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We demonstrate the viability of improved staggered light quarks in studies of heavy-light systems. Our
method for constructing heavy-light operators exploits the close relation between naive and staggered fermi-
ons. The new approach is tested on quenched configurations using several staggered actions combined with
nonrelativistic heavy quarks. Exploratory calculations ofBgeneson kinetic mass, the hyperfine ardl-11S
splittings inBg, and the decay constaﬁgs are presented and compared to previous quenched lattice studies.
An important technical detail, Bayesian curve fitting, is discussed at length.
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[. INTRODUCTION errors coming in only aD(«2a?). Staggered actions have an
exact chiral symmetry at zero mass and are much cheaper to
Precise calculations of hadronic matrix elements are imsimulate than Wilson-type quark actions, so it has been pos-
portant ingredients in the quest to constrain the flavor-mixingsible for the MILC Collaboration to carry out unquenched
parameters of the standard model, the Cabibbo-Kobayashéimulations with much smaller dynamical quark masses than
Maskawa matrix elementg;;, . For example, the main the- has been attempted in the past. They are now starting to
oretical input in extracting the rati¢V,y/V,s involves a  obtain impressive results for light hadron spectroscopy and
combination of the decay constarits and fBS, which pa- light meson decay constart?,3].
rametrize leptoni® andB, decays, and of the neutrBland In this article we demonstrate that improved staggered
B, mixing parametersBg and Bg . Uncertainties in these quark; can also .be used very effectively to s]mulate the light
guantities, or more specificall)sl in the combinatich quark in heavy—hght systems such asI_BrphyS|cs... The past
o ' . . decade has seen significant progress in our ability to simulate
=(fs,/fs) yBs,/Bs, currently restrict our ability to carry heavy quarks accurate[fhe commonly used nonrelativistic
out stringent consistency_ checks of the standard m@lgl  QcD (NRQCD) action, for instance, has errors coming in at
see[1]). If these theore_tlcal errors could_ be re_duced by 80(asa?) and O(asA oep/M), and work is underway to re-
factor of 2 or more the impact would be immediate and farmoye the lattel On the other hand, only Wilson-type actions
reaching. Similarly, high precision theoretical calculations ofhaye been used for the valence light quarks in heavy-light
form factors governind—D<¢v and B— w{v decays are mesons, baryons, and electroweak currents, making it diffi-
crucial to determinations di,| and|V |, respectively. cult to go much belowng,n442 in the light quark mass due
Monte Carlo simulation of QCD on a lattice will ulti- to the necessary computational expense. Consequently, the
mately provide the most accurate theoretical determinationextrapolation of simulation results to the chiral limit leads to
of mixing parameters, decay constants, and form factorthe dominant systematic error in studiesBbandD mesons
since lattice QCD is one of the few systematically improv-(aside from quenching uncertaintiefurthermore, the lead-
able approaches to QCD. Understanding and removing sy$ag discretization errors in heavy-light simulations come
tematic uncertainties in lattice calculations, however, is ardufrom the light quark sector since Wilson-type actions have
ous and complicated, and much of the effort in lattice gaugevorse finite lattice spacing errors than improved glue, im-
theory over the past decade has focused on this task. Omeoved staggered, or NRQCD actions. This situation moti-
very promising outcome of all this activity is the emergencevated us to initiate a new approach to heavy-light simula-
of improved staggered actions for light quarks combinedions, namely the use of improved staggered light quarks
with highly improved glue actions. The MILC Collaboration, combined with nonrelativistic heavy quarks. Our approach
for instance, works with the “AsgqTad” quark action which is can trivially be modified to use a Wilson-like action for the
free from the leading discretization errors, including thoseheavy quark instead of NRQCD. The goal is to simulgte
arising from the breaking of the fermion doubling symmetry, physics at much smaller light quark masses than has been
so that the action is accurate up @(aa?) errors. They possible in the past and to significantly reduce chiral extrapo-
employ the one-loop Symanzik improved glue action withlation errors in decay constants, form factors and mixing
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TABLE I. Summary of quenched results from the isotropic meson and electroweak current operators. We adhere to the
12°x32 lattice (14=1.0 GeV). Results are checks of our new recently introduced practice of calling the doubler degrees of
formulation, not state-of-the-art computations to be used for phefreedom “tastes” rather than “flavors[’5] (see alsd6]). We

nomenology. will be guided by the following properties of naive-staggered
actions.
Quantity Result
(1) Up to overall normalization factors, there is no differ-
Miin(Bs) 5.56+0.33 GeV ence between using naive or staggered valence quarks in
M e Bs) 5.51+0.45 GeV meson creation or current operators. Since naive fermi-
Myin(B3) 5.68+0.54 GeV ons are easier to interpret and to handle theoretically, we
M e BS) 5.53+0.45 GeV will construct our heavy-light bilinears using naive fer-
mion fields rather than staggered fields.
B —Bs splitting 25.0+4.8 MeV (2) Any correlator involving naive fermion propagators can
be rewritten in terms of staggered propagators. Since
fa, 225+ 9(staty- 20(p.t.)* 27(disc.) MeV staggered propagators are cheaper to calculate numeri-

cally, when it comes to actual simulations we will always

parameters. Work toward this goal has already started on the Work with expressions that have been converted to the
MILC dynamical configurationg4]. It is important, how- staggered fermion language and involve only staggered
ever, to first establish that we understand how to combine (and heavy quark propagators.

staggered light and NRQCD or Wilson heavy fermions to(3) The taste content of naive-staggered actions can be de-
form heavy-light operators, that we are able to carry out  termined either in the coordinate or the momentum space
sophisticated fits to simulation data and extract physics reli-  pasjs. For heavy-light physics and for perturbation
ably, and that these methods produce results in agreement ooy we find the momentum space interpretation to be
with well-established results. It is for the last reason that this more useful

article focuses on thBg system on quenched lattices, where We start b o Ve fermi d the identifica-
methods existing in the literature provide a solid basis for € start by reviewing naive fermions and the identifica

comparison. We present results By meson kinetic masses, tion of different tastes in momentum space. We will then
some level splittings, and the decay constantas evidence explore the taste content Bfmesons that appear when naive
S

that our approach is working. For quick reference. we Sumfermions are combined with heavy fermions. We assume that
. PP 'g. For g . S the heavy quark action has no doublers, as in NRQCD, or
marize the results of our finest isotropic lattice in Table I.

Note that several systematic uncertainties remain, notabl at doublers have been given masses of order of the cutoff

the error from determining the spacing on quenched lattice Iahta Wllson term, as r']n Fhe lFe;Lnllakl)_ "m’?.roﬁim‘ I—t|eavy-.
and discretization errors from using coarse lattices with the 9/t SYSt€mS aré much simpier than ight-light systems since

present level of improvement. Therefore, the results pre—he heavy quark suppresses the taste-changing processes of

sented in this paper are useful for comparison to similar Iat:[he naive-staggered quark.

tice calculations, but they are not appropriate for inclusion in
phenomenological analyses. Having established this method A. The free naive quark action
as a promising approach, work is now underway on un-

?u_etr_\ched (Ijatul;:teg to tr?mo;/t;:hor ridluft? the é)[/)stemal';lc un(:q.rl'nimproved naive fermions. Taste identification and relevant
ainties and obtain state-of-the-art lattice QCD results. symmetries survive the inclusion of gauge interactions and

In the next section we introduce and describe the formalbf theO(az) improvement terms incorporated into the action

ism for combining staggered light quarks with heavy quarkthat we actually use in our simulatiorisee Sec. IIB for a

fields to form bilinear operators that create heavy-light Medescription of the full action The free unimproved naive
sons or represent heavy-light currents. A significant simplifi-

. - . ;ermion action is given by
cation comes about from recognizing the equivalence o
staggered and naive fermions and writing down bilinears in _
terms of the latter. This will be explained thoroughly below. So=a*> [‘I’(X)
In Sec. Il we give simulation details starting with a descrip- X
tion of the glue, heavy quark, and light quark actions and
then a discussion of our constrained fitting methods based offith
Bayesian statistics. Section IV gives results for heavy-light
spectroscopy, including kinetic masses and a calculation of VM‘I’(X)=% [V(x+a,)—V(x—a,)] 2
the B meson decay constahgs. Three appendixes contain
details regarding the theory, notation, and fitting techniqgueswe work with Hermitian Euclideany matrices obeying
respectively. {¥..,7,4=28,,. It is well known that the actior(1) de-

scribes a theory with 16 tastes of Dirac fermions and that it
Il. FORMALISM has a set of discrete “doubling” symmetries:

Most of our discussion in this section will be for free

1
2 VgVt m \P(x)]. ®

In this section we describe how to combine naive and .
staggered light quarks with heavy quarks to form heavy-light W (x)— e "aM W (x)
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W (x)—eX "W (x)M] | 3) pendent tastes from 16 to 4 which does not rely on first going
g through the Kawamoto-Smit transformation. They exploit
g is an element ofG, the set of ordered lists of up to 4 the symmetry3) to place constraints among the 16 different
indices: tastes so that only 4 of them remain as independent degrees
of freedom.(See alsd 10] which uses the Hamiltonian for-
G={g:9=( 1,12, - - ), H1<m2<...}; (4 malism)

Equations(8) and (10) allow us to derive the simple but
e.g.(2), (0,3), and (0,1,2,3) are elements Gf as is the jmportant relation between the naive propaga®y(X;y)
empty setJ. The corners of the Brillouin zone are denoted and the staggered propaga®((x;y). One has
by the 4-vectormy such that

EQ. (8)=Gy(X;y)=Q(X)Ge(xy) Q(y)" (13
ar

(mg,={a “% 5 EQ. (100=Go(xiy) =1, G (Xy), (14)
0

herwise. s . . L .
othenwise with I, equal to a &4 identity matrix in Dirac space. This

The M, are transformation matrices leads to
Gu(x;y)=0(x)Q(y)XG(x;y). (15)
Me=11 M, (6) o _
neg We use the identity15) repeatedly in the present work to go
_ from bilinears expressed in terms of naive fermion fields to
with correlators written in terms of staggered propagators. It can
M =i @ also be used to rederive familiar staggered correlaeis.
w8 Yu for pions or rhog starting from simple naive fermion bilin-

An illustrative way to reduce the taste degeneracy of th€ars- We emphasize that H45) is an exact relation even in

naive action is to diagonalize the action in spin space. Lef€ presence of gauge interactions; reexpressed as a relation

5()() and d(x) be a new set of 4-component spinor fields between the inverse of the naive and staggered actions, re-
P P spectively, for fixed gauge fields, it is valid configuration by

related to the originalW(x) and W(x) fields via the configuration, and hence also for the fully interacting naive

Kawamoto-Smif 8] transformation: and staggered propagators. The relatidB) also holds for
— — " improved versions of naive-staggered actions.
VYX)=Q(x) (x), Yx)=d(x) Q(x) (®) Before going on to discuss heavy-light bilinears, we end

this section on basic naive fermion properties by reviewing
the momentum space identification of naive fermion tastes.
We continue to use the notation [&]. The momentum space

3
ax=T11 (n)x#/a_ (99  spinors are given by
n=0

with

In terms of these new fields the naive fermion action takes on l/f(k):a“g e W (x), (/,(k)za“; e (x)
a spin-diagonal form, (16)

with the inverse relation given by

1
> ﬂM(X)EVme}q’(X)J,
y

(10 voo= | e, Weo- [ e k.
where ' ' 17)

So—Sp=2a*), [d_)(x)

Nu(X)= (= 1)kt - Fxu-n)la, (1) we use the notation

to 4-fold. The spin-diagonal form of Eql0) tells us it
should be possible to do so, since each spin component of
®(x) is independent of the other components. One way to

proceed is to define 1-component fielgéx) through whereD denotes the full Brillouin zone;- w/a<k,<m/a,
andDg; just the central regions- m/2a<k,<m/2a. In terms

Staggered fermions reduce the taste degeneracy from 16-fold d*k d*K
oo™ heo o oo, as
kD JkeD (2m)* kDgy JkeDgy )4

(27

d(x)=e(x)x(X). (12 of the momentum space spinors the free actibnbecomes
The c-number spinoe(x) is usually chosen to be constant, _ — . 1 .
and one ends up with the standard staggered fermion action So= k,Dw(k) % Iy“asm(k"a)er vio. (19

for the fieldsy(x). Referencd9] goes through a more rig-
orous and general method for reducing the number of indetsing the 4-vectorsr, this can be written as
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with gse Gg and g; corresponding tou=0 (and My,
=ivy5v0). In analogy with Eq(18) we have

X p(K+g). (20) d3k d3k
) ] . fk,DsszEDsW, JAk,DS@:fkeDS@ (2m)° @7

The next step is to define 16 new momentum space spinors
q9(k) labeled by the elementsof the setG (4):

_ 1
So=§ J'k’%w(k+rrg) % |yﬂasm([k+7rg]#a)+m

where Dg denotes the full 3D Brillouin zone;- m/a<k;
9Ky =Mkt ), oK)= d(k+ 7 )M (21 <mwla, and Dy the central region,— m/2a<k;</2a.
Pk 0¥ o AO=u o @) Then, as is shown in detail in Appendix A,
the matricesM 4 are those of Eq(6). In terms of these new q
; g ; ; wl2a
spinors,q%(k), and upon using the relation 42 E Wext)= S f f ko
k Ds®

9scGg —71'/2a277

Mgy, M{ sin([k+my],@) =7, sink,a), (22 -
X {Pn(k+ g, t) vl M q%(K ko)

+(=1)'M{ 4 q%9(K ko) 1} (28)

the actionSy becomes

— 1
So=2, f qg(k){E i, sin(k,a)+m|q%(k).
k.D —
’ 7 : (23) For gs# &, the field ¢ (k+ my_t) creates a heavy quark

_ _ _ with large spatial momentum so that any state containing it
Equation(23) clearly describes an action for 16 “tastes” of will have a large energy. Consequently, the contributions to
Dirac fermions. The sunx, over the elements of the s&  the heavy-light bilinears, Wg(x,t) from low-lying states

can be interpreted as a sum over tastes. The doubling syrdome from thegs= & part of the sum in Eq(28):
metry (3) which in momentum space becomes

m2a
(k)= Mg(k-+ o) ka f ) 'k°‘{¢H<kt> 7s [d7(kko)
sgy T a2
WK — Yk mg) Mg, (24 +(=1)'M] q%(k,ko) ]} (29

takes onay?(k) taste into another up to possible sign factors
€g,.0,= +1, defined throughMy M, M (see

Ref. [9]).

'In contrast, light-light bilinears receive contributions from all
8 sections of the spatial Brillouin zorjéhis can be seen by

replacingyy, by ¥ in Eq. (28) and then using Eq21)]. The
gs# 0 contributions to heavy-light bilinears are discussed in
more detail in Appendix A, where we consider more general
To discuss heavy-light bilinears we introduce heavy quarkbilinears and show that they couple either to exactly degen-
fields ¥, which can stand for either heavy Wilson or non- erate states or to artificial high energy lattice states.
relativistic fermiongfor the latter case we will use the nota-  Let us point out that in Eq(29) there are contributions
tion ¥L(x)—Q(x) in later sections with Q(x) a from both the pseudoscalar state and the scalar state, which
4-component spinor with vanishing lower 2 compongnts has a coefficient alternating in sign. The oscillating parity
The simplest interpolating operator one could write down forpartner appears in light-light correlators as well. In Sec. Il B
creating aB meson with a heavy quark fieldr(x) and a We discuss how fits are able to separate these contributions

naive antiquark field¥(x) is from correlation functions.

691 9277919

B. Heavy-light bilinears

Wa(X) =T H(x) ys¥ (X). (25 C. Heavy-light two-point correlators

Once heavy-light bilinears with naive light quarks have
been introduced, it is straightforward to obtain bilinear-
bilinear two-point correlators and write them in terms of
_ , staggered propagators. Starting from this section we will re-
z//(k,t)=a32 e X p(xt), vert to the usual practice of working with dimensionless

X spinor fields. Hence one should assume'a|l ¥, and y
fields have been multiplied by a factor af’? and that all
E(k,t):a32 eik-x \F(x,t) (26) Ipropagators are now dimensionless. Denoting the generic bi-
X inear as

Let us analyzeWg(x) in 3-dimensional momentum space.
To do so we introduce the 3D Fourier transformed fields

and similarly for the heavy field¥ . It is useful to intro- WF(X):\FH(X)F“P(X), (30
duce a subseG,C G that involves only spatial indiceg
—j=1,2,3. The full seG can be built up out ofjg andg,gs  one has
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TABLE II. Simulation parameters for the quenched gauge configurations. There are 200 configurations
for each parameter set.

Volume B & l/as (GeV) as/a; Ug U; aM

8%x 20 1.719 - 0.8 1 0.797 0.797 6.5
83x 48 1.8 6.0 0.7 5.3 0.721 0.992 7.0
122%x 32 2.131 - 1.0 1 0.836 0.836 5.0
125x 48 24 3.0 1.2 2.71 0.7868 0.9771 4.0

Ot Nonlocal sources have been used extensively in staggered
g eP*Wr_(x) Wr_(0)) fermion simulations of light hadrons.

:2 e”"XTr{FSC Gy(0:X) Flk GH(X;O)} I1l. SIMULATION DETAILS
X A. Actions and parameters
_ The gauge action used to generate the isotropic gauge
_ : t T
_2;4 elP XE, [tr{lsc Q7(%) Tgy configurations is the tadpole-improved tree-level
e 0O(a?)-improved actior{11,12)

X G S(x;0)} G°(0;)], (3D)
x - gy [SPm0_1RLO L Ry
where we have used E@L5) to convert fromGy to G, . ¢ 'BX,PV 3 W2u2 12 42 12 42
“Tr” stands for a trace over both color and spin indices, re e " 34

whereas “tr” stands for a trace over spin indices only. Using

G,(0:X)=G(x;0)(~1)**»'* one gets, for the casEs P, represents the plaquette aRg, the 2x1 rectangle in
=Lsik= s, the (u,v) plane; both are normalized so th@®,,)=(R,,)
=1 in the B—o limit. As part of our tests we also study
CO(p,t)=> ePXWL(x) Wg(0)) anisotropic lattices where the temporal lattice spaeinty a
X few times smaller than the spatial lattice spacig in this
case improvement in the temporal direction is secondary to
_ ip-x T spatial improvement. The action used for the anisotropic lat-
=> P> [tr{Qf(x) Pl \ 1M USEY
X e tices is the same in the spatial directions, but the rectangles
) ) with two units in the temporal direction are omitted and the
X G “(x;0)} G} “(x;0)] (32)  space-time coefficients adjusted to be consistent with Sy-
manzik improvemenf13,14:
which couples to the8 meson. For theB* meson, we set
['sc=I"g=y; which gives 1 {5 P.o(x) 1 Reg(X)

3 12y

S

Sgniso): —,3 2

Colp.)=2 P [1{Q'(x) GE“(x;0)} nems! €0
1 Ry(X)
X(—1)%2 G*°°(x;0)]. (33) 12 8

S

In the above formulas we are now allowing the heavy-light 4 Py(X) 1 Rg(X)

mesons to have nontrivial momentum. As long as spatial —,6’2 éo 3722 12 42| (35

momenta are restricted &p;< /2 there should be no prob- s UsUt UsUt

lems with the Lorentz and/or taste content of a meson sud-

denly changing at finite momenta. In later sections of thisFor the values of the inverse coupligand the bare anisot-

article we will present results showing good dispersion relatopy &, used in this work, the tadpole-improvement Landau-

tions for B and B* mesons for momenta up to at leasp, link factorsug andu,, the spatial lattice spacina, and the

= /3 to check this hypothesis. renormalized anisotropg=as/a; were determined in Ref.
Although the discussion above implicitly assumes the us¢l15]. The simulation parameters for the gauge configurations

of local sources and sinks, generalizing to smeared sourcese summarized in Table II.

and sinks is straightforward as long as one takes care that the The parameters for the isotropic lattices were intended to

smearing function preserves the doubling symmejyThis  give approximately the same spatial lattice spacings as the

work employs local sources and sinks, with good results foanisotropic lattices. The isotropic38 20 lattice parameters

the ground state mesons, but smearing is an important direavere discussed in Ref16]. The isotropic 12x 32 configu-

tion for future studies, especially those of excited statesrations were generated for this work, and we determined the
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lattice spacing by calculating the static quark potential andemporal direction or not; we still call thg, ;=1 action

using the phenomenological parametgr0.5 fm[17]to set  “AsqTad,” and we refer to they, .= 0 action as “AsqTad-

the scale. tn.” Note that the isotropic AsqTad action is recovered by
The light quark action we use is th®(a?) tadpole- settingco= &=y naix=1.

improved staggered acti¢8,19 which contains in place of The NRQCD ‘action i§22,23

the simple covariant difference operator in Ed) an im-

proved difference operator constructed as follows. First, theS _2 T T a;6H aHp\"
link matrices U ,(x) are replaced by “fat-link” matrices NRQCD™ < T R 2/, " on .
[20]:
aHp\" a;oH
v xuj(t—l)(l— t 0) -2 bioy).
Vu=11 |1+ —- U0 (39 !

P symmetrized (40)
which contain 3, 5, and 7-link paths, all bent to fit within an H-is th lativistic Kineti ¢
elemental hypercub@Ref.[18] lists each term explicitly, and "0 IS the nonrelativistic Kinetic energy operator,
we write the second-derivative operald¥) in Appendix B. A
This smearing effectively introduces a form factor in the aHy= (41

guark-gluon vertex which suppresses the coupling of high 2¢(asMo)
momentum gluons to low momentum quarks. Second, the falq sy includes relativistic and finite-lattice-spacing correc-
link is further modified by adding what has come to beng
known as the Lepage terfi9] in order to cancel the low ’

momentumO(a?) error introduced by Eq36): (A@)2 i o
2 at5H=—Cl 3+C2 Z(VE_EV)
S (V,) 8&(asMo) 8(asMo)
V, 0=V, U, (x). (37
7 4
P+ 1 o
—c3 ———— 0 (VXE—EX
Finally, the remainingO(a®) (rotationa) errors are sub- Cs 8(aSM0)20 (VXE-EXYV)
tracted by including a cube of the difference operator, the )
so-called Naik ternj21]; therefore theD(a?) improved ac- ¢ 1 Bac A
tion is obtained by the replacement 4 2¢(agMy) 7 5 24£(agMy)
1 5 (A(Z))Z
vV, — V.—=(V,)". 38 —Cg —————. 42
" o 6( ,u) ( ) 6 1&’]52(aSM0)2 ( )

This action has been used in many recent simulationsa|| derivatives are tadpole improved and
guenched and unquenched, most prominently by the MILC
Collaboration who call it the “AsqTad” action. In order to
apply tadpole improvement consistently, powers of the cova- AD=3 VP, A= > v® (43
riant difference operatorsyj,)" and (Vf))“, are obtained by )= )=
n successive applications &f, or V(2 “respectively, with no 5 1
tadpole factors, replacing/,—U ,/u, in the final expres- Vie=Vi— EV(,f). (44)
sion only after setting terms Iik@M(x)UL(x) equalto 1. In
other words, one writes every operator in E2f) in terms of  The dimensionless Euclidean electric and magnetic fields are
paths of links, dividing each link variable by its correspond-
ing tadpole factou,, . Ey=Fu, By=-— %qjkfzij ) (45)

In this work we utilize anisotropic lattices, for which the
improved staggered action is rewritten breaking the sum oveExplicit expressions foWV (™, m=2,3,4 andﬁw are given

3 3

spacetime directions into spatial and temporal parts in Appendix B. In most cases we set all 6 of the=1 and
. 1 1 refer to this as the M? NRQCD action, even though the
, , . 3 . . . . . .
a, -~ v, E(VM)S) *’ﬂt( v/ —Yt,naikg(vt)3> leading 1M* relativistic correction is also included. In order
T to make corresponding perturbative calculations simpler,

c 1 some simulations were done settityg= c,= c3=Cg=0 with
+ 20 > ﬂk(Vé——(VkF)- c4,=cs=1, and we call this the M NRQCD action. In
&% 6 practice the results depend very little on which action is
(39) used, since the nonrelativistic approximation is very good for
B mesons.
The parametec, is tuned to give the correct pion dispersion  The bare mass of the heavy qual,, is chosen to be
relation. We include a parametgy i Wwhich we set equal to  close to the bottom quark mass, based on simulations with
1 or 0 whether we want to include the 3-link hopping in the Wilson-like light quarkg23,24. The bare mass of the stag-
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gered quarkm s tuned to be close to the strange quark mass 10! e T T TS
using the condition that the ratio of thess” pseudoscalar F ]
meson mass to thes$” vector meson mass is approximately ~  {q0B~ _
. a E 3
equal toy2mZ — mzﬁ/m¢=0.673. On unquenched lattices the = E 3
¢ mass is probably not accurately determined since it shoulc— ar 7
be sensitive to the sea quark masses decreasing through tI&o: 10 E E!
threshold for¢p— KK. Instead one should first determine the =+ § .
lattice spacing, then usen#—m? to determine the bare & 1072 | —
strange quark mass. On the other hand, for the quencheg B 3
lattices in this work, the ratio serves as an appropriate fidu-= 10-2 [ ]
cial for comparison between different lattices. m 2 E
-4 i | T | | | | T | | | T | L1 1 ]
B. Fitting methods 10 0 5 4 5 8 10

The light quark propagators are computed with anti- t/a

periodic boundary conditions in the temporal direction; in

contrast, the evolution of the heavy quark in time requires FIG. 1. B meson propagator on e '=0.8 GeV lattice with a
only an initial condition. Due to this difference, heavy-light am=0.18 1-link staggered quark ana@M,=6.5 nonrelativistic
meson correlators with temporal separations greater thaleavy quark. The 3-exponential fit hg§,/ DOF=0.59.

N/2 will be contaminated from the light quark propagating

backward in time from the source across the time boundanguted values of, varying the number of termi in the fit.
so we only compute heavy-light meson correlators up td=or a givenkK, the best fit is obtained by minimizing an
N/2. The periodicity of the light quark can still be utilized to augmentedy?:

improve statistics by evolving the heavy quark backward in

time from the source. We average the forward and backward Xaud CO AN (i, 8)1)
propagating meson correlators configuration by configura- -1 (
tion. Ny,
The process of fitting the meson correlators to a series of =x*(C(t).{\ P+ ;0 2 (48)
exponentials is complicated because the temporal doubler Aj

causes the correlation function to couple not only to states

with the quantum numbers expected from the continuunwhere we have generically denoted the parameters of Eq.
limit, but also to states with opposite parity times an oscil-(47) by

lating factor (—1)'*1. Thus, we expect the meson correla-

tors to have the form A=(Ay,Eq,A1,E1 A, AE,, ... Ac,AEy), (49
Kp—1 Kp+Ko—1
ft{AGED = 2 Ae B+ D (=1 iAe B theith component of which is; .
n=0 k=K, In Appendix C we give a pedagogical summarny[?5] as

(46) it applies to our calculation, but a few remarks here are in
order. The second term on the right-hand side of @8) is

which includesK,, states of expected parity aid, states of the contribution of Gaussian priors for each fit parameter,
opposite parity. In our study we always taKg=K, or K,  and one sets the prior meapg, and half—widths&xi based

—1, and for the excited state energies we use the differences reasonable prior estimates for those quantities. The pro-
AE=Ey—Ey_, as parameters in the fit. THe=K +K,  cedure is best illustrated by an example. Let us take a pseu-

terms in the fitting functior{46) can be rearranged as doscalar heavy-light correlator, computed with the unim-
proved, or “1-link” staggered action, on the’8 20 lattice as
f(t{AGLES) =Age™ ot (—1)t 1A e B2t an examplegsee Fig. 1 The set of prior meang and half-

widths & used in fitting this correlator is given in Table III.
The ground state energy and amplitude prior means were
estimated from effective mass plots and the prior widths set
at 50% and 25%, respectively. Priors for the excited states
(47) biased the amplitude fit parameters to be all of the same
order and the energy differences to be equal and about 300
Note that terms with evek are simple exponentials and MeV, roughly the size of the 8-1S and 1P —1S splittings
those with oddk are oscillating exponentials. in the B spectrum. Recall that the NRQCD action does not
Recently a curve fitting method has been introduced tanclude the rest mass, so the eneify,, is equal to the
our community which allows one to estimate the systematighysical meson mass minus an energy shififables IV-VI
uncertainty from the series of staté47) in the correlator show the results of fits to the propagator in Fig. 1 as the
[25,26]. One fits the correlation functioB(p,t) for all com-  number of exponentials changes from 2 to 8. The uncertain-

K—1
+|(22 (_1)k(t+1) A ef(AEk+AEk,2+...)t'
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TABLE lll. Gaussian prior meang. and widthsé for fits to
pseudoscalar heavy-light propagator on th&xg0 lattice, m
=0.18. We usey to denotekE, for the ground stateskE&0,1) and

AE, for the excited statesk&2).

k AT 5Ak Me T 5ek

0 0.94+0.47 0.906:0.225
1 0.94-0.47 1.46:0.35
2 0.60+0.60 0.46:0.30
3 0.60+0.60 0.46:0.30
4 0.60+0.60 0.46:0.30
5 0.60+0.60 0.46:0.30
6 0.60+0.60 0.40-0.30
7 0.60+0.60 0.40-0.30

ties are estimated from the inverse of the maﬁ‘&xaug of
second derivatives 'V x5,lij = xaud I\ i9N;)

o =V2L(VVxa i,

which assumes the shape
=\"" V) is quadratic im\;

1
Xzflu(;]_)(ezlungin~ > 2 (\j—

1]

®f,, near

™)

2.2
d Xaug
INON;

(50

its minimum X

(Nj= ™).
(51)
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the stability of the ground state fit parametékg,E, and
A;,E; asK is increased. The beginning of a plateauKat
=3 implies at least one excited state is needed in the fit in
order for the excited state effects to be removed from the
ground states. Table VI similarly indicates thé&t 3 is nec-
essary in order to have an acceptablggug/DOF' as we
discuss in Appendix CXaU%DOF should only be used as a
gross check of the fit. E.g¢5,J DOF=2 implies the fit func-
tion is a highly improbable model of the data, but one should
not necessarily prefer a fit Wli;hauJDOF 0.8 over one with
XauJDOF 1.3.

Note that the uncertainties estimated from the fit for the
ground state parameters are much smaller than the widths of
the corresponding priors, while the errors from the fit are
comparable to the prior widths for most of the excited state
parameters. The first excited non-oscillating st&te,2, is
an exception, appearing to be well constrained by the data
until another non-oscillating statk=4, is included in the
fit. This means that thK =3 andK =4 fit result forE, does
a good job of absorbing the effects of the excited states, but
that there is not enough constraint from the datathe pri-
org) to separate the first excited state from the second. Thus,
we conclude thaK =3 is sufficient to obtain reliable esti-
mates of the ground state energies and amplitudes and that
the data are not sufficiently precise to extract excited state
energies and amplitudes.

We are able to utilize this constrained curve-fitting
method to fit all of our data except in one case: the heavy-

In Fig. 2 we plot the non-oscillating and oscillating light correlators computed with the AsgTad action on the
ground state energies, as well as the first excited state ener§yx 20 lattice. We were not able to find fits wmkﬁ g{DOF
vs the numbeK of exponentials in the fit. The rest of the fit <8; one example is shown in Fig. 3 where the fit is visibly
parameters are given in Tables IV and V. One can clearly semuch worse than for the 1-link action shown in Fig. 1. This

TABLE IV. Dependence of fit results on number of terii® included in fit—energies of the®x 20
heavy-light pseudoscalar correlator. Uncertainties quoted here were estimateﬁVp@imJ as described in

the text.
Non-oscillating terms
K ak, aAE, aAE, aAEg
2 1.0440.003
3 0.9190.013 0.4920.048
4 0.9210.013 0.5050.067)
5 0.9150.018 0.3650.167) 0.2820.250
6 0.9170.018 0.3720.169 0.3040.259
7 0.9140.022 0.3220.199 0.2690.257 0.3480.297
8 0.9150.02) 0.3280.203 0.2880.261) 0.3610.297
Oscillating terms
K akE,; aAE; aAE; aAE,
2 1.29@0.015
3 1.5030.028
4 1.47@0.099 0.4050.296
5 1.4610.103 0.4220.293
6 1.46%10.100 0.4120.299 0.4120.299
7 1.4550.102 0.4190.299 0.4190.299
8 1.4640.098 0.4190.300 0.4180.300 0.4180.300

054505-8



HEAVY-LIGHT MESONS WITH STAGGERED LIGHT QUARKS

PHYSICAL REVIEW D67, 054505 (2003

TABLE V. Dependence of fit results on number of terthd included in fit—amplitudes of the3x« 20
heavy-light pseudoscalar correlator. Uncertainties quoted here were estimateﬁﬁfnpirﬂJ as described in

the text.
Non-oscillating terms
K A A, A, As
2 1.9550.010
3 1.0470.109 1.0880.093
4 1.0630.11) 1.0820.09)
5 0.9990.174 0.5990.41) 0.5570.41)
6 1.0140.176 0.6010.406 0.5570.409
7 0.98(0.224 0.5180.437 0.5050.456 0.1850.445
8 0.9930.225 0.5270.432 0.4880.457 0.2050.452
Oscillating terms
K A; A; As A;
2 0.4780.013
3 0.6740.024
4 0.58@0.263 0.1050.289
5 0.5530.265 0.1400.293
6 0.5830.268 0.0080.448 0.1190.324
7 0.5720.267) —0.005(0.448) 0.159.336
8 0.6110.279 —0.043(0.460) 0.001.480 0.1790.412

turns out to be a consequence of using an action with nexby simulating with 4 different staggered quark actions: the

to-nearest-neighbor couplings in thedirection on a lattice
with coarse temporal lattice spacing.
The free Naik fermion dispersion relatigsee Fig. 4 has
complex solutions which implies there may be excited state§laik term (the “fat-link” action). We were able to obtain
with negative norms contaminating the correlators at shorteasonable fits to heavy-light correlators with the 1-link and
time separations. If the temporal extent of the lattice werdat-link actions, but not with the Naik action nor the fully

1-link and improved actions as well as an action where the
Naik term was included but no fattening of the links was
done (the Naik action and an action with fat links but no

sufficiently long and sufficiently precise correlators were
computed, these negative norm states which have energies
proportional to 14 would have a negligible effect: one could
include only points witht greater than some minimum value
in the fit, or one could include a negative norm state in the
fit. However, for the 8% 20 lattice where H=0.8 GeV we
are unable to drop enough points and get a good fit while
keeping enough to fit to states of both parities. Also, when
we tried to include a negative norm exponential in the fit,
large cancellations with the positive norm excited states re-
sulted in unstable fit results.

We checked this hypothesis on thexa£/0.8 GeV lattice

TABLE VI. Augmented chi-squared per degree-of-freedom for
the fits in the preceding two tables.

X5ud DOF

47.7
0.60
0.69

Fit result

1.8

1.6

1.4

1.2

0.8

I T T
ak,

(B), aE, (©), aE; (X)

Number of fit terms

0 ~NO U~ WN | XN

0.66
0.74
0.83
0.92

FIG. 2. Results of several fits to the propagator of Fig. 1 plotted
vs the number of exponentials in the fit. Parameters shown are the
non-oscillating ground state energgH,), the oscillating ground
state energyd E;), and the non-oscillating first excited state energy
(aE;=aEy+aAE,).

054505-9



WINGATE et al. PHYSICAL REVIEW D 67, 054505 (2003

Let us return to the subject of estimating the uncertainties
of the fit parameters. The second derivative(ﬁqjg (50) gives
a reliable estimate of the uncertainty assuming that the priors
are reasonable and that the data are approximately Gaussian.
Resampling methods, such as the jackknife or the bootstrap,
can be used to check whether the distributions are Gaussian,
and they provide a simple check on statistical correlations
between different fit parameters. Both procedures take many
subsets of the data as estimates of the original set; perform-
ing a fit on each subset yields a distribution for each fit
parameter from which an error estimate can be made. We
employ the bootstrap method of resampling which requires

sl e some modification in order to properly handle the contribu-
10 tions of the priors: as we show in Appendix C one must
2 4 6 8 10 domly select new prior means’ for each bootstrap fit

t/a randomly p i p

[25]. Table VIl shows the results of applying this bootstrap
FIG. 3. Example of the poor fits obtained for tfBemeson analysis to the heavy-light pseudoscalar correlator computed
propagator on the '=0.8 GeV lattice with an improved stag- with the 1-link staggered action on thé820 lattice. These
gered quark, caused by the temporal Naik term on such coarsesults can be compared to those in Tables IV and V. We find
temporal lattice spacingsee text The fit shown hasy,/DOF  poth methods produce comparable error estimates. For ease
=8.9. of error propagation, we use the bootstrap method to quote

uncertainties in the results presented below.

0
10 [ Il T L L L T T T 7T

1071

1077

1073

B propagator, AsqTad

1074

(=]

improved action; we tabulate typical values ﬁgﬁug{DOF in
Table VII. Furthermore, we performed simulations on an an-

isotropic &x 48 lattice with a very fine temporal lattice IV. RESULTS

spacing 1#,=3.7 GeV using the 1-link action, the . ) . )
AsqTad-tn action ¥, n.x=0), and the full AsqTad action This section contains several results produced using the
(Yenai=1). In all 3 cases we found acceptable fits with simi- methods proposed and described above. The purpose of this
lar values Ofxgug{DOF, again tabulated in Table VII. Figure study was to check the validity of this proposal, so the results
5 shows the pseudoscalar propagator on this lattice for thgresentgd below should not be construed as state-of-the-art
AsqTad action. We have no problem fitting to heavy_"ghtcalculatlons to be used for phenomenolpgy. The results here
correlators on a finer isotropic 1232 lattice where &  Show that NRQCD-staggered calculations produce results
=1.0 GeV with theO(a?) improved action. Therefore, the comparable to NRQCD-Wilson calculations—central values
origin of the problematic fits on the d#0.8 GeV lattice is 29r€¢ and  statistical and fitting uncertainties are
due to a particular lattice artifact arising from the temporalCOmparable—but at a fraction of the computational cost. A

Naik term: but with a larger lattice scaleat* 1.0 GeV these More complete calculation of ti&spectrum and decay con-
artifacts become insignificant. stant on finer, unquenched configurations is underway which

will exploit the advantages of improved staggered fermions

aE to produce, we believe, the most accurate theoretical compu-
1.75t — tation of those quantities to date.
1.5¢
105l A. Light hadron masses and dispersion relations
A As mentioned before we chose a value for the bare stag-
— gered mass so that the ratio of the light pseudoscalar mass
0.75} - ~ to the light vector mass would be somewhat near the phe-
-~ ~ .
0.5t / A\ nomenological value\/ZmzK—mzwlm¢=0.673. We use the
pseudo Goldstone boson correlatofG’;(’(x;0)|2 to compute
0.25¢ the pseudoscalar meson mass and the correlator
ap (—1)%/2 Tr|G,(x;0)|? to compute the vector meson mass.
0.5 1 1.5 2 2.5 3 These masses and their ratio are listed in Table IX for the

FIG. 4. Dispersion relation for free massless fermions. The dotdifférent lattices and actions. Note that even on ehet
ted line shows the continuum dispersion relatisi=p>? the —0-8 GeV lattice the light hadron correlators from the

dashed line shows the dispersion relation for the naive fermioné&SdTad action do not suffer the contamination from the
sinffaE=sirfap, and the solid lines show the real part of the dis- N€gative norm states which affected the heavy-light correla-
persion relation for the Naik action. Note that the solution of thetors, as discussed in Sec. Il B.

Naik dispersion relation which most closely follows the continuum  One measure of discretization effects is the dispersion re-
dispersion relation is purely real until the branch point near  lation. Specifically, we can compute the “speed-of-light”

~1. factor
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TABLE VII. Summary of fits to pseudoscalar heavy-light correlat¢t8sgqTad” implies y; p,=1 unless
otherwise indicated.

B Action 1/ag (GeV) 1/a, (GeV) K X2.{DOF  Egn(p=0)
(MeV)
1.719 1-link 0.8 0.8 3 0.59 7350)
1.719 AsqTad 0.8 0.8 3 8.93 -
1.719 Naik 0.8 0.8 3 17.6 -
1.719 Fat-link 0.8 0.8 3 0.51 6820)
1.8 AsqTad 0.7 3.7 4 1.59 7686)
1.8 AsqTad {in=3) 0.7 3.7 4 0.87 7989)
1.8 AsqTad-tn 0.7 3.7 4 1.03 9(1)
2.131 1-link 1.0 1.0 4 0.48 8719
2.131 AsqTad 1.0 1.0 4 0.96 7B
E2(p)— E2(0) On the anisotropic lattices we use this quantity to tune the
c’(p)= 5 (52 bare parameter, in Eq. (39); it is adjusted so that the pion
Ip| speed-of-light parameter(p) ~1. Table XI lists the values

of ¢, we used and the resulting computed valuesofor

which should equal 1 in the absence of lattice artifacts. Th&€Veral momenta.
Naik term (38) is responsible for subtracting tf@(a?) un-
certainties inc?(p) and its success can be seen in the follow- B. Finite momentum B and its mass

ing results. Table X lists the values of computed.with The energiesEq.(p), extracted from correlation func-
several values of momenturtaveraged over all equivalent (ions include an unknown but momentum independent shift

orientations in momentum spacen the coarser latticed  gue to the neglect of the heavy quark rest mass, i.e.
=1.719) one can see that using fat links does not impa3ve

much compared to the 1-link action, but adding only the Esm(p)=E(p)—A (53
Naik term to the 1-link action results in a significant im-

provement. This is borne out on the finer lattic® ( whereE(p) is the physical energy. In perturbation theory, the
=2.131), where the AsqTad action has an impros&dFig-  shift A is the difference between the renormalized pole mass
ure 6 shows comparison of(p) between these results and and the constant part of the heavy quark self-energy:

those for improved Wilson actiorj46]. The AsgTad action

has a better pion dispersion relation than the clover action, Aper=ZmMo—Ep. (54

but not quite as good as the D234 action.

Given Eg4(0) from a simulation, the physical mass of a
hadron can be computed through

M pert= Esim(o) + ZM M 0 EO (55)

o
£
< 0.1 — TABLE VIII. Bootstrap fit results for the <20 heavy-light
5 E ] pseudoscalar correlator for fits Koterms.
38
© r i
fg‘j i 7 A K=3 K=4 K=5
o 001 _
A E 3 Ag 1.0430.116 1.0610.116 1.0030.183
m C ] akEq 0.9190.0149 0.9200.0149 0.9180.019
B 7 AL 0.6800.025 0.5590.270 0.5380.262
0.001 T S akE; 1.5080.030 1.4570.113 1.4500.112
0 10 . =0 A, 1.0980.102 1.0980.101) 0.7360.329
/2 aAE, 0.4990.057) 0.5140.070 0.4050.127)
FIG. 5. B meson propagator on the anisotropit>@48 lattice, Az 0.1410.313 0.1780.297
wherea; '=3.7 GeV, with aam=0.04 improved staggered quark aAEj 0.4420.288 0.4470.309
andM = 7.0 nonrelativistic heavy quark. The lattice artifacts due toA, 0.4960.42)
the temporal Naik term do not contaminate the fit. TheaAE, 0.3800.247

4-exponential fit plotted hagj,{ DOF=0.87.
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TABLE IX. Light pseudoscalar and vector meson masses, computed with the same light quark propaga-
tors used for heavy-light mesor($AsqTad” implies y; ha=1 unless otherwise indicated=or comparison,
we nominally associate the physical strange sector migh/m, =0.673.

B l/ag (GeV) Action a;m Mg (MeV) my (MeV) Mpg/Mmy

1.8 0.7 1-link 0.04 84®) 1251(11) 0.6740.009
1.8 0.7 AsqTad 0.04 6268 989(31) 0.6320.022
1.8 0.7 AsqTad-tn 0.04 6289 994(37) 0.6300.029
1.719 0.8 1-link 0.18 761) 1171(30) 0.6490.017
2.131 1.0 1-link 0.12 822) 121827) 0.6780.015
2.131 1.0 AsqTad 0.10 68%) 103523 0.6620.016
2.4 1.2 1-link 0.03 80%) 110821) 0.7280.012
2.4 1.2 AsqTad-tn 0.03 619 91317) 0.6790.013

where we attach the label “pert” to denote that the perturba- Figures 7 and 8 show the kinetic masses for Byeand
tive shift A . was used. For the finer isotropic lattice and theBg for several momenta. We find excellent agreement be-

1/M NRQCD action withaMy=5.0 we find tween the perturbative and nonperturbative calculations of
5 the mass. Furthermore, the consistency of the kinetic masses
ZyMo—Eq=M(—0.890 as+M;, O(ag). (56) over several momenta demonstrate that the combined

. ] ) ) ) ) NRQCD-improved staggered formulation gives the correct
The results obtained on the finer isotropic lattice, using thejispersion relation forB, and BX up to |p|=n/3a

AsqTad staggered action, giWe(Bs)=5.55+0.45 GeV =11 GeV. One should not put too much weight on any
andM pe(B3)=5.58+0.45 GeV. The numerical size of the agreement or disagreement between the calculation and ex-
O(a?) uncertainty is estimated by takings~0.3, a typical  periment, given that the calculation is quenched, the lattice
value for quenched lattices with these spacings, and assurspacing not precisely determined, and the quark masses not
ing the coefficient of theO(ag) term is 1[times Mgy as  precisely tuned.

indicated in Eq.(56)].

The physical mass can also be calculated nonperturba- C. Mass splittings in the B¢ system
tively, using the dispersion relation Since the shiftA between simulation energy and the
E2(p)=M2+ |p|2. 57) physical energyEq. (53)] is entirely due to the NRQCD

action, it is universal for all bound states with the heavy

In order to cancel the unknown shift in E@3), we consider ~guark. Therefore, we can compute mass splittings much
[E(p) — E(0)]12=[Eq(p) — E4ir(0)]?, which we square and More precisely than suggested by the uncertaintied i

solve for the mass ar;:_j Ir\1/lpen. The Zpiittig]qss we tcompute on v_ari_(l_)u;,I Ia;'étli\cjes
which correspond to thB system are given in Table XIV;
M P2 = [Esim(P) — Esim(0)12 59 below are a few remarks concerning the different calcula-
kin= tions.

2L Esinl(P) ~Esi(0)] The hyperfine splittingV g —Mg_is the most straightfor-
When the mass is computed using E§8), we call it the  ward to compute since it is the difference between Ehg,
kinetic mass, to distinguish it from the perturbative resultfor the non-oscillating ground states of the vector and pseu-
Mper. Setting|p|=27/12a=0.52 GeV, the kinetic masses doscalar correlators. The results are comparable to previous
on the finer isotropic latticgwith the AsqTad light quark quenched lattice studies; Fig. 9 shows our quenched results
action (see Tables Xl and XI)] are My,(Bs)=5.56  on the 2 isotropic lattices compared to results published in
+0.33 GeV andV,(B)=5.68+0.33 GeV. Refs. [27-30. This splitting was also computed using

TABLE X. Speed-of-light parameter squared for several values jof on the isotropic lattices. Since no
tuning is done, one can estimate the size of lattice artifacts in finite momentum states from how different

is from 1.

B L Action c?(2m/L) c?(22m/L) c?(2\/37/L)
1.719 8 1-link 0.6565) 0.6318) -
1.719 8 fat-link 0.720L7) 0.71220) 0.68424)
1.719 8 Naik 0.88@3.2) 0.91622 -
1.719 8 AsqTad 0.8924) 0.92222) -
2.131 12 1-link 0.79®) 0.76726) 0.77816)
2.131 12 AsqTad 0.9464) 0.95226) 0.83680)
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L AL LN L TABLE XI. Speed-of-light parameter squared for several values
- - of alp| on the anisotropic lattices. The bare parametgin the
anisotropic actior(39) is tuned so that?>~1.

B Action ¢ c?(2m@/L) c?(2\2w/L) c?(2\3m/L)

L
% i 1.8 8 1-ink 1.1 1.00@3 0.99331) 0.99146)

q 8

8

H
T
b4 © HH
HeEH
=
1

1.8 AsqTad 1.4 0.9486) 0.95256) 0.97548)
™ - ® - 1.8 AsqTad-tn 1.4 0.94B4) 0.95751) 0.98045)
24 12 1l-ink 1.0 0.9685 0.95751) 0.93760)
24 12 AsqTad-tn 1.0 0.9844) 0.95751) 0.85381)

&

05— —

doscalar and vector correlators, respectively. The fact that
Egm for these states can be computed using the same cor-
i T relator data as the=0 states should be another advantage
4 J e R T S T over formulations with Wilson-like quarks. In practice, how-
0 0.5 1 1.5 2 ever, it appears that the coupling of these states to the local-
IBI? (GeV)? local correlator is rather small and consequently the fitting
uncertainties for these splittings are large. Smeared sources
S&nd sinks for both heavy and light quark propagators should
be explored as methods for amplifying the coupling to the
P-wave states. In Table XIV we list some combinations of
splittings.

FIG. 6. Pion speed-of-light squared vs momenta on the coar
(8%%20) lattice using several actions. The 1-littiamond$ and
AsqTad(circles results are ours, compared to the clovenosses
and D234(squaresresults of[16].

NRQCD in Ref.[31], but they have different systematic er-
rors caused by the quenched approximation, specifically they
set the bare bottom quark mass by tuningYhmass, instead The heavy-light decay constants are defined through the
of a heavy-light mass. Our error bars are larger than those fanatrix element of the electroweak axial vector current
most other results for two reasons. The first is simply that _
this work is based on 200 configurations compared to 300 (0]Ao|Bs)=(0laysyob|Bs) =g Mg_. (59
[28], 278 and 21329], and 2000{30] (Ref.[27] used 102
configurations The second is that the Bayesian curve fitting The fields in the current above are those defined in the stan-
method includes as part of the quoted uncertainty an estimatard model, so a matching must be performed between them
tion of the error due to excited state contamination, in conand the fields of our lattice action. The continuum heavy
trast to the single exponential fits used in previous work. quark fieldb is related to the nonrelativistic fiel@ through

Quenched results have an inherent ambiguity dependinthe Foldy-Wouthuysen-Tani transformation
on which physical quantities are used to set the lattice spac- ,

AQCD)

D. Decay constant

ing and bare quark masses. Preliminary results on un- v-V
quenched lattices indicate that the inclusion of sea quarks b:[l_ WOJFO M
yields a unique scale and bottom quark ma$8&@$and give

aB} —Bq splitting [4] consistent with the experimental mea- where

surementM BE Mg =47.0=2.6 MeV [33].

The L=1, or “P-wave,” statesB%, and Bg; have the Q= ¢
same quantum numbers as the oscillating states in the pseu- 0/

] Q (60)

(61)

TABLE XII. Bootstrap fit results for the <32 heavy-light pseudoscalaB{) correlator for several
momenta(AsqgTad light quark action.

A alp|=0 alp|=2m/12  a|p|=2\y2#/12  a|lp|=2\3#/12  a|p|=4m/12
Ao 0.1290.009  0.1300.010 0.1290.019) 0.1260.012 0.1390.017)
aE 0.7740.008  0.7990.009 0.8220.010 0.8450.011) 0.8720.014
A 0.0710.045  0.0710.045 0.0710.046 0.0700.050 0.0700.053
aE; 1.2980.090 1.3120.095 1.3260.095 1.3430.100 1.3700.089
A, 1.2090.014 1.2140.014 1.2220.015 1.2320.016 1.2180.019
a,AE, 0.6360.010  0.6130.010 0.5890.010 0.5650.010 0.5400.010
A; 0.7380.046  0.7450.047 0.7520.048 0.7600.051) 0.7600.052
a,AE; 0.1490.127  0.1410.133 0.1350.120 0.1240.123 0.0950.114
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TABLE XIII. Bootstrap fit results for the 1< 32 heavy-light vector BX) correlator for several mo-

menta.(AsqTad light quark actiop.

A alp|=0 alp|=2m/12  a|p|=2\2#/12  a|lp|=2\37/12  a|p|=4m/12
Ao 0.1120.011 0.1120.013 0.1090.016 0.1040.018 0.1220.022
aE 0.7990.010  0.8230.01) 0.8460.013 0.8680.016 0.8980.019
A 0.0700.046  0.0700.048 0.0690.049 0.0700.052 0.0690.052
aE, 1.3390.103 1.3480.083 1.3640.084 1.3790.093 1.3940.079
A, 1.2320.014 1.2380.015 1.2470.015 1.2580.018 1.2400.022
a,AE, 0.5990.009  0.5750.009 0.5520.010 0.5300.019) 0.5030.010
As 0.74710.047  0.7540.049 0.7610.059) 0.7670.052 0.7670.052
a,AE; 0.1160.121) 0.1130.110 0.1050.107% 0.0960.109) 0.0780.092

Expanding the QCD axial-vector current in terms of portional top; andp, are dropped from our analysis. The

NRQCD operators up t®(Aqcp/M) and atO(ay) in per-

relation we use to do the matching is

turbation theory yields a combination of the three operators

IV=T ys57 Q (62)
(1) 1
Jo :_ZMO\P vsvo vV Q

(63
@ 1 & .o
Y=o, Y 7V 5% Q

(64)

The operator equation is then written as
Ao=(1+aspo) I+ (1+ agpy) I+ agppdf). (65

The symbol= is meant to imply that matrix elements of the

operators on the left and right hand sides are equal, up to
whatever order in the effective theory we are working. Since

we are neglecting terms of ordegA ocp/M the terms pro-

C T T I T T T T I T T T I
6 L - T _ _
SO T D N TR

9 L _
[ . .
S4tb —
o 1
\-./E - -
- ~ -
= o —
O i | | | | | | | | | | | | | ]

0 0.5 1 1.5

BI? (GeV)?

FIG. 7. Kinetic mass for th&, meson on the £ 32 lattice
with the improved staggered actiorarp=0.10) and the M
NRQCD action &My=5.0). Computed using E¢58). The dashed
line marks the experimental measuremkly =5.37 GeV, and the
solid lines show the range given perturbatively.

Ao=(1+ agpg) IO+ J§HsHP) (66)

where the 1/&M) power law mixing of J$! with J§ is
absorbed at one-loop level into a subtractegk,/M current
[34]

I~ 1 IO, 7

and po— {10= Po-

Since the heavy spinor obeys y,Q= y5Q, the matrix
element(0|J{”)|B,) is related simply to the ground state am-
plitude of the pseudoscalar heavy-light correla®f’(p
=0}). Let us denote this amplitude lyqy,, then

~[(013|BS -
00— ZMBS .
[ T T T ‘ T T T T | T T T T ]
6 T T I I
co_ mo_o__ i----i _____ o ___1
= F - i
(] - -
S —
#&Dm L -
\E - -
g L J
=2 _
O i 1 1 1 ‘ 1 1 1 | 1 1 1 1 ]
0 0.5 1 1.5
BI® (GeV)?

FIG. 8. Kinetic mass for th&} meson on the £ 32 lattice
with the improved staggered actiorari=0.10) and the M
NRQCD action 6My=5.0). Computed using E@58). The dashed
line marks the experimental measuremMg: =5.42 GeV, and the

solid lines show the range given perturbatively.
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The 1M NRQCD action is used for this calculation, for

which we computgwith aMy=5.0) po=0.208+0.003 and
{10=—0.0997. Performing the subtractig@?) we find

50

o~
o

(0J6"*"|By)

(0|JE)°)|BS> 0.034£0.004 (stap. (71
This ratio can be compared to other lattice formulations; it is
the “physical” Aqcp/M correction toJ{” with the 1a
power law effect subtracted at the one-loop level. The
3.4(4)% correction we find on tha *=1.0 GeV lattice is in
excellent agreement with the 3—5 % corrections found using
the NRQCD and clover actions on lattices with inverse spac-
ings from 1.1-2.6 Ge\[34]. Note that even on the finest
lattice in Ref. [34], where power law contri-
butions are the largest, the one-loop
subtraction takes (0]J{Y|B)/(0]I)|By=—14% to
(0|35 B)/(0]3Y|Bs) = — 4%, in agreement with calcu-
lations on coarser lattices. Given the present agreement be-
FIG. 9. The hyperfine splitting betwed andB} computed on  tween our result and that of R¢B4], we can expect a simi-
guenched lattices. Our NRQCD-staggered redfittsn the isotro-  |arly successful subtraction in our ongoing calculation with
pic latticeg are the circles. The squares come frf28], the fancy  the unquenched MILC ensemble.
square from[27], the diamond from[28] which all used an Applying Egs.(66) and (59) gives the quenched result
NRQCD-clover action, and the fancy cross comes from an
NRQCD-D234 calculatioh30]. AII tune the hegvy quark mass as in fg =225+ 9(stah +20(p.t.) +27(disc) MeV. (72
this work (see text for elaborationFor comparison, the experimen- s
tal measurement is 4742.6 MeV [33]. Error bars are statistical
only.

[AV)
o

By

— B, splitting (MeV)
— W
o o
LI I 1T 1771 I L I LI I L
HH
e
Py
=]
| I I | I I T | I | N | I I T | I | I

(@}

o
o
—
o
[aV)
(]
w

a (fm)

The 20 MeV perturbative uncertainty is the estimate of the
O(ag) error in Eq.(66), obtained by takingr~0.3 and a

To get theAQCD/M current matrix element we Compute cor- coefficient equal to 1. The other perturbative Uncertainties,

relators where we pu$? at the sink. Let us denote the due to one-loop corrections to the coefficients in the action
ground state amplitude of this correlator By,, then and in the operator matching, a@(asAqcp/M) which is
estimated to be 2.4%, assumingcp=400 MeV (and using

(0|35 Bo)(B¢ I T 0) M=5.0 GeV). The 27 MeV discretization error is our esti-

10= Mg : (69 mate of theD(asaA ocp) error in the currendy”) (62); again

s we assume the leading correction term comes with a coeffi-

As mentioned before, we concentrate on the quenchéd 1 lent ?\f 0“39{) L. Th'_s ;ror)o_r rr}nay be refd;ced o
X 32 lattice which is closest to the target unquenched con-= (as(aAqep)”) by improvingJy™ in the manner of Syman-

figurations, albeit coarser. Fits to these correlators, shown iFik’ Which requires calculation O'f’_l and p, in Eq. (65
Fig. 10, yield the bootstrapped ratio 36,37. Finally, note that we have included tiy as/aM)

power-law correction; we would have estimated this to be a

(013VBy) 6% effect, but it was calculated to be J#ompare Eqs.70)
TS =—0.064+0.005 (stab. (70) and(71)]. Given those uncertainties, we find agreement with
(0135”[Bs) the recent quenched world averaige=200+20 MeV[35].

TABLE XIV. Mass splittings in theBg spectrum, converted to MeV usingalfrom Table Il. The bar oveB indicates the spin-averaged
mass M g, T3M B:)/4 was used.

B llag Action K BY —Bs B —Bs Bs1—B% B*,—Bs B, — Bq
(GeV)
1.8 0.7 1-link 5 34.010.2 442(56) 12.64.7) 416(54) 43057)
1.8 0.7 AsqTad-tn 4 31(2.9 28578) 10.1(3.9) 261(80) 272A77)
1.719 0.8 1-link 3 21.@2.7 471(25) 0.82.9 456(25) 456(26)
2.131 1.0 1-link 4 30.8.5 315105 23.124.9 292(107) 321(130
2.131 1.0 AsqTad 4 25(8.9) 52394) 35.036.1) 504(92) 545101)
2.4 1.2 1-link 6 25.612.1) 425(60) —9.4(22.2) 40657) 39863
2.4 1.2 AsgTad-tn 6 32(8.0 40356) 14.221.7) 380(60) 392(66)
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Since naive fermions have 16 taste degrees of freedom, there
is the possibility of forming 16 differer® mesons labeled by

the light taste index, i.e. By. The general choice for B
meson interpolating heavy-light operator takes on the form

10°

1077

Lo~ WBg(x)=‘l_fH(x) y5M ge' o X (X). (A1)

1 IHIIII‘ | I\IIIII| | I\ILI_L|,| | IIIIIII| [ IIII\II| 1o

The 16 different operators lead to degenerate states, since
they are related by the symmetry transformati@ It is
sufficient to work with just one of the 16 choices to extract
all the relevant physics. In our simulations we usually use the
simplest choicg=(J, i.e. Eq.(25). Any other choice would
0 5 10 15 . .
have served equally well. For instance, consider the gase
t/a - . T
= uj with u; equal to one of the spatial directions and carry
FIG. 10. Correlators (JQ(t)I1(0)) (squares and out a sum over spatial sites. Equati@kil) then becomes
—(I57(13§7(0)) (diamond$ necessary for calculation ofg_
through Agcp/M. Computed on the isotropic 3232, 1A=1.0
GeV lattice.

1078

1078

a® 2 Wa (x)=a 2 Wy(x)ysM;e'™ ¥ (x)
V. CONCLUSIONS X X

We believe the methods outlined within this paper provide _.3 T D almex
the quickest route to accurate calculationsp?mer_i,on -a zx: Puiy @ n (). (A2)
masses and decay constants on realistic unquenched lattices.

Improved staggered fermions have several advantages over

Wilson-like.fermions and are far I_ess expensivg to simulatgye sees that the zero spatial momengmeson operator
than domain wall or overlap fermions. The equivalence be;g jgentical to an operator one would superficiatind incor-
tween naive and staggered fermions greatly simplifies th?ectly) associate with 8* meson of polarization | with
construction of operators which couple to states of intereStmomentumw/a in the j" direction. The correct interpreta-

The fact that the NRQCD action does not havg a dOUb“.nﬂ'on of Eq.(A2) is that it represents a zero momentum pseu-
symmeltry leads to taste-changing suppression in heavy-lig oscalar heavy-light meson. This will become more evident

mesons, avoiding the ambiguities of the light staggered had- .
[ONS. g g g 99 when we look at the operatOfVBg(x) in momentum space.

We have presented results on several types of lattices, thde have verified that the right hand sitRHS) of Eq. (A2)
most important being the finer of the two isotropic latticesgives identical correlators, configuration-by-configuration, to
since it is most similar to the unquenched MILC lattices. TheEq. (25) (the latter summed over spacé¢ln fact, the sym-
results from these simulations have no unpleasant surprisesietries of Eq(3) provide excellent tests of one’s simulation
they agree with results produced by previous quenched simweodes] Therefore, it is sufficient to work with just one type
lations. Therefore, we can trust this formulation when it isof B meson operator, e.g. with just E@5).
used in parts of parameter space inaccessible to other formu- In order to delve further into the Lorentz quantum number
lations. and taste content of the interpolating operatW§g(x) we

will look at this operator in momentum space. In terms of the
“tilde” fields (26) one has(we take the case whegedoes

We are grateful to Kerryann Foley for computing the not include a temporal component; the latter case can be
static quark potential on the 12 32 lattice and to Quentin discussed in a completely analogous yay
Mason for providing Feynman rules for the AsqTad action.
Simulations were performed at the Ohio Supercomputer
Center and at NERSC; some code was derived from the pub- T ~
lic MILC Collaboration code(see http://physics.utah.edu/ a’ zx: WBg(X't):fk’D du(k,t) ysMg h(k+mg,t)
~detar/milc.htm). This work was supported in part by the °
U.S. DOE, NSF, PPARC, and NSERC. J.S. and M.W. appre- _ E f
ciate the hospitality of the Center for Computational Physics 06, Jx
in Tsukuba where part of this work was done.
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X ysMg (k+ g+ g ). (A3)
APPENDIX A: FORMALISM DETAILS

In this appendix we present a more detailed analysis of
the heavy-light operators used in the numerical calculationWe extract the taste content of this bilinear by writing
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~ mla dkg ~ glg
P(k+ g+ 0 1) = J,W/azw ety (k+ g+ 71y Ko) l!fH(kJr_’Tgl 1) vsMgi q75(k.ko)
=Un(k+7,1)i %9%'9(K, ko). A7
leza dko k ) I (K+ 77,01 %19%9(K, ko) (A7)
= ko + a7+ . .
palm e [kt a7q+ g, ko) One sees that the Lorentz structure is that of aphrticle.
. However, since the heavy quark has very high momentum
(= 1) p(k+ mg+ g Ko+ 7g )] and no doublers, this intermediate state is highly virtual.
1 d Such states would appear in fits to correlation functions as
_ J” _koeikot[MT q9s9(k, ko) extra structure at energies of ordeE~1/(Ma?). These lat-
— w22 27 959 ’ tice artifacts can also affect low energy states through loops;

their effects can be estimated perturbatively and are part of
the O(asa?) errors inherent in the action. Such errors can be

removed, if need be, by perturbatively improving the action

further, but there is little evidence that they are important at
practical values of the lattice spacing.

+(—1)'M{ g g0%99(k k)] (A4)

so that

APPENDIX B: DISCRETE DERIVATIVES AND FIELD
STRENGTHS

a’ ZWB(XI)_ >

gse Gg

w/2a d
f f Ko akat G
K,Dg g J —m/2a 2T

99(K. ko) Here we write explicitly the higher order tadpole-

improved derivatives and improved field strength tensor used
in the fermion actions:

+ 77g51t) ')/SM g[ M 99

+(=1)'M{ 4 g0%%9(K ko) ]}, (AS5)
(2) 1

V. Y(x)=— [U, ()P (x+a,)
Since there is no doubling symmetry for the heavy quark Uy
action, the fieldyy(k+ ”gs't)* for Ty F Ty, Tepresents a
heavy quark with large spatial momentum. Consequently,
even though the operator in EGA5) couples to zero mo-
mentum meson states, the states correspondiigg:t@ are

+Ul(x—a,)¥(x—a,)]-2 ¥(x)
(B1)

; P ; : ; 11
very energetllc. This |s_preC|ser .the lmportant dlﬁergncg be- VE?) V(x)= 5 [U,()U ,(x+a,)¥(x+2a,)
tween studying heavy-light and light-light mesons with light u,
staggered quarks. . .
We will estimate the effect of thgs# & sectors below; —U,(x=a, VU (x=2a,)¥(x—2a,)]

however, the lowest energy state, and consequently the domi- 1
nant contributions to a/ng(x,t) correlator, will come from - — [U, (0¥ (x+a,)
the regiongs=9J in the sum=, Uu

—-Ul(x—a,) ¥(x—a,)] (B2)

ml2a kO

—ml2a 277

3 _ Ikot 1
a ; WBg(X,t) fk,DSI@f V,(j) V(x)=— [U,(x)U,(x+a,) ¥ (x+2a,)
u

o

{1 vs [q9(K, ko)
+(=1)'M§ q%9(k ko) 1}

+Ul(x—a,)U](x—2a,)¥(x—2a,)]
(AB) 1
-4 ) [U,()¥(x+a,)+Ul(x—a,)

The non-oscillating contribution is thB; meson of taste.

Its parity partner is a O meson, usually called thé=0 P
state. It is remarkable that bo®and P states can be ob-
tained from a single correlator. Note also that the combina;

tion c//H(k,t) vs q9(k,kg), with its obviously pseudoscalar
Lorentz structure, holds for all tastes i.e. for trivial and 1
nontrivial Mg in Eq. (AL). —V U,(x)=

XW(x—a,)]+6 W(x). (B3)

The covariant derivatives acting on link matrices are defined
as follows:

LU (x+a,)Ul(x+a,)

We discuss next those terms omitted upon going from Eq
(Ab) to Eqg. (A6). Take, for instance, the contribution from
0s—gl=w, with “1” equal to one of the spatial directions.
The non-oscillatory term becomes
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vy, 0= U, (U, (x+a,) Ul (x+
u, 7 I/(X)_ 2 [ /_L(X) V(X a,u,) ,U.(X ay)

Mmoo

+Ul(x=a,)U,(x-a,)U,(x-a,+a,)]

2
o U, (). (BS)

The field strength operatdf,,(x) is constructed from the

so-called clover operatd® ,,(X)

1
F ()= 5r[Q,,00 = Q,(0)],

Q,u.v(x): 2 Ua(X)U,B(X_I_aa)

2,.2
AU, UL B)} by

XU_(x+a,+agU_g(x+ag), (B6)

where the sum is ovef(a,B)},,={(x,v),(v,—u),(—pu,
—v),(=v,u)} for p#v and U_,(x+a,)=U(x). The
O(a?) improved field strength tensor is

~ 5 1
F,uv(x) = §FIU,V(X) - g

1
—[ U, (X)F,(x+a,)Ul(x)
u,u

+Ul(x—a,)F,,(x—a,)U ,(x—-a,)]

1
—(peov) |+ g

1+1 2|F, (x). (B7)
—+—=- AX).
ui u2 m
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for minimizing x? breaks down. The minimization algorithm
diverges as it searches in directions of parameter space
which are unconstrained by the data. In the past the solution
has been to limit the number of fit terms, then discard data by
including C(t) for t=t,;;,>0; the optimal value ot is
selected by a combination of looking fgf/DOF=1, maxi-
mizing the confidence leveld facton, and observing pla-
teaux in effective masses. A major weakness of this proce-
dure is that it provides no estimate of the error due to
omitting the excited states from the fit.

The constrained curve fitting method [#5], by using
Bayesian ideas, allows one to incorporate the uncertainties
due to poorly constrained states by relaxing the assumption
that there are only a few states which saturate the correlation
function. Bayesian fits maximize the probability that the fit
function describes the given data, written as
P(f(t;N)|C(1),1); this probability is related to the likelihood
(C1) by Bayes’ theorem

P(C(H)|f(t;N), ]
P(f(t;)\)|C(t).|):P(f(t;)‘)“)%()Il)))

(C4

and is called the posterior probability. The denominator in
Eqg. (C4) is treated as a normalization and plays no role in
finding an optimal set of fit parameters. On the other hand,
the prefactorP(f(t;\)|l), which multiplies the likelihood is
the prior probability; its inclusion is what permits fits to
many parameters.

The prior probability contains whatever assumptions
about the values of the fit parameters one can safely make
without looking at the data. In our case of fitting meson
correlators, before any fitting is done one has an idea of a

In this appendix we give a pedagogical discussion of thegange of possible values for the amplitudgsand energies

constrained curve fitting proposed J&5]. Recall that the
standard fitting procedure is to minimize té function, or

equivalently, to maximize the likelihood of the data(t),

given a set of fit parameters. The likelihood probability is

given, up to a normalization constant, by

2
PCH)|FEN),]) = exp(—%) (C1)

wherel represents any unstated assumptions. Explicitly,

Xo=2 (CO)= MK o (CH))=f(t'N)).
o (C2

The correlation matrix, is constructed to take into account

correlations betwee@(t) andC(t'):

1
Kiv=§—"1 ((C()—(C(N(C(t")—=(C(t")))),
(C3

with N equal to the number of measurements.

Ei. Given such a range, the least informative prior distribu-
tion is a Gaussian with megn and half-width 8, in which
case the prior probability is given by

S (=)
EUIVDENTI 5M\/Eex ral (C5)

We sometimes refer to the set{gf; , 5;} as the “priors.” The
quantity which is minimized in the fits is

XaudCO AN L (i, 8)})

21 (\ = oy )2
—2CO. D+ D n

i=0 5%_
|

o« =2 InP(f(t;N)|C(1),1). (Co)
Expression(C6) highlights how the prior distribution stabi-
lizes the minimization algorithm. As one increases the num-
ber of fit parameters the terms from the prior in BQ6) give

Usually one cannot include enough terms in the fit tocurvature toxgugwhich prevents the minimization algorithm
account for excited state contributions before the algorithnfrom spending much time exploring the flat directionsydf
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in order to find a minimum. The trick now is to distinguish large enoughNg. We useNg~N=200, and have checked
which parameters are constrained by the data and which on#izat changing\Ng by a factor of 2 makes no significant dif-
are fixed by the priors. ference intrfi.

A remark on counting the net degrees of freed@®F) In the unconstrained fitting methog? would be mini-
of the fit is in order. As usual each of the data points repremized for each bootstrap sample, resulting in a set of fit
sents one DOF, but then each parameter of the fit which igarameters which reproduce the likelihood probability distri-
constrained by the data uses up one of those degrees. Ho®ution (C1). For the constrained fits where we minimize
ever, in the Bayesian curve fitting method, there are severafaug: NOwever, it is not enough to resample the likelihood—
fit parameters which are unconstrained by the data and d®"€ must resample the whole posterior distribution, i.e. the
not count against the net DOF. Usually there are a few paproduct of the likelihood and the prior distribution. There-
rameters obviously constrained by the data and a few obvif—ore' for gach bootstgap sample we rgndomly choosg a new
ously determined solely by the prior, but there may be som(§et of prior means{"‘ki}’ be[1Ns] using the same distri-

parameters for which such a distinction is not clear. Therebution used in Eq(C6)

fore, we simply take the DOF to be the number of data (Mb — )2
points; instead of striving for a fit which producg$/DOF P(Mf )= 1 exo — Mo (C7)
<1, we look for x5,/DOF~1 together with the property T N2m 25§i

that the ratio stays constant as more fit terms are added.
Given a sample ol measurements, one bootstrap sampleThe bootstrap fits then yield an ensembleNyf results for
is obtained by selecting measurements, allowing repeti- €ach fit parameter with a nearly Gaussian shape
tions, from the originalN measurements. In principle one ( _b_<)\_> 2
wou_ld perform a fit on every possible bootstrap _sample gen- P()\ib)wex% i i/B )
erating a Gaussian distribution of bootstrapped fit parameters
{\P}, the half-width of which gives the bootstrap uncertain-
ties gﬁ‘i_ However, there are a total of K2-1)!/(N!(N Wherexib is the fit result for\; on thebth bootstrap sample,

—1)1)~NN ways to make a bootstrap samplso it is im- (\i)e=3p\[/Ng, and oy, is the bootstrap uncertainty for
possible to generate the entire bootstrap ensemble—it alsg . In practice one finds that the distribution of fit results is
unnecessary. The bootstrap distribution can be reliably estiGaussian shaped in the center but has stretched tails which
mated by randomly generatinyg bootstrap samples for artificially inflate the quantity\/o\i)zB—()\?)B making it a
poor estimate Offi [38,39. Instead we estimate the width

L _ _ _ _ of the bootstrap distribution by discarding the highest 16%
Counting the number of possible bootstraps is equivalent tognd |owest 16% oiib and quoting the range of values for the

counting the number of ways indistinguishable balls can be dis- remainin % B Havin in rap fi
tributed intok distinguishable buckets: each bucket represents ane aining 68% as axi' b aving obtained bootstrap fits to

original measurement and the number of balls in a bucket indicate§eVeral correlators, san’} and{+}}, we estimate the un-
the number of times the measurement appears in a given bootstrgertainty in functions of the fit parametegéh; ,v;), for ex-
sample(andn=k=N). The answer is called the integer composi- ample mass ratios, by computing the function for each boot-
tion of n into k parts and is equal to the binomial coefficient strap sample and truncating the resulting distribution just as

2(08)? 9

Nk, discussed for individual fit parameters.

[1] Z. Ligeti, hep-ph/0112089. [13] C. Morningstar, Nucl. Phys. BProc. Supp). 53, 914 (1997).

[2] C.W. Bernardet al, Phys. Rev. D64, 054506(2001). [14] M.G. Alford, T.R. Klassen, and G.P. Lepage, Nucl. Phys.

[3] C. Bernardet al, hep-lat/0208041. B496, 377 (1997).

[4] M. Wingate, J. Shigemitsu, G.P. Lepage, C. Davies, and H[15] M.G. Alford, I.T. Drummond, R.R. Horgan, H. Shanahan, and
Trottier, hep-lat/0209096. M.J. Peardon, Phys. Rev. &8, 074501(2002).

[5] C. Bernard and G. P. Lepage, discussion at 2002 Cornell Latf16] M.G. Alford, T.R. Klassen, and G.P. Lepage, Phys. ReG&)
tice Microconference. 034503(1998.

[6] C. Aubin et al, hep-lat/0209066. [17] R. Sommer, Nucl. PhysB411, 839(1994).

[7] A.X. El-Khadra, A.S. Kronfeld, and P.B. Mackenzie, Phys. [18] MILC Collaboration, K. Orginos, D. Toussaint, and R.L.
Rev. D55, 3933(1997. Sugar, Phys. Rev. B0, 054503(1999.

[8] N. Kawamoto and J. Smit, Nucl. Phy8192 100(1981. [19] G.P. Lepage, Phys. Rev. B9, 074502(1999.

[9] H.S. Sharatchandra, H.J. Thun, and P. Weisz, Nucl. Phyd.20] T. Blum et al, Phys. Rev. D65, 1133(1997).
B192 205(1981). [21] S. Naik, Nucl. PhysB316, 238(1989.

[10] A. Chodos and J.B. Healy, Nucl. PhyB127, 426 (1977). [22] G.P. Lepage, L. Magnea, C. Nakhleh, U. Magnea, and K.

[11] P. Weisz, Nucl. PhysB212, 1 (1983. Hornbostel, Phys. Rev. B6, 4052(1992.

[12] P. Weisz and R. Wohlert, Nucl. PhyB236, 397(1984); B247, [23] S. Collins, C. Davies, J. Hein, R. Horgan, G.P. Lepage, and J.
544E) (1984. Shigemitsu, Phys. Rev. B4, 055002(2002.

054505-19



WINGATE et al.

[24] J. Shigemitsiet al,, Phys. Rev. D66, 074506(2002.

[25] G.P. Lepageet al, Nucl. Phys. B(Proc. Supp). 106, 12
(2002.

[26] C. Morningstar, Nucl. Phys. BProc. Supp). 109, 185(2002.

[27] A. Ali Khan et al, Phys. Rev. D62, 054505(2000.

[28] JLQCD Collaboration, K.-I. Ishikawat al, Phys. Rev. D61,
074501(2000.

[29] J. Heinet al,, Phys. Rev. D62, 074503(2000.

[30] R. Lewis and R.M. Woloshyn, Phys. Rev. B2, 114507
(2000.

[31] R. Lewis and R.M. Woloshyn, Phys. Rev. B8, 074506
(1998.

[32] HPQCD Collaboration, A. Gragt al., hep-lat/0209022.

PHYSICAL REVIEW D 67, 054505 (2003

[33] Particle Data Group, K. Hagiwarat al, Phys. Rev. D66,
010001(2002.

[34] S. Collins, C. Davies, J. Hein, G.P. Lepage, C.J. Morningstar,

J. Shigemitsu, and J.H. Sloan, Phys. Rev.6B 034505
(2002).

[35] S.M. Ryan, Nucl. Phys. BProc. Supp). 106, 86 (2002.

[36] J. Shigemitsu, Nucl. Phys. BProc. Supp). 60A, 134 (1998.

[37] C.J. Morningstar and J. Shigemitsu, Phys. RevbD) 6741
(1998.

[38] R. Guptaet al, Phys. Rev. D36, 2813(1987).

[39] M.C. Chu, M. Lissia, and J.W. Negele, Nucl. Ph#360, 31
(1991.

054505-20



