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We demonstrate the viability of improved staggered light quarks in studies of heavy-light systems. Our
method for constructing heavy-light operators exploits the close relation between naive and staggered fermi-
ons. The new approach is tested on quenched configurations using several staggered actions combined with
nonrelativistic heavy quarks. Exploratory calculations of theBs meson kinetic mass, the hyperfine and 1P21S
splittings inBs , and the decay constantf Bs

are presented and compared to previous quenched lattice studies.
An important technical detail, Bayesian curve fitting, is discussed at length.
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I. INTRODUCTION

Precise calculations of hadronic matrix elements are
portant ingredients in the quest to constrain the flavor-mix
parameters of the standard model, the Cabibbo-Kobaya
Maskawa matrix elementsVf f 8 . For example, the main the
oretical input in extracting the ratiouVtd /Vtsu involves a
combination of the decay constantsf B and f Bs

, which pa-

rametrize leptonicB andBs decays, and of the neutralB and
Bs mixing parameters,BB and BBs

. Uncertainties in these

quantities, or more specifically in the combinationj
[( f Bs

/ f B)ABBs
/BB, currently restrict our ability to carry

out stringent consistency checks of the standard model~e.g.
see @1#!. If these theoretical errors could be reduced by
factor of 2 or more the impact would be immediate and
reaching. Similarly, high precision theoretical calculations
form factors governingB→D, n̄ and B→p, n̄ decays are
crucial to determinations ofuVcbu and uVubu, respectively.

Monte Carlo simulation of QCD on a lattice will ulti
mately provide the most accurate theoretical determinat
of mixing parameters, decay constants, and form fac
since lattice QCD is one of the few systematically impro
able approaches to QCD. Understanding and removing
tematic uncertainties in lattice calculations, however, is ar
ous and complicated, and much of the effort in lattice gau
theory over the past decade has focused on this task.
very promising outcome of all this activity is the emergen
of improved staggered actions for light quarks combin
with highly improved glue actions. The MILC Collaboratio
for instance, works with the ‘‘AsqTad’’ quark action which
free from the leading discretization errors, including tho
arising from the breaking of the fermion doubling symmet
so that the action is accurate up toO(asa

2) errors. They
employ the one-loop Symanzik improved glue action w
0556-2821/2003/67~5!/054505~20!/$20.00 67 0545
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errors coming in only atO(as
2a2). Staggered actions have a

exact chiral symmetry at zero mass and are much cheap
simulate than Wilson-type quark actions, so it has been p
sible for the MILC Collaboration to carry out unquenche
simulations with much smaller dynamical quark masses t
has been attempted in the past. They are now startin
obtain impressive results for light hadron spectroscopy
light meson decay constants@2,3#.

In this article we demonstrate that improved stagge
quarks can also be used very effectively to simulate the li
quark in heavy-light systems such as inB physics. The past
decade has seen significant progress in our ability to simu
heavy quarks accurately@the commonly used nonrelativisti
QCD ~NRQCD! action, for instance, has errors coming in
O(asa

2) andO(asLQCD/M ), and work is underway to re
move the latter#. On the other hand, only Wilson-type action
have been used for the valence light quarks in heavy-li
mesons, baryons, and electroweak currents, making it d
cult to go much belowmstrange/2 in the light quark mass due
to the necessary computational expense. Consequently
extrapolation of simulation results to the chiral limit leads
the dominant systematic error in studies ofB andD mesons
~aside from quenching uncertainties!. Furthermore, the lead
ing discretization errors in heavy-light simulations com
from the light quark sector since Wilson-type actions ha
worse finite lattice spacing errors than improved glue, i
proved staggered, or NRQCD actions. This situation m
vated us to initiate a new approach to heavy-light simu
tions, namely the use of improved staggered light qua
combined with nonrelativistic heavy quarks. Our approa
can trivially be modified to use a Wilson-like action for th
heavy quark instead of NRQCD. The goal is to simulateB
physics at much smaller light quark masses than has b
possible in the past and to significantly reduce chiral extra
lation errors in decay constants, form factors and mix
©2003 The American Physical Society05-1
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parameters. Work toward this goal has already started on
MILC dynamical configurations@4#. It is important, how-
ever, to first establish that we understand how to comb
staggered light and NRQCD or Wilson heavy fermions
form heavy-light operators, that we are able to carry
sophisticated fits to simulation data and extract physics r
ably, and that these methods produce results in agreem
with well-established results. It is for the last reason that t
article focuses on theBs system on quenched lattices, whe
methods existing in the literature provide a solid basis
comparison. We present results forBs meson kinetic masses
some level splittings, and the decay constantf Bs

as evidence
that our approach is working. For quick reference, we su
marize the results of our finest isotropic lattice in Table
Note that several systematic uncertainties remain, nota
the error from determining the spacing on quenched latt
and discretization errors from using coarse lattices with
present level of improvement. Therefore, the results p
sented in this paper are useful for comparison to similar
tice calculations, but they are not appropriate for inclusion
phenomenological analyses. Having established this me
as a promising approach, work is now underway on
quenched lattices to remove or reduce the systematic un
tainties and obtain state-of-the-art lattice QCD results.

In the next section we introduce and describe the form
ism for combining staggered light quarks with heavy qua
fields to form bilinear operators that create heavy-light m
sons or represent heavy-light currents. A significant simp
cation comes about from recognizing the equivalence
staggered and naive fermions and writing down bilinears
terms of the latter. This will be explained thoroughly belo
In Sec. III we give simulation details starting with a descr
tion of the glue, heavy quark, and light quark actions a
then a discussion of our constrained fitting methods base
Bayesian statistics. Section IV gives results for heavy-li
spectroscopy, including kinetic masses and a calculation
the Bs meson decay constantf Bs

. Three appendixes contai
details regarding the theory, notation, and fitting techniqu
respectively.

II. FORMALISM

In this section we describe how to combine naive a
staggered light quarks with heavy quarks to form heavy-li

TABLE I. Summary of quenched results from the isotrop
123332 lattice (1/a51.0 GeV). Results are checks of our ne
formulation, not state-of-the-art computations to be used for p
nomenology.

Quantity Result

M kin(Bs) 5.5660.33 GeV
Mpert(Bs) 5.5160.45 GeV
M kin(Bs* ) 5.6860.54 GeV
Mpert(Bs* ) 5.5360.45 GeV

Bs* 2Bs splitting 25.064.8 MeV

f Bs
22569(stat)620(p.t.)627(disc.) MeV
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meson and electroweak current operators. We adhere to
recently introduced practice of calling the doubler degrees
freedom ‘‘tastes’’ rather than ‘‘flavors’’@5# ~see also@6#!. We
will be guided by the following properties of naive-stagger
actions.

~1! Up to overall normalization factors, there is no diffe
ence between using naive or staggered valence quar
meson creation or current operators. Since naive fer
ons are easier to interpret and to handle theoretically,
will construct our heavy-light bilinears using naive fe
mion fields rather than staggered fields.

~2! Any correlator involving naive fermion propagators ca
be rewritten in terms of staggered propagators. Si
staggered propagators are cheaper to calculate num
cally, when it comes to actual simulations we will alwa
work with expressions that have been converted to
staggered fermion language and involve only stagge
~and heavy! quark propagators.

~3! The taste content of naive-staggered actions can be
termined either in the coordinate or the momentum sp
basis. For heavy-light physics and for perturbati
theory we find the momentum space interpretation to
more useful.

We start by reviewing naive fermions and the identific
tion of different tastes in momentum space. We will th
explore the taste content ofB mesons that appear when naiv
fermions are combined with heavy fermions. We assume
the heavy quark action has no doublers, as in NRQCD
that doublers have been given masses of order of the cu
via a Wilson term, as in the Fermilab approach@7#. Heavy-
light systems are much simpler than light-light systems si
the heavy quark suppresses the taste-changing process
the naive-staggered quark.

A. The free naive quark action

Most of our discussion in this section will be for fre
unimproved naive fermions. Taste identification and relev
symmetries survive the inclusion of gauge interactions a
of theO(a2) improvement terms incorporated into the acti
that we actually use in our simulations~see Sec. II B for a
description of the full action!. The free unimproved naive
fermion action is given by

S05a4(
x

H C̄~x! F(
m

gm

1

a
¹m1mGC~x!J , ~1!

with

¹mC~x!5 1
2 @C~x1am!2C~x2am!#. ~2!

We work with Hermitian Euclideang matrices obeying
$gm ,gn%52dmn . It is well known that the action~1! de-
scribes a theory with 16 tastes of Dirac fermions and tha
has a set of discrete ‘‘doubling’’ symmetries:

C~x!→eix•pgMgC~x!

-

5-2
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HEAVY-LIGHT MESONS WITH STAGGERED LIGHT QUARKS PHYSICAL REVIEW D67, 054505 ~2003!
C̄~x!→eix•pgC̄~x!Mg
† . ~3!

g is an element ofG, the set of ordered lists of up to
indices:

G5$g:g5~m1 ,m2 , . . . !, m1,m2, . . . %; ~4!

e.g. ~2!, (0,3), and (0,1,2,3) are elements ofG, as is the
empty setB. The corners of the Brillouin zone are denot
by the 4-vectorpg such that

~pg!m5H p

a
, mPg,

0 otherwise.

~5!

The Mg are transformation matrices

Mg5 )
mPg

Mm ~6!

with

Mm5 ig5gm . ~7!

An illustrative way to reduce the taste degeneracy of
naive action is to diagonalize the action in spin space.
F̄(x) and F(x) be a new set of 4-component spinor fiel
related to the originalC̄(x) and C(x) fields via the
Kawamoto-Smit@8# transformation:

C~x!5V~x! F~x!, C̄~x!5F̄~x! V~x!† ~8!

with

V~x!5 )
m50

3

~gm!xm /a. ~9!

In terms of these new fields the naive fermion action takes
a spin-diagonal form,

S0→SF5a4(
x

H F̄~x! F(
m

hm~x!
1

a
¹m1mGF~x!J ,

~10!

where

hm~x!5~21!(x01 . . . 1xm21)/a. ~11!

Staggered fermions reduce the taste degeneracy from 16
to 4-fold. The spin-diagonal form of Eq.~10! tells us it
should be possible to do so, since each spin componen
F(x) is independent of the other components. One way
proceed is to define 1-component fieldsx(x) through

F~x![e~x!x~x!. ~12!

The c-number spinore(x) is usually chosen to be constan
and one ends up with the standard staggered fermion ac
for the fieldsx(x). Reference@9# goes through a more rig
orous and general method for reducing the number of in
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pendent tastes from 16 to 4 which does not rely on first go
through the Kawamoto-Smit transformation. They expl
the symmetry~3! to place constraints among the 16 differe
tastes so that only 4 of them remain as independent deg
of freedom.~See also@10# which uses the Hamiltonian for
malism.!

Equations~8! and ~10! allow us to derive the simple bu
important relation between the naive propagatorGC(x;y)
and the staggered propagatorGx(x;y). One has

Eq. ~8!⇒GC~x;y![V~x!GF~x;y! V~y!† ~13!

Eq. ~10!⇒GF~x;y![ Î 4 Gx~x;y!, ~14!

with Î 4 equal to a 434 identity matrix in Dirac space. This
leads to

GC~x;y![V~x!V†~y!3Gx~x;y!. ~15!

We use the identity~15! repeatedly in the present work to g
from bilinears expressed in terms of naive fermion fields
correlators written in terms of staggered propagators. It
also be used to rederive familiar staggered correlators~e.g.
for pions or rhos! starting from simple naive fermion bilin
ears. We emphasize that Eq.~15! is an exact relation even in
the presence of gauge interactions; reexpressed as a re
between the inverse of the naive and staggered actions
spectively, for fixed gauge fields, it is valid configuration b
configuration, and hence also for the fully interacting na
and staggered propagators. The relation~15! also holds for
improved versions of naive-staggered actions.

Before going on to discuss heavy-light bilinears, we e
this section on basic naive fermion properties by review
the momentum space identification of naive fermion tas
We continue to use the notation of@9#. The momentum space
spinors are given by

c~k!5a4(
x

e2 ik•xC~x!, c̄~k!5a4(
x

eik•xC̄~x!

~16!

with the inverse relation given by

C~x!5E
k,D

eik•xc~k!, C̄~x!5E
k,D

e2 ik•xc̄~k!.

~17!

We use the notation

E
k,D

[E
kPD

d4k

~2p!4
, E

k,DB

[E
kPDB

d4k

~2p!4
~18!

whereD denotes the full Brillouin zone,2p/a<km,p/a,
andDB just the central region,2p/2a<km,p/2a. In terms
of the momentum space spinors the free action~1! becomes

S05E
k,D

c̄~k!F(
m

igm

1

a
sin~kma!1mGc~k!. ~19!

Using the 4-vectorspg this can be written as
5-3
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S05(
g
E

k,DB

c̄~k1pg!F(
m

igm

1

a
sin~@k1pg#ma!1mG

3c~k1pg!. ~20!

The next step is to define 16 new momentum space spi
qg(k) labeled by the elementsg of the setG ~4!:

qg~k!5Mgc~k1pg!, q̄g~k!5c̄~k1pg!Mg
† ; ~21!

the matricesMg are those of Eq.~6!. In terms of these new
spinors,qg(k), and upon using the relation

MggmMg
† sin~@k1pg#ma!5gm sin~kma!, ~22!

the actionS0 becomes

S05(
g
E

k,DB

q̄g~k!F(
m

igm

1

a
sin~kma!1mGqg~k!.

~23!

Equation~23! clearly describes an action for 16 ‘‘tastes’’ o
Dirac fermions. The sum(g over the elements of the setG
can be interpreted as a sum over tastes. The doubling s
metry ~3! which in momentum space becomes

c~k!→Mgc~k1pg!

c̄~k!→c̄~k1pg!Mg
† , ~24!

takes oneqg(k) taste into another up to possible sign facto
eg1 ,g2

561, defined throughMg1
Mg2

5eg1 ,g2
Mg1g2

~see
Ref. @9#!.

B. Heavy-light bilinears

To discuss heavy-light bilinears we introduce heavy qu
fields CH , which can stand for either heavy Wilson or no
relativistic fermions@for the latter case we will use the nota
tion CH(x)→Q(x) in later sections with Q(x) a
4-component spinor with vanishing lower 2 componen#.
The simplest interpolating operator one could write down
creating aB meson with a heavy quark fieldC̄H(x) and a
naive antiquark fieldC(x) is

WB~x!5C̄H~x!g5C~x!. ~25!

Let us analyzeWB(x) in 3-dimensional momentum spac
To do so we introduce the 3D Fourier transformed fields

c̃~k,t !5a3(
x

e2 ik•x C~x,t !,

c̄̃~k,t !5a3(
x

eik•x C̄~x,t ! ~26!

and similarly for the heavy fieldsCH . It is useful to intro-
duce a subsetGs,G that involves only spatial indicesm
→ j 51,2,3. The full setG can be built up out ofgs andgtgs
05450
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with gsPGs and gt corresponding tom50 ~and Mgt

5 ig5g0). In analogy with Eq.~18! we have

E
k,Ds

[E
kPDs

d3k

~2p!3
, E

k,Ds,B

[E
kPDs,B

d3k

~2p!3
~27!

where Ds denotes the full 3D Brillouin zone,2p/a<kj
,p/a, and Ds,B the central region,2p/2a<kj,p/2a.
Then, as is shown in detail in Appendix A,

a3 (
x

WB~x,t !5 (
gsPGs

E
k,Ds,B

E
2p/2a

p/2a dk0

2p
eik0t

3$c̄̃H~k1pgs
,t ! g5@Mgs

† qgs~k,k0!

1~21! tMgtgs

† qgtgs~k,k0!#%. ~28!

For gsÞB, the field c̄̃H(k1pgs
,t) creates a heavy quar

with large spatial momentum so that any state containin
will have a large energy. Consequently, the contributions
the heavy-light bilinear(xWB(x,t) from low-lying states
come from thegs5B part of the sum in Eq.~28!:

E
k,Ds,B

E
2p/2a

p/2a dk0

2p
eik0t$c̄̃H~k,t ! g5 @qB~k,k0!

1~21! tMgt

† qgt~k,k0!#%. ~29!

In contrast, light-light bilinears receive contributions from a
8 sections of the spatial Brillouin zone@this can be seen by

replacingc̄̃H by c̄̃ in Eq. ~28! and then using Eq.~21!#. The
gsÞ0 contributions to heavy-light bilinears are discussed
more detail in Appendix A, where we consider more gene
bilinears and show that they couple either to exactly deg
erate states or to artificial high energy lattice states.

Let us point out that in Eq.~29! there are contributions
from both the pseudoscalar state and the scalar state, w
has a coefficient alternating in sign. The oscillating par
partner appears in light-light correlators as well. In Sec. III
we discuss how fits are able to separate these contribut
from correlation functions.

C. Heavy-light two-point correlators

Once heavy-light bilinears with naive light quarks ha
been introduced, it is straightforward to obtain bilinea
bilinear two-point correlators and write them in terms
staggered propagators. Starting from this section we will
vert to the usual practice of working with dimensionle
spinor fields. Hence one should assume allC, CH and x
fields have been multiplied by a factor ofa3/2 and that all
propagators are now dimensionless. Denoting the generic
linear as

WG~x!5C̄H~x!GC~x!, ~30!

one has
5-4
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TABLE II. Simulation parameters for the quenched gauge configurations. There are 200 configu
for each parameter set.

Volume b j0 1/as ~GeV! as /at us ut asM0

83320 1.719 – 0.8 1 0.797 0.797 6.5
83348 1.8 6.0 0.7 5.3 0.721 0.992 7.0
123332 2.131 – 1.0 1 0.836 0.836 5.0
123348 2.4 3.0 1.2 2.71 0.7868 0.9771 4.0
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eip•x^W Gsk

† ~x! WGsc
~0!&

5(
x

eip•xTr$Gsc GC~0;x! Gsk
† GH~x;0!%

5(
x

eip•x(
c,c8

@ tr$Gsc V†~x! Gsk
†

3GH
c8c~x;0!% Gx

cc8~0;x!#, ~31!

where we have used Eq.~15! to convert fromGC to Gx .
‘‘Tr’’ stands for a trace over both color and spin indice
whereas ‘‘tr’’ stands for a trace over spin indices only. Usi
Gx(0;x)5Gx

†(x;0)(21)(mxm /a one gets, for the caseGsc

5Gsk5g5,

CB
(2)~p,t !5(

x
eip•x^W B

†~x! WB~0!&

5(
x

eip•x(
c,c8

@ tr$V†~x!

3GH
c8c~x;0!% Gx*

c8c~x;0!# ~32!

which couples to theB meson. For theB* meson, we set
Gsc5Gsk5g j which gives

CB*
(2)

~p,t !5(
x

eip•x(
c,c8

@ tr$V†~x! GH
c8c~x;0!%

3~21!xj /a Gx*
c8c~x;0!#. ~33!

In the above formulas we are now allowing the heavy-lig
mesons to have nontrivial momentum. As long as spa
momenta are restricted toapj,p/2 there should be no prob
lems with the Lorentz and/or taste content of a meson s
denly changing at finite momenta. In later sections of t
article we will present results showing good dispersion re
tions for B and B* mesons for momenta up to at leastapj
5p/3 to check this hypothesis.

Although the discussion above implicitly assumes the
of local sources and sinks, generalizing to smeared sou
and sinks is straightforward as long as one takes care tha
smearing function preserves the doubling symmetry~3!. This
work employs local sources and sinks, with good results
the ground state mesons, but smearing is an important d
tion for future studies, especially those of excited sta
05450
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Nonlocal sources have been used extensively in stagg
fermion simulations of light hadrons.

III. SIMULATION DETAILS

A. Actions and parameters

The gauge action used to generate the isotropic ga
configurations is the tadpole-improved tree-lev
O(a2)-improved action@11,12#

S G
( iso)52b (

x,m.n
H 5

3

Pmn~x!

um
2 un

2
2

1

12

Rmn~x!

um
4 un

2
2

1

12

Rnm~x!

un
4um

2 J .

~34!

Pmn represents the plaquette andRmn the 231 rectangle in
the (m,n) plane; both are normalized so that^Pmn&5^Rmn&
51 in the b→` limit. As part of our tests we also stud
anisotropic lattices where the temporal lattice spacingat is a
few times smaller than the spatial lattice spacingas ; in this
case improvement in the temporal direction is secondary
spatial improvement. The action used for the anisotropic
tices is the same in the spatial directions, but the rectan
with two units in the temporal direction are omitted and t
space-time coefficients adjusted to be consistent with
manzik improvement@13,14#:

S G
(aniso)52b (

x,s.s8

1

j0
H 5

3

Pss8~x!

us
4

2
1

12

Rss8~x!

us
6

2
1

12

Rs8s~x!

us
6 J

2b(
x,s

j0H 4

3

Pst~x!

us
2ut

2
2

1

12

Rst~x!

us
4ut

2 J . ~35!

For the values of the inverse couplingb and the bare anisot
ropy j0 used in this work, the tadpole-improvement Landa
link factorsus andut , the spatial lattice spacingas , and the
renormalized anisotropyj[as /at were determined in Ref
@15#. The simulation parameters for the gauge configurati
are summarized in Table II.

The parameters for the isotropic lattices were intended
give approximately the same spatial lattice spacings as
anisotropic lattices. The isotropic 83320 lattice parameters
were discussed in Ref.@16#. The isotropic 123332 configu-
rations were generated for this work, and we determined
5-5
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lattice spacing by calculating the static quark potential a
using the phenomenological parameterr 050.5 fm @17# to set
the scale.

The light quark action we use is theO(a2) tadpole-
improved staggered action@18,19# which contains in place o
the simple covariant difference operator in Eq.~1! an im-
proved difference operator constructed as follows. First,
link matrices Um(x) are replaced by ‘‘fat-link’’ matrices
@20#:

Vm~x![ )
rÞm

S 11
¹r

(2)

4 DU
symmetrized

Um~x! ~36!

which contain 3, 5, and 7-link paths, all bent to fit within a
elemental hypercube~Ref. @18# lists each term explicitly, and
we write the second-derivative operator¹ (2) in Appendix B!.
This smearing effectively introduces a form factor in t
quark-gluon vertex which suppresses the coupling of h
momentum gluons to low momentum quarks. Second, the
link is further modified by adding what has come to
known as the Lepage term@19# in order to cancel the low
momentumO(a2) error introduced by Eq.~36!:

Vm8 ~x![Vm~x!2 (
rÞm

~¹r!2

4
Um~x!. ~37!

Finally, the remainingO(a2) ~rotational! errors are sub-
tracted by including a cube of the difference operator,
so-called Naik term@21#; therefore theO(a2) improved ac-
tion is obtained by the replacement

¹m → ¹m8 2
1

6
~¹m!3. ~38!

This action has been used in many recent simulatio
quenched and unquenched, most prominently by the M
Collaboration who call it the ‘‘AsqTad’’ action. In order to
apply tadpole improvement consistently, powers of the co
riant difference operators, (¹m)n and (¹m

(2))n, are obtained by
n successive applications of¹m or ¹m

(2) , respectively, with no
tadpole factors, replacingUm→Um /um in the final expres-
sion only after setting terms likeUm(x)Um

† (x) equal to 1. In
other words, one writes every operator in Eq.~36! in terms of
paths of links, dividing each link variable by its correspon
ing tadpole factorum .

In this work we utilize anisotropic lattices, for which th
improved staggered action is rewritten breaking the sum o
spacetime directions into spatial and temporal parts

at(
m

hm

am
S ¹m8 2

1

6
~¹m!3D→h tS ¹ t82yt,naik

1

6
~¹t!

3D
1

c0

j (
k

hkS ¹k82
1

6
~¹k!

3D .

~39!

The parameterc0 is tuned to give the correct pion dispersio
relation. We include a parameteryt,naik which we set equal to
1 or 0 whether we want to include the 3-link hopping in t
05450
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temporal direction or not; we still call theyt,naik51 action
‘‘AsqTad,’’ and we refer to theyt,naik50 action as ‘‘AsqTad-
tn.’’ Note that the isotropic AsqTad action is recovered
settingc05j5yt,naik51.

The NRQCD action is@22,23#

SNRQCD5(
x

H f t
†f t2f t

†S 12
atdH

2 D
t
S 12

atH0

2n D
t

n

3Ut
†~ t21!S 12

atH0

2n D
t21

n S 12
atdH

2 D
t21

f t21J .

~40!

H0 is the nonrelativistic kinetic energy operator,

atH052
D (2)

2j~asM0!
~41!

anddH includes relativistic and finite-lattice-spacing corre
tions,

atdH52c1

~D (2)!2

8j~asM0!3
1c2

i

8~asM0!2
~“•Ẽ2Ẽ•“ !

2c3

1

8~asM0!2
s•~¹̃3Ẽ2Ẽ3¹̃!

2c4

1

2j~asM0!
s•B̃1c5

D (4)

24j~asM0!

2c6

~D (2)!2

16nj2~asM0!2
. ~42!

All derivatives are tadpole improved and

D (2)5(
j 51

3

¹ j
(2) , D (4)5(

j 51

3

¹ j
(4) ~43!

¹̃k5¹k2
1

6
¹k

(3) . ~44!

The dimensionless Euclidean electric and magnetic fields

Ẽk5F̃k4 , B̃k52 1
2 e i jk F̃ i j . ~45!

Explicit expressions for¹k
(m) , m52,3,4 andF̃mn are given

in Appendix B. In most cases we set all 6 of theci51 and
refer to this as the 1/M2 NRQCD action, even though th
leading 1/M3 relativistic correction is also included. In orde
to make corresponding perturbative calculations simp
some simulations were done settingc15c25c35c650 with
c45c551, and we call this the 1/M NRQCD action. In
practice the results depend very little on which action
used, since the nonrelativistic approximation is very good
B mesons.

The bare mass of the heavy quark,M0, is chosen to be
close to the bottom quark mass, based on simulations w
Wilson-like light quarks@23,24#. The bare mass of the stag
5-6
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HEAVY-LIGHT MESONS WITH STAGGERED LIGHT QUARKS PHYSICAL REVIEW D67, 054505 ~2003!
gered quarkm is tuned to be close to the strange quark m
using the condition that the ratio of the ‘‘s̄s’’ pseudoscalar
meson mass to the ‘‘s̄s’’ vector meson mass is approximate
equal toA2mK

2 2mp
2 /mf50.673. On unquenched lattices th

f mass is probably not accurately determined since it sho
be sensitive to the sea quark masses decreasing throug
threshold forf→KK. Instead one should first determine th
lattice spacing, then use 2mK

2 2mp
2 to determine the bare

strange quark mass. On the other hand, for the quenc
lattices in this work, the ratio serves as an appropriate fi
cial for comparison between different lattices.

B. Fitting methods

The light quark propagators are computed with an
periodic boundary conditions in the temporal direction;
contrast, the evolution of the heavy quark in time requi
only an initial condition. Due to this difference, heavy-lig
meson correlators with temporal separations greater
Nt/2 will be contaminated from the light quark propagati
backward in time from the source across the time bound
so we only compute heavy-light meson correlators up
Nt/2. The periodicity of the light quark can still be utilized t
improve statistics by evolving the heavy quark backward
time from the source. We average the forward and backw
propagating meson correlators configuration by configu
tion.

The process of fitting the meson correlators to a serie
exponentials is complicated because the temporal dou
causes the correlation function to couple not only to sta
with the quantum numbers expected from the continu
limit, but also to states with opposite parity times an osc
lating factor (21)t11. Thus, we expect the meson correl
tors to have the form

f ~ t;$Ak ,Ek%!5 (
n50

Kp21

Ake
2Ekt1 (

k5Kp

Kp1Ko21

~21! t11Ake
2Ekt

~46!

which includesKp states of expected parity andKo states of
opposite parity. In our study we always takeKo5Kp or Kp
21, and for the excited state energies we use the differen
DEk[Ek2Ek22 as parameters in the fit. TheK5Kp1Ko
terms in the fitting function~46! can be rearranged as

f ~ t;$Ak ,Ek%!5A0e2E0t1~21! t11A1e2E1t

1 (
k52

K21

~21!k(t11) Ak e2(DEk1DEk221 . . . )t.

~47!

Note that terms with evenk are simple exponentials an
those with oddk are oscillating exponentials.

Recently a curve fitting method has been introduced
our community which allows one to estimate the system
uncertainty from the series of states~47! in the correlator
@25,26#. One fits the correlation functionC(p,t) for all com-
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puted values oft, varying the number of termsK in the fit.
For a givenK, the best fit is obtained by minimizing a
augmentedx2:

xaug
2

„C~ t !,$l i%,$~m i ,d i !%…

[x2
„C~ t !,$l i%…1 (

i 50

2K21 ~l i2ml i
!2

dl i

2
, ~48!

where we have generically denoted the parameters of
~47! by

l[~A0 ,E0 ,A1 ,E1 ,A2 ,DE2 , . . . ,AK ,DEK!, ~49!

the i th component of which isl i .
In Appendix C we give a pedagogical summary of@25# as

it applies to our calculation, but a few remarks here are
order. The second term on the right-hand side of Eq.~48! is
the contribution of Gaussian priors for each fit parame
and one sets the prior meansml i

and half-widthsdl i
based

on reasonable prior estimates for those quantities. The
cedure is best illustrated by an example. Let us take a p
doscalar heavy-light correlator, computed with the uni
proved, or ‘‘1-link’’ staggered action, on the 83320 lattice as
an example~see Fig. 1!. The set of prior meansm and half-
widths d used in fitting this correlator is given in Table III
The ground state energy and amplitude prior means w
estimated from effective mass plots and the prior widths
at 50% and 25%, respectively. Priors for the excited sta
biased the amplitude fit parameters to be all of the sa
order and the energy differences to be equal and about
MeV, roughly the size of the 2S21S and 1P21S splittings
in the B spectrum. Recall that the NRQCD action does n
include the rest mass, so the energyEsim is equal to the
physical meson mass minus an energy shiftD. Tables IV–VI
show the results of fits to the propagator in Fig. 1 as
number of exponentials changes from 2 to 8. The uncert

FIG. 1. B meson propagator on thea2150.8 GeV lattice with a
am50.18 1-link staggered quark andaM056.5 nonrelativistic
heavy quark. The 3-exponential fit hasxaug

2 /DOF50.59.
5-7
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ties are estimated from the inverse of the matrix¹¹xaug
2 of

second derivatives (@¹¹xaug
2 # i j []2xaug

2 /]l i]l j )

sl i
5A2@~¹¹xaug

2 !21# i i , ~50!

which assumes the shape ofxaug
2 near its minimum (l i

5l i
min , ; i) is quadratic inl i

xaug
2 2xaug

2 umin'
1

2 (
i j

~l i2l i
min!

]2xaug
2

]l i]l j
~l j2l j

min!.

~51!
In Fig. 2 we plot the non-oscillating and oscillatin

ground state energies, as well as the first excited state en
vs the numberK of exponentials in the fit. The rest of the fi
parameters are given in Tables IV and V. One can clearly

TABLE III. Gaussian prior meansm and widthsd for fits to
pseudoscalar heavy-light propagator on the 83320 lattice, m
50.18. We useek to denoteEk for the ground states (k50,1) and
DEk for the excited states (k>2).

k mAk
6dAk

mek
6dek

0 0.9460.47 0.90060.225
1 0.9460.47 1.4060.35
2 0.6060.60 0.4060.30
3 0.6060.60 0.4060.30
4 0.6060.60 0.4060.30
5 0.6060.60 0.4060.30
6 0.6060.60 0.4060.30
7 0.6060.60 0.4060.30
05450
rgy

ee

the stability of the ground state fit parametersA0 ,E0 and
A1 ,E1 as K is increased. The beginning of a plateau atK
53 implies at least one excited state is needed in the fi
order for the excited state effects to be removed from
ground states. Table VI similarly indicates thatK>3 is nec-
essary in order to have an ‘‘acceptable’’xaug

2 /DOF; as we
discuss in Appendix C,xaug

2 /DOF should only be used as
gross check of the fit. E.g.xaug

2 /DOF*2 implies the fit func-
tion is a highly improbable model of the data, but one sho
not necessarily prefer a fit withxaug

2 /DOF50.8 over one with
xaug

2 /DOF51.3.
Note that the uncertainties estimated from the fit for t

ground state parameters are much smaller than the width
the corresponding priors, while the errors from the fit a
comparable to the prior widths for most of the excited st
parameters. The first excited non-oscillating state,k52, is
an exception, appearing to be well constrained by the d
until another non-oscillating state,k54, is included in the
fit. This means that theK53 andK54 fit result forE2 does
a good job of absorbing the effects of the excited states,
that there is not enough constraint from the data~or the pri-
ors! to separate the first excited state from the second. T
we conclude thatK53 is sufficient to obtain reliable esti
mates of the ground state energies and amplitudes and
the data are not sufficiently precise to extract excited s
energies and amplitudes.

We are able to utilize this constrained curve-fittin
method to fit all of our data except in one case: the hea
light correlators computed with the AsqTad action on t
83320 lattice. We were not able to find fits withxaug

2 /DOF
,8; one example is shown in Fig. 3 where the fit is visib
much worse than for the 1-link action shown in Fig. 1. Th
TABLE IV. Dependence of fit results on number of terms~K! included in fit—energies of the 83320
heavy-light pseudoscalar correlator. Uncertainties quoted here were estimated from¹¹xaug

2 as described in
the text.

Non-oscillating terms
K aE0 aDE2 aDE4 aDE6

2 1.044~0.003!
3 0.919~0.013! 0.492~0.048!
4 0.921~0.013! 0.505~0.061!
5 0.915~0.018! 0.365~0.161! 0.282~0.250!
6 0.917~0.018! 0.372~0.165! 0.304~0.259!
7 0.914~0.022! 0.322~0.199! 0.269~0.257! 0.348~0.297!
8 0.915~0.021! 0.328~0.203! 0.288~0.261! 0.361~0.297!

Oscillating terms
K aE1 aDE3 aDE5 aDE7

2 1.290~0.015!
3 1.503~0.028!
4 1.470~0.099! 0.405~0.296!
5 1.461~0.103! 0.422~0.293!
6 1.461~0.100! 0.412~0.299! 0.412~0.299!
7 1.455~0.102! 0.419~0.299! 0.419~0.298!
8 1.464~0.098! 0.419~0.300! 0.418~0.300! 0.418~0.300!
5-8
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TABLE V. Dependence of fit results on number of terms~K! included in fit—amplitudes of the 83320
heavy-light pseudoscalar correlator. Uncertainties quoted here were estimated from¹¹xaug

2 as described in
the text.

Non-oscillating terms
K A0 A2 A4 A6

2 1.955~0.010!
3 1.047~0.104! 1.088~0.093!
4 1.063~0.111! 1.082~0.091!
5 0.999~0.174! 0.599~0.411! 0.557~0.411!
6 1.014~0.176! 0.601~0.406! 0.557~0.409!
7 0.980~0.224! 0.518~0.437! 0.505~0.456! 0.185~0.445!
8 0.993~0.225! 0.527~0.432! 0.488~0.457! 0.205~0.452!

Oscillating terms
K A1 A3 A5 A7

2 0.478~0.013!
3 0.674~0.024!
4 0.580~0.263! 0.105~0.289!
5 0.553~0.265! 0.140~0.293!
6 0.583~0.268! 0.008~0.448! 0.119~0.324!
7 0.572~0.267! 20.005(0.448) 0.159~0.336!
8 0.611~0.275! 20.043(0.460) 0.005~0.480! 0.179~0.412!
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turns out to be a consequence of using an action with n
to-nearest-neighbor couplings in thet̂ direction on a lattice
with coarse temporal lattice spacing.

The free Naik fermion dispersion relation~see Fig. 4! has
complex solutions which implies there may be excited sta
with negative norms contaminating the correlators at sh
time separations. If the temporal extent of the lattice w
sufficiently long and sufficiently precise correlators we
computed, these negative norm states which have ene
proportional to 1/a would have a negligible effect: one cou
include only points witht greater than some minimum valu
in the fit, or one could include a negative norm state in
fit. However, for the 83320 lattice where 1/a50.8 GeV we
are unable to drop enough points and get a good fit w
keeping enough to fit to states of both parities. Also, wh
we tried to include a negative norm exponential in the
large cancellations with the positive norm excited states
sulted in unstable fit results.

We checked this hypothesis on the 1/a50.8 GeV lattice

TABLE VI. Augmented chi-squared per degree-of-freedom
the fits in the preceding two tables.

K xaug
2 /DOF

2 47.7
3 0.60
4 0.69
5 0.66
6 0.74
7 0.83
8 0.92
05450
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by simulating with 4 different staggered quark actions: t
1-link and improved actions as well as an action where
Naik term was included but no fattening of the links w
done ~the Naik action! and an action with fat links but no
Naik term ~the ‘‘fat-link’’ action!. We were able to obtain
reasonable fits to heavy-light correlators with the 1-link a
fat-link actions, but not with the Naik action nor the full

r

FIG. 2. Results of several fits to the propagator of Fig. 1 plot
vs the number of exponentials in the fit. Parameters shown are
non-oscillating ground state energy (aE0), the oscillating ground
state energy (aE1), and the non-oscillating first excited state ener
(aE25aE01aDE2).
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WINGATE et al. PHYSICAL REVIEW D 67, 054505 ~2003!
improved action; we tabulate typical values forxaug
2 /DOF in

Table VII. Furthermore, we performed simulations on an
isotropic 83348 lattice with a very fine temporal lattic
spacing 1/at53.7 GeV using the 1-link action, th
AsqTad-tn action (yt,naik50), and the full AsqTad action
(yt,naik51). In all 3 cases we found acceptable fits with sim
lar values ofxaug

2 /DOF, again tabulated in Table VII. Figur
5 shows the pseudoscalar propagator on this lattice for
AsqTad action. We have no problem fitting to heavy-lig
correlators on a finer isotropic 123332 lattice where 1/a
51.0 GeV with theO(a2) improved action. Therefore, th
origin of the problematic fits on the 1/a50.8 GeV lattice is
due to a particular lattice artifact arising from the tempo
Naik term; but with a larger lattice scale 1/a>1.0 GeV these
artifacts become insignificant.

FIG. 3. Example of the poor fits obtained for theB meson
propagator on thea2150.8 GeV lattice with an improved stag
gered quark, caused by the temporal Naik term on such co
temporal lattice spacing~see text!. The fit shown hasxaug

2 /DOF
58.9.

FIG. 4. Dispersion relation for free massless fermions. The d
ted line shows the continuum dispersion relationE25p2, the
dashed line shows the dispersion relation for the naive ferm
sinh2aE5sin2ap, and the solid lines show the real part of the d
persion relation for the Naik action. Note that the solution of t
Naik dispersion relation which most closely follows the continuu
dispersion relation is purely real until the branch point nearap
'1.
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Let us return to the subject of estimating the uncertain
of the fit parameters. The second derivative ofxaug

2 ~50! gives
a reliable estimate of the uncertainty assuming that the pr
are reasonable and that the data are approximately Gaus
Resampling methods, such as the jackknife or the bootst
can be used to check whether the distributions are Gaus
and they provide a simple check on statistical correlatio
between different fit parameters. Both procedures take m
subsets of the data as estimates of the original set; perfo
ing a fit on each subset yields a distribution for each
parameter from which an error estimate can be made.
employ the bootstrap method of resampling which requi
some modification in order to properly handle the contrib
tions of the priors: as we show in Appendix C one mu
randomly select new prior meansml i

b for each bootstrap fit

@25#. Table VIII shows the results of applying this bootstra
analysis to the heavy-light pseudoscalar correlator compu
with the 1-link staggered action on the 83320 lattice. These
results can be compared to those in Tables IV and V. We
both methods produce comparable error estimates. For
of error propagation, we use the bootstrap method to qu
uncertainties in the results presented below.

IV. RESULTS

This section contains several results produced using
methods proposed and described above. The purpose o
study was to check the validity of this proposal, so the res
presented below should not be construed as state-of-th
calculations to be used for phenomenology. The results h
show that NRQCD-staggered calculations produce res
comparable to NRQCD-Wilson calculations—central valu
agree and statistical and fitting uncertainties a
comparable—but at a fraction of the computational cost
more complete calculation of theB spectrum and decay con
stant on finer, unquenched configurations is underway wh
will exploit the advantages of improved staggered fermio
to produce, we believe, the most accurate theoretical com
tation of those quantities to date.

A. Light hadron masses and dispersion relations

As mentioned before we chose a value for the bare s
gered massm so that the ratio of the light pseudoscalar ma
to the light vector mass would be somewhat near the p
nomenological valueA2mK

2 2mp
2 /mf50.673. We use the

pseudo Goldstone boson correlator TruGx(x;0)u2 to compute
the pseudoscalar meson mass and the correl
(21)xk /a TruGx(x;0)u2 to compute the vector meson mas
These masses and their ratio are listed in Table IX for
different lattices and actions. Note that even on thea21

50.8 GeV lattice the light hadron correlators from th
AsqTad action do not suffer the contamination from t
negative norm states which affected the heavy-light corre
tors, as discussed in Sec. III B.

One measure of discretization effects is the dispersion
lation. Specifically, we can compute the ‘‘speed-of-ligh
factor

se

t-

s
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TABLE VII. Summary of fits to pseudoscalar heavy-light correlators.~‘‘AsqTad’’ implies yt,naik51 unless
otherwise indicated.!

b Action 1/as ~GeV! 1/at ~GeV! K xaug
2 /DOF Esim(p50)

~MeV!

1.719 1-link 0.8 0.8 3 0.59 735~10!

1.719 AsqTad 0.8 0.8 3 8.93 –
1.719 Naik 0.8 0.8 3 17.6 –
1.719 Fat-link 0.8 0.8 3 0.51 691~20!

1.8 AsqTad 0.7 3.7 4 1.59 790~36!

1.8 AsqTad (tmin53) 0.7 3.7 4 0.87 791~39!

1.8 AsqTad-tn 0.7 3.7 4 1.03 901~19!

2.131 1-link 1.0 1.0 4 0.48 873~9!

2.131 AsqTad 1.0 1.0 4 0.96 765~9!
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c2~p![
E2~p!2E2~0!

upu2
~52!

which should equal 1 in the absence of lattice artifacts. T
Naik term ~38! is responsible for subtracting theO(a2) un-
certainties inc2(p) and its success can be seen in the follo
ing results. Table X lists the values ofc2 computed with
several values of momentum~averaged over all equivalen
orientations in momentum space!. On the coarser lattice (b
51.719) one can see that using fat links does not improvec2

much compared to the 1-link action, but adding only t
Naik term to the 1-link action results in a significant im
provement. This is borne out on the finer lattice (b
52.131), where the AsqTad action has an improvedc2. Fig-
ure 6 shows comparison ofc2(p) between these results an
those for improved Wilson actions@16#. The AsqTad action
has a better pion dispersion relation than the clover act
but not quite as good as the D234 action.

FIG. 5. B meson propagator on the anisotropic 83348 lattice,
whereat

2153.7 GeV, with aam50.04 improved staggered quar
andM057.0 nonrelativistic heavy quark. The lattice artifacts due
the temporal Naik term do not contaminate the fit. T
4-exponential fit plotted hasxaug

2 /DOF50.87.
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On the anisotropic lattices we use this quantity to tune
bare parameterc0 in Eq. ~39!; it is adjusted so that the pion
speed-of-light parameterc2(p)'1. Table XI lists the values
of c0 we used and the resulting computed values ofc2 for
several momenta.

B. Finite momentum Bs and its mass

The energies,Esim(p), extracted from correlation func
tions include an unknown but momentum independent s
due to the neglect of the heavy quark rest mass, i.e.

Esim~p!5E~p!2D ~53!

whereE(p) is the physical energy. In perturbation theory, t
shift D is the difference between the renormalized pole m
and the constant part of the heavy quark self-energy:

Dpert5ZmM02E0 . ~54!

Given Esim(0) from a simulation, the physical mass of
hadron can be computed through

Mpert[Esim~0!1ZMM02E0 ~55!

TABLE VIII. Bootstrap fit results for the 83320 heavy-light
pseudoscalar correlator for fits toK terms.

l K53 K54 K55

A0 1.043~0.116! 1.061~0.116! 1.003~0.183!
aE0 0.919~0.014! 0.920~0.014! 0.918~0.019!
A1 0.680~0.025! 0.559~0.270! 0.538~0.262!
aE1 1.508~0.030! 1.457~0.113! 1.450~0.112!
A2 1.098~0.102! 1.098~0.101! 0.736~0.329!
aDE2 0.499~0.057! 0.514~0.070! 0.405~0.127!
A3 0.141~0.313! 0.178~0.297!
aDE3 0.442~0.288! 0.447~0.305!
A4 0.496~0.421!
aDE4 0.380~0.247!
5-11
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TABLE IX. Light pseudoscalar and vector meson masses, computed with the same light quark pr
tors used for heavy-light mesons.~‘‘AsqTad’’ implies yt,naik51 unless otherwise indicated.! For comparison,
we nominally associate the physical strange sector withmPS/mV50.673.

b 1/as ~GeV! Action atm mPS ~MeV! mV ~MeV! mPS/mV

1.8 0.7 1-link 0.04 843~6! 1251~11! 0.674~0.005!
1.8 0.7 AsqTad 0.04 626~18! 989~31! 0.632~0.022!
1.8 0.7 AsqTad-tn 0.04 628~19! 994~37! 0.630~0.024!
1.719 0.8 1-link 0.18 761~1! 1171~30! 0.649~0.017!
2.131 1.0 1-link 0.12 825~2! 1218~27! 0.678~0.015!
2.131 1.0 AsqTad 0.10 685~3! 1035~23! 0.662~0.016!
2.4 1.2 1-link 0.03 808~6! 1108~21! 0.728~0.012!
2.4 1.2 AsqTad-tn 0.03 619~8! 913~17! 0.679~0.013!
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where we attach the label ‘‘pert’’ to denote that the pertur
tive shift Dpert was used. For the finer isotropic lattice and t
1/M NRQCD action withaM055.0 we find

ZMM02E05M020.890 as1M0 O~as
2!. ~56!

The results obtained on the finer isotropic lattice, using
AsqTad staggered action, giveMpert(Bs)55.5560.45 GeV
andMpert(Bs* )55.5860.45 GeV. The numerical size of th
O(as

2) uncertainty is estimated by takingas'0.3, a typical
value for quenched lattices with these spacings, and ass
ing the coefficient of theO(as

2) term is 1 @times M0 as
indicated in Eq.~56!#.

The physical mass can also be calculated nonpertu
tively, using the dispersion relation

E2~p!5M21upu2. ~57!

In order to cancel the unknown shift in Eq.~53!, we consider
@E(p)2E(0)#25@Esim(p)2Esim(0)#2, which we square and
solve for the mass

M kin[
upu22@Esim~p!2Esim~0!#2

2@Esim~p!2Esim~0!#
. ~58!

When the mass is computed using Eq.~58!, we call it the
kinetic mass, to distinguish it from the perturbative res
Mpert. Setting upu52p/12a50.52 GeV, the kinetic masse
on the finer isotropic lattice@with the AsqTad light quark
action ~see Tables XII and XIII!# are M kin(Bs)55.56
60.33 GeV andM kin(Bs* )55.6860.33 GeV.
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Figures 7 and 8 show the kinetic masses for theBs and
Bs* for several momenta. We find excellent agreement
tween the perturbative and nonperturbative calculations
the mass. Furthermore, the consistency of the kinetic ma
over several momenta demonstrate that the combi
NRQCD-improved staggered formulation gives the corr
dispersion relation for Bs and Bs* up to upu5p/3a
51.1 GeV. One should not put too much weight on a
agreement or disagreement between the calculation and
periment, given that the calculation is quenched, the lat
spacing not precisely determined, and the quark masses
precisely tuned.

C. Mass splittings in theBs system

Since the shiftD between simulation energy and th
physical energy@Eq. ~53!# is entirely due to the NRQCD
action, it is universal for all bound states with the hea
quark. Therefore, we can compute mass splittings m
more precisely than suggested by the uncertainties inM kin
and Mpert. The splittings we compute on various lattice
which correspond to theBs system are given in Table XIV
below are a few remarks concerning the different calcu
tions.

The hyperfine splittingMB
s*
2MBs

is the most straightfor-

ward to compute since it is the difference between theEsim
for the non-oscillating ground states of the vector and ps
doscalar correlators. The results are comparable to prev
quenched lattice studies; Fig. 9 shows our quenched res
on the 2 isotropic lattices compared to results published
Refs. @27–30#. This splitting was also computed usin
o
rent
TABLE X. Speed-of-light parameter squared for several values ofaupu on the isotropic lattices. Since n
tuning is done, one can estimate the size of lattice artifacts in finite momentum states from how diffec2

is from 1.

b L Action c2(2p/L) c2(2A2p/L) c2(2A3p/L)

1.719 8 1-link 0.656~6! 0.631~8! –
1.719 8 fat-link 0.729~17! 0.712~20! 0.684~24!

1.719 8 Naik 0.883~12! 0.916~22! –
1.719 8 AsqTad 0.892~14! 0.922~22! –
2.131 12 1-link 0.794~8! 0.767~26! 0.778~16!

2.131 12 AsqTad 0.946~14! 0.952~26! 0.836~80!
5-12
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HEAVY-LIGHT MESONS WITH STAGGERED LIGHT QUARKS PHYSICAL REVIEW D67, 054505 ~2003!
NRQCD in Ref.@31#, but they have different systematic e
rors caused by the quenched approximation, specifically t
set the bare bottom quark mass by tuning theY mass, instead
of a heavy-light mass. Our error bars are larger than those
most other results for two reasons. The first is simply t
this work is based on 200 configurations compared to
@28#, 278 and 212@29#, and 2000@30# ~Ref. @27# used 102
configurations!. The second is that the Bayesian curve fitti
method includes as part of the quoted uncertainty an est
tion of the error due to excited state contamination, in c
trast to the single exponential fits used in previous work.

Quenched results have an inherent ambiguity depen
on which physical quantities are used to set the lattice sp
ing and bare quark masses. Preliminary results on
quenched lattices indicate that the inclusion of sea qua
yields a unique scale and bottom quark masses@32# and give
a Bs* 2Bs splitting @4# consistent with the experimental me
surementMB

s*
2MBs

547.062.6 MeV @33#.

The L51, or ‘‘P-wave,’’ statesBs0* and Bs1 have the
same quantum numbers as the oscillating states in the p

FIG. 6. Pion speed-of-light squared vs momenta on the co
(83320) lattice using several actions. The 1-link~diamonds! and
AsqTad~circles! results are ours, compared to the clover~crosses!
and D234~squares! results of@16#.
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doscalar and vector correlators, respectively. The fact
Esim for these states can be computed using the same
relator data as theL50 states should be another advanta
over formulations with Wilson-like quarks. In practice, how
ever, it appears that the coupling of these states to the lo
local correlator is rather small and consequently the fitt
uncertainties for these splittings are large. Smeared sou
and sinks for both heavy and light quark propagators sho
be explored as methods for amplifying the coupling to t
P-wave states. In Table XIV we list some combinations
splittings.

D. Decay constant

The heavy-light decay constants are defined through
matrix element of the electroweak axial vector current

^0uA0uBs&5^0uq̄g5g0buBs&5 f Bs
MBs

. ~59!

The fields in the current above are those defined in the s
dard model, so a matching must be performed between t
and the fields of our lattice action. The continuum hea
quark fieldb is related to the nonrelativistic fieldf through
the Foldy-Wouthuysen-Tani transformation

b5H 12
g•“

2M0
1OF S LQCD

M D 2G J Q ~60!

where

Q5S f

0 D . ~61!

se

TABLE XI. Speed-of-light parameter squared for several valu
of aupu on the anisotropic lattices. The bare parameterc0 in the
anisotropic action~39! is tuned so thatc2'1.

b L Action c0 c2(2p/L) c2(2A2p/L) c2(2A3p/L)

1.8 8 1-link 1.1 1.004~23! 0.993~31! 0.991~46!

1.8 8 AsqTad 1.4 0.940~46! 0.952~56! 0.975~48!

1.8 8 AsqTad-tn 1.4 0.948~54! 0.957~51! 0.980~45!

2.4 12 1-link 1.0 0.965~35! 0.957~51! 0.937~60!

2.4 12 AsqTad-tn 1.0 0.931~44! 0.957~51! 0.853~81!
TABLE XII. Bootstrap fit results for the 123332 heavy-light pseudoscalar (Bs) correlator for several
momenta.~AsqTad light quark action.!

l aupu50 aupu52p/12 aupu52A2p/12 aupu52A3p/12 aupu54p/12

A0 0.129~0.009! 0.130~0.010! 0.129~0.011! 0.126~0.012! 0.139~0.017!
atE0 0.774~0.008! 0.799~0.009! 0.822~0.010! 0.845~0.011! 0.872~0.014!
A1 0.071~0.045! 0.071~0.045! 0.071~0.046! 0.070~0.050! 0.070~0.053!
atE1 1.298~0.090! 1.312~0.095! 1.326~0.095! 1.343~0.100! 1.370~0.089!
A2 1.209~0.014! 1.214~0.014! 1.222~0.015! 1.232~0.016! 1.218~0.019!
atDE2 0.636~0.010! 0.613~0.010! 0.589~0.010! 0.565~0.010! 0.540~0.010!
A3 0.738~0.046! 0.745~0.047! 0.752~0.048! 0.760~0.051! 0.760~0.052!
atDE3 0.149~0.127! 0.141~0.133! 0.135~0.120! 0.124~0.123! 0.095~0.114!
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TABLE XIII. Bootstrap fit results for the 123332 heavy-light vector (Bs* ) correlator for several mo-
menta.~AsqTad light quark action.!

l aupu50 aupu52p/12 aupu52A2p/12 aupu52A3p/12 aupu54p/12

A0 0.112~0.011! 0.112~0.013! 0.109~0.016! 0.104~0.018! 0.122~0.022!
atE0 0.799~0.010! 0.823~0.011! 0.846~0.013! 0.868~0.016! 0.898~0.019!
A1 0.070~0.046! 0.070~0.048! 0.069~0.049! 0.070~0.052! 0.069~0.052!
atE1 1.339~0.103! 1.348~0.083! 1.364~0.084! 1.379~0.093! 1.394~0.079!
A2 1.232~0.014! 1.238~0.015! 1.247~0.015! 1.258~0.018! 1.240~0.022!
atDE2 0.599~0.009! 0.575~0.009! 0.552~0.010! 0.530~0.011! 0.503~0.010!
A3 0.747~0.047! 0.754~0.049! 0.761~0.051! 0.767~0.052! 0.767~0.052!
atDE3 0.116~0.121! 0.113~0.110! 0.105~0.107! 0.096~0.101! 0.078~0.092!
of

or

e
p
c

e
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Expanding the QCD axial-vector current in terms
NRQCD operators up toO(LQCD/M ) and atO(as) in per-
turbation theory yields a combination of the three operat

J0
(0)5C̄ g5g0 Q ~62!

J0
(1)52

1

2M0
C̄ g5g0 g•“ Q

~63!

J0
(2)5

1

2M0
C̄ g•¹

]

g5g0 Q.

~64!

The operator equation is then written as

A08~11asr0!J0
(0)1~11asr1!J0

(1)1asr2J0
(2) . ~65!

The symbol8 is meant to imply that matrix elements of th
operators on the left and right hand sides are equal, u
whatever order in the effective theory we are working. Sin
we are neglecting terms of orderasLQCD/M the terms pro-

FIG. 7. Kinetic mass for theBs meson on the 123332 lattice
with the improved staggered action (am50.10) and the 1/M
NRQCD action (aM055.0). Computed using Eq.~58!. The dashed
line marks the experimental measurementMBs

55.37 GeV, and the
solid lines show the range given perturbatively.
05450
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portional tor1 and r2 are dropped from our analysis. Th
relation we use to do the matching is

A08~11asr̃0!J0
(0)1J0

(1,sub) ~66!

where the 1/(aM) power law mixing ofJ0
(1) with J0

(0) is
absorbed at one-loop level into a subtractedLQCD/M current
@34#

J0
(1,sub)[J0

(1)2asz10J0
(0) , ~67!

and r̃02z105r0.
Since the heavy spinor obeysg5g0Q5g5Q, the matrix

element̂ 0uJ0
(0)uBs& is related simply to the ground state am

plitude of the pseudoscalar heavy-light correlatorCB
(2)(p

50,t). Let us denote this amplitude byC00, then

C005
z^0uJ0

(0)uBs& z2

2MBs

. ~68!

FIG. 8. Kinetic mass for theBs* meson on the 123332 lattice
with the improved staggered action (am50.10) and the 1/M
NRQCD action (aM055.0). Computed using Eq.~58!. The dashed
line marks the experimental measurementMB

s*
55.42 GeV, and the

solid lines show the range given perturbatively.
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HEAVY-LIGHT MESONS WITH STAGGERED LIGHT QUARKS PHYSICAL REVIEW D67, 054505 ~2003!
To get theLQCD/M current matrix element we compute co
relators where we putJ0

(1) at the sink. Let us denote th
ground state amplitude of this correlator byC10, then

C105
^0uJ0

(1)uBs&^BsuJ0
(0),†u0&

2MBs

. ~69!

As mentioned before, we concentrate on the quenched3

332 lattice which is closest to the target unquenched c
figurations, albeit coarser. Fits to these correlators, show
Fig. 10, yield the bootstrapped ratio

^0uJ0
(1)uBs&

^0uJ0
(0)uBs&

520.06460.005 ~stat!. ~70!

FIG. 9. The hyperfine splitting betweenBs andBs* computed on
quenched lattices. Our NRQCD-staggered results~from the isotro-
pic lattices! are the circles. The squares come from@29#, the fancy
square from @27#, the diamond from@28# which all used an
NRQCD-clover action, and the fancy cross comes from
NRQCD-D234 calculation@30#. All tune the heavy quark mass as
this work~see text for elaboration!. For comparison, the experimen
tal measurement is 47.062.6 MeV @33#. Error bars are statistica
only.
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The 1/M NRQCD action is used for this calculation, fo
which we compute~with aM055.0) r̃050.20860.003 and
z10520.0997. Performing the subtraction~67! we find

^0uJ0
(1,sub)uBs&

^0uJ0
(0)uBs&

520.03460.004~stat!. ~71!

This ratio can be compared to other lattice formulations; i
the ‘‘physical’’ LQCD/M correction to J0

(0) with the 1/a
power law effect subtracted at the one-loop level. T
3.4~4!% correction we find on thea2151.0 GeV lattice is in
excellent agreement with the 3–5 % corrections found us
the NRQCD and clover actions on lattices with inverse sp
ings from 1.1–2.6 GeV@34#. Note that even on the fines
lattice in Ref. @34#, where power law contri-
butions are the largest, the one-loo
subtraction takes ^0uJ0

(1)uBs&/^0uJ0
(0)uBs&5214% to

^0uJ0
(1,sub)uBs&/^0uJ0

(0)uBs&524%, in agreement with calcu
lations on coarser lattices. Given the present agreemen
tween our result and that of Ref.@34#, we can expect a simi-
larly successful subtraction in our ongoing calculation w
the unquenched MILC ensemble.

Applying Eqs.~66! and ~59! gives the quenched result

f Bs
522569~stat!620~p.t.!627~disc.! MeV. ~72!

The 20 MeV perturbative uncertainty is the estimate of
O(as

2) error in Eq.~66!, obtained by takingas'0.3 and a
coefficient equal to 1. The other perturbative uncertaint
due to one-loop corrections to the coefficients in the act
and in the operator matching, areO(asLQCD/M ) which is
estimated to be 2.4%, assumingLQCD5400 MeV ~and using
M055.0 GeV). The 27 MeV discretization error is our es
mate of theO(asaLQCD) error in the currentJ0

(0) ~62!; again
we assume the leading correction term comes with a co
cient of order 1. This error may be reduced
O(as„aLQCD…

2) by improvingJ0
(0) in the manner of Syman

zik, which requires calculation ofr1 and r2 in Eq. ~65!
@36,37#. Finally, note that we have included theO(as /aM)
power-law correction; we would have estimated this to b
6% effect, but it was calculated to be 3%@compare Eqs.~70!
and~71!#. Given those uncertainties, we find agreement w
the recent quenched world averagef Bs

5200620 MeV @35#.

n

d
TABLE XIV. Mass splittings in theBs spectrum, converted to MeV using 1/at from Table II. The bar overBs indicates the spin-average
mass (MBs

13MB
s*
)/4 was used.

b 1/as Action K Bs* 2Bs Bs0* 2Bs Bs12Bs0* Bs0* 2B̄s Bs12B̄s

~GeV!

1.8 0.7 1-link 5 34.9~10.2! 442~56! 12.6~4.7! 416~54! 430~57!

1.8 0.7 AsqTad-tn 4 31.9~2.4! 285~78! 10.1~3.4! 261~80! 272~77!

1.719 0.8 1-link 3 21.1~2.7! 471~25! 0.8~2.8! 456~25! 456~26!

2.131 1.0 1-link 4 30.7~3.5! 315~105! 23.1~24.6! 292~107! 321~130!
2.131 1.0 AsqTad 4 25.0~4.8! 523~94! 35.0~36.1! 504~92! 545~101!
2.4 1.2 1-link 6 25.6~12.1! 425~60! 29.4(22.2) 406~57! 398~63!

2.4 1.2 AsqTad-tn 6 32.4~8.0! 403~56! 14.2~21.7! 380~60! 392~66!
5-15
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V. CONCLUSIONS

We believe the methods outlined within this paper prov
the quickest route to accurate calculations ofB meson
masses and decay constants on realistic unquenched lat
Improved staggered fermions have several advantages
Wilson-like fermions and are far less expensive to simul
than domain wall or overlap fermions. The equivalence
tween naive and staggered fermions greatly simplifies
construction of operators which couple to states of inter
The fact that the NRQCD action does not have a doub
symmetry leads to taste-changing suppression in heavy-
mesons, avoiding the ambiguities of the light staggered h
rons.

We have presented results on several types of lattices
most important being the finer of the two isotropic lattic
since it is most similar to the unquenched MILC lattices. T
results from these simulations have no unpleasant surpr
they agree with results produced by previous quenched s
lations. Therefore, we can trust this formulation when it
used in parts of parameter space inaccessible to other fo
lations.
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APPENDIX A: FORMALISM DETAILS

In this appendix we present a more detailed analysis
the heavy-light operators used in the numerical calculat

FIG. 10. Correlators ^J0
(0)(t)J0

(0),†(0)& ~squares! and
2^J0

(1)(t)J0
(0),†(0)& ~diamonds! necessary for calculation off Bs

through LQCD/M . Computed on the isotropic 123332, 1/a51.0
GeV lattice.
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Since naive fermions have 16 taste degrees of freedom, t
is the possibility of forming 16 differentB mesons labeled by
the light taste indexg, i.e. Bg . The general choice for aBg

meson interpolating heavy-light operator takes on the for

WBg
~x!5C̄H~x!g5Mgeipg•xC~x!. ~A1!

The 16 different operators lead to degenerate states, s
they are related by the symmetry transformation~3!. It is
sufficient to work with just one of the 16 choices to extra
all the relevant physics. In our simulations we usually use
simplest choiceg5B, i.e. Eq.~25!. Any other choice would
have served equally well. For instance, consider the casg
5m j with m j equal to one of the spatial directions and ca
out a sum over spatial sites. Equation~A1! then becomes

a3 (
x

WBj
~x!5a3 (

x
C̄H~x!g5M je

ip j •xC~x!

5a3 (
x

C̄H~x!ig je
ip j •xC~x!. ~A2!

One sees that the zero spatial momentumBj meson operator
is identical to an operator one would superficially~and incor-
rectly! associate with aB* meson of polarization ‘‘j ’’ with
momentump/a in the j th direction. The correct interpreta
tion of Eq. ~A2! is that it represents a zero momentum pse
doscalar heavy-light meson. This will become more evid
when we look at the operatorWBg

(x) in momentum space
We have verified that the right hand side~RHS! of Eq. ~A2!
gives identical correlators, configuration-by-configuration,
Eq. ~25! ~the latter summed over space!. @In fact, the sym-
metries of Eq.~3! provide excellent tests of one’s simulatio
codes.# Therefore, it is sufficient to work with just one typ
of B meson operator, e.g. with just Eq.~25!.

In order to delve further into the Lorentz quantum numb
and taste content of the interpolating operatorsWBg

(x) we
will look at this operator in momentum space. In terms of t
‘‘tilde’’ fields ~26! one has~we take the case whereg does
not include a temporal component; the latter case can
discussed in a completely analogous way!

a3 (
x

WBg
~x,t !5E

k,Ds

c̃H~̄k,t ! g5Mg c̃~k1pg ,t !

5 (
gsPGs

E
k,Ds,B

c̃H~̄k1pgs
,t !

3g5Mg c̃~k1pg1pgs
,t !. ~A3!

We extract the taste content of this bilinear by writing
5-16
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c̃~k1pg1pgs
,t !5E

2p/a

p/a dk0

2p
eik0tc~k1pg1pgs

,k0!

5E
2p/2a

p/2a dk0

2p
eik0t@c~k1pg1pgs

,k0!

1~21! tc~k1pg1pgs
,k01pgt

!#

5E
2p/2a

p/2a dk0

2p
eik0t@Mgsg

† qgsg~k,k0!

1~21! tMgtgsg
† qgtgsg~k,k0!# ~A4!

so that

a3 (
x

WBg
~x,t !5 (

gsPGs

E
k,Ds,B

E
2p/2a

p/2a dk0

2p
eik0t$c̄̃H~k

1pgs
,t ! g5Mg@Mgsg

† qgsg~k,k0!

1~21! tMgtgsg
† qgtgsg~k,k0!#%. ~A5!

Since there is no doubling symmetry for the heavy qu

action, the fieldc̄̃H(k1pgs
,t), for pgs

ÞpB , represents a
heavy quark with large spatial momentum. Consequen
even though the operator in Eq.~A5! couples to zero mo-
mentum meson states, the states corresponding togÞB are
very energetic. This is precisely the important difference
tween studying heavy-light and light-light mesons with lig
staggered quarks.

We will estimate the effect of thegsÞB sectors below;
however, the lowest energy state, and consequently the d
nant contributions to aWBg

(x,t) correlator, will come from

the regiongs5B in the sum(gs
,

a3 (
x

WBg
~x,t !→E

k,Ds,B

E
2p/2a

p/2a dk0

2p
eik0t

3$c̄̃H~k,t !g5 @qg~k,k0!

1~21! tMgt

† qgtg~k,k0!#%. ~A6!

The non-oscillating contribution is theBg meson of tasteg.
Its parity partner is a 01 meson, usually called theJ50 P
state. It is remarkable that bothS and P states can be ob
tained from a single correlator. Note also that the combi

tion c̄̃H(k,t) g5 qg(k,k0), with its obviously pseudoscala
Lorentz structure, holds for all tastesg, i.e. for trivial and
nontrivial Mg in Eq. ~A1!.

We discuss next those terms omitted upon going from
~A5! to Eq. ~A6!. Take, for instance, the contribution from
gs→gl[m l with ‘‘ l ’’ equal to one of the spatial directions
The non-oscillatory term becomes
05450
k

y,

-

i-

-

q.

c̄̃H~k1pgl ,t ! g5Mgl qglg~k,k0!

5 c̄̃H~k1pgl ,t !ig lq
glg~k,k0!. ~A7!

One sees that the Lorentz structure is that of a 12 particle.
However, since the heavy quark has very high moment
and no doublers, this intermediate state is highly virtu
Such states would appear in fits to correlation functions
extra structure at energies of orderDE'1/(Ma2). These lat-
tice artifacts can also affect low energy states through loo
their effects can be estimated perturbatively and are par
theO(asa

2) errors inherent in the action. Such errors can
removed, if need be, by perturbatively improving the acti
further, but there is little evidence that they are important
practical values of the lattice spacing.

APPENDIX B: DISCRETE DERIVATIVES AND FIELD
STRENGTHS

Here we write explicitly the higher order tadpole
improved derivatives and improved field strength tensor u
in the fermion actions:

¹m
(2) C~x!5

1

um
@Um~x!C~x1am!

1Um
† ~x2am!C~x2am!#22 C~x!

~B1!

¹m
(3) C~x!5

1

2

1

um
2 @Um~x!Um~x1am!C~x12am!

2Um
† ~x2am!Um

† ~x22am!C~x22am!#

2
1

um
@Um~x!C~x1am!

2Um
† ~x2am! C~x2am!# ~B2!

¹m
(4) C~x!5

1

um
2 @Um~x!Um~x1am!C~x12am!

1Um
† ~x2am!Um

† ~x22am!C~x22am!#

24
1

um
@Um~x!C~x1am!1Um

† ~x2am!

3C~x2am!#16 C~x!. ~B3!

The covariant derivatives acting on link matrices are defin
as follows:

1

un
¹m Un~x!5

1

um
2 un

@Um~x!Un~x1am!Um
† ~x1an!

2Um
† ~x2am!Un~x2am!Um~x2am1an!#

~B4!
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1

un
¹m

(2) Un~x!5
1

um
2 un

@Um~x!Un~x1am!Um
† ~x1an!

1Um
† ~x2am!Un~x2am!Um~x2am1an!#

2
2

un
Un~x!. ~B5!

The field strength operatorFmn(x) is constructed from the
so-called clover operatorVmn(x)

Fmn~x!5
1

2i
@Vmn~x!2Vmn

† ~x!#,

Vmn~x!5
1

4um
2 un

2 (
$(a,b)%mn

Ua~x!Ub~x1aa!

3U2a~x1aa1ab!U2b~x1ab!, ~B6!

where the sum is over$(a,b)%mn5$(m,n),(n,2m),(2m,
2n),(2n,m)% for mÞn and U2m(x1am)[Um

† (x). The
O(a2) improved field strength tensor is

F̃mn~x!5
5

3
Fmn~x!2

1

6 F 1

um
2 @ Um~x!Fmn~x1am!Um

† ~x!

1Um
† ~x2am!Fmn~x2am!Um~x2am!#

2~m↔n! G1
1

6 S 1

um
2

1
1

un
2

22D Fmn~x!. ~B7!

APPENDIX C: FITTING DETAILS

In this appendix we give a pedagogical discussion of
constrained curve fitting proposed in@25#. Recall that the
standard fitting procedure is to minimize thex2 function, or
equivalently, to maximize the likelihood of the data,C(t),
given a set of fit parameters. The likelihood probability
given, up to a normalization constant, by

P~C~ t !u f ~ t;l!,I ! } expS 2
x2

2 D ~C1!

whereI represents any unstated assumptions. Explicitly,

x25(
t,t8

„^C~ t !&2 f ~ t;l!…Kt,t8
21

„^C~ t8!&2 f ~ t8;l!….

~C2!

The correlation matrix,K, is constructed to take into accou
correlations betweenC(t) andC(t8):

Kt,t8[
1

N21
^„C~ t !2^C~ t !&…„C~ t8!2^C~ t8!&…&,

~C3!

with N equal to the number of measurements.
Usually one cannot include enough terms in the fit

account for excited state contributions before the algorit
05450
e

for minimizing x2 breaks down. The minimization algorithm
diverges as it searches in directions of parameter sp
which are unconstrained by the data. In the past the solu
has been to limit the number of fit terms, then discard data
including C(t) for t>tmin.0; the optimal value oftmin is
selected by a combination of looking forx2/DOF51, maxi-
mizing the confidence level (Q factor!, and observing pla-
teaux in effective masses. A major weakness of this pro
dure is that it provides no estimate of the error due
omitting the excited states from the fit.

The constrained curve fitting method of@25#, by using
Bayesian ideas, allows one to incorporate the uncertain
due to poorly constrained states by relaxing the assump
that there are only a few states which saturate the correla
function. Bayesian fits maximize the probability that the
function describes the given data, written
P( f (t;l)uC(t),I ); this probability is related to the likelihood
~C1! by Bayes’ theorem

P~ f ~ t;l!uC~ t !,I !5P„f ~ t;l!uI …
P„C~ t !u f ~ t;l!,I …

P„C~ t !uI …
~C4!

and is called the posterior probability. The denominator
Eq. ~C4! is treated as a normalization and plays no role
finding an optimal set of fit parameters. On the other ha
the prefactor,P„f (t;l)uI …, which multiplies the likelihood is
the prior probability; its inclusion is what permits fits t
many parameters.

The prior probability contains whatever assumptio
about the values of the fit parameters one can safely m
without looking at the data. In our case of fitting mes
correlators, before any fitting is done one has an idea o
range of possible values for the amplitudesAk and energies
Ek . Given such a range, the least informative prior distrib
tion is a Gaussian with meanm and half-widthd, in which
case the prior probability is given by

P„f ~ t;l!uI …5 )
i 50

2K21
1

dl i
A2p

expS ~l i2ml i
!2

2dl i

2 D . ~C5!

We sometimes refer to the set of$m i ,d i% as the ‘‘priors.’’ The
quantity which is minimized in the fits is

xaug
2

„C~ t !,$l i%,$~m i ,d i !%…

[x2
„C~ t !,$l i%…1 (

i 50

2K21 ~l i2ml i
!2

dl i

2

}22 lnP„f ~ t;l!uC~ t !,I …. ~C6!

Expression~C6! highlights how the prior distribution stabi
lizes the minimization algorithm. As one increases the nu
ber of fit parameters the terms from the prior in Eq.~C6! give
curvature toxaug

2 which prevents the minimization algorithm
from spending much time exploring the flat directions ofx2
5-18
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in order to find a minimum. The trick now is to distinguis
which parameters are constrained by the data and which
are fixed by the priors.

A remark on counting the net degrees of freedom~DOF!
of the fit is in order. As usual each of the data points rep
sents one DOF, but then each parameter of the fit whic
constrained by the data uses up one of those degrees. H
ever, in the Bayesian curve fitting method, there are sev
fit parameters which are unconstrained by the data and
not count against the net DOF. Usually there are a few
rameters obviously constrained by the data and a few o
ously determined solely by the prior, but there may be so
parameters for which such a distinction is not clear. The
fore, we simply take the DOF to be the number of da
points; instead of striving for a fit which producesx2/DOF
<1, we look for xaug

2 /DOF'1 together with the property
that the ratio stays constant as more fit terms are added

Given a sample ofN measurements, one bootstrap sam
is obtained by selectingN measurements, allowing repet
tions, from the originalN measurements. In principle on
would perform a fit on every possible bootstrap sample g
erating a Gaussian distribution of bootstrapped fit parame
$lb%, the half-width of which gives the bootstrap uncerta
ties sl i

B . However, there are a total of (2N21)!/„N!(N

21)!…;NN ways to make a bootstrap sample,1 so it is im-
possible to generate the entire bootstrap ensemble—it
unnecessary. The bootstrap distribution can be reliably e
mated by randomly generatingNB bootstrap samples fo

1Counting the number of possible bootstraps is equivalen
counting the number of waysn indistinguishable balls can be dis
tributed intok distinguishable buckets: each bucket represents
original measurement and the number of balls in a bucket indic
the number of times the measurement appears in a given boot
sample~andn5k5N). The answer is called the integer compo
tion of n into k parts and is equal to the binomial coefficie
( k21

n1k21).
H

La

s.

hy
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large enoughNB . We useNB'N5200, and have checke
that changingNB by a factor of 2 makes no significant dif
ference insl i

B .

In the unconstrained fitting methodx2 would be mini-
mized for each bootstrap sample, resulting in a set of
parameters which reproduce the likelihood probability dis
bution ~C1!. For the constrained fits where we minimiz
xaug

2 , however, it is not enough to resample the likelihood
one must resample the whole posterior distribution, i.e.
product of the likelihood and the prior distribution. Ther
fore, for each bootstrap sample we randomly choose a
set of prior means$ml i

b %, bP@1,NB# using the same distri-
bution used in Eq.~C6!

P~ml i

b !5
1

dl i
A2p

expS 2
~ml i

b 2ml i
!2

2dl i

2 D . ~C7!

The bootstrap fits then yield an ensemble ofNB results for
each fit parameter with a nearly Gaussian shape

P~l i
b!;expS 2

~l i
b2^l i&B!2

2~sl i

B !2 D ~C8!

wherel i
b is the fit result forl i on thebth bootstrap sample

^l i&B[(b
NBl i

b/NB , andsl i

B is the bootstrap uncertainty fo

l i . In practice one finds that the distribution of fit results
Gaussian shaped in the center but has stretched tails w
artificially inflate the quantityA^l i&B

22^l i
2&B making it a

poor estimate ofsl i

B @38,39#. Instead we estimate the widt

of the bootstrap distribution by discarding the highest 16
and lowest 16% ofl i

b and quoting the range of values for th
remaining 68% as 2sl i

B . Having obtained bootstrap fits t

several correlators, say$l i
b% and $n j

b%, we estimate the un-
certainty in functions of the fit parametersg(l i ,n j ), for ex-
ample mass ratios, by computing the function for each bo
strap sample and truncating the resulting distribution jus
discussed for individual fit parameters.

o

n
es
rap
s.

nd

.

K.

d J.
@1# Z. Ligeti, hep-ph/0112089.
@2# C.W. Bernardet al., Phys. Rev. D64, 054506~2001!.
@3# C. Bernardet al., hep-lat/0208041.
@4# M. Wingate, J. Shigemitsu, G.P. Lepage, C. Davies, and

Trottier, hep-lat/0209096.
@5# C. Bernard and G. P. Lepage, discussion at 2002 Cornell

tice Microconference.
@6# C. Aubin et al., hep-lat/0209066.
@7# A.X. El-Khadra, A.S. Kronfeld, and P.B. Mackenzie, Phy

Rev. D55, 3933~1997!.
@8# N. Kawamoto and J. Smit, Nucl. Phys.B192, 100 ~1981!.
@9# H.S. Sharatchandra, H.J. Thun, and P. Weisz, Nucl. P

B192, 205 ~1981!.
@10# A. Chodos and J.B. Healy, Nucl. Phys.B127, 426 ~1977!.
@11# P. Weisz, Nucl. Phys.B212, 1 ~1983!.
@12# P. Weisz and R. Wohlert, Nucl. Phys.B236, 397~1984!; B247,

544~E! ~1984!.
.

t-

s.

@13# C. Morningstar, Nucl. Phys. B~Proc. Suppl.! 53, 914 ~1997!.
@14# M.G. Alford, T.R. Klassen, and G.P. Lepage, Nucl. Phy

B496, 377 ~1997!.
@15# M.G. Alford, I.T. Drummond, R.R. Horgan, H. Shanahan, a

M.J. Peardon, Phys. Rev. D63, 074501~2001!.
@16# M.G. Alford, T.R. Klassen, and G.P. Lepage, Phys. Rev. D58,

034503~1998!.
@17# R. Sommer, Nucl. Phys.B411, 839 ~1994!.
@18# MILC Collaboration, K. Orginos, D. Toussaint, and R.L

Sugar, Phys. Rev. D60, 054503~1999!.
@19# G.P. Lepage, Phys. Rev. D59, 074502~1999!.
@20# T. Blum et al., Phys. Rev. D55, 1133~1997!.
@21# S. Naik, Nucl. Phys.B316, 238 ~1989!.
@22# G.P. Lepage, L. Magnea, C. Nakhleh, U. Magnea, and

Hornbostel, Phys. Rev. D46, 4052~1992!.
@23# S. Collins, C. Davies, J. Hein, R. Horgan, G.P. Lepage, an

Shigemitsu, Phys. Rev. D64, 055002~2001!.
5-19



tar,

WINGATE et al. PHYSICAL REVIEW D 67, 054505 ~2003!
@24# J. Shigemitsuet al., Phys. Rev. D66, 074506~2002!.
@25# G.P. Lepageet al., Nucl. Phys. B ~Proc. Suppl.! 106, 12

~2002!.
@26# C. Morningstar, Nucl. Phys. B~Proc. Suppl.! 109, 185 ~2002!.
@27# A. Ali Khan et al., Phys. Rev. D62, 054505~2000!.
@28# JLQCD Collaboration, K.-I. Ishikawaet al., Phys. Rev. D61,

074501~2000!.
@29# J. Heinet al., Phys. Rev. D62, 074503~2000!.
@30# R. Lewis and R.M. Woloshyn, Phys. Rev. D62, 114507

~2000!.
@31# R. Lewis and R.M. Woloshyn, Phys. Rev. D58, 074506

~1998!.
@32# HPQCD Collaboration, A. Grayet al., hep-lat/0209022.
05450
@33# Particle Data Group, K. Hagiwaraet al., Phys. Rev. D66,
010001~2002!.

@34# S. Collins, C. Davies, J. Hein, G.P. Lepage, C.J. Mornings
J. Shigemitsu, and J.H. Sloan, Phys. Rev. D63, 034505
~2001!.

@35# S.M. Ryan, Nucl. Phys. B~Proc. Suppl.! 106, 86 ~2002!.
@36# J. Shigemitsu, Nucl. Phys. B~Proc. Suppl.! 60A, 134 ~1998!.
@37# C.J. Morningstar and J. Shigemitsu, Phys. Rev. D57, 6741

~1998!.
@38# R. Guptaet al., Phys. Rev. D36, 2813~1987!.
@39# M.C. Chu, M. Lissia, and J.W. Negele, Nucl. Phys.B360, 31

~1991!.
5-20


