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We calculate theCP-violating asymmetriesA(A%) and A(Z7) in nonleptonic hyperon decay within the
standard model using the framework of heavy-baryon chiral perturbation thg®V)( We identify those
terms that correspond to previous calculations and discover several errors in the existing literature. We present
a new result for the lowest-ordén yPT) contribution of the penguin operator to these asymmetries, as well
as an estimate for the uncertainty of our result that is based on the calculation of the leading nonanalytic
corrections.
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I. INTRODUCTION ar—a
Ay=AA)= 22
In nonleptonic hyperon decays such As-pw~, it is aptay
possible to search fa@P violation by comparing the angular -
distribution with that of the corresponding antihyperon decay . as—oag
[1]. The Fermilab experiment HyperCP is currently analyz- Az=A(E-)= P @

ing data searching fo€CP violation in such a decay.
The reaction of interest for HyperCP is the decay of %or the A and 5~ decays, respectively. The experimental

polarized A, with known polarizationw, into a proton observable is thef8,4] '

(whose polarization is not measujethd azr~ with momen- '

tumg. The i_nteresting observable is a correlation in the de- Asy=A,+As. 3)
cay distribution of the form B B
dr Approximate expressions have been obtained\pk in the
gg ~1tewaq (1)  case oflAl|=3% dominancg6], namely
The branching ratio for this mode is 63.9%, and the param- Ay=—tan 55— 53)sin( ¢p — p3),
eter « has been measured to e, =0.642[2]. The CP o o
violation in question involves a comparison of the parameter Az=—tan( 5 — 85)sin(¢p — ¢3). 4
a with the corresponding parameterfrom the reactionA

pat, Here, 55 (_62) is the strongSwave (P-wave) N1 scattering
To obtain polarizedA’s with known polarization, it is Phase shift at/s=M,, and 55 (57) is the strongSwave
necessary to study the double decay ch&n—A=~  (P-wave A scattering phase shift afs=Mz. Moreover,
—pm @ [3,4]. This eventually leads to the experimental #5'= (¢p'=) are theCP-violating weak phases induced by
observable being sensitive to tekemof CP violation in the  the|AS|=1, |Al|=3 interaction in theSwave (P wave) of

E decay andCP violation in the A decay. the A—p7m~ andE~—Aw~ decays, respectively.
In both reactions 2~ —A#x~ and A—pw, the final Experimentally, the current published limit i#\z,
state can be reached from the initial state jd|=% or  =0.012-0.014 from E7543], and the expected sensitivity

|Al| =2 transitions. It is known that due to the existence of aof HyperCP is 10* [4]. In addition, HyperCP has recently
strong |Al|=3% rule for nonleptonic hyperon decay, the obtained a preliminary measurement ék,=(—7+12
dominant contribution to theCP-violating asymmetries +6.2)x 10 * [8]. Previous estimates fdkz, indicated that
arises from interference between Swave and aP-wave it occurs at the few times I0 level within the standard
within the |[Al|=1} transition[5—7]. One can define theP-  model[6,7,9 and that it can be as large as £lbeyond the
violating asymmetries standard moddl6,10]. The larger asymmetries occur in mod-
els with an enhanced gluon-dipole operator that is parity
even and thus does not contribute to &igparameter in kaon

*Electronic address: jtandean@mail.physics.smu.edu decay. The 10° upper bound corresponds to the phenom-
"Present address. enological constraint from new contributions to thearam-
*Electronic address: valencia@iastate.edu eter in kaon mixing. This illustrates the relevance of the Hy-
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perCP measurement which complementsd¢hexperiments
in the study ofCP violation in |[AS|=1 transitions. Au=5 (f%fT o Mf)— +(9(<P3) (7)

The strongmN scattering phases needed in E4). have
been measured to h&}~6° and 55~ —1° with errors of  with further details given in Ref26]. In this LagrangianD,
about 1°[11]. In contrast, the strond = scattering phases F, C, and’H are free parameters, which can be determined
have not been measured. Modern calculations based on chfom hyperon semileptonic decays and from strong decays of
ral perturbation theory XPT) indicate that these phases arethe form T—B¢. Fitting tree-level formulas, one extracts
small, Wlth|5s| being at most 7{12—17. For our numeri- [23,24
cal estimates, we will allow th& 7~ phases to vary within the
range obtained at next-to-leading order in heavy-baryon chi- D=0.80, F=0.50, |C[=17, ®

ral perturbation theor{15]: whereasH is undetermined from this fit. From the nonrela-

_3.0°< 5§<+0.4o’ _3.5°< 5§$ 100 (5) tivistic quark models, one finds the relatiofb]

3F=2D, =-2D, =-3D, 9
One could choose to be less constrained and include the ¢ H ©)

larger 65 = —7° found in Ref[15], but this would only en-  which are well satisfied b, F, andC, suggesting the tree-
large the5S range and hence the uncertainty of the predictedevel value
asymmetry. In any case, eventually these phases can be ex-
tracted directly from the measurement of the decay distribu- H=-24. (10
tioninE—Aw[4, 18,19. Recently E756 has reported a pre-
liminary result of5~ 53 3.17°+5.45°[18].

In this paper, we estimate the weak phases that appear

In our numerical estimates, we use E(®.and (10) for the
leading-order results and the estimate of their uncertainty
fom one- loop contributions, withi and’ only appearing in

Ax aIndIA%_ W'th'fnttt:‘e stan;(jarg model. I_g Sde%. Il,hwe prgsentloop diagrams involving decouplet baryons. As another esti-
a calcuiation of the weak phases guided by heavy-Daryof,aie of the uncertainty in these results, we will evaluate the
chiral perturbation theory in terms of three unknown weak

. effect of varyingD and F between their tree-level values
counterterms. In Sec. lll, we estimate the value of these /. -4 1 air one-loop values to be given later
counterterms by considering contributions that arise from the '

At next-to-leading order, the strong Lagrangian contains a
factorization of the penguin operator and also nom‘actonzgreater number of ?ern[éZ?] The on(gs ofgmte?est here are
able contributions estimated in the MIT bag model. Sectio

"those that explicitly break chiral symmetry, containing one
IV contains the resulting weak phases a@é-violating Plcity y Y. 9

tries. Finallv. in Sec. V. its t ower of the quark-mass matri = diag(0,0m). For our
asymmetries. Finafly, In Sec. v, We compare our results Q.. ation of the factorization of the penguin operator, we
those of previous work and present our conclusions. Fo

o ; Will need these terms in the form
completeness, we also provide in an appendix the results for

the corresponding asymmetries3n— N7 decays. N bp — br —
LO=312(x )+ 2—BO<BU{X+ B, 1)+ Z—BO<BU[X+ B,1)
Il. CHIRAL PERTURBATION THEORY

The chiral Lagrangian that describes the interactions of + %{XJr)(BUBU)Jr %T;‘)”TW
the lowest-lying mesons and baryons is written down in 0 0
terms of the lightest meson-octet, baryon-octet, and baryon- Co _
decouplet field§20—23. The meson and baryon octets are - ﬁ()(Jr)TQ‘TW, (12)
collected into 33 matricese and B, respectively, and the
decouplet fields are represented by the Rarita-Schwinger tefyhere we have used the notatiqn = &' y&T+ éx'é to in-
sor T4y, Which is completely symmetric in its $8) indices  troduce coupling to externalpseudascalar sourcesy=s
(a,b,c). The octet mesons enter through the exponeittial +ip, such that in the absence of the external sourges
= {?=exp(¢/f), wheref is the pion-decay constant. reduces to the mass matrix=2B,M. As will be discussed

In the heavy-baryon formalisfi23,24, the baryons in the in the next section, we also need from the meson sector the
chiral Lagrangian are described by velocity-dependent fieldszext-to-leading-order Lagrangian

B, and T/}. For the strong interactions, the leading-order
Lagrangian is given by23—25 LO=Lg(0"279, 3 x )+, (12)

5(51): %fz(r?"ETc?ME>+<§,,iv~DBv>+ 2D<§u55{v4# B, 1) where only the relevant term is explicitly shown. In E¢kl)
and (12), the constant®q, bp ro, C, Co, andLs are free

+2F(B,S[A, B, 1)~ T¢v DT, ,+AmT*T,, parameters to be fixed from data.
o . . As is well known, the weak interactions responsible for
+C(THA,B,+B, AT +2HTLS, - AT, ,, (6)  hyperon nonleptonic decays are described byA&|=

Hamiltonian that transforms as (8g)®(27.,1g) under
where(- - -} denotes Tr(- -) in flavor-SU3) spaceS, isthe  SU(3) X SU(3)g rotations. It is also known from experi-
spin operator, and ment that the octet term dominates the 27-plet term, as indi-
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cated by the fact that the\l|=3 components of the decay
amplitudes are larger than th&l|=3 components by about

twenty times[26,28. We shall, therefore, assume in what — &—— 0—e —C
follows that the decays are completely characterized by the  (a) (b)

(8.,1g), |Al|=3 interactions. The leading-order chiral La-

grangian for such interactions i80,29 FIG. 1. Leading-order diagrams f¢a) Swave and(b) P-wave

hyperon nonleptonic decays. In all figures, a sdlithshed line
_ R set R ret Tt denotes a baryon-octéineson-octetfield, and a solid dothollow
Lu=No(B,{£'¢,B, 1) he(B,[£T0E,B, 1) TheT, ¢heT,, square represgnts a setTon(qveaIQ \e/ertex, with the strong; vertices
+ y8f2<héx”20')#«21'>+ H.c., (13)  being generated by ") in Eq. (6). Here the weak vertices come
from thehp ¢ terms in Eq.(13).
whereh is a 3x 3 matrix with element$;; = 5;,63;, and the
parametershp ¢ and yg contain the weak phases to be With the Lagrangians given above, one can derive the am-
discussed below. plitudes at leading order, represented by the diagrams in Fig.
The weak Lagrangian in E@13) is thus the leading-order 1. Figure 1a) indicates that the&S wave is directly obtained
(in xPT) realization of the effectiveA S|=1 Hamiltonian in ~ from a weak vertex provided by E¢L3). The leading con-
the standard mod¢B0], tribution to theP wave arises from baryon-pole diagrams, as

. in Fig. 1(b), which each involve a weak vertex from 3.3
1

G, and a strong vertex from Ed6). Thus the leading-order
HWZEVuqusizl CiQi+H., (14  results for amplitudes not related by isospin E28,29
where G is the Fermi coupling constany/,, are the ele- a(AS) —Ii(ho+3hp), a(:S),A —Zi(ho—3hp),
ments of the Cabibbo-Kobayashi-MaskaW@KM) matrix NG =Am e
[31], (203
_ _ Vrdvts a(Eslnfrr*:O’ a(Esznrr*: —hp+he,
Ci=zt+ryi=z— — Vi (15
udrus @ _ 2D(hp—hg) (D+F)(hp+3he)
are the Wilson coefficients, ar@; are four-quark operators A V6(ms —my) J6(my, —my)
whose expressions can be found in H&0]. Later on, we
will expressVy, in the Wolfenstein parametrizatidi32]. It ® _ —2D(hp+hp) (D—F)(hp—3hg)
follows that ag’,, = — ,
V6(mz—my) VB(mz—m,)
V:dvus: A, V:(dvts: - )\5A2(1_P+i 7) (16) . (20b)
—D(hp—hg) 3D(hp+3hg)
at lowest order in\. For our numerical estimates, the rel- a(gpjn,#: Ms — My T ma—my
evant parameters that we will employ 4&8|
1
A=0.2219, A=0.832, 7=0.339. (17) AP —F(hp—hg) 3D(hp+3h)
2T my—my my—my

In the next section, we match the penguin oper@lgin the

short-distance Hamiltonian of E¢L4) with the correspond- The leading nonanalytic contributions to the amplitudes arise

ing Lagrangian parameters in Ed.3). from one-loop diagrams, witine only appearing in those
We now have all the ingredients necessary to calculate thi@volving decouplet baryons. These contributions have been

weak decay amplitudes in terms of the four parametersalculated by various author0,29,34,3% and we will

hp .c and yg (only the first two are needed at leading or- adopt the results of Ref35] for the numerical estimate of

den. In the heavy-baryon formalism, the amplitude for theour uncertainty.

weak decay of a spig-baryonB into another spirk baryon In Fig. 2, we show the kaon-pole diagram to be discussed
B’ and a pseudoscalar mesgnhas the general forf29] later on. In this diagram, there is a strong vertex from (B.
iMBHB’¢:_i<B,¢|£W+s|B> T
=g (A5 ,+2S, ppAly Jug,  (18) o

1
1

where the superscripts refer to tie and P-wave compo- :K )
. °

nents of the amplitude. To express our results, we also adopt B B

the notation{29] FIG. 2. Kaon-pole diagram contributing tB-wave hyperon

(SP) _ (SP) nonleptonic decays. The weak vertex here comes fromyghierm
Agpr = \/EfABB;¢ (19 in Eq. (13).
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TABLE |. Experimental values fos andP-wave amplitudes, in
units of Gem? ..

Decay mode s p
A—pm~ 1.42+0.01 0.52£0.01
E-—Am” —1.98-0.01 0.48-0.02
Stonn’ 0.06+0.01 1.8 0.01
St spmd —1.43+0.05 1.17#0.06
St—nm” 1.88+0.01 —0.06+0.01

followed by a kaon pole and a weak vertex from tpgeterm
in Eq. (13). Notice that this term is not only subleading in the
chiral expansion, but also suppressed bynaﬁ;lmﬁ factor
(and hence vanishing in the,=my=0 limit).

Once the values of the weak coupliniys - are specified,
the formulas in Eq(20) determine the leading-order ampli-
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lIl. ESTIMATE OF COUNTERTERMS

Our task in this section is to match the dominaat |
=1 CP-violating term from the standard-model effective
weak Hamiltonian in Eq(14) to the weak chiral Lagrangian
in Eq. (13). That is, to compute the imaginary part of the
parameter$y, hg, he, andyg that is induced by INCgQg
in Eqg. (14). To do this, we will include both factorizable
contributions, that arise from regarding the operadgras
the product of twdpseudgscalar densities, and dire@ton-
factorizable contributions calculated in the MIT bag model.

The nonfactorizable contributions are easily obtained
from the observation that the weak chiral Lagrangian of Eq.
(13) is responsible for nondiagonal “weak mass terms” such
as

tudes. It is well known that this representation does not pro-

vide a good fit to the measuréddwave amplitudes, and that
higher-order terms are importa#0,22,29,34—-3p The pro-

cedure that we adopt for estimating the weak phases is to

obtain the real part of the amplitudes from experimes-
suming noCP violation) and to use Eq(20) to estimate the
imaginary parts. The dominar@P-violating phases in the
|Al|=3 sector of thd AS|=1 weak interaction occur in the
Wilson coefficientCg associated with the penguin operator
Qs. Our strategy will be to calculate within a model the
imaginary part of the couplingbp g ¢ and yg induced by
Qs. As a numerical result, we propose a central value fro
leading-orderyPT [Eq. (20)] and an estimate of the error

from the nonanalytic corrections obtained with the expres-

sions given in Ref[35].

hp+3he—
<n|(Hw)8|A>:TunuAv
hp—3hg—
(Al =)= == uruz, @3
e o —he—
(E* 7 |(Hyw)g| Q2 )=fu5*~u9,

where the subscript 8 denotes the componentgf that
transforms as (81g). These terms can be computed directly

rT{rom the short-distance Hamiltonian in Ed.4) by calculat-

Ing in the MIT bag model the baryon-baryon matrix elements
of the four-quark operators. From the basic results in Appen-
dix A, one finds theQg contributions

To end this section, for later use we collect in Table | the

experimental values of th& and P-wave amplitudes of in-
terest, reproduced from RéB5]. The numbers are extracted
(neglecting strong and weak phasé®m the measured de-
cay widthI" and decay parameter by means of the rela-
tions

r— [

_2Res*p)
N 47TmB

a= .
|sl*+1p|*
(21)

(Eg/+mg/)(|s|?+]p|?),

Thles andp amplitudes are related to those in E§8) above
by

s=A®, p=|ps/]AP). (22)

lIn Refs.[29,35, the p expression has the opposite sign=
—|pg/| AP, but this turns out to be inconsistent with the amplitude
formula from which bothl" and « are derived. Nevertheless, the
sign flip does not affect the conclusions of R¢f9,35, as the fits
therein were performed to ttfwaves and th® waves were poorly
reproduced regardless of the signpof

ho=oF ¢ (3a—5b), h GF)\C( + 1)

= — a— s = — a = s

D \/5 6 F \/E 6 3
h —GFAC( 12a+4b) (24)
C /—2 6 ’

wherea andb are bag parameters whose values are given in
Eq. (A11) for hp ¢ and in Eq.(A12) for hc. Numerically,

the imaginary part of Cg then vyields, in units of

V2f ,,Gem>  \5AZ7,

Ith:0.27g/6, Imthl.OWG, Ith:_S.lws,
(25)

wheref .=92.4 MeV has been used. The units are chosen to
separate both the conventional normalization for the hyperon
decay amplitudes, as in EGL9) and Table I, and the relevant
combination of CKM parameters occurring in the observ-
ablesA, =.

To obtain the factorizable contributions to the imaginary
part of the parameteits, ¢, we follow the procedure used
in kaon physics foryg [37]. As shown in Appendix B, the
lowest-order chiral realization of a factoriz€, contributes
to the weak Lagrangian in E413) with
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G, G\,
hD:fSCGf BObD y hF: ﬁSCGf BObF y
G\, Ge) ,
hC=W8C6f Boc, Ys= ﬁlﬁC6BOL5' (26)

The values oby, bg, andc can be determined by fitting the

mass formulas derived from the Lagrangian in Ed), with

PHYSICAL REVIEW D 67, 056001 (2003

to the mismatch between the predicted and the measured
ratio p/s.

On the other hand, if there are two operators in the short-
distance weak Hamiltonian, and one of them is mostly re-
sponsible for the real part of the amplitudes while the other
one is mostly responsible for the weak phases, the procedure
above does not introduce spurious phases. Of course, the
predictions obtained are reliable only to the extent that the
model reproduces the true imaginary part of the amplitudes.

y=2B,M, to the measured masses of the octet and decou- In view of all this, we adopt the following prescription to

plet baryond2]. Thus we find
bpms=0.0301 GeV, bpm;=—0.0948 GeV,

cm;=0.221 GeV (27

for my=my=0. In this limit, the Lagrangian in Eq11) also
gives mﬁ= Boms. Using mg=mg(u=m;) =170 MeV from
Ref.[30], we then have

bp=0.177, bp=-0.558, c=1.30, By=1.45GeV.

(28)

For Ls, we adopt the valuds=1.4x10 2 found in Ref.
[38]. Settingf =f_,=92.4 MeV, we then obtain th@g con-
tributions, in units ofy2f ,Ggm? . P\ 5A2,

Im hp = 4.86ys,

Imhg=—15.3/5, Imhc=235.6y,

Im yg Bo=18.8/sB{?, (29)

obtain the weak phases. We first assume that the real part of
the weak decay amplitudes originates predominantly in the
tree-level operatorQ; ,. This is true in the bag model, for
example, as can be seen from the results in Appendix A. We
then assume that the imaginary part of the amplitudes is
primarily due to the INCzQg term in the weak Hamiltonian.
This is true both in the bag model and in the vacuum-
saturation model of Ref.7], and is due to the pureljAl|
=3 nature of theCP observable#\, = . With these assump-
tions, we calculate a central value for the imaginary part of
the weak decay amplitudes using E80) with values for
Imhp ¢ obtained in the previous section by adding the fac-
torizable and nonfactorizable contributions. We estimate the
uncertainty in this prediction by computing the leading
nonanalytic corrections with our values for hp ¢ ¢ 2

In order to compare with older results in the literature, we
have calculated two additional terms, both proportional to
vs, in which theCP-violating weak transition occurs in the
meson sector. The tree-level kaon-pole contribution toRthe
waves will be shown in one of our tables because this is in
fact the dominant contribution to the commonly quoted re-

where the formula withyg is the usual one appearing in the sult of Donoghue, He, and Pakvdsd, as we discuss below.
calculation ofe’ in kaon decay, and we have introduced theThe one-loop nonanalytic contribution proportionahtpoc-
standard parametd{’? to encode deviations from factor- curs at ordemp® in the chiral expansion. It is related to the

ization[30], so that hereB{"?=1.

IV. NUMERICAL RESULTS

model employed by Igbal and Miller in Ref9], and we
include it here to comment on that result.

For our numerical calculations, we use the leading-order
(in QCD) Wilson coefficients aju=m.=1.3 GeV listed in

If Eq. (20) provided a good fit to the hyperon decay am- Table XIX of Ref.[30]. In particular,

plitudes, it would be straightforward to calculate the weak
phases of Eq(4). We would simply divide the imaginary
part of the amplitudes by the real part of the amplitudes
obtained from a matching of the parametérse to the  corresponding to\ 2=325 MeV. This is one of the middle
short-distance Hamiltonian. However, as we mentioned beyajyes of y, in this table, which vary from—0.063 to
fore, leading-order chiral perturbation theory fails to repro-
duce simultaneously th& and P-wave amplitudes. Conse-
qguently, we are forced to employ the real part of the
amp“tl.JdeS that are.eXtr.aCted from experiment under the aS2rhis prescription of taking the leading nonanalytic contributions
sumption of noCP violation.

An additional problem occurs if we calculate the imagi-

nary part of the amplitudes from a matching of thé weak \yeak parameters determined from fitting simultaneouslySta@ve
Hamiltonian tohp ¢ and then divide it by thexperimental  amplitudes in Eq(20a and the leading-ordeP-wave amplitudes
amplitudes, as this introduces spurious phase differencegr 0 — AK,= 7 provided by Ref[29] to the measured amplitudes.
This can be easily understood by considering the case whengus, h,=0.49, he=1.18, and hc=1.15, all in units of
only one operator occurs in the short-distance weak Hamil;2f_G.m?.. writing the resulting amplitudes as treéop, and
tonian. In such a case, it is clear that there can beCRO  excluding ys terms, we haves, ,,-=1.25-2.28, sz, =
violation, as there is only one weak phase in the problem-1.65-2.96, p, .,, =0.49£0.92, and pz- ., =-0.16
However, if we use the procedure outlined above to calculate-2.21, all in units ofGFmi+. Clearly the corresponding data in
the phase differencggs— ¢, we obtain a nonzero result due Table | are well within these ranges.

ys=—0.096, (30)

—0.120, depending on the value A% and on the renor-

as the uncertainty in the lowest-order amplitudes works remarkably
well for the real part of the amplitudes. To show this, we use the
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TABLE II.. Ratios of the imaginary part of the .theoreticgl value my —my=2(bp—bg)mg, my—my=—35(bp+3bg)mg,
to the experimental value, f@& and P-wave amplitudes, with the

weak couplings fromQg contribution only, estimated in the bag M= —ms =—2(bp+bp)m mz—m, =2(bp—3bg)m
=1 - D F/ sy =) A~ 3\MD F) s,

model. The ratios are in units afA5A2. (39)
IMSyee  IMSipgp 1M Pree 1M Progp derived from Eq(11), lead to simplified expressions for the
Decay mode Sexpt Sexpt Pexpt Pexpt leading-order amplitudes arising from tl@@; contribution,
- namely,
A—pm —0.09 —0.09 —0.15 0.28
BET—Aw —0.06 —0.06 0.14 —0.26 G\ 4Cf2B
a(APp)W—= F 6 0(—D—3F),
V2 \em,
malization scheme. In the rest of this section, we numerically
evaluate the weak phases in theand 2~ decays, rele- G\ 4Cf2B
gating the corresponding evaluation for tle decays to P TS P00 pi3F
H E-Aw ( )!
Appendix C. V2 Jemg

The nonfactorizable contributions froQg to the weak
parameters are given by the bag-model results in(E). o o Ge\ 4C4f2B,
The resultings and p amplitudes are collected in Table II, a(EQnW+=O, a(y)nf: = . (PR
divided by the experimental amplitudes of Table I. For the V2 S
factorizable contributions, the parameters are given in Eq.
(29) and the corresponding amplitudes are listed in Table IlI.
In calculating the imaginary parts in these tables, we emplo
the yg value in Eq.(30), as well as the strong couplind@®

(33

here the -decay amplitudes have been included to be used
n Appendix C. Consequently, we only need the one-loop
~08,F=0.5, |C|=1.7, andH=—2.4. The loop contribu- values ofD andF. A one-loop fit to the semileptonic hyperon

tions are computed using the results of H86] at a renor- decays yield$25]
malization scale of 1 GeV withp=f ., and serve as an error _ _
estimate of the prediction given by the tree contributions. In D=0.61, F=040. (34
Table IIl, we have separated out the terms containing/dm
In the P waves, theyg contributions also occur at next-to-
leading tree-level order, arising from the kaon-pole diagra
in Fig. 2.
. —0.64<bp<+0.18, —0.56<bg<-0.19,

In Table 1V, we combine the weak phases from the pre- b F
ceding two tables, keeping only the leading-order and loop
contributions (excluding yg termg. We also show in this
table another error estimaté¢, obtained from the leading- i tree :
order amplitudes, but allowing the parameters to vary belVe [@ke d¢sp to be the largest deviation frombsp (in
tween their tree-level and one-loop values. In making thidactorization allowed by these ranges.
estimate, we use only the factorization amplitudes, as they From the numbers in Table IV, we may conclude that the

are much larger than the bag-model contributions, as seen H1certainties of¢s and ¢p are of order 100% and 50%,
the previous two tables. Thus, for tSavave amplitudes, we respectively, for both decays. This is reflected in our predic-

need the one-loop values of the parame _Emplovin tion for the phases, which are collected in Table V along with
P P beys poying the resulting phase differences. The errors for the differences

Egg],ovr\]/g :c?n%p formulas for baryon masses derived in Refhave been obtained simply by adding the individual errors.
We have also collected strong-phase differences in the table,
bp=—0.636, br=-0.192. (31) from the numbers given in the Introduction. The errors we
quote in this table are obviously not Gaussian. They simply
For theP waves, we note that the factorization parameters irindicate the allowed ranges within our prescription to calcu-
Eq. (26) and the tree-level mass formulas late the phases.

Using these results, together with their tree-level counter-
mparts in Eqs(8) and (28), we write the ranges

0.61=D=0.80, 0.46=F=0.50. (35

TABLE lIl. Ratios of the imaginary part of the theoretical value to the experimental values-fand
P-wave amplitudes, with the weak couplings fr@g contribution only, estimated in factorization. The ratios
are in units ofy\5A2.

IM Siree Im Sioop Im Sl(gc?; IM Piree Im pfrlse) Im Pioop Im pf;f;

Decay mode Sexpt Sexpt Sexpt Pexpt Pexpt Pexpt Pexpt
A—pm™ 1.13 1.05 0.35 1.33 0.04 —-0.27 0.61
2T AT 1.00 1.10 0.56 —0.66 —-0.02 0.59 —0.28
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TABLE IV. Weak S and P-wave phases fronQg contribution  Eq. (27), obtained from a first-order fit to the baryon-octet
alone, in units ofp\°A2. masses with Eq(11), whereas Refl40] calculates a baryon
[Em——— R —— o overlap in the MIT _bag model that is equivalent to using
Decay mode ¢g bs os 3 bp o¢p brmg=—43 MeV, with mg=170 MeV.

Aopr 104 096 -083 118 001 —030 A sr—;cond difference in th&wave phasefless important
= . An 094 104 —104 -052 033 027 numerically occurs because we ubg~ —0.3h¢, as can be
seen from Eq926) and(28), whereas the results of R¢f0]
used in Ref[6] correspond td,=0.

Putting together these results, we finally obtain Our most important difference occurs in tRevaves. Our

factorization results from leading-ordeyPT calculations
A(A?):AA:(O.OSt 0.25A2\%7, arise from the baryon poles. In contrast, the results of Ref.
[40] for the baryon poles appear to include only the nonfac-

A(EZ)=A==(—-0.05% 0.13A%\%y, (36) torizable contributions, and thel® waves are instead domi-

) nated by the kaon pole, as in Fig. 2. This kaon pole is not
leading to included in our calculation because it occurs at next-to-
Azy=Ay+Az=(—0.02+0.39 A5, 37) leading order inyPT and, moreover, it is further suppressed

by a factor ofm?/m2 because the piofand not the kaonis
With the CKM parameter values given in E4.7), we have ~ on-shell.

A%\57=1.26<10"* and therefore We hav_e calculf_;\t_ed this _kaon-pole contribut(atth(_)ugh
we do not include it in our final resujtand present it in the
—-3%x107°<A,<4x107° —2X 10*5sA5s1><10(’5,) sixth column of our Table IIl under the heading “Ipy’® .”
38

It can be seen from this table that the kaon pole is indeed
negligible compared to the baryon poles. Studying the calcu-
lation of Ref.[40], we believe that their large result for the
kaon pole is incorrect. The specific error arises in the evalu-
V. DISCUSSION ation of the kaon-pion weak transition in the bag model. We
éhow some details in the last part of Appendix A. It is useful

We start by comparing our results to those that can b his i in the | d d byethit
found in the literature. The result most frequently quoted isEgo(jaStt Is Issue In the language adopted byethiterature

that of Donoghue, He, and Pakvd€d given in their Table
Il,

—5X10 °<Az,<5x107°. (39

2
My

mg( ) +mg(p)

2
} (fx—f,)BE,
(41)

3
A(A%)=-5%x10"% A(E")=-7x105 (40 <Qe>o=—4\[§

This result was computed using the matrix elements obtained
33/ Donoghue, Golowich, Ronce, an_d Holstgi0)]. Re_cast in where(Qg)o=(mm,1=0|Qq|K). In our estimate, we use a
e language of our previous sections, Rdf] estimated di h LUBWD—1 f f o
Imhp ¢ and Imyg as the sum of direct and factorizable con- s corresponding to the vaiuBe == 1 from actquzatlon.
tributions in the same way we have done in this paper. Thgz()lrlz)comparlson, current lattice estimates are in the_ range
direct (nonfactorizablg contributions were calculated in the Bs — 1*1 [4&;2’) whereas the calculation of Ref40] is
MIT bag model, and we agree with their results up to nu-equivalent toBg™*=35. _
merical inputs. The factorizable contributions in ] are Despite this disagreement, the numerical value for the
the ones they attribute to the quantit’ .” We disagree ~P-Wave phases based on the results of Réd] is similar to
with the calculation of these factorizable terms in ép] ~ OUrs- This agreement is fortuitous and occurs because the
in several important ways. factorlz_able contribution to the baryon poles_ls roughly equal
For theS waves, we obtain a factorizable contribution to 0 35 times the kaon pole, as can be seen in Table Il1.
he approximately 4 times larger than that of RE£0]. This In view of t_he above, the resulting numer]cal differences
can be traced mainly to a difference in two factors. First, for?ccUr mostly in theSwave phases, ours being larger than
the chiral condensate we use{0|ad|0>=—f28 _ those fqund in R_ef[6]. This in tugn impacts mainly the
. — w0 phase difference in thd case, aspsp now tend to cancel
—0.012 GeV, instead of(0|dd|0)= —0.007 GeV used in  each other. In contrast, the corresponding phase difference
Ref.[40]. Second, we employ the valbems=—95 MeVin  cajcylated using the results of RE40] is much larger(by a
factor of 5, being dominated by thB-wave phase. In thg
case, the two weak phases have opposite signs, and so their
difference is not suppressed, but instead it is now enhanced
(by a factor of 3 with respect to that based on Rp40]. All
Decay mode  ¢s e $s~ de 95~ % these differences lead to the central values in B6), in
A—pm~ 1.0£1.0 1.2c06 —0.2+16 7°x2° comparison to the results of Rg6] in Eq. (40). An addi-
25 A7 09+09 -—-05+03 1.4+1.2 1.1°+2.8° tional problem with the numbers in E@40) is that they
follow from outdated numerical input for the CKM matrix

TABLE V. Weak phases in units oh\°A2, and strong-phase
differences,fs— dp .
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elements(and also from the use of the large old valdg APPENDIX A: BAG-MODEL PARAMETERS

~—18° for the= decay[42_]). . In this appendix, we summarize the derivation of the for-
Next we turn our attention to the vacuum-saturation cal-

culation of Ref[7]. Our results in Tables Il and Il indicate mulas in Bq/(24), which describe the nonfactorizable contri-

o R, butions to the weak parametdr, , estimated in the MIT
that the factorization contribution is significantly larger than P B.F.c

. S ‘“"bag modeP We also provide the numerical values of the
the direct contribution to th&- andP-wave phases.. For this arameters andb in these formulas. Lastly, we evaluate the
reason, we would expect our results to agree with those

. . i . . n-pion matrix element of the leadin nguin rator in
Ref. [7] in which the direct contributions are ignored. We aon-pion matrix element of the leading penguin operato

) i the bag model.

find th‘.'"t we agree with the Vall.Je of tl&.‘GN{:\ve phases up to Assuming a valence-quark model of baryons, using the
numerical mput,_but that we dls_agree with the value of thetotally antisymmetric nature of their color wave functions
P-wave phases in Ref7]. This disagreement is easy to un-

derstand. OuP-wave phases are dominated by the baryon—and the relation$30]

pole contribution, whereas in Ref7] only the kaon-pole Q,=—0Q;+0Q,+Qs, Qo=320Q,-1Qs, (A1)
contribution is included. The vacuum-saturation calculation
of the kaon pole, corresponding BE/?=1, is a significant one finds, for baryon8 andB’,
underestimate for th®-wave phases as seen in Table llI, , , , ,
where the kaon pole corresponds to the column labeled (B'|Qu[B)=—(B'|Q2[B)=(B'[Qs[B)=(B'[Qq|B)
“Im pid = ~(B'|QudB),

To summarize then, the bag-model calculation of Ref.
[40] significantly overestimates the contribution of the kaon (B'|Q3+Q.4|B)=(B’|Qs+ Qg/B)=(B’|Q;+ Qg/B)=0.
pole to theP waves and apparently misses the important (A2

factorization contribution of the baryon poles, although acci- ,
dentally results inP-wave phases numerically similar to Therefore, only(B'|Q, 54B) need to be evaluated. For the

ours. Furthermore, it underestimates Sievaves and there- parity-conservifr;g parts oR, 57 we derive the bag-model
fore yields an asymmetry dominated by tRevave phase. Malrix elemen

The vacuum-saturation calculation of R¢¥] misses the _ _ _

dominant baryon-pole contribution to tiewave phases and (n[Q4|A)=(n[Qs[A)=~2(n|Q7[A) V6(a+b),
results in an asymmetry dominated by the phase ofShe =0\ _

wave. In our complete calculation at leading orderyiAT, (AlQuIZ) 2\/5(a+b),

the phases of th€ and P waves are comparable, and in the 8./6b
A case this leads to a smaller central value for the predicted <A|Q5|E°>= - 2<A|Q7|E°)= — (A3)
asymmetry(the two phases tend to cankel 3
It is difficult to place the calculation of Ref9] in our e _
framework due to significant technical differences in the (E*7[Qia7)=0,

evaluation of loop integrals. Nevertheless, there is a rough _ _ o _ 1
correspondence between that calculation forSieaves and (E*71Qs|7)=—2(E*"|Q/0Q7)= ~4\3(a-3b),

H “ (‘}/8) ” : J—
the terms in Table II_I labeled Ir’s,oop. In Qurﬂnal results, Up to factors ofug s, wherea and b will be described
such terms appear in the quoted uncertainty because they ARortly. From these results and E&3), we then obtain

part of the subleading amplitudes that cannot be calculated

completely at present. Ge\
In conclusion, we have presented a complete calculation hy+3hg=—(C;—C,+C3—C,+ Cg—Cyo+Cs5—Cs
of the weak phases in nonleptonic hyperon decay at leading V2

order in heavy-baryon chiral perturbation theory. We have 1 1
: L . i —5Cy+3 —a—
estimated the uncertainty in our calculation by computing the 2C7+2Ce)6(—a-b), (Ad)
leading nonanalytic corrections. We have compared our re- Gon
sults with those in the literature, pointing out several errors y 3 = """ (C,— C,+ Cs—C,+ Co— Cyo)12a+b)

in previous calculations. To improve upon the results pre- ° J2
sented in this paper, it will be necessary to have a better N N
understanding of th® waves in nonleptonic hyperon decay. +(Cs5—Ce—2C7+3Cg)160], (A5)
ACKNOWLEDGMENTS 3An introductory treatment of the bag model can be found in Ref.
[22].
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G\ Finally, we evaluate theK-to-7 transition in the bag
hc=—=(Cs—Cg—3C,+3Cq)(12a—4b). (A6)  model, which occurs in the kaon-pole result of R], as

V2 discussed in our Sec. V. The matching of the dominant
|Al|=3% part of the weak Hamiltonian in Eq14) to the
weak chiral Lagrangian in Eq13) involves in this case

(7 (P (Hu)glK ™ (p))=—2ygp>. (A13)

Concentrating on th@¢ contribution alone, we find the bag-
model matrix element

R
b=87-rf0 dr r2U?(r)L2(r), (A7) (7 |QglK )= — 12(a+b) JAE_Ey, (A14)

The values ofa andb are found from the wave function
overlap integrals

R
a=4wf dr r2(U4(r)+L4r)),
0

whereR is the bag radius, and andL are the radial func- Wwhere the factorn/4EEy arises from the normalization of

tions contained in the spatial wave functions the bag states for the mesof22,4Q. From the preceding
two equations, we obtain th@g contribution

z/f(X)_( iU(r)x Je(x)= —iL(r)U-FinX )
TV —Lme i) T uMioyx _YsP” SR gath) (A15)
VAaE_E. 2 ° '

of a quarkq and an antiquark], respectively, withy beinga  To determine the values @f andb in this equation, we use
two-component spinor ana; the Pauli matrices. Explicity, R=3.3 GeV'!, after Ref.[40], and again sem=0 for all
U(r) andL(r) are given in terms of spherical Bessel func- quark flavors. It follows that here
tions by[22]

a=4.87x10 3Ge\®, b=2.23x10 3Ge\’.

u(r) N (pr/R), L(r) N (pr/R) A0
= T7—=lo ; = €1 ;
v4mTR v4mR At this stage(in their equivalent calculation Ref. [40] pro-
(A9)  ceeds by setting?=m?2 and 4 ,E=2m2. As a conse-
where quence,
Gp\ V2B,m
p° P sy | _5F VeBoMk _
_ , = Jo?—m?RZ, m ygBo= ImCgb6(a+b) =638¢
V(2w?—2w+mR)sir’p P V2 m2
(A17)
wo—MmR . . 2 5A2 . .
e=\/———, (A10) in units of V2f_Ggm>. 7\°A?, with the B, value in Eq.
w+mR m

(28). Comparing this result with Eq29) then indicates that
with w being determined from tam=p/(1— w—mR) andm  the bag-model calculation of Ref40] yields B{M2~ 35,
the quark mass in the bag. Numerically, following Refs.Which is unacceptably large.

[40,43, we takeR=5.0 GeV ! for octet baryons andR

=5.4 GeV ! for decouplet baryons. Since the weak param-APPENDIX B: WEAK PARAMETERS IN FACTORIZATION
etershp £ ¢ belong to a Lagrangian which respects (SJU
symmetry[ £, in Eqg. (13)], in writing Egs. (A3) and (A7)
we have employed SB8)-symmetric kinematics. Specifi-
cally, we takem=0 for all quark flavors. Thus, we find for

To derive the factorizable contributions to the imaginary
part of the parametets, ¢ ¢, we start from the observation
that the quark-mass terms in the QCD Lagrangian can be

octet baryons written as
= 3 = -3 -1 — _
a=1.40x10"° Ge\®, b=0.64x10 Ge\ﬁ,(All) £m=2—BO(quqR+qu*qL), (B1)
and for decouplet baryons where g, =3(1—1vy5)q and qr=3(1+1vys5)g, with q

=(ud 9T It follows that
a=1.11x10"2 Ge\®, b=0.51x10"° Ge\l. ( )

2 i 0kr= 2B OLm Qirdi = 2B OLm (B2)
qiLdkr S AirAkL 05er .
SWe note that in the S(3)-symmetric limit the bag parameters ) o) -
above are related to the parametdrsand B of Ref. [40] by A Then, usingZ % in Egs.(11) and(12), we have the corre-
=4x(a—b)R¥N* andB=8mwbR}/N*. spondences
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— 0, Qe bp(£TBBET+ £1BBEN) + be(¢TBBET Gp\ Gp\
qIquR_ p(§'BBE i 3 k_l F(§'BBE he= \/FE 8CI2ByC,  yg= \/FE 16CB2Ls.
—&EBBEN g+ o2 (BB) +C(T) apctdiéka( Ta) dab
—CoS I ToT,+ 312Bo3 f + 2BoLs(#2 19,531 APPENDIX C: CP-VIOLATING ASYMMETRIES
. 83 IN 3—N# DECAYS

_ _ - The Swave amplitudes i, — N7 can be expressed in
—QirAkL = bp(EBBE+ EBBE) + br(EBBE— EBBE)y terms of their componen®;,| 2 , Where thd in the second
— — — subscript denotes the isospin of tNer state. Thus we hafe
+ 02 (BB) +¢(TY) apcbeibkd( Ta) dab— CoZ T T

+ 7B+ 2BoLs(S 519, 3 )+-+, (B4) Sx+ = 3(28 8%t Sy i+ 1(S 00
where the ellipses denote additional terms fr6ffY that do 2425, 495l %,
not affect our result. Consequently, for the penguin operator
_ _ 1 s s .S \/5 s
Qs=—2 2 d(1+7y509q(l—1ys)s Sy + . pn0= —=(2S;,€'%11+ Sye'31)€'%1— — (S ' %1
g=u,d,s 3\/5 3
. o _ 2 ~¢S -55
=—8 >, d.grdrSL. (B5) 2\/28336' 3)e'’s, (C1
g=u,d,s
..S .S .S
we obtain Sy nm = (S P13+ @5339'¢33) e'%,
— §Qeef2Bo(bp(B{¢'h¢,B}) + be(B[ £'h¢,B])) where 83 and ¢35 are the strongNw-scattering and

weak CP-violating phases, respectively, ajill | =32 compo-
nents have been ignored. ThiRewave amplitudes can be

where only the terms that correspond to leading-order chira‘T’Irnllarly expressed. For each c_)f th_ese decays, one can con-
struct the counterpart of theP-violating asymmetried\, =

perturbation theory have been shown. Comparing this ex-

+2BocT¢TheT ,+22B3Ls(hd, S o*S Ty + - -+, (B6)

pression with the weak Lagrangian in E3), we then infer using 6]
that the contributions of a factorizegg to the weak param- S
Fa+T
eters are A= a —a' (CZ)
IF'a—Ta
h —G—F)\sc f2Bgb h —%80 f2Bobe, (B7)
D \/E 6 o¥D» F \/E 6 oMF » One then has
A(21)5A2+~>n7+
P P
— [ Sin 85— S3)sint F— &)+~ sin( 85— S)SIN — )+ s 55— SIS S — 69+ L sin( 55
25, 2P, 4S,P,
P P
— SN BE—09)| /| 0o 55— 59+ - cos 5F— 9+ 5> cos 5~ 59+ ~o > cos o~ 63) . (C3)
25, 2P, 4S,P,
A(ES)EA2+~>pWO
. . S; . Ps . S3P3
= | sin(6] — ) sin( 4F — ¢9) — 5 sin( 67— O sin(4F — ¢3) — 5 sin( 65— )i B5 — ¢3) + < SiN( o
1 1 11
P P
~ 8sin(¢5 - ¢3) / cos( 87— 57) - ?coséi’— 55~ 5 cod 85— 6+ %cosaé’— a\?)}, (4
1 1 11

®In the phase convention that we have adopted to write down these amplitudes, the isospifi ,$tatésr the hadrons involved are
[EH==]11, |27)=|1,—-1), |p)=]1/2,1/2, |n)=|1/2,—-1/2), |7")=—]|1,2), |7°)=]|1,0), and|7~)=|1,—1), which are consistent
with the structure of the andB, matrices in the chiral Lagrangian.
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TABLE VI. Weak S and P-wave phases i¥ — N decays fromQg contribution alone, in units ofA°AZ2.

¢f,tree d’f loop S ¢f,tree d)fétree ¢féloop S ¢fétree ¢Eitree (ﬁiloop S d)fitree d)fétree d)féloop S d)fétree
0.98 1.27 —-1.65 0.95 1.23 -1.61 0.11 0.24 —0.05 —-34 —-74 24
. 2333 2P33
Sln( ¢§J3_ ¢§3) + 5 S SIn¢13 5 P S|n¢l3
A=Ay _n,=—tan(s5— 55 , C
(S2)=Ay .y = —tan 5= 59 NN (€5
553 5Py3 5SP13
I
where V2as+ . pg0=as+ .npt —8s-_.n.— fOr |Al|=3 dominance.
S ¢> Thus, we have in units of\°A?
11 11
S;=S;+3Ss, ¢i= ImS
Se—xpi=(—o.o4+ 1.02 + (- 0.03+1.30),
\/; s 513¢fs '
S;=S13-2V5S33, ¢P3= S,
(C6) Im S;3
e =(—0.04+0.99 +(—0.03+1.26),
the P-wave counterparts being similarly defined, and the 13 (C9)

weak|Al|=3 phases have been neglected.

To estimate the weak phases, we follow the prescription
proposed earlier, obtaining the real part of the amplitudes
from the values extracted from experiment under the as-
sumption of noCP violation and calculating the imaginary

P
— 1 =(0.02+0.09 + (—0.07+0.32),

Pexpt

part from the leading-order amplitudes in EQ0) with the

values of Imhp ¢ provided in Sec. Ill. To find the real part,

ImP4;
expt
I:)13

= (7—41)+(—15-59),

ignoring the strong and weak phases, we first derive from

Eqg. (C1)

1
S = Ss+ ing+ T ESQ+_>M.O,

- \/ESEJrﬁpﬂ.o-i- 2Ss— . nms

S33: - N 128(52+~>nﬂ'+

3S13= Sy + nat

- \/ESE"'*)’J';TO_ SE_%nﬂ_)l

(C7)

and analogous expressions for ®&aves. From the experi-
mental values in Table I, we then extract, in unitﬁ,\jﬂfﬁ,

S;=—-0.95£0.04, S;3=1.950.02, S33=-—0.11*£0.04,

P,=2.64+0.04, P;3=0.01+0.03, Pa=—0.11+0.05.
(Cy)

where the numerators on the left-hand sides are the central
values in Eq.(C8), and we have written each result as
(tree)+ (loop), with the two numbers within each pair of
brackets being bag-model and factorization contributions, re-
spectively. In Table VI, we collect the weak phases resulting
from these ratios.

We also show in Table VI another error estimaszh,
obtained from using the leading-order amplitudes and allow-
ing the parameters to vary between their tree-level and one-
loop values, as discussed in Sec. IV. In making this estimate,
we again employ only the factorization contributidifer the
P waves, we use th& amplitudes in Eq(33)], which are
much larger than the bag-model ones, as seen i E49).

We may, therefore, conclude that the uncertainties of the
weak phases are all of order 200%. This is reflected in our
prediction of the phases, which are collected in Table VII.
The corresponding strong phases have been meagiit¢d
and their values have also been included in this table.

The imaginary part of the amplitudes are obtained using Eqs. From the central values of the isospin amplitudes and the
(20), (25, and (29, as well as the isospin relation phases in Eq(C8) and Table VII, respectively, we obtain

TABLE VII. Predicted weak phases, in units gh°A2, and measured strong phases.

b3 b3 #F B 53

5 8 8

1.0-20 1.0:2.0 0.1x0.2

—40£80 9.4°+1.0°

—10.1°+1.0° —-1.8°x1.0° —-3.5°x1.0°
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A(ZT)=3.9x10"% A(2§)=3.6x1075,
A3 ")=-8.3x10"°, (C10

where we have used?\%»=1.26x10* as before. In this
case our estimate is a very rough one, as its uncertainty

PHYSICAL REVIEW D 67, 056001 (2003

larger than those for the other hyperons. This is due to the
(apparently accidentasmallness oP,; and its large experi-
mental error, indicated in EqC8), as well as to the already
sizable uncertainties quoted in Table VII. In order to have a
more quantitative estimate of the uncertainties, these modes
will have to be revisited when better measurements of the
Bmplitudes become available.
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