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CP violation in hyperon nonleptonic decays within the standard model
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We calculate theCP-violating asymmetriesA(L2
0 ) and A(J2

2) in nonleptonic hyperon decay within the
standard model using the framework of heavy-baryon chiral perturbation theory (xPT). We identify those
terms that correspond to previous calculations and discover several errors in the existing literature. We present
a new result for the lowest-order~in xPT) contribution of the penguin operator to these asymmetries, as well
as an estimate for the uncertainty of our result that is based on the calculation of the leading nonanalytic
corrections.
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I. INTRODUCTION

In nonleptonic hyperon decays such asL→pp2, it is
possible to search forCP violation by comparing the angula
distribution with that of the corresponding antihyperon dec
@1#. The Fermilab experiment HyperCP is currently analy
ing data searching forCP violation in such a decay.

The reaction of interest for HyperCP is the decay o
polarized L, with known polarizationw, into a proton
~whose polarization is not measured! and ap2 with momen-
tum q. The interesting observable is a correlation in the
cay distribution of the form

dG

dV
;11aw•q. ~1!

The branching ratio for this mode is 63.9%, and the para
eter a has been measured to beaL50.642 @2#. The CP
violation in question involves a comparison of the parame
a with the corresponding parameterā from the reactionL̄
→ p̄p1.

To obtain polarizedL ’s with known polarization, it is
necessary to study the double decay chainJ2→Lp2

→pp2p2 @3,4#. This eventually leads to the experiment
observable being sensitive to thesumof CP violation in the
J decay andCP violation in theL decay.

In both reactions,J2→Lp2 and L→pp2, the final
state can be reached from the initial state viauDI u5 1

2 or
uDI u5 3

2 transitions. It is known that due to the existence o
strong uDI u5 1

2 rule for nonleptonic hyperon decay, th
dominant contribution to theCP-violating asymmetries
arises from interference between anS-wave and aP-wave
within the uDI u5 1

2 transition@5–7#. One can define theCP-
violating asymmetries
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AL[A~L2
0 ![

aL2āL

aL1āL

,

AJ[A~J2
2![

aJ2āJ

aJ1āJ

~2!

for the L and J2 decays, respectively. The experimen
observable is then@3,4#

AJL.AL1AJ . ~3!

Approximate expressions have been obtained forAL,J in the
case ofuDI u5 1

2 dominance@6#, namely

AL.2tan~dP
L2dS

L!sin~fP
L2fS

L!,

AJ.2tan~dP
J2dS

J!sin~fP
J2fS

J!. ~4!

Here,dS
L (dP

L) is the strongS-wave (P-wave! Np scattering
phase shift atAs5ML , anddS

J (dP
J) is the strongS-wave

(P-wave! Lp scattering phase shift atAs5MJ . Moreover,
fS

L,J (fP
L,J) are theCP-violating weak phases induced b

the uDSu51, uDI u5 1
2 interaction in theS wave (P wave! of

the L→pp2 andJ2→Lp2 decays, respectively.
Experimentally, the current published limit isAJL

50.01260.014 from E756@3#, and the expected sensitivit
of HyperCP is 1024 @4#. In addition, HyperCP has recentl
obtained a preliminary measurement ofAJL5(27612
66.2)31024 @8#. Previous estimates forAJL indicated that
it occurs at the few times 1025 level within the standard
model@6,7,9# and that it can be as large as 1023 beyond the
standard model@6,10#. The larger asymmetries occur in mod
els with an enhanced gluon-dipole operator that is pa
even and thus does not contribute to thee8 parameter in kaon
decay. The 1023 upper bound corresponds to the pheno
enological constraint from new contributions to thee param-
eter in kaon mixing. This illustrates the relevance of the H
©2003 The American Physical Society01-1
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perCP measurement which complements thee8 experiments
in the study ofCP violation in uDSu51 transitions.

The strongpN scattering phases needed in Eq.~4! have
been measured to bedS

L;6° anddP
L;21° with errors of

about 1° @11#. In contrast, the strongLp scattering phase
have not been measured. Modern calculations based on
ral perturbation theory (xPT) indicate that these phases a
small, with udS

Ju being at most 7°@12–17#. For our numeri-
cal estimates, we will allow theLp phases to vary within the
range obtained at next-to-leading order in heavy-baryon
ral perturbation theory@15#:

23.0°<dS
J<10.4°, 23.5°<dP

J<21.2°. ~5!

One could choose to be less constrained and include
largerdS

J527° found in Ref.@15#, but this would only en-
large thedS

J range and hence the uncertainty of the predic
asymmetry. In any case, eventually these phases can b
tracted directly from the measurement of the decay distri
tion in J→Lp @4,18,19#. Recently E756 has reported a pr
liminary result ofdP

J2dS
J53.17°65.45° @18#.

In this paper, we estimate the weak phases that appe
AL andAJ within the standard model. In Sec. II, we prese
a calculation of the weak phases guided by heavy-bar
chiral perturbation theory in terms of three unknown we
counterterms. In Sec. III, we estimate the value of th
counterterms by considering contributions that arise from
factorization of the penguin operator and also nonfacto
able contributions estimated in the MIT bag model. Sect
IV contains the resulting weak phases andCP-violating
asymmetries. Finally, in Sec. V, we compare our results
those of previous work and present our conclusions.
completeness, we also provide in an appendix the results
the corresponding asymmetries inS→Np decays.

II. CHIRAL PERTURBATION THEORY

The chiral Lagrangian that describes the interactions
the lowest-lying mesons and baryons is written down
terms of the lightest meson-octet, baryon-octet, and bary
decouplet fields@20–23#. The meson and baryon octets a
collected into 333 matricesw and B, respectively, and the
decouplet fields are represented by the Rarita-Schwinger
sorTabc

m , which is completely symmetric in its SU~3! indices
(a,b,c). The octet mesons enter through the exponentiaS
5j25exp(iw/f), wheref is the pion-decay constant.

In the heavy-baryon formalism@23,24#, the baryons in the
chiral Lagrangian are described by velocity-dependent fie
Bv and Tv

m . For the strong interactions, the leading-ord
Lagrangian is given by@23–25#

Ls
(1)5 1

4 f 2^]mS†]mS&1^B̄viv•DBv&12D^B̄vSv
m$Am ,Bv%&

12F^B̄vSv
m@Am ,Bv#&2T̄v

miv•DTvm1DmT̄v
mTvm

1C~ T̄v
mAmBv1B̄vAmTv

m!12HT̄v
mSv•ATvm , ~6!

where^•••& denotes Tr(•••) in flavor-SU~3! space,Sv is the
spin operator, and
05600
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~j]mj†2j†]mj!5

]mw

2 f
1O~w3!, ~7!

with further details given in Ref.@26#. In this Lagrangian,D,
F, C, andH are free parameters, which can be determin
from hyperon semileptonic decays and from strong decay
the form T→Bf. Fitting tree-level formulas, one extrac
@23,24#

D50.80, F50.50, uCu51.7, ~8!

whereasH is undetermined from this fit. From the nonrel
tivistic quark models, one finds the relations@25#

3F52D, C522D, H523D, ~9!

which are well satisfied byD, F, andC, suggesting the tree
level value

H522.4. ~10!

In our numerical estimates, we use Eqs.~8! and~10! for the
leading-order results and the estimate of their uncerta
from one-loop contributions, withC andH only appearing in
loop diagrams involving decouplet baryons. As another e
mate of the uncertainty in these results, we will evaluate
effect of varyingD and F between their tree-level value
above and their one-loop values to be given later.

At next-to-leading order, the strong Lagrangian contain
greater number of terms@27#. The ones of interest here ar
those that explicitly break chiral symmetry, containing o
power of the quark-mass matrixM5diag(0,0,ms). For our
calculation of the factorization of the penguin operator,
will need these terms in the form

Ls
(2)5 1

4 f 2^x1&1
bD

2B0
^B̄v$x1 ,Bv%&1

bF

2B0
^B̄v@x1 ,Bv#&

1
b0

2B0
^x1&^B̄vBv&1

c

2B0
T̄v

mx1Tvm

2
c0

2B0
^x1&T̄v

mTvm , ~11!

where we have used the notationx15j†xj†1jx†j to in-
troduce coupling to external~pseudo!scalar sources,x5s
1 ip, such that in the absence of the external sourcex
reduces to the mass matrix,x52B0M . As will be discussed
in the next section, we also need from the meson sector
next-to-leading-order Lagrangian

Ls
(4)5L5^]

mS†]mSj†x1j&1•••, ~12!

where only the relevant term is explicitly shown. In Eqs.~11!
and ~12!, the constantsB0 , bD,F,0 , c, c0, and L5 are free
parameters to be fixed from data.

As is well known, the weak interactions responsible f
hyperon nonleptonic decays are described by auDSu51
Hamiltonian that transforms as (8L,1R) % (27L,1R) under
SU(3)L3SU(3)R rotations. It is also known from experi
ment that the octet term dominates the 27-plet term, as i
1-2
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cated by the fact that theuDI u5 1
2 components of the deca

amplitudes are larger than theuDI u5 3
2 components by abou

twenty times@26,28#. We shall, therefore, assume in wh
follows that the decays are completely characterized by
(8L,1R), uDI u5 1

2 interactions. The leading-order chiral La
grangian for such interactions is@20,29#

Lw5hD^B̄v$j
†hj,Bv%&1hF^B̄v@j†hj,Bv#&1hCT̄v

mj†hjTvm

1g8f 2^h]mS]mS†&1H.c., ~13!

whereh is a 333 matrix with elementshi j 5d i2d3 j , and the
parametershD,F,C and g8 contain the weak phases to b
discussed below.

The weak Lagrangian in Eq.~13! is thus the leading-orde
~in xPT) realization of the effectiveuDSu51 Hamiltonian in
the standard model@30#,

Hw5
GF

A2
Vud* Vus(

i 51

10

CiQi1H.c., ~14!

where GF is the Fermi coupling constant,Vkl are the ele-
ments of the Cabibbo-Kobayashi-Maskawa~CKM! matrix
@31#,

Ci[zi1tyi[zi2
Vtd* Vts

Vud* Vus

yi ~15!

are the Wilson coefficients, andQi are four-quark operator
whose expressions can be found in Ref.@30#. Later on, we
will expressVkl in the Wolfenstein parametrization@32#. It
follows that

Vud* Vus5l, Vtd* Vts52l5A2~12r1 ih! ~16!

at lowest order inl. For our numerical estimates, the re
evant parameters that we will employ are@33#

l50.2219, A50.832, h50.339. ~17!

In the next section, we match the penguin operatorQ6 in the
short-distance Hamiltonian of Eq.~14! with the correspond-
ing Lagrangian parameters in Eq.~13!.

We now have all the ingredients necessary to calculate
weak decay amplitudes in terms of the four parame
hD,F,C and g8 ~only the first two are needed at leading o
der!. In the heavy-baryon formalism, the amplitude for t
weak decay of a spin-1

2 baryonB into another spin-12 baryon
B8 and a pseudoscalar mesonf has the general form@29#

iMB→B8f52 i ^B8fuLw1suB&

5ūB8~ABB8f
(S)

12Sv•pfABB8f
(P)

!uB , ~18!

where the superscripts refer to theS- and P-wave compo-
nents of the amplitude. To express our results, we also a
the notation@29#

aBB8f
(S,P) [A2 fA BB8f

(S,P) . ~19!
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With the Lagrangians given above, one can derive the a
plitudes at leading order, represented by the diagrams in
1. Figure 1~a! indicates that theS wave is directly obtained
from a weak vertex provided by Eq.~13!. The leading con-
tribution to theP wave arises from baryon-pole diagrams,
in Fig. 1~b!, which each involve a weak vertex from Eq.~13!
and a strong vertex from Eq.~6!. Thus the leading-orde
results for amplitudes not related by isospin are@20,29#

aLpp2
(S)

5
1

A6
~hD13hF!, aJ2Lp2

(S)
5

1

A6
~hD23hF!,

~20a!

aS1np1
(S)

50, aS2np2
(S)

52hD1hF ,

aLpp2
(P)

5
2D~hD2hF!

A6~mS2mN!
1

~D1F !~hD13hF!

A6~mL2mN!
,

aJ2Lp2
(P)

5
22D~hD1hF!

A6~mJ2mS!
2

~D2F !~hD23hF!

A6~mJ2mL!
,

~20b!

aS1np1
(P)

5
2D~hD2hF!

mS2mN
2

1
3 D~hD13hF!

mL2mN
,

aS2np2
(P)

5
2F~hD2hF!

mS2mN
2

1
3 D~hD13hF!

mL2mN
.

The leading nonanalytic contributions to the amplitudes a
from one-loop diagrams, withhC only appearing in those
involving decouplet baryons. These contributions have b
calculated by various authors@20,29,34,35#, and we will
adopt the results of Ref.@35# for the numerical estimate o
our uncertainty.

In Fig. 2, we show the kaon-pole diagram to be discus
later on. In this diagram, there is a strong vertex from Eq.~6!

FIG. 1. Leading-order diagrams for~a! S-wave and~b! P-wave
hyperon nonleptonic decays. In all figures, a solid~dashed! line
denotes a baryon-octet~meson-octet! field, and a solid dot~hollow
square! represents a strong~weak! vertex, with the strong vertices
being generated byLs

(1) in Eq. ~6!. Here the weak vertices com
from thehD,F terms in Eq.~13!.

FIG. 2. Kaon-pole diagram contributing toP-wave hyperon
nonleptonic decays. The weak vertex here comes from theg8 term
in Eq. ~13!.
1-3
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followed by a kaon pole and a weak vertex from theg8 term
in Eq. ~13!. Notice that this term is not only subleading in th
chiral expansion, but also suppressed by anmp

2 /mK
2 factor

~and hence vanishing in themu5md50 limit!.
Once the values of the weak couplingshD,F are specified,

the formulas in Eq.~20! determine the leading-order ampl
tudes. It is well known that this representation does not p
vide a good fit to the measuredP-wave amplitudes, and tha
higher-order terms are important@20,22,29,34–36#. The pro-
cedure that we adopt for estimating the weak phases i
obtain the real part of the amplitudes from experiment~as-
suming noCP violation! and to use Eq.~20! to estimate the
imaginary parts. The dominantCP-violating phases in the
uDI u5 1

2 sector of theuDSu51 weak interaction occur in the
Wilson coefficientC6 associated with the penguin operat
Q6. Our strategy will be to calculate within a model th
imaginary part of the couplingshD,F,C and g8 induced by
Q6. As a numerical result, we propose a central value fr
leading-orderxPT @Eq. ~20!# and an estimate of the erro
from the nonanalytic corrections obtained with the expr
sions given in Ref.@35#.

To end this section, for later use we collect in Table I t
experimental values of theS- andP-wave amplitudes of in-
terest, reproduced from Ref.@35#. The numbers are extracte
~neglecting strong and weak phases! from the measured de
cay width G and decay parametera by means of the rela
tions

G5
upB8u

4pmB
~EB81mB8!~ usu21upu2!, a5

2 Re~s* p!

usu21upu2
.

~21!

Thes andp amplitudes are related to those in Eq.~18! above
by1

s5A (S), p5upB8uA (P). ~22!

1In Refs. @29,35#, the p expression has the opposite sign,p5
2upB8uA (P), but this turns out to be inconsistent with the amplitu
formula from which bothG and a are derived. Nevertheless, th
sign flip does not affect the conclusions of Refs.@29,35#, as the fits
therein were performed to theSwaves and theP waves were poorly
reproduced regardless of the sign ofp.

TABLE I. Experimental values forS- andP-wave amplitudes, in
units of GFmp1

2 .

Decay mode s p

L→pp2 1.4260.01 0.5260.01
J2→Lp2 21.9860.01 0.4860.02
S1→np1 0.0660.01 1.8160.01
S1→pp0 21.4360.05 1.1760.06
S1→np2 1.8860.01 20.0660.01
05600
-

to

-

III. ESTIMATE OF COUNTERTERMS

Our task in this section is to match the dominantuDI u
5 1

2 CP-violating term from the standard-model effectiv
weak Hamiltonian in Eq.~14! to the weak chiral Lagrangian
in Eq. ~13!. That is, to compute the imaginary part of th
parametershD , hF , hC , andg8 that is induced by ImC6Q6
in Eq. ~14!. To do this, we will include both factorizable
contributions, that arise from regarding the operatorQ6 as
the product of two~pseudo!scalar densities, and direct~non-
factorizable! contributions calculated in the MIT bag mode

The nonfactorizable contributions are easily obtain
from the observation that the weak chiral Lagrangian of E
~13! is responsible for nondiagonal ‘‘weak mass terms’’ su
as

^nu~Hw!8uL&5
hD13hF

A6
ūnuL ,

^Lu~Hw!8uJ0&5
hD23hF

A6
ūLuJ , ~23!

^J* 2u~Hw!8uV2&5
2hC

A3
ūJ* •uV ,

where the subscript 8 denotes the component ofHw that
transforms as (8L,1R). These terms can be computed direc
from the short-distance Hamiltonian in Eq.~14! by calculat-
ing in the MIT bag model the baryon-baryon matrix eleme
of the four-quark operators. From the basic results in App
dix A, one finds theQ6 contributions

hD5
GFl

A2
C6~3a25b!, hF5

GFl

A2
C6~a1 11

3 b!,

hC5
GFl

A2
C6~212a14b!, ~24!

wherea andb are bag parameters whose values are given
Eq. ~A11! for hD,F and in Eq.~A12! for hC . Numerically,
the imaginary part of C6 then yields, in units of
A2 f pGFmp1

2 l5A2h,

Im hD50.278y6 , Im hF51.04y6 , Im hC523.13y6 ,
~25!

wheref p.92.4 MeV has been used. The units are chose
separate both the conventional normalization for the hype
decay amplitudes, as in Eq.~19! and Table I, and the relevan
combination of CKM parameters occurring in the obse
ablesAL,J .

To obtain the factorizable contributions to the imagina
part of the parametershD,F,C , we follow the procedure used
in kaon physics forg8 @37#. As shown in Appendix B, the
lowest-order chiral realization of a factorizedQ6 contributes
to the weak Lagrangian in Eq.~13! with
1-4



e

o

e
he
-

-
a

e

b
ro
-
he
a

i-

ce
he
m

m
la
e

ured

ort-
re-
her
dure

the
the
es.

o
rt of
the
r
We

is
.
m-

-
of

c-
the
g

e
to

e
e

in
re-
.

e

der

ns
bly

the

.

n

CP VIOLATION IN HYPERON NONLEPTONIC DECAYS . . . PHYSICAL REVIEW D 67, 056001 ~2003!
hD5
GFl

A2
8C6f 2B0bD , hF5

GFl

A2
8C6f 2B0bF ,

hC5
GFl

A2
8C6f 2B0c, g85

GFl

A2
16C6B0

2L5 . ~26!

The values ofbD , bF , andc can be determined by fitting th
mass formulas derived from the Lagrangian in Eq.~11!, with
x52B0M , to the measured masses of the octet and dec
plet baryons@2#. Thus we find

bDms50.0301 GeV, bFms520.0948 GeV,

cms50.221 GeV ~27!

for mu5md50. In this limit, the Lagrangian in Eq.~11! also
gives mK

2 5B0ms . Using ms5m̄s(m5mc)5170 MeV from
Ref. @30#, we then have

bD50.177, bF520.558, c51.30, B051.45 GeV.
~28!

For L5, we adopt the valueL551.431023 found in Ref.
@38#. Settingf 5 f p.92.4 MeV, we then obtain theQ6 con-
tributions, in units ofA2 f pGFmp1

2 hl5A2,

Im hD54.86y6 , Im hF5215.3y6 , Im hC535.6y6 ,

Im g8 B0518.8y6B6
(1/2), ~29!

where the formula withg8 is the usual one appearing in th
calculation ofe8 in kaon decay, and we have introduced t
standard parameterB6

(1/2) to encode deviations from factor
ization @30#, so that hereB6

(1/2)51.

IV. NUMERICAL RESULTS

If Eq. ~20! provided a good fit to the hyperon decay am
plitudes, it would be straightforward to calculate the we
phases of Eq.~4!. We would simply divide the imaginary
part of the amplitudes by the real part of the amplitud
obtained from a matching of the parametershD,F to the
short-distance Hamiltonian. However, as we mentioned
fore, leading-order chiral perturbation theory fails to rep
duce simultaneously theS- and P-wave amplitudes. Conse
quently, we are forced to employ the real part of t
amplitudes that are extracted from experiment under the
sumption of noCP violation.

An additional problem occurs if we calculate the imag
nary part of the amplitudes from a matching of thefull weak
Hamiltonian tohD,F and then divide it by theexperimental
amplitudes, as this introduces spurious phase differen
This can be easily understood by considering the case w
only one operator occurs in the short-distance weak Ha
tonian. In such a case, it is clear that there can be noCP
violation, as there is only one weak phase in the proble
However, if we use the procedure outlined above to calcu
the phase differencefS2fP , we obtain a nonzero result du
05600
u-

k

s

e-
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to the mismatch between the predicted and the meas
ratio p/s.

On the other hand, if there are two operators in the sh
distance weak Hamiltonian, and one of them is mostly
sponsible for the real part of the amplitudes while the ot
one is mostly responsible for the weak phases, the proce
above does not introduce spurious phases. Of course,
predictions obtained are reliable only to the extent that
model reproduces the true imaginary part of the amplitud

In view of all this, we adopt the following prescription t
obtain the weak phases. We first assume that the real pa
the weak decay amplitudes originates predominantly in
tree-level operatorsQ1,2. This is true in the bag model, fo
example, as can be seen from the results in Appendix A.
then assume that the imaginary part of the amplitudes
primarily due to the ImC6Q6 term in the weak Hamiltonian
This is true both in the bag model and in the vacuu
saturation model of Ref.@7#, and is due to the purelyuDI u
5 1

2 nature of theCP observablesAL,J . With these assump
tions, we calculate a central value for the imaginary part
the weak decay amplitudes using Eq.~20! with values for
Im hD,F obtained in the previous section by adding the fa
torizable and nonfactorizable contributions. We estimate
uncertainty in this prediction by computing the leadin
nonanalytic corrections with our values for ImhD,F,C .2

In order to compare with older results in the literature, w
have calculated two additional terms, both proportional
g8, in which theCP-violating weak transition occurs in th
meson sector. The tree-level kaon-pole contribution to thP
waves will be shown in one of our tables because this is
fact the dominant contribution to the commonly quoted
sult of Donoghue, He, and Pakvasa@6#, as we discuss below
The one-loop nonanalytic contribution proportional tog8 oc-
curs at orderp3 in the chiral expansion. It is related to th
model employed by Iqbal and Miller in Ref.@9#, and we
include it here to comment on that result.

For our numerical calculations, we use the leading-or
~in QCD! Wilson coefficients atm5mc51.3 GeV listed in
Table XIX of Ref. @30#. In particular,

y6520.096, ~30!

corresponding toLMS
(4)

5325 MeV. This is one of the middle
values of y6 in this table, which vary from20.063 to
20.120, depending on the value ofLMS

(4) and on the renor-

2This prescription of taking the leading nonanalytic contributio
as the uncertainty in the lowest-order amplitudes works remarka
well for the real part of the amplitudes. To show this, we use
weak parameters determined from fitting simultaneously theS-wave
amplitudes in Eq.~20a! and the leading-orderP-wave amplitudes
for V→LK,Jp provided by Ref.@29# to the measured amplitudes
Thus, hD50.49, hF51.18, and hC51.15, all in units of
A2 f pGFmp1

2 . Writing the resulting amplitudes as tree6 loop, and
excluding g8 terms, we havesL→pp251.2562.28, sJ2→Lp25
21.6562.96, pL→pp250.4960.92, and pJ2→Lp2520.16
62.21, all in units ofGFmp1

2 . Clearly the corresponding data i
Table I are well within these ranges.
1-5
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malization scheme. In the rest of this section, we numeric
evaluate the weak phases in theL and J2 decays, rele-
gating the corresponding evaluation for theS decays to
Appendix C.

The nonfactorizable contributions fromQ6 to the weak
parameters are given by the bag-model results in Eq.~25!.
The resultings and p amplitudes are collected in Table I
divided by the experimental amplitudes of Table I. For t
factorizable contributions, the parameters are given in
~29! and the corresponding amplitudes are listed in Table
In calculating the imaginary parts in these tables, we emp
the y6 value in Eq.~30!, as well as the strong couplingsD
50.8, F50.5, uCu51.7, andH522.4. The loop contribu-
tions are computed using the results of Ref.@35# at a renor-
malization scale of 1 GeV withf P5 f p , and serve as an erro
estimate of the prediction given by the tree contributions
Table III, we have separated out the terms containing Img8.
In the P waves, theg8 contributions also occur at next-to
leading tree-level order, arising from the kaon-pole diagr
in Fig. 2.

In Table IV, we combine the weak phases from the p
ceding two tables, keeping only the leading-order and lo
contributions ~excluding g8 terms!. We also show in this
table another error estimate,df, obtained from the leading
order amplitudes, but allowing the parameters to vary
tween their tree-level and one-loop values. In making t
estimate, we use only the factorization amplitudes, as t
are much larger than the bag-model contributions, as see
the previous two tables. Thus, for theS-wave amplitudes, we
need the one-loop values of the parametersbD,F . Employing
the one-loop formulas for baryon masses derived in R
@39#, we find

bD520.636, bF520.192. ~31!

For theP waves, we note that the factorization parameters
Eq. ~26! and the tree-level mass formulas

TABLE II. Ratios of the imaginary part of the theoretical valu
to the experimental value, forS- andP-wave amplitudes, with the
weak couplings fromQ6 contribution only, estimated in the ba
model. The ratios are in units ofhl5A2.

Decay mode

Im stree

sexpt

Im sloop

sexpt

Im ptree

pexpt

Im ploop

pexpt

L→pp2 20.09 20.09 20.15 0.28
J2→Lp2 20.06 20.06 0.14 20.26
05600
ly

q.
I.
y

n

-
p

-
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y
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f.

n

mS2mN52~bD2bF!ms , mL2mN52 2
3 ~bD13bF!ms ,

mJ2mS522~bD1bF!ms , mJ2mL5 2
3 ~bD23bF!ms ,

~32!

derived from Eq.~11!, lead to simplified expressions for th
leading-order amplitudes arising from theQ6 contribution,
namely,

aLpp2
(P)

5
GFl

A2

4C6f 2B0

A6ms

~2D23F !,

aJ2Lp2
(P)

5
GFl

A2

4C6f 2B0

A6ms

~2D13F !,

aS1np1
(P)

50, aS2np2
(P)

5
GFl

A2

4C6f 2B0

ms
~D2F !,

~33!

where theS-decay amplitudes have been included to be u
in Appendix C. Consequently, we only need the one-lo
values ofD andF. A one-loop fit to the semileptonic hypero
decays yields@25#

D50.61, F50.40. ~34!

Using these results, together with their tree-level coun
parts in Eqs.~8! and ~28!, we write the ranges

20.64<bD<10.18, 20.56<bF<20.19,

0.61<D<0.80, 0.40<F<0.50. ~35!

We take dfS,P to be the largest deviation fromfS,P
tree ~in

factorization! allowed by these ranges.
From the numbers in Table IV, we may conclude that t

uncertainties offS and fP are of order 100% and 50%
respectively, for both decays. This is reflected in our pred
tion for the phases, which are collected in Table V along w
the resulting phase differences. The errors for the differen
have been obtained simply by adding the individual erro
We have also collected strong-phase differences in the ta
from the numbers given in the Introduction. The errors
quote in this table are obviously not Gaussian. They sim
indicate the allowed ranges within our prescription to calc
late the phases.
s

TABLE III. Ratios of the imaginary part of the theoretical value to the experimental value, forS- and

P-wave amplitudes, with the weak couplings fromQ6 contribution only, estimated in factorization. The ratio
are in units ofhl5A2.

Decay mode

Im stree

sexpt

Im sloop

sexpt

Im sloop
(g8)

sexpt

Im ptree

pexpt

Im ptree
(g8)

pexpt

Im ploop

pexpt

Im ploop
(g8)

pexpt

L→pp2 1.13 1.05 0.35 1.33 0.04 20.27 0.61
J2→Lp2 1.00 1.10 0.56 20.66 20.02 0.59 20.28
1-6
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Putting together these results, we finally obtain

A~L2
0 !5AL5~0.0360.25!A2l5h,

A~J2
2!5AJ5~20.0560.13!A2l5h, ~36!

leading to

AJL5AL1AJ5~20.0260.38!A2l5h. ~37!

With the CKM parameter values given in Eq.~17!, we have
A2l5h.1.2631024 and therefore

2331025<AL<431025, 2231025<AJ<131025,
~38!

2531025<AJL<531025. ~39!

V. DISCUSSION

We start by comparing our results to those that can
found in the literature. The result most frequently quoted
that of Donoghue, He, and Pakvasa@6# given in their Table
II,

A~L2
0 !52531025, A~J2

2!52731025. ~40!

This result was computed using the matrix elements obta
by Donoghue, Golowich, Ponce, and Holstein@40#. Recast in
the language of our previous sections, Ref.@40# estimated
Im hD,F and Img8 as the sum of direct and factorizable co
tributions in the same way we have done in this paper. T
direct ~nonfactorizable! contributions were calculated in th
MIT bag model, and we agree with their results up to n
merical inputs. The factorizable contributions in Ref.@40# are
the ones they attribute to the quantity ‘‘O 5

(c) . ’’ We disagree
with the calculation of these factorizable terms in Ref.@40#
in several important ways.

For theS waves, we obtain a factorizable contribution
hF approximately 4 times larger than that of Ref.@40#. This
can be traced mainly to a difference in two factors. First,
the chiral condensate we usê0ud̄du0&52 f p

2 B0.
20.012 GeV3, instead of̂ 0ud̄du0&520.007 GeV3 used in
Ref. @40#. Second, we employ the valuebFms.295 MeV in

TABLE IV. Weak S- and P-wave phases fromQ6 contribution
alone, in units ofhl5A2.

Decay mode fS
(tree) fS

(loop) dfS
(tree) fP

(tree) fP
(loop) dfP

(tree)

L→pp2 1.04 0.96 20.83 1.18 0.01 20.30
J2→Lp2 0.94 1.04 21.04 20.52 0.33 0.27

TABLE V. Weak phases in units ofhl5A2, and strong-phase
differences,dS2dP .

Decay mode fS fP fS2fP dS2dP

L→pp2 1.061.0 1.260.6 20.261.6 7°62°
J2→Lp2 0.960.9 20.560.3 1.461.2 1.1°62.8°
05600
e
s

d

e

-

r

Eq. ~27!, obtained from a first-order fit to the baryon-oct
masses with Eq.~11!, whereas Ref.@40# calculates a baryon
overlap in the MIT bag model that is equivalent to usi
bFms.243 MeV, with ms5170 MeV.

A second difference in theS-wave phases~less important
numerically! occurs because we usehD;20.3hF , as can be
seen from Eqs.~26! and~28!, whereas the results of Ref.@40#
used in Ref.@6# correspond tohD50.

Our most important difference occurs in theP waves. Our
factorization results from leading-orderxPT calculations
arise from the baryon poles. In contrast, the results of R
@40# for the baryon poles appear to include only the nonf
torizable contributions, and theirP waves are instead domi
nated by the kaon pole, as in Fig. 2. This kaon pole is
included in our calculation because it occurs at next-
leading order inxPT and, moreover, it is further suppress
by a factor ofmp

2 /mK
2 because the pion~and not the kaon! is

on-shell.
We have calculated this kaon-pole contribution~although

we do not include it in our final results! and present it in the
sixth column of our Table III under the heading ‘‘Imptree

(g8) . ’’
It can be seen from this table that the kaon pole is ind
negligible compared to the baryon poles. Studying the ca
lation of Ref. @40#, we believe that their large result for th
kaon pole is incorrect. The specific error arises in the eva
ation of the kaon-pion weak transition in the bag model. W
show some details in the last part of Appendix A. It is use
to cast this issue in the language adopted by thee8 literature
@30#,

^Q6&0524A3

2F mK
2

ms~m!1md~m!
G2

~ f K2 f p!B6
(1/2),

~41!

where^Q6&0[^pp,I 50uQ6uK&. In our estimate, we use
g8 corresponding to the valueB6

(1/2)51 from factorization.
For comparison, current lattice estimates are in the ra
B6

(1/2)5161 @41#, whereas the calculation of Ref.@40# is
equivalent toB6

(1/2).35.
Despite this disagreement, the numerical value for

P-wave phases based on the results of Ref.@40# is similar to
ours. This agreement is fortuitous and occurs because
factorizable contribution to the baryon poles is roughly eq
to 35 times the kaon pole, as can be seen in Table III.

In view of the above, the resulting numerical differenc
occur mostly in theS-wave phases, ours being larger th
those found in Ref.@6#. This in turn impacts mainly the
phase difference in theL case, asfS,P

L now tend to cancel
each other. In contrast, the corresponding phase differe
calculated using the results of Ref.@40# is much larger~by a
factor of 5!, being dominated by theP-wave phase. In theJ
case, the two weak phases have opposite signs, and so
difference is not suppressed, but instead it is now enhan
~by a factor of 3! with respect to that based on Ref.@40#. All
these differences lead to the central values in Eq.~36!, in
comparison to the results of Ref.@6# in Eq. ~40!. An addi-
tional problem with the numbers in Eq.~40! is that they
follow from outdated numerical input for the CKM matri
1-7
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elements~and also from the use of the large old valuedS
J

;218° for theJ decay@42#!.
Next we turn our attention to the vacuum-saturation c

culation of Ref.@7#. Our results in Tables II and III indicate
that the factorization contribution is significantly larger th
the direct contribution to theS- andP-wave phases. For thi
reason, we would expect our results to agree with those
Ref. @7# in which the direct contributions are ignored. W
find that we agree with the value of theS-wave phases up to
numerical input, but that we disagree with the value of
P-wave phases in Ref.@7#. This disagreement is easy to u
derstand. OurP-wave phases are dominated by the bary
pole contribution, whereas in Ref.@7# only the kaon-pole
contribution is included. The vacuum-saturation calculat
of the kaon pole, corresponding toB6

(1/2)51, is a significant
underestimate for theP-wave phases as seen in Table I
where the kaon pole corresponds to the column labe
‘‘Im ptree

(g8) . ’’
To summarize then, the bag-model calculation of R

@40# significantly overestimates the contribution of the ka
pole to theP waves and apparently misses the import
factorization contribution of the baryon poles, although ac
dentally results inP-wave phases numerically similar t
ours. Furthermore, it underestimates theS waves and there
fore yields an asymmetry dominated by theP-wave phase.
The vacuum-saturation calculation of Ref.@7# misses the
dominant baryon-pole contribution to theP-wave phases and
results in an asymmetry dominated by the phase of thS
wave. In our complete calculation at leading order inxPT,
the phases of theS andP waves are comparable, and in th
L case this leads to a smaller central value for the predic
asymmetry~the two phases tend to cancel!.

It is difficult to place the calculation of Ref.@9# in our
framework due to significant technical differences in t
evaluation of loop integrals. Nevertheless, there is a ro
correspondence between that calculation for theSwaves and
the terms in Table III labeled ‘‘Imsloop

(g8) . ’’ In our final results,
such terms appear in the quoted uncertainty because the
part of the subleading amplitudes that cannot be calcula
completely at present.

In conclusion, we have presented a complete calcula
of the weak phases in nonleptonic hyperon decay at lea
order in heavy-baryon chiral perturbation theory. We ha
estimated the uncertainty in our calculation by computing
leading nonanalytic corrections. We have compared our
sults with those in the literature, pointing out several err
in previous calculations. To improve upon the results p
sented in this paper, it will be necessary to have a be
understanding of theP waves in nonleptonic hyperon deca
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APPENDIX A: BAG-MODEL PARAMETERS

In this appendix, we summarize the derivation of the f
mulas in Eq.~24!, which describe the nonfactorizable contr
butions to the weak parametershD,F,C , estimated in the MIT
bag model.3 We also provide the numerical values of th
parametersa andb in these formulas. Lastly, we evaluate th
kaon-pion matrix element of the leading penguin operato
the bag model.

Assuming a valence-quark model of baryons, using
totally antisymmetric nature of their color wave function
and the relations@30#

Q452Q11Q21Q3 , Q95 3
2 Q12 1

2 Q3 , ~A1!

one finds, for baryonsB andB8,

^B8uQ1uB&52^B8uQ2uB&5^B8uQ3uB&5^B8uQ9uB&

52^B8uQ10uB&,

^B8uQ31Q4uB&5^B8uQ51Q6uB&5^B8uQ71Q8uB&50.
~A2!

Therefore, onlŷ B8uQ1,5,7uB& need to be evaluated. For th
parity-conserving parts ofQ1,5,7, we derive the bag-mode
matrix elements4

^nuQ1uL&5^nuQ5uL&522^nuQ7uL&52A6~a1b!,

^LuQ1uJ0&52A6~a1b!,

^LuQ5uJ0&522^LuQ7uJ0&5
8A6b

3
, ~A3!

^J* 2uQ1uV2&50,

^J* 2uQ5uV2&522^J* 2uQ7uV2&524A3~a2 1
3 b!,

up to factors ofūB8uB , where a and b will be described
shortly. From these results and Eq.~23!, we then obtain

hD13hF5
GFl

A2
~C12C21C32C41C92C101C52C6

2 1
2 C71 1

2 C8!6~2a2b!, ~A4!

hD23hF5
GFl

A2
@~C12C21C32C41C92C10!12~a1b!

1~C52C62 1
2 C71 1

2 C8!16b#, ~A5!

3An introductory treatment of the bag model can be found in R
@22#.

4In keeping with Eq.~23!, we have excluded from these results t
27-plet components ofQ1,7 and the (8L,8R) component ofQ7, the
strong penguin operatorQ5 being purely (8L,1R). Furthermore, in
theV-J* matrix elements we have taken into account the fact t
the spinors for decouplet baryons in the chiral Lagrangian

spacelike@23#, ūJ* •uV,0.
1-8
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hC5
GFl

A2
~C52C62 1

2 C71 1
2 C8!~12a24b!. ~A6!

The values ofa andb are found from the wave function
overlap integrals

a54pE
0

R

dr r 2~U4~r !1L4~r !!,

b58pE
0

R

dr r 2U2~r !L2~r !, ~A7!

whereR is the bag radius, andU andL are the radial func-
tions contained in the spatial wave functions

cq~x![S iU ~r !x

2L~r !s• r̂x
D , c q̄~x![S 2 iL ~r !s• r̂isyx

U~r !isyx
D

~A8!

of a quarkq and an antiquarkq̄, respectively, withx being a
two-component spinor ands i the Pauli matrices. Explicitly,
U(r ) andL(r ) are given in terms of spherical Bessel fun
tions by @22#

U~r !5
N

A4pR3
j 0~pr/R!, L~r !5

N
A4pR3

e j 1~pr/R!,

~A9!

where

N5
p2

A~2v222v1mR!sin2p
, p5Av22m2R2,

e5Av2mR

v1mR
, ~A10!

with v being determined from tanp5p/(12v2mR) andm
the quark mass in the bag. Numerically, following Re
@40,43#, we take R55.0 GeV21 for octet baryons andR
55.4 GeV21 for decouplet baryons. Since the weak para
etershD,F,C belong to a Lagrangian which respects SU~3!
symmetry@Lw in Eq. ~13!], in writing Eqs. ~A3! and ~A7!
we have employed SU~3!-symmetric kinematics.5 Specifi-
cally, we takem50 for all quark flavors. Thus, we find fo
octet baryons

a51.4031023 GeV3, b50.6431023 GeV3,
~A11!

and for decouplet baryons

a51.1131023 GeV3, b50.5131023 GeV3.
~A12!

5We note that in the SU~3!-symmetric limit the bag parameter
above are related to the parametersA and B of Ref. @40# by A
54p(a2b)R3/N 4 andB58pbR3/N 4.
05600
.

-

Finally, we evaluate theK-to-p transition in the bag
model, which occurs in the kaon-pole result of Ref.@40#, as
discussed in our Sec. V. The matching of the domin
uDI u5 1

2 part of the weak Hamiltonian in Eq.~14! to the
weak chiral Lagrangian in Eq.~13! involves in this case

^p2~p!u~Hw!8uK2~p!&522g8p2. ~A13!

Concentrating on theQ6 contribution alone, we find the bag
model matrix element

^p2uQ6uK2&5212~a1b!A4EpEK, ~A14!

where the factorA4EpEK arises from the normalization o
the bag states for the mesons@22,40#. From the preceding
two equations, we obtain theQ6 contribution

g8p2

A4EpEK

5
GFl

A2
C66~a1b!. ~A15!

To determine the values ofa andb in this equation, we use
R53.3 GeV21, after Ref.@40#, and again setm50 for all
quark flavors. It follows that here

a54.8731023 GeV3, b52.2331023 GeV3.
~A16!

At this stage~in their equivalent calculation!, Ref. @40# pro-
ceeds by settingp25mp

2 and 4EpEK52mK
2 . As a conse-

quence,

Im g8B05
GFl

A2
Im C66~a1b!

A2B0mK

mp
2

5638y6

~A17!

in units of A2 f pGFmp1
2 hl5A2, with the B0 value in Eq.

~28!. Comparing this result with Eq.~29! then indicates that
the bag-model calculation of Ref.@40# yields B6

(1/2);35,
which is unacceptably large.

APPENDIX B: WEAK PARAMETERS IN FACTORIZATION

To derive the factorizable contributions to the imagina
part of the parametershD,F,C , we start from the observation
that the quark-mass terms in the QCD Lagrangian can
written as

Lm5
21

2B0
~ q̄LxqR1q̄Rx†qL!, ~B1!

where qL5 1
2 (12g5)q and qR5 1

2 (11g5)q, with q
5(u d s)T. It follows that

2q̄lLqkR52B0

dLm

dx lk
, 2q̄lRqkL52B0

dLm

dx lk
†

. ~B2!

Then, usingL s
(2,4) in Eqs.~11! and ~12!, we have the corre-

spondences
1-9
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2q̄lLqkR⇔bD~j†BB̄j†1j†B̄Bj†!kl1bF~j†BB̄j†

2j†B̄Bj†!kl1sSkl
† ^B̄B&1c~ T̄a!abcjcl

† jkd
† ~Ta!dab

2c0Skl
† T̄aTa1 1

2 f 2B0Skl
† 12B0L5~]mS†]mSS†!kl

1•••, ~B3!

2q̄lRqkL⇔bD~jBB̄j1jB̄Bj!kl1bF~jBB̄j2jB̄Bj!kl

1sSkl^B̄B&1c~ T̄a!abcjcljkd~Ta!dab2c0SklT̄
aTa

1 1
2 f 2B0Skl12B0L5~S]mS†]mS!kl1•••, ~B4!

where the ellipses denote additional terms fromLs
(4) that do

not affect our result. Consequently, for the penguin opera

Q6522 (
q5u,d,s

d̄~11g5!qq̄~12g5!s

528 (
q5u,d,s

d̄LqRq̄RsL , ~B5!

we obtain

2 1
8 Q6⇔ f 2B0~bD^B̄$j†hj,B%&1bF^B̄@j†hj,B#&!

1 f 2B0cT̄aj†hjTa12 f 2B0
2L5^h]mS]mS†&1•••, ~B6!

where only the terms that correspond to leading-order ch
perturbation theory have been shown. Comparing this
pression with the weak Lagrangian in Eq.~13!, we then infer
that the contributions of a factorizedQ6 to the weak param-
eters are

hD5
GFl

A2
8C6f 2B0bD , hF5

GFl

A2
8C6f 2B0bF , ~B7!
05600
r

al
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hC5
GFl

A2
8C6f 2B0c, g85

GFl

A2
16C6B0

2L5 .

APPENDIX C: CP-VIOLATING ASYMMETRIES
IN S\Np DECAYS

The S-wave amplitudes inS→Np can be expressed in
terms of their componentsS2uDI u,2I , where theI in the second
subscript denotes the isospin of theNp state. Thus we have6

sS1→np15 1
3 ~2S11e

if11
S

1S31e
if31

S
!eid1

S
1 1

3 ~S13e
if13

S

22A 2
5 S33e

if33
S

!eid3
S
,

sS1→pp05
1

3A2
~2S11e

if11
S

1S31e
if31

S
!eid1

S
2

A2

3
~S13e

if13
S

22A 2
5 S33e

if33
S

!eid3
S
, ~C1!

sS2→np25~S13e
if13

S
1A2

5 S33e
if33

S
!eid3

S
,

where d2I
S and f2uDI u,2I

S are the strongNp-scattering and
weakCP-violating phases, respectively, anduDI u5 5

2 compo-
nents have been ignored. TheP-wave amplitudes can be
similarly expressed. For each of these decays, one can
struct the counterpart of theCP-violating asymmetriesAL,J
using @6#

A5
Ga1Ḡā

Ga2Ḡā
. ~C2!

One then has
t

A~S1
1![AS1→np1

52Fsin~d1
P2d1

S!sin~f1
P2f1

S!1
S3

2S1
sin~d1

P2d3
S!sin~f1

P2f3
S!1

P3

2P1
sin~d3

P2d1
S!sin~f3

P2f1
S!1

S3P3

4S1P1
sin~d3

P

2d3
S!sin~f3

P2f3
S!G Y Fcos~d1

P2d1
S!1

S3

2S1
cos~d1

P2d3
S!1

P3

2P1
cos~d3

P2d1
S!1

S3P3

4S1P1
cos~d3

P2d3
S!G , ~C3!

A~S0
1![AS1→pp0

52Fsin~d1
P2d1

S!sin~f1
P2f1

S!2
S3

S1
sin~d1

P2d3
S!sin~f1

P2f3
S!2

P3

P1
sin~d3

P2d1
S!sin~f3

P2f1
S!1

S3P3

S1P1
sin~d3

P

2d3
S!sin~f3

P2f3
S!G Y Fcos~d1

P2d1
S!2

S3

S1
cos~d1

P2d3
S!2

P3

P1
cos~d3

P2d1
S!1

S3P3

S1P1
cos~d3

P2d3
S!G , ~C4!

6In the phase convention that we have adopted to write down these amplitudes, the isospin statesuI ,I 3& for the hadrons involved are
uS1&52u1,1&, uS2&5u1,21&, up&5u1/2,1/2&, un&5u1/2,21/2&, up1&52u1,1&, up0&5u1,0&, and up2&5u1,21&, which are consisten
with the structure of thew andBv matrices in the chiral Lagrangian.
1-10



CP VIOLATION IN HYPERON NONLEPTONIC DECAYS . . . PHYSICAL REVIEW D 67, 056001 ~2003!
A~S2
2![AS2→np252tan~d3

P2d3
S!

sin~f13
P 2f13

S !1A2

5

S33

S13
sinf13

P 2A2

5

P33

P13
sinf13

S

11A2

5

S33

S13
1A2

5

P33

P13
1

2S33P33

5S13P13

, ~C5!

TABLE VI. Weak S- andP-wave phases inS→Np decays fromQ6 contribution alone, in units ofhl5A2.

f1
S,tree f1

S, loop df1
S,tree f13

S,tree f13
S, loop df13

S,tree f11
P,tree f11

P, loop df11
P,tree f13

P,tree f13
P, loop df13

P,tree

0.98 1.27 21.65 0.95 1.23 21.61 0.11 0.24 20.05 234 274 24
h

io
de
a
y

t,
om

-

q
n

ntral
s
f
re-

ing

w-
ne-

ate,

the
our
II.

the
where

S1[S111
1
2 S31, f1

S[
S11f11

S

S1
,

S3[S1322A 2
5 S33, f3

S[
S13f13

S

S3
,

~C6!

the P-wave counterparts being similarly defined, and t
weak uDI u5 3

2 phases have been neglected.
To estimate the weak phases, we follow the prescript

proposed earlier, obtaining the real part of the amplitu
from the values extracted from experiment under the
sumption of noCP violation and calculating the imaginar
part from the leading-order amplitudes in Eq.~20! with the
values of ImhD,F provided in Sec. III. To find the real par
ignoring the strong and weak phases, we first derive fr
Eq. ~C1!

S15sS1→np11
1

A2
sS1→pp0,

3S135sS1→np12A2sS1→pp012sS2→np2,

S3352A 5
18 ~sS1→np12A2sS1→pp02sS2→np2!,

~C7!

and analogous expressions for theP waves. From the experi
mental values in Table I, we then extract, in units ofGFmp1

2 ,

S1520.9560.04, S1351.9560.02, S33520.1160.04,

P152.6460.04, P1350.0160.03, P33520.1160.05.
~C8!

The imaginary part of the amplitudes are obtained using E
~20!, ~25!, and ~29!, as well as the isospin relatio

TABLE VII. Predicted weak phases, i

f1
S f13

S f1
P f13

P d

1.062.0 1.062.0 0.160.2 240680 9.4°6
05600
e

n
s

s-

s.

A2aS1→pp05aS1→np12aS2→np2 for uDI u5 1
2 dominance.

Thus, we have in units ofhl5A2

Im S1

S1
expt

5~20.0411.02!1~20.0311.30!,

Im S13

S13
expt

5~20.0410.99!1~20.0311.26!,

~C9!

Im P1

P1
expt

5~0.0210.09!1~20.0710.31!,

Im P13

P13
expt

5~7241!1~215259!,

where the numerators on the left-hand sides are the ce
values in Eq.~C8!, and we have written each result a
(tree)1(loop), with the two numbers within each pair o
brackets being bag-model and factorization contributions,
spectively. In Table VI, we collect the weak phases result
from these ratios.

We also show in Table VI another error estimate,df,
obtained from using the leading-order amplitudes and allo
ing the parameters to vary between their tree-level and o
loop values, as discussed in Sec. IV. In making this estim
we again employ only the factorization contributions@for the
P waves, we use theS amplitudes in Eq.~33!#, which are
much larger than the bag-model ones, as seen in Eq.~C9!.

We may, therefore, conclude that the uncertainties of
weak phases are all of order 200%. This is reflected in
prediction of the phases, which are collected in Table V
The corresponding strong phases have been measured@11#
and their values have also been included in this table.

From the central values of the isospin amplitudes and
phases in Eq.~C8! and Table VII, respectively, we obtain
n units ofhl5A2, and measured strong phases.

1
S d3

S d1
P d3

P

1.0° 210.1°61.0° 21.8°61.0° 23.5°61.0°
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A~S1
1!53.931024, A~S0

1!53.631026,

A~S2
2!528.331025, ~C10!

where we have usedA2l5h51.2631024 as before. In this
case our estimate is a very rough one, as its uncertain
a
n

ia

ng
si-

ng
si-

ry

e,

05600
is

larger than those for the other hyperons. This is due to
~apparently accidental! smallness ofP13 and its large experi-
mental error, indicated in Eq.~C8!, as well as to the already
sizable uncertainties quoted in Table VII. In order to have
more quantitative estimate of the uncertainties, these mo
will have to be revisited when better measurements of
amplitudes become available.
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