at late times
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"Electronic address: john.dawson@unh.edu temperature is independent of momentum, we interpret this
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A parallel set of investigations by Bergesal. [11-15, For the purposes of our resummation scheme which is moti-
have looked at a related approximation based on the twovated by 1IN considerations it is useful to consider the alter-
particle irreducible expansiofwhich they call 2P+1/N). native action
These investigators have pointed out that, when there is bro- 1
ken symmetry, the BVA contains terms not included in the 1 2, = _ ©op ) 2
1/N resummation at next to leading order. In this paper, we Sel ’X]_f d X{ 2[0#¢,(x)(9 $i()= x4 ()]
present the firsguantum calculations which compare the
BVA with the 2PI-1/N expansion for the broken symmetry + E
case. Recently we were able to show that folessicalfinite A
temperature\ ¢* field theory in 1 dimensions, the BVA
gave a better description of the time evolution gft)) than
th_e 2PE1/N expansion an_d prov_lded reasonable agreement [0+ x(x)]¢;(x)=0 3)
with exact Monte Carlo simulationg2,16]. Both methods
suffer from deficiencies when describing the equilibrationand the constraint‘gap” ) equation fory(x):
time of the two-point function( #%(t)) with the 2PH1/N
expansion being qualitatively better at larger values of the A
initial symmetry breaking. X() == p?+ on G ¢i(%). )

In this paper we look at quantum evolution ir-1 dimen-
sions, starting with a Gaussian density matrix, and study how hroughout this paper, we use the Einstein summation con-
the evolution of{ ¢(t)) depends on the initial conditions and vention for repeated indices.
the value of the coupling constant. In the classical domain, The BVA truncation scheme of the Schwinger-Dyson
the coupling constant dependence can be scaled out, whichégjuations is most easily obtained from the 2PI effective ac-
not possible in the quantum case we consider here. Since wigon [17-19. Other approaches leading to these equations
have not determined the effective potential in the BVA ap-are found in[1,15]. Using the extended fields notation,
proximation, we rely on the Hartree approximation effective ¢,(X) =[x(X),#1(X),d2(X), . .. ,¢n(X)], the effective ac-
potential to guide our study. The Hartree potential, howevertion for the evolution can be written as
indicates that the system should undergo a first order phase i i
transition. In addition, in the Hartree approximation, the _ - —17, -1
fields never equilibrate. We find that the BVA cures theser[qb‘“'G]_SC'[QS“H—ZTr In[G ]4—2-”[GO CI+TI2[G],
serious problems. In this paper, we show evolution of the 5
system as a function of the initial “temperature” parameter . . .
a)r/1d the coupling constant, and since i[r)1 the BVAE)the field§NhereF2[G] IS the generating functlopal of th_e 2-P1 graphs,
equilibrate, we can follow the system through what appearé‘nd the classical action in Minkowski space is

4(x)
X 5 T EX(X)

] : 2

which leads to the Heisenberg equations of motion

to be a second order phase transition. We also compare our 1 Y2(X)
results with those of the 2PI1/N expansion in the quantum Sl Pol= f dzx{ — = () O+ x(X)]i(x) +

domain. The 2P+1/N expansion does not exhibit a phase 2 29
transition for non-zero temperatures. Thus at low initial tem- u?

perature, where the BVA relaxes to a non-zero value of +E)((X)]. (6)

(#(t)), the two approaches give quite different results.
We derive the BVA equations for the general ygre and in what follows we leg=N/N.

N-component\[ 47(x)]? field theory in Secs. Il and Ill. We  The integrals and delta functioms(x,x') are defined on

then specialize to the cade=1 and in Sec. IV we derive the the closed time path contour, which incorporates the initial

phase diagram in the Hartree approximation. In Sec. V, Wgajue boundary conditiof20—23. The approximations we

diSCUSS our |n|t|a| COI’IditiOhS. Numel’ica| reSUltS are ShOWn irbre Studying inc'ude On|y the two_|oop Contributionsl_tg

Sec. VI, and conclusions discussed in Sec. VII. The Green functiorﬁsgjﬁ[ﬂ(x,x’) is defined as follows:
_1 , 528c|
Il. THE CLASSICAL ACTION AND TIME EVOLUTION Goapl #1(X,X") =~ 5 5 ;
IN THE BVA Pa(X) 5b5(X")
The classical action fok ¢* with N fields (=1, ... N) Do Y(x,x") Ko (x,x")
is = - , - N
Ko (x,X)  Ggij(x.x")
(7)
- , |1 " 2,2 where
SLol= | A7) 5Ld,¢i1(X) 3 ¢i(X) + u ¢ (X)]
Do t(x,x")=—gdc(x,x),
Moo Nut
TN AT O TS @) GotX1(x X' ) =[O+ x(x)18; 3e(x.X"),
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FIG. 1. Graphs included in the 2PI effective actibp

Kai'T¢106X") =K [ 106X ) = i(X) S(x,X').
The exact Green functio [ j ](x,x") is defined by
D(x,x")  Kj(x,x")

Ga,B[j](X’X,): E(X,X’) Gij(X,XI) '

The exact equations following from the effective action Eq.

(5), are
[0+ x(X)]¢i(x) + Ki(x,x)/i=0, 8
XX ==+ 5 S 0+ Gy (x¥],
and
Gos(X,X")=Ggag(X,X") + 2 45(X,X), 9)
where
, 2 8T4[G]
EaB(X,X )_l 5GHB(X,X,)
(H(x,x’) Q;(x,x")
laixx) Zixx))
(10)

In the BVA, we keep il",[ G] only the graphs shown in Fig.
1, which is explicitly

1
Fz[G]=—Zf fdxdy[Gi,-(x,y)G;i(y,X)D(x,y)

+ 2K (X, Y)K;(x,y)Gij (x,)]. (11)
The self-energy, given in Eq10), then reduces to
[
I(x,x")= EGmn(X-X/)Gmn(XuX,)a (12

Qi(x,X") =K y(X,X") G ppi( X, X"),

Qi6X) =G im(XX DK m(X,X),

PHYSICAL REVIEW D67, 056003 (2003

showed that the BVA gave a more accurate determination of
(#(t)), and we will concentrate in this paper on the BVA
except to point out with explicit results that in the quantum
domain the differences between the BVA and the 28N
expansion grow with increasing coupling constgrifor the
case N=1 studied here and that, unlike the BVA, the
2PI-1/N expansion does not track the average of the Har-
tree result.

Ill. UPDATE EQUATIONS FOR THE GREEN FUNCTIONS

We notice from the definitions of the matrices represent-
ing G,p(X,x") andG;é(x,x’), that the matrix elements are
not inverses of one another, but instead satisfy schematically

DD +K, K=&,
K, 1D +G, 'K =0,

D 1K, +K, 'Gy;=0,

Ki 'K+ G 'Gyj= 8;; o - (13

Inverting Eq.(9), we find

D(x,x")= —géc(x,x’)Jrgf dx 1T (X,X1)D(Xq,X"),
c

(14)
Gij(x,x')=G0ij(x,x')5ij—Lolxlfcolx2
X Goik(X,X1) (X1, X2) Gj (X2, X"), (15)
Ki(x,x')z—delfcdxz[oghrH]*l(x,xl)
XK+ Q] (X1,%2) Gyi(X2,X), (16)

with

I (x,x")=TI(x,x") — fcdxlfcdxz[igkhr Q%%

X[ Gyt 2]~ xq ) [ Kot + Q1 (X2,X"),
(17)

2K = (x,x") — chxlfcdxz[K&H—ai](x,xl)

X[Dg t+ 1]~ H(xq , X) [ Ko+ Qi (X2, X').
(19

2 (x,x")=i[Gj;(x,x")D(x,x") These update equations must be solved in conjunction with
_ the one-point functions, Eq$3).
+Ki(X,x)Kj(x,x")]. For a practical implementation of the above approach we
As discussed in detail in Ref15], the second graph in  need to solve foD,(x,x") and G,;;(x,x"), the inverses of
Fig. 1 is proportional to M? and is ignored in the 2PI1/N [Dy *+1M](x,x’) and [Gi]1+2ij](x,x’), respectively. We
expansion. Our recent simulations in the classical domaimave
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Do(x,X') = —géc(x,X’)+gJCdx1H(x,xl)Dz(x1,x'), (19 Da(x,x") = =g8c(x,x") + Da(x,x"),

Ki(X,X") =g i(X)Gyi(X,X") + K;(%,X').

GZ,ij(X-X,):GOij(va,)_fdxl ] ] )
¢ Thus we obtain the equations of motion

X dezGO‘k(X’X”EK'(Xl’Xz)GZH(XZ’X')- {[0+ X018+ 9B (x,X) i} () + Ki (%, )/ =,

(20

g g .
=— u?+ =p?(X)+ =[G;; /
We also perform the following substitutions: XX)=—n 2¢' 0 2[ ()]

D(x,x")= —g&c(x,x’)+5(x,x’), (21 and the update equations for the Green functions

D(x,x")= —9211’(x,xl)+gfcdxln’(x,x1)5(xl,x’),
Sz(x,x')z—gZH(x,xl)+gfcdxln(x,xl)52(xl,x'),
Gij(x,x’)=GOij(x,x’)—gdelGOik(x,xl)[gbk(xl)d),(xl)+Gk|(x1,x1)/i]G|j(x1,x’)

- fcdxlfcdxzemk(x,xl)il(xl,xZ)G.j(xz,x'),
GZij(x,x’)=GOiJ—(x,x’)—gJCdleOik(x,xl)[G2k|(xl,xl)/i]GZH-(xl,x’)
- Ldxlfcdxzemk(x,xl)ikl(xl,xz)e,j(xz,x'),
Ki(x,x’)z—delﬁz(x,xl)¢k(xl)Gki(xl,x’)+gfcdxlﬂk(x,xl)Gki(xl,x’)
—fcdxlfcdxzﬁz(x,xl)ﬂk(xl,xz)Gki(xz,x’),
I (X, X" ) =TT(X,X") = by(X) G (X, X ) by (X") — delfcdxznk(x,xl)Gz,kl(xl,xz)ﬁl(xz,x')
—fcdx@k(x)c;z,k.(x,xl)ﬁ.(xl,x’)—delnk(x,xl)ez,kl(xl,x')¢|(x’),
S (X, X)) =[G (%, X)D(X,X") + K; (X, X ) K(x,X")],
i’k(x,x')=§ik(x,x')—¢i(x)52(x,x')¢k(x')—chxlfcdxzﬁ(x,xl)ﬁz(xl,xz)Qk(xz,x')
—de1¢i(x)52(x,xl)nk(xl,x')—chx@(x,xl)ﬁz(xl,x')¢k(x')+g[¢i(x)9k(x,x')
+(_li(x,x')¢k(x’)]+gfcdx1§i(x,xl)ﬂk(xl,x’).
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2

For computational purposes, it is suitable to make one more X )
> trx

1 A 1
transformation of thep;, G;; andG, ;; equations. We write S #.x]1= dzx[ —o¢lH+x]é+ Z¢4+ an
the equivalent integro-differential equation Gf; as

{[O+x(X) ]k + 9l i (X) du(X) + G (X, X)/1 ]} Gy (X,X") +|§Tr[ln(D+X)] : (39

= c(x,X") 6, — delgik(x,xz)ekj(xz,x'), (31)  This action gives the Hartree equations of motion:

o _ _ [O+x(x) =\ ¢*(x)]b(x) =0, (40)
We specialize now to the cade=1. It is convenient then to

introduce the following equations: 3\ 3\
X(X) == P+ - ¢*(x)+ — T Go ],

[O+x2(0) 1 ¢(x)+K(x,x)/i=0, (32
with G 2(x,x") =[O+ x(x)]8(x,x").
3 ' " ! o
e g¢2(x)+ TQG(X,X)/i, (33 The effective potential for this action is given by

+o dk
VH[¢!X]:VCI[¢!X]+ J;) ﬂ

together with redefinitions foGy(x,x") to work with the
equations foIG(x,x") andG,(x,x"), respectively. We have

2
[O+x2(%) ] Go(x,X')=8e(x,X"), (34) X wk+g'“[1—exp(—ﬂwk)]].
[+ x2(0)1Go(xX') = 8(x.X"), (35 vc|[¢,X1:%X¢2— %(X?ZWZX) _%W‘,

with
where w,= JkZ+ x. We note that the requirement

3
Xz(x):_,u2+7g[¢2(x)+G(x,x)/i]. (36) Vel ¢ 1 2)+J+w% 2n+1
P B O U A R P P

leads to the gap equation

Finally, the modified equations are given by

G(x,x")=Go(x,x") 3N, 3\ [+=dk2n+1

= — 2 —_— -
_ _ , X= St o | o
- CXm CdXZGO(X1X1)2 (X11X2)G(X21X )1

wheren, = 1/[e#“k—1]. The above equations are infinite, so
(37 to renormalize them we introduce a cutofflat = A, and
) introduce a quantityn>>0, defined by
Go(x,x")=Gp(x,x")
2 2 3N (Adk 1

2 Jo2m I+ m?

- fcdxlfcdxzéo(xyxl)g(xl,Xz)Gz(Xz,X')-

(38) B 5 3)\| A
~—u +E n(A/m). (41

IV. HARTREE PHASE DIAGRAM )
) . ~ Recall thatu?>0. Subtracting Eq(41) from the gap equa-
It would be useful to have available the effective potentialtion gives

for the BVA approximation from Eq5) to use as a guide for

starting out the BVA solutions. However, solving the self- 3\ 3N (Aadk [ 2n+1 1
consistent equations of the BVA and constructing the thermal y=—m?+ — ¢+ — | — ( — T T
effective potential is a formidable task, and has only been 2 2 Jo2m | (K+x K*+m
recently considered for the simpler loop approximation to

N ¢* for N=1 (see Refs[24,25). Therefore in this section s 3\ 2 il 2/ )4 Adk g

we find the effective potential for the simpler Hartree ap- m 2 ¢ A n(m~x) 0o T wyl|

proximation for a single field, and use this as a guide for (42)
choosing initial conditions.

The effective action in the Hartree approximation can bewhich is now finite. The Hartree potential is renormalized at
written in the form T=0 by first renormalizing the partial derivative:
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Nldod ¢ L -
o~ 2 B\ 0.15 |
fAdk L 1 0.10
L e _
0 2 2\/k2+X 2\/k2+m2 2 0.05
o
>
2 1 1 2 0.00
m7—§(x+m)+ﬁln(m 1x), .05 |

-0.10 |

where we have used Eg41) to make the equation finite.
Partially integrating, we obtain the renormalized Hartree ef- 0.15

fective potential: . 16
¢
1 A 1/(x? . .
Vil o, x]= —)(qﬁz— —¢4— —| =+ m2X FIG. 2. We seff=1, and plot the Hartree effective potential as
2 4 3h 2 a function of the coupling constant.
+ %[X—X In(m?/x)] Thus the renormalized mass can be computed from
v2=3[1+f(A\vd)]/(47)
»dk 1 m2= '
+f0?g'”[1_e><p(_ﬁwk)]’ (43 1+3[1+f(\v?)]/(8mv?)

Where we have added back in the finite temperature:rhe critical temperaturd ., is defined by the simultaneous

dependent part. This equation is to be solved witbatisfy- solutions of
ing the renormalized gap equati¢f?). In practice, it is use-
ful to solve both of these equations parametrically as a 0224—[l+f()\02)]
function of y. ™
The physical(renormalized mass is given by the second g4 Eq.(44). At T=0, we notice that unless®>3/(4) one
derivative of the effective potential, evaluated at the mini-.gnnot have a symmetry-breaking solution in this approxi-

mum. The minimum occurs at mation. The effective potential as a function of temperalure
AVil 6.x] can be computed numerically. In Fig. 2 we show the effec-
SVHLP X =v(x—\ v?)=0. tive potential dependence on the coupling constant at a fixed
de b=v temperatureT =0.1. In Fig. 3 we fix the coupling constant at

N=7.3, and show the dependence of the effective potential

This implies that for the symmetry-breaking solutiop, on the temperature. This particular value)ofwas used in
=\v?. Thus, from the gap equatid#2), the position of the  our study of the dynamics of disoriented chiral condensates
minimum and the mass parametef are related by in 3+ 1 dimensions in the leading order in lartyeapproxi-

mation [8,10]. Here, the phase transition occurs with,

~0.878. We see that the phase transition is first order with
' the vacuum value ~0.635. The value of at this value of

the field ishv?~2.94.

1 (mz) AdK ne(\v?)
+ —_

0 T wp(\v?)

. . , 0.20
The renormalized mass3 is defined by:
015 t
d>Vil ¢, x] { Ix 010 ¢
2_ HLY _ 2
ma=|————| =[x—3\*+o—=| . 005 |
d¢2 b=v a¢ $=v .
3 000
From the gap equatio®2), we find S 005 [
010 b
&X} B 3\v 015 b
9Py, 1+3[1+F(N0?)]/(8mv?)’ 020 | e
wheref(\v?) is the finite integral 0 0.0 . 0.2 oj4 0i6 ojs 1I.o 12
$
A 2n(x) ot | |
fOx)=x | dk——[1+Bwr(x)nk(x)e”X]. FIG. 3. We set» =7.3, and plot the Hartree effective potential
0 wi(x as a function of temperature.
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2

: +Qi=wg(t). (52

For the purpose of this study, we will assume that initially 2
(att=0) the system is described by a Gaussian density ma-
trix. Thus initially the field equation and two-point equation The first order WKB solution forf,(t) is then given by
are those of the Hartree approximation. The field equatiof(t) = wy(t). We take these solutions for our initial condi-

V. INITIAL CONDITIONS (Qk(t)) i §( ft)
Q ()] 41 (1)

obeys Eq.(40), with Gy(x,x") satisfying tions, so that at=0,
[O+x(1)]Go(X,X") = 8c(X,x"). (45) Q,(0) = wy(0)=Vk*+ x(0),
We can solve this Green function equation by introducing a 0(0)=w(0)= x(0)/2w(0). (53

set of quantum fieldgy(x), satisfying canonical commuta-

tion relations] ¢o(X), o(x') =1 8(x—x'), and obeying the 1S means that

homogeneous differential equation fk(0)=1/\/m,
[O+x (1) ]éo(x)=0. (46) .
f(0)=—| 2O 0 [0
In terms of these fields we have K(0)= 2w, (0) iy (0) |F(0).
(54

Go(X,X") =I{Te{ hpo(X) po(X")
° {Ted $olx) bo(x)) We still need to find the value of,(0). This is given by the
=G (x,x") Ot t") Hartree self-consistent solutions of
+Go(X,x")O (' 1) 3\ 3N (+=dk 2n+1
) nm:w%—wmw—J T
o dk 2 2 Jo 27 K%+ x(0)
:j — Gy(k;t,t7)elkex=x),
2

—o 2, 3\ 52(0)+ 3N [Aadk| 2n+1
4 =-—mi+ - > | 5 T—
“n 2 2 Jo 27 e x0)
We next expand these operators in Fourier mode functions: 1
+=dk Nl ®9

$o(X)= J

— 00

5 laad (e +agfi (e ], (48
where we have used E¢1).

where the mode function(t) satisfy _ So, for our case, Fourier transforms of the Green func-
tions att=0 are given by

2 2 _ — 2
L ol OID =00 O=ICEXD, @9 5 (et t)i= RO ) (mes D+ O (Eny,
and the Wronskian conditiofif (t) f,(t)— f (t)f(t)=—i.
The operators,  and ag « satisfy the usual commutation
relations] ag i ,ag w 1=2m 6(k—K"). We will take our ini-
tial density matrix such that These results, together with E&4), determine the values of
Go - (k:t,t"), and all its derivatives, at=t’=0.

Go (k;t,t)i=FF (O)F (") (N 1)+ F (D FE ()N,
(56)

<a$k ao kr>:nk27T(S(k_ k,), <a0ka0kr>=0,
( + y=( 1)2m8k—K'), ( _— )=0, (50 VI. NUMERICAL RESULTS
aOka,:nk+ a _,1 Ao@pr) =0, . . .
ok ook We choose initial conditions for the two-point functions
wheren, = 1{exd Bow(0)]—1}. HereTo=1/8, is just a pa- S described in the last section. In all our simulations we set
rameter for the initial Gaussian density distribution, and isthe renormalized mass parameteras defined in Eq(41), to

not thetrue temperature of the interacting system. In fact, theunity. The calculations are carried out entirely in momentum
system will not be in equilibrium at=0, but will arrive ata  SPace, and the results are free of artifacts related to the finite

final temperaturd after it has come to equilibrium. volume of a lattice in coordinate spad€or a discussion of
Solutions for the mode functiorfs(t) are of the form differences between the continuum and the periodic lattice
approach, respectively, we refer the reader to our previous
o ()t paper, Rgf[28].) We have verified numerically that our re-
fi(t) = ——, (51  Sults are independent of the cutoff parameteior values of
V20 (1) A between 3r and 4.

The numerical procedure for solving the BVA equations is
where(),(t) satisfies the non-linear differential equation  described in detail in Refd.26,27. We summarize here
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some of the highlights: The unknown functions are time 8
evolved using a multi-step approach. The numerical method
relies on a series expansion of the unknown functions in
terms of Chebyshev polynomials, on a nonuniform grid. The
resulting algorithm possess spectral convergence, and allows
a drastic reduction of the number of grid points, from tens of &
thousands of grid points in prior leading-order lattice calcu- 2
lations[37], to only 32 and 128 points, for the time step and A
the momentum domain discretization, respectively. The han- 2L
dling of the momentum variable requires a dual-grid ap-
proach, where the convolution integrals for the self-energy .
calculations are done using standard fast-Fourier transform 0 : : : : : : :
algorithms on a uniform 1024 point grid. We employ a cubic-
spline interpolation technique to perform the necessary trans-
formation between the two grids. The results presented here FIG. 5. Coupling constant dependence: WeTsgt 0.1, and plot
are converged with respect to the choice of grid, and they(t)) for various values of.
energy is numerically conserved to better than five signifi-
cant figures.

We start by choosing an initial temperaturg=0.1 so as

~
T

LN i X
T T T

w
T

values, but for large values dfy, (¢(t)) equilibrates to
zero, as expected from the Hartree effective potential. Figure

effective potential for this value o is a slowly varying 9 shows thaty(t) equilibrates to different values which de-

function of the coupling constant, with the minimum value
of ¢ at large\ being between 0.6 and 1(8ee Figs. 2 and)3
Thus we want to choose small initial values ¢{0)=0.4

and taker(0)= ¢(0)=0 so that we start below the height of

Since we have chosen the casé0)=£;5(0)=0, with
#(0) just under the barrier height, the transition to the
equilibration point is very slow, i.e. equilibration is reached

. . . without too many exciting features. It is interesting to give
the barrier. Then we should sef moving to the opposite y 9 gt g

: . X - . the system a little initial kinetic energy so that structure is
side of the well and then settling down at the potential MINFintroduced in the dynamics but the equilibration value of

mum position. We show the results of this calculation in b : : g

. - t)) remains the same. We illustrate this in Fig. 8.
F|g§. 4 and 5 for seyeral values of thg c_ouplmg constant. Wé (Tr)% plots of the BVA order parameter in Fig.96 indicate
notice that the position of the BVA minimum is located be—t at for very low values off,, the order parametdrg(t))
tween 0.55 and 0.60 instead of the Hartree average value g proaches a non-zero cong,tant. For very large valugs, of

9'8' W'.e also see that the final value pidoes seem to be_ the order parameter goes to zero, as expected. Somewhere
linear in N as in the Hartree result. However, the ratio betweenT,=1.0 andT,=2.5, there seems to be a phase
X/O‘v%) is one for the Hartree approximatio_n, bUt.iS abOL’ttransition.oln 6rder to 0stuoiy,this in more detail, we have
24@&?3522:;1”71;@ \?vrrr]?crhf?g t?ﬁeBgﬁeSr:gqmugr:gzzlical carried out BVA simulati_ons for temperatures betweln

hoice for the the I'néa{r siama model. with0)=0.4 and =15 andT0=2_.5 at 0.1 |nteryals. The resu!ts fpr the order
choice 1 : '9 » With(0)=0. parameter and its first derivative are shown in Figs. 9 and 10.
m(0)=¢(0)=0, and study the dependence (@(t)) and The equilibration points for the order parameter in Fig. 9
(x(1)) as a function of the initial temperatufg. The results  are at almost equally spaced intervals Tor< 2.4, and there
are shown in Figs. 6 and 7. We note immediately from Fig. s no evidence of a jump in the value of the order parameter
that for small values 0Ty, (#(t)) equilibrates to non-zero from a finite value to zero, as would be required by a first

0.9

T A=20 e 1.0
A=40 - - A
o A=6.0 - - - I
081 1 A=73 —— 08
r PR 1 06
[ S . SO, .. ar o
- 07 T -
< A\ 2
= E o\ VLo T 04¢
0.6 \\ -“ g ':\ :/ I T ~ \
. > ~ e pmm T~ === == | s
i \ ,.'Il 0.2
05 v
v 0.0 Y
E Nt
04 02 :

FIG. 4. Coupling constant dependence: WeTsget 0.1, and plot

((t)) for various values of.

(@(t)) for various values off .
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(o0)
Ty=1.5 --- -

d 116 - -

N To=1.7 L
T0=1.8 --
Ty=1.9
T,=2.0 -
To=2.1 -
Ty=22
Tp=2.3 —--
Tp=2.4 —
Ty=2.5 —

0 2 4 6 8 10 12 14 16 18 T 5 10 15 20
t t
FIG. 7. Temperature dependence: We &et7.3, and plot FIG. 9. Detailed temperature dependence: Wexse?.3, and
(x(t)) for various values ofr . plot { p(t)).

order phase transition. The plot 6(t)), shown in Fig. 10, plicit_ Monte C4ar|0 Iatti(_:e calcullation§33,34] have shown
reveals the complex nature of the dynami¢g(t)) oscil- that indeed\ ¢ theory in two dimensions and at zero tem-

lates and gradually approaches zero, when equilibration odlerature is nontrivial at least when the continuum limit is
reached from the broken symmetry phase, and that the sym-

Cl.JI‘S..OSCI”atIOH.S around a zero valge(aﬁf(t)) suggest trap- metry is fully restored at high temperature. It is known how-
ping ina potential well, while the wiggles at negative valuesever that approximate lattice calculationisuch as the

of (¢(t)) may be due to changes in the position of the local,ariational-cumulant expansion methf8b,36)), which are
minimum of the effective potential as a function of tempera‘designed to study scala® theory in 3+1 dimensions on the
ture and time. Since the chosen initial conditions do not repigtice, may erroneously indicate the presence of a second-
resent an equilibrium state for the interacting system, theqer phase transition at finite temperature #11dimen-
dynamics toward a final state of equilibrium is accompaniedsions. This is probably due to the fact that the expansion is
by changes in the effective temperature. In other words, thgp|y carried out to third order. Much in the same way, the
effective potential is not such a good guide to the dynamicsygrtree approximation exhibits a first order phase transition
In analyzing these figures, it becomes apparent(@ahere  \yith T,~0.878. When going beyond the Hartree approxi-
is no abrupt change that would support the first-order labelmation (using the BVA we still find a phase transition, but
ing of the phase transition, an) there is a qualitative e ByA relaxes the order of the phase transition. At very
change happening nedp=2.4, where thg ¢(t)) plot be-  low temperature, we d@pparentlyfind a non-zero value of
gins crossing the lower temperature curves, and the locahe order parameter &s-, which is the exact result at zero
oscillations in<<}5(t)> completely disappear. Therefore, we temperature. So we conclude that the BVA at low tempera-

conclude that the phase transition, as calculated using tHgre is seeing effects that might occur in higher dimensions,
BVA, is probably not first order. even though it is not technically correct in-1 dimensions.

It is known that this model in two dimensions has no We next compare three different approximation methods:
phase transition at finite temperaty@9)]. At zero tempera- the Hartree approximation, the 2P1/N expansion, and the
ture, there is a second order phase transif@®-32. Ex- BVA. Here we choose a very low initial temperature Tof

0.8 T T T T T T r 0.015 T T T
2(0)~0.0 —— ] (r)
n(0)=0.5 - - -- i
0.6 [ - m(0)=1.0 -+~ . 0010 i .
A
r, '_.
04 0.005 | 13 .
rl' '.'3'
B 0000 | £ Ty=1.8 - --
= 0.2 r X Ll T0=1 9
-~ 0
B Tg=2.0 -
0.0 et - 0.005| Tp=2.1 -
. b Ty=2.2
B ! b Tp=23 ——-
02 1 -0.010 | ) Ty=2.4
L Ty=2.5 —
0.4 : : : : : : : 0015 L 2/
0 2 4 6 8 10 12 14 16 0 5 10 15 20
t t
FIG. 8. We are increasing the kinetic energy: We set7.3, FIG. 10. Detailed temperature dependence: Wexsef.3, and
Tp=0.1, and plot ¢(t)). plot (7r(t)).
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29 R 10 T T T BVA ——
18 1 2PLIN - - -+ 09| S 2PN - - - -
16 Hartree -+ | o8t i G ;o Hartree soroy
14 S '
121
10 1
08
06
04
02}

0.0

{e0)
(40))

0 2 4 6 8 10 12 14 16

FIG. 11. Comparison of various methods: We ket1.0 and FIG. 13. Comparison of various methods: We ket7.3 and
Tp=0.1, and plot ¢(t)). Tp=0.1, and plot ¢(t)).

=0.1 in order to emphasize quantum_effects in the dynamicghe BVA Green functionss,(t,t) and d°G,(t,t’)/dt dt’ to
Again, we start with( ¢(0))=0.4 and{$(0))=0. We show the corresponding free-field cases:

results forh=1 in Figs. 11 and 12 and=7.3 in Figs. 13 1

and 14. As expected, we find that the Hartree approximation Bu(t.h=[2n(t)+1] (57)

leads to oscillation about the Hartree minimum without 2w (t)’

equilibration. The BVA results track the Hartree curve, ex-

cept with damping, and go to a non-zero valuetasx, *Gy(t,t") w(t)

which is the exact result at zero temperature. The-2If\ Tt =2t +1] ——. (58)
t=t’

expansion goes to a zero value of the order parameter, in
agreement with the exact result of no phase transition fo
finite temperature. Results fdi(t)) are similar for both

approximations, in agreement with expectations based on our

go we can determine,(t) and wy(t) from the relations

2 /. 112
experience with the classical limit of these approximations ()= M / G(t,tk) | (59)
[16]. The disagreement between 2HAIN and BVA is more at ot | _, ]
pronounced at larger values af, as shown in Figs. 13
and 14. (?ZG(t,t’;k) 112
n(t)= §+ B G(t,t;k) . (60)
VII. EQUILIBRATION gt at |y

The BVA leads to equilibration of the system. In order to From Eg.(59), we notice thatw, is a ratio of Green func-
have a measure of the semi-static thermodynamic propertig®ns, and thus anyfinite) wave function renormalization
of the system, it is reasonable to fit our time-dependentill cancel. However, from Eq(60), ny is directly propor-
Green functions to those appropriate to a free field with fretional to the Green function, which will have a finite wave
guencyw,(t) and Bose-Einstein distribution functiam(t) function renormalization when restricted to the single par-
(see alsd12]). That is, we equate the Fourier transform of ticle contribution.

45 . ; 9
BVA —— .
40 | o 2PN - --- X gl
LN Hartree ...... R
35 : 1 7
30+ 6
g 25+ I'," : g 5t
= | ; X = |
- 20 ,l ‘\'\ -{/——~ _________ - 4
st ] Neo” 3t
] .
10 I/ 2t
05 N 1
fr )
0.0 wetp " L L MR PRt L 0 ' L N ' L L N
0 2 4 6 8 0 12 14 16 0 2 4 6 8 0 12 14 16
FIG. 12. Comparison of various methods: We ket 1.0 and FIG. 14. Comparison of various methods: We ket 7.3 and
Tp=0.1, and plot x(t)). Tp=0.1, and plotx(t)).
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1.6

—_
(=]

t= 0. 1= 0.
9l t=166 --- WHAN t= 166 ---
t=333 ----- N\ [=333 -----
8F t=1666 " 12L& (=16.66 -
L1 =200 — ) Y £=2000 ——
=« 6T e
e &
5 L
4 L
3 L
2 F 7
1 B""I 1
0 1 2 3 4 5 6 7 8 9 10 10
k k
FIG. 15. Time evolution ofw,(t), as defined by Eq59), for FIG. 17. Time evolution ofn,, defined by Eq.(60), for A

First let us concentrate o@(t). We show in Fig. 15 @  the parameter3.4(t) andA(t) from the data generated by
plot of w(t) as a function ofk for various values of, as  Egq. (60). The results fom,(t) are shown in Fig. 17. In Fig.
calculated from Eq(59), for A=7.3 andT,=2.5, which is 18 we extractrenormalizeddensities, defined byyen(t)
close to the critical temperature. We use these data to findn (t)/A(t). Notice thatn,(t) is very similar to a Bose-

mzx(t), wheremZ(t) is defined by Einstein distribution which starts out at a temperature of
Tef=Tg, increases in amplitude due to a temperature in-
_ 2 eff 0
wi(t) = VK +meq(t). (61)  crease, then falls back to a lower temperature, but larger
mass.

The values ofniﬁ(t) computed in this way are shown in Fig. In Fig. 19 we show the dependenceTof(t), defined by
16 and compared to the value gft). We see here that gq (62) and extracted from thiggloba) analysis, on the
self-energy corrections to the effective mass redu®® by  jnitial temperaturer,, for fixed A\ =7.3. In Fig. 20, we show
about 25-40 %. Additional calculations for different initial 4,4 dependence of .«(t) on the coupling constart for
temperatures show that the correction slowly decreases W”ﬁked initial temperateijre'l'ozo.l.

increasing initial temperature. o Next, we can use the renormalized density distribution
Now that we have an effective,, we can determine if ¢ nction, shown in Fig. 18, to obtain a momentum dependent

the particle number density(t) has a simple Bose-Einstein gective temperature functioh, ,.(t), defined by
form given by ’

A(t) Tk,rer(t):wk(t)/ln{ [nk,ren(t)""l]/[nk,rer(t)] } (63)
e (62)

e kD Te(V) — 1 We show these results in Fig. 21. We notice that for this case,
. . ) at short timesT, (t) has to readjust to the effects of the
with Teq(t) the effective(globa) temperature at time The o Gayssian corrections, but after a titrel0, it settles
factor A(t) comes from a wave function renormalization at yo\wn to a new temperature which is independent of the
each timet. We use a nonlinear fitting procedure to obtain .o mentumk. We take this as evidence that the two-point

n(t)=

55 '(t) T 2
x R t= 000 ——
30 m() 18 Fa, t= 166 ----
el t=333 -----
45 . LY t=1666 ***--*
. 1.4 B \\ t=20.00 ——
4.0 o 12 +
O
35 &R
08
3.0 R d 06 |
T e e RN -
. e 04 |
25 1
i 02t
20 1 1 1 1 1 1 1 1 0 L L 1 L L 1 N
0 2 4 6 8 10 12 14 16 18 0 1 2 3 4 5 6 7 8 9 10
t
FIG. 16. Time evolution ofy(t) andm?(t). as defined in Eq. FIG. 18. Time evolution of the renormalizeq, o, for A\=7.3
(61), for \=7.3 andT,=2.5. andT,=2.5.
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function has thermalized. Of course, this final temperature 45

agrees with the global temperature fit for late times. Note 40 %jﬁg -
also that we have substantial particle production here: after 35 MEd
an initial spike, the particle density number relaxes to an
equilibrium value. 30
g 25
VIll. CONCLUSIONS =20
In conclusion, we have shown that the BVA indeed leads b
to equilibration of the one- and two-point functions and thus Lo
remedies this deficiency of the Hartree approximation. The 05 |
nature of the phase transition changes from first to second 00 b—
order when going from Hartree to BVA which is the correct 0 2 4 6 & 10 12 14 16 18
behavior(as a function of coupling constanat zero tem- d

perature but is incorrect at higher temperature. However, rig 20. ForT,=0.1 we plot the time evolution of .4(t) for
such a phase transition at finite temperature is expected ifhrious values of the coupling constant
the 3+1 dimensional case that we are interested in modeling
in the future. The 2P+1/N approximation does not see this
phase transitioriwhich is not present in the exact thepry
and does not track the average of the Hartree result. In highgfhase transition mimicked what is known in-3 dimen-
dimensions, one expects the Hartree result for the order paions. Such a model was a four-Fermi modile Gross-
rameter to be correct on the average but not to have thReveu modelin 1+1 dimensions in leading order in large
property of equilibrating. So deciding which approximation N, which had a similar phase structure to two-flavor QCD.
is more physical will have to wait for a1 dimensional This model was then used as a testing ground for studying
simulation to see if both approximations show the expecteghe effect of first and second order phase transitions, with a
second order phase transition. critical point, and showed some qualitative differences be-
In the classical regime, where we could do an exactween the two types of transitionsee Ref.[37]). Once
Monte Carlo calculation, we found that the BVA works better again, the exact 41 dimensional model does not have a
than the 2P+1/N expansion in capturing the dynamics of phase transition. But this warm-up problem then allowed us
(¢(1)), but that the difference was not very great. In theto go to 2+1 dimensiong38], where it is known that the
quantum domain, however, these two approximations diteading order larg& approximation and the exact theory
verge at low temperature with the strength of the couplinghave similar phase diagrams, as verified by lattice simula-
constant, and the 2PIL/N approximation no longer tracks tions in 2+1 dimensiong39]. We submit that this is the way
the average of the results of the Hartree approximation. Sincghese 1 dimensional results should be understood: as a
we do not have exact calculations in the quantum regime, wenodel having certain properties when treated in this approxi-
cannot make any strong conclusions about this divergencemation and as a testing ground for codes which will then be
It is interesting to note that technical issues related to thgyeneralized to higher dimensions where it is expected the
nature of the phase transitions in-1 dimensions are not approximation will correspond to the known behavior. The
uncommon. There is a previous example of just this verymain purpose of the quantum simulations we present here is
type of reasoning being successful. In trying to understango get experience in getting codes working in lower dimen-
the QCD chiral phase transition at finite chemical potentiakions that qualitatively do what we expect to see in13
and temperature, it was important to have a model where thgimensions.

8 . y . 3.6 — :
Tg=0.1 —— A t=0.00 —
7L, Te=1.0 ------ i o t=1.66 ---
A Tg=2.5 - - -- 34 ) £=333 -----
6 Lo T0=4~0_"_' i o, v, t=16.66 - --
it so b LN £=2000 ——
B . F o) . L -~
Sret s | v \"' \ /I".\\
> Pog el H = PA IRV
NP s m e e o g £ s e
} 4 .'l,\\. ol 3 \\_'l. 'f"’ AN
3 i | AT A
[ W R | A LY i
e A R 28 ~ A ‘},\’;‘(’47
2 oL j
e e e et e e e e 26 e
Ly ot e s
0 1 1 1 1 1 1 1 1 2'4 1 1 1 1 1 1 1 1 1
0o 2 4 6 8 10 12 14 16 18 0o 1 2 3 4 5 6 7 8 9 10
t
FIG. 19. ForA=7.3 we plot the time evolution of «4(t) for FIG. 21. Time evolution of the temperatuig ,.(t) defined in
various initial temperatures,,. Eq. (63), for A=7.3 andT,=2.5.
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