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Two-gluon components of theh and h8 mesons to leading-twist accuracy

Peter Kroll* and Kornelija Passek-Kumericˇki†
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We critically reexamine the formalism for treating the leading-twist contributions from the two-gluon Fock
components occurring in hard processes that involveh and h8 mesons and establish a consistent set of
conventions for the definition of the gluon distribution amplitude, the anomalous dimensions, as well as the
projector of a two-gluon state onto anh or h8 state. We calculate theh, h8-photon transition form factor to
orderas and show the cancellation of the collinear and UV singularities explicitly. An estimate of the lowest
Gegenbauer coefficients of the gluon and quark distribution amplitudes is obtained from a fit to theh,
h8-photon transition form factor data. In order to elucidate the role of the two-gluon Fock component further,
we analyze electroproduction ofh,h8 mesons and theg* g* h(h8) vertex.
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I. INTRODUCTION

The description of hard exclusive processes involv
light mesons is based on the factorization of the short-
long-distance dynamics@1,2#. The former is represented b
process-dependent, perturbatively calculable parton-le
subprocess amplitudes, in which the mesons are replace
their valence Fock components, while the latter is descri
by process-independent meson distribution amplitudes. T
work is focused on hard reactions involvingh and h8 me-
sons. These particles as other flavor neutral mesons po
SU(3)F singlet and octet valence Fock components and,
ditionally, two-gluon ones; to all three of them correspo
distribution amplitudes. This feature leads, on the one ha
to the well-knownflavor mixingwhich, for theh-h8 system,
has been extensively studied~for a recent review, see Re
@3#! and, on the other hand, as a further complication,
mixingof the singlet and gluon distribution amplitudesunder
evolution. On the strength of more and better experimen
data, the interest in hard reactions involvingh and h8 me-
sons and, consequently, in the role of the two-gluon F
component, has been renewed. Examples of such reac
are the meson-photon transition form factors, pho
production and electroproduction of mesons or charmon
andB-meson decays.

Mixing of the singlet and gluon distribution amplitude
has been investigated in a number of papers@4–11#. Apart
from differences in the notation and occasional misprin
different prefactors appear in the evolution kernels and in
expressions for the anomalous dimensions. Often the ful
of conventions for kernels, anomalous dimensions, the gl
distribution amplitude and the gluon-meson projector is
provided and/or it is not easy to extract. This makes
comparison of the various theoretical results and their ap
cations difficult. We therefore reexamine the treatment of
gluon distribution amplitude and its mixing with the singl
one. This analysis is performed in the context of thehg and
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h8g transition form factors. Applying the methods propos
in Ref. @12#, we calculate them to leading-twist accuracy a
include next-to-leading order~NLO! perturbative QCD cor-
rections. Our investigation enables us to introduce and to
the conventions for the ingredients of a leading-twist cal
lation for any hard process that involvesh or h8 mesons.
The most crucial test of the consistency of our set of c
ventions is the cancellation of the collinear singulariti
present in the parton-subprocess amplitude with the ultra
let ~UV! singularities appearing in the unrenormalized dis
bution amplitudes. Our analysis permits a critical apprai
of the relevant literature@4–11#.

In analogy with the analysis of thepg transition form
factor @13#, we use our leading-twist NLO results for th
transition form factors to extract information on theh and
h8 distribution amplitudes from fits to the experimental da
@14,15#. In order to make contact with experiment we have
adopt an appropriateh-h8 mixing scheme. We assume pa
ticle independence of the distribution amplitudes reducing
their number to three. Consequently, flavor mixing is sol
encoded in the decay constants for which we use the va
determined in Ref.@16#.

Our set of conventions, as abstracted from the calcula
of the transition form factor, is then appropriate for gene
use in leading-twist calculations of hard exclusive reactio
involving h and h8 mesons. We briefly discuss a few o
them, namely, electroproduction of theh andh8 mesons and
the vertexg* g* h(h8), in order to learn more about th
importance of the gluon distribution amplitudes. In contra
to the transition form factors, the two-gluon Fock comp
nents contribute in these reactions to the same order of
strong coupling constant,as , as the quark-antiquark one
The two-gluon components also contribute to the dec
xcJ→hh,h8h8. The analysis of these decays is howev
intricate since the next higher Fock state of thexcJ , cc̄g
contributes to the same inverse power of the relevant h
scale, the charm quark mass, as thecc̄ state and has to be
taken into account in a consistent analysis@17#. We therefore
refrain from analyzing these decays here.

The plan of the paper is the following. The calculation
the meson-photon transition form factors is presented in S
©2003 The American Physical Society17-1
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P. KROLL AND K. PASSEK-KUMERIČKI PHYSICAL REVIEW D 67, 054017 ~2003!
II. In Sec. III we discussh-h8 flavor mixing while Sec. IV is
devoted to a comparison with experiment and the extrac
of the size of the lowest Gegenbauer coefficients of the qu
and gluon distribution amplitudes. In Sec. V we investig
the role of the gluon distribution amplitude in other ha
reactions. The summary is presented in Sec. VI. The pa
ends with three Appendices in which we compile the defi
tions of quark and gluon distribution amplitudes~Appendix
A!, calculational details for the transition form factors~Ap-
pendix B! and some properties of the evolution kernels~Ap-
pendix C!.

II. THE Pg TRANSITION FORM FACTOR

A. The flavor-singlet case

As the valence Fock components of the pseudoscalar
sonsP5h,h8, we choose SU(3)F singlet and octet combi
nations of quark-antiquark states1

uqq̄1&5u~uū1dd̄1ss̄!/A3&,

uqq̄8&5u~uū1dd̄22ss̄!/A6, ~2.1!

and the two-gluon stateugg& which also possess flavor
singlet quantum numbers and contributes to leading tw
The corresponding distribution amplitudes are denoted
fP1,8,g ; their formal definitions are given in Appendix A. W
emphasize that here, in this section, we do not make use
flavor mixing scheme since the theoretical treatment of
transition form factors is independent of it. As usual the d
cay constants, defined by the vacuum-meson matrix elem
of flavor-singlet or octet weak axial vector currentsi
51,8)

^0uJm5
i ~0!uP~p!&5 i f P

i pm , ~2.2!

or rather the factorsf P
i /(2A2Nc), are pulled out of the dis-

tribution amplitudes (Nc being the number of colors!. Hence,
the quark distribution amplitudes are normalized to unity
any scalem2

E
0

1

dufPi~u,m2!51, ~2.3!

as follows from Eqs.~2.2! and~A9!. From Eq.~A10! one has

E
0

1

du fPg~u,m2!50. ~2.4!

There is no natural way to normalize the gluon distributi
amplitude. Since the flavor-singlet quark and gluon distrib
tion amplitudes mix under evolution while the flavor-oct
one evolves independently with the hard scale, it is con

1This should not be mixed up with the usual singlet and oc
basis frequently used for the description ofh-h8 mixing. Our an-
satz is completely general.
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nient to pull out of the gluon distribution amplitude the sam
factor as for the flavor-singlet quark one.

As usual we parametrize theg* (q1 ,m) g(q2 ,n)→P(p)
vertex as

Gm5 i e2FPg~Q2! «mnab en~q2!q1aq2b , ~2.5!

whereQ252q1
2>0 is the momentum transfer, andFPg(Q2)

denotes thePg transition form factor. It can be represente
as a sum of the flavor-octet and the flavor-singlet contri
tions

FPg~Q2!5FPg
8 ~Q2!1FPg

1 ~Q2!, ~2.6!

where the latter one includes the quark and the gluon p
The leading-twist singlet contribution to orderas is un-
known, while the octet contribution is well-known to th
order, one only has to adapt the result for thepg transitions
@18# suitably. We therefore perform a detailed analysis of
singlet contribution along the lines of the flavor-octet ana
sis presented in Ref.@12#.

For large momentum transferQ2, the flavor-singlet con-
tribution to the transition form factor can be represented a
convolution~see Fig. 1 for a lowest order Feynman diagra!

FPg
1 ~Q2!5

f P
1

2A2Nc

T†~u,Q2! ^ fP
ur~u!, ~2.7!

where the symbol̂ represents the usual convolutionA(z)
^ B(z)5*0

1dzA(z)B(z). We employ a two-component vec
tor notation

fP
ur~u![S fPq

ur ~u!

fPg
ur ~u!

D , T~u,Q2![S Tqq̄~u,Q2!

Tgg~u,Q2!
D ,

~2.8!

and switch to the more generic notationfPq[fP1 . The un-
renormalized quark and gluon distribution amplitudesfPq

ur

andfPg
ur are defined in Eqs.~A4! and~A5!. The parton-level

subprocesses amplitudes forg* g→qq̄, and g* g→gg are
denoted byTqq̄ andTgg , respectively; the Lorentz structur
is factorized out as in Eq.~2.5!.

The distribution amplitudesfPq
ur and fPg

ur require renor-
malization which introduces mixing of the composite ope
tors C̄(2z) g1g5 V C(z) and G1a(2z) V G̃a

1(z). The
unrenormalized distribution amplitudefP

ur is related to the
renormalized onefP by

t

FIG. 1. Lowest order Feynman diagram for theg* g→P tran-
sition. A second diagram is obtained by interchanging the pho
vertices.
7-2
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fP
ur~u!5Z~u,x,mF

2 ! ^ fP~x,mF
2 !, ~2.9!

where the UV-divergent renormalization matrix takes t
form

Z[S Zqq Zqg

Zgq Zgg
D . ~2.10!

Here,mF
2 represents the scale at which the singularities a

hence, soft and hard physics, are factorized. Owing to
fact that quarks and gluons are taken to be massless an
shell,Tqq̄ andTgg , calculated beyond leading order, conta
collinear singularities. The validity of factorization into ha
and soft physics, as expressed in Eq.~2.7!, requires the can-
cellation of these singularities with the UV ones from t
renormalization of the distribution amplitudes. Hence,
hard scattering amplitude defined by

TH
† ~x,Q2,mF

2 !5T†~u,Q2! ^ Z~u,x,mF
2 !, ~2.11!

must be finite. Below we explicitly show this cancellation
NLO. Provided the cancellation of the singularities holds,
transition form factor can be expressed in terms of finite h
scattering and distribution amplitudes

FPg
1 ~Q2!5

f P
1

2A2Nc

TH~x,Q2,mF
2 !†

^ fP~x,mF
2 !.

~2.12!

B. The NLO hard-scattering amplitude

We now proceed to the NLO calculation. The renorm
ization matrixZ, can be shown to have the following form

Z511
as~mF

2 !

4p

1

e
V(1)1O~as

2!, ~2.13!

if dimensional regularization (D5422e) is employed. Here
1 denotes the unit 232 matrix @with diagonal elements
d(x2u)], and the coefficientV(1)5V(1)(x,u) is a matrix2

V(1)[S Vqq Vqg

Vgq Vgg
D . ~2.14!

The amplitudesTqq̄ andTgg have well-defined expansions i
as , and after coupling-constant renormalization, which
troduces the renormalization scalemR

2 , they read

Tqq̄~u!5
Nqq̄

Q2 FTqq̄
(0)~u!1

as~mR
2 !

4p
CFS mR

2

Q2D e

Tqq̄
(1)~u!

1O~as
2!G ,

2Since we are only interested in theas term, we suppress the labe
1 in the matrix elements ofV(1).
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Tgg~u!5
Ngg

Q2 Fas~mR
2 !

4p S mR
2

Q2D e

Tgg
(1)~u!1O~as

2!G .

~2.15!

The normalization factorsNqq̄ and Ngg in Eq. ~2.15! are
given by

Nqq̄52A2NcC1 , Ngg5Anf CFNqq̄ , ~2.16!

where the flavor factorC1 takes into account the quark con
tent of theqq̄1 combination. It reads@see Eq.~A1!#

C15
eu

21ed
21es

2

Anf

. ~2.17!

The number of flavors in theqq̄1 is denoted bynf and CF

5(Nc
221)/(2Nc) is the usual color factor.ea is the charge

of quarka in units of the positron chargee.
Inserting Eqs.~2.13! and~2.15! into Eq. ~2.11! and using

Eq. ~B1!, we obtain

TH,qq̄5
Nqq̄

Q2 H Tqq̄
(0)1

as~mR
2 !

4p FCF Tqq̄
(1)S mR

2

Q2D e

1
1

e
Tqq̄

(0)
^ VqqS mR

2

mF
2 D eG1O~as

2!J ,

TH,gg5
Ngg

Q2 H as~mR
2 !

4p FTgg
(1)S mR

2

Q2D e

1
Nqq̄

Ngg

1

e
Tqq̄

(0)
^ VqgS mR

2

mF
2 D eG1O~as

2!J .

~2.18!

Results forTqq̄
(0) , Tqq̄

(1) , Tgg
(1) , and Vi j and some details o

their calculation are given in Appendix B. Using the resu
for Tqq̄

(0) andVqq , it is easy to verify that

Tqq̄
(0)~u! ^ Vqq~u,x!5CFAcol,qq̄

(1) ~x!, ~2.19!

with Acol,qq̄
(1) being given in Eq.~B5!. On the other hand

Acol,qq̄
(1) is the residue of the 1/e pole in Tqq̄

(1) , see Eq.~B4!.
Hence, the collinear singularity present inTqq̄

(1) is canceled by
the UV singularity inZqq and we arrive at a finite hard
scattering amplitude for theg* g→qq̄ subprocess

TH,qq̄~x,Q2,mF
2 !

5
Nqq̄

Q2 FTH,qq̄
(0) ~x!1

as~mR
2 !

4p
CFTH,qq̄

(1) ~x,Q2,mF
2 !

1O~as
2!G , ~2.20!

where
7-3
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TH,qq̄
(0) ~x!5Tqq̄

(0)~x!,

TH,qq̄
(1) ~x,Q2,mF

2 !52Acol,qq̄
(1) ~x!ln

mF
2

Q2
1A qq̄

(1)~x!.

~2.21!

The quantitiesTqq̄
(0) , Acol,qq̄

(1) , and A qq̄
(1) are given in Eqs.

~B4!, ~B5!.
Next, from Eqs.~B4! and ~B18!, we obtain

Tqq̄
(0)~u! ^ Vqg~u,x!5

Ngg

Nqq̄

Acol,gg
(1) ~x!, ~2.22!

with Acol,gg
(1) defined in Eq.~B8!. Inserting this result into Eq

~2.18! and taking into account Eq.~B7!, we observe the can
cellation of the collinear singularity present inTgg

(1) with the
UV singularity of Zqg , and we get the finite hard-scatterin
amplitude for theg* g→gg subprocess

TH,gg~x,Q2!5
Ngg

Q2 Fas~mR
2 !

4p
TH,gg

(1) ~x,Q2,mF
2 !1O~as

2!G ,
~2.23!

whereTH,gg
(1) reads

TH,gg
(1) ~x,Q2,mF

2 !52Acol,gg
(1) ~x!ln

mF
2

Q2
1A gg

(1)~x!.

~2.24!

The functionsAcol,gg
(1) andA gg

(1) are supplied in Eq.~B8!.

C. Evolution of the flavor-singlet quark
and gluon distribution amplitudes

We now turn to the discussion of the distribution amp
tude fP and its evolution. The matrixZ is related to the
evolution of the distribution amplitude, andV(1) in Eq.
~2.13! represents the kernel which governs the leading-or
~LO! evolution of the flavor-singlet distribution amplitude
By differentiating Eq.~2.9! with respect tomF

2 one obtains
the evolution equation@4,7#

mF
2 ]

]mF
2

fP~x,mF
2 !5V„x,u,as~mF

2 !…^ fP~u,mF
2 !,

~2.25!

where the evolution kernelV reads

V52Z21
^ S mF

2 ]

]mF
2

ZD . ~2.26!

We note in passing that the evolution equation would hav
more complicated form if the factorf P1 /(2A2Nc) was not
pulled out of the gluon distribution amplitude. Inserting E
~2.13! into Eq. ~2.26!, and using Eq.~B2!, one easily sees
that
05401
er
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V5
as~mF

2 !

4p
V(1)1O~as

2!. ~2.27!

The results for the LO kernelV(1) are given in Eqs.~B10!
and ~B18!–~B20!. The anomalous dimensions that contr
the evolution of the distribution amplitudes can be read
from the relations~C2!:

gn
qq5CFF31

2

~n11!~n12!
24(

i 51

n11
1

i G ,

gn
qg5AnfCF

n~n13!

3~n11!~n12!
n>2,

gn
gq5AnfCF

12

~n11!~n12!
n>2,

gn
gg5b01NcF 8

~n11!~n12!
24(

i 51

n11
1

i G n>2.

~2.28!

To leading order inas the evolution equation~2.25! can
be solved by diagonalizing the kernelV or rather the matrix
of the anomalous dimensions. The eigenfunctions can be
panded upon the Gegenbauer polynomialsCn

m/2 with coeffi-
cientsBPn

(6) which evolve with the eigenvaluesgn
(6) of the

matrix of the anomalous dimensions

gn
(6)5

1

2
@gn

qq1gn
gg6A~gn

qq2gn
gg!214gn

qggn
gq#.

~2.29!

The two components of the distribution amplitudefP pos-
sess the expansion

fPq~x,mF
2 !56x ~12x!

3F11 (
n52,4, . . .

BPn
q ~mF

2 !Cn
3/2~2x21!G ,

fPg~x,mF
2 !5x2~12x!2

3 (
n52,4, . . .

BPn
g ~mF

2 !Cn21
5/2 ~2x21!,

~2.30!

where only the terms for evenn occur as a consequence
Eq. ~A8!. The expansion coefficients in Eq.~2.30! are related
to those of the eigenfunctions by

BPn
q ~mF

2 !5BPn
(1)~m0

2!S as~m0
2!

as~mF
2 !

D gn
(1)/b0

1rn
(2)BPn

(2)~m0
2!S as~m0

2!

as~mF
2 !

D gn
(2)/b0

,

7-4
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BPn
g ~mF

2 !5rn
(1)BPn

(1)~m0
2!S as~m0

2!

as~mF
2 !

D gn
(1)/b0

1BPn
(2) ~m0

2!S as~m0
2!

as~mF
2 !

D gn
(2)/b0

. ~2.31!

The coefficientsBPn
(6) (m0

2) respectiveBPn
q,g(m0

2), wherem0
2 is

the initial scale of the evolution, represent the nonpertur
tive input to a calculation of the transition form factors a
are, at present, not calculable with a sufficient degree of
curacy. The parametersrn

(6) read

rn
(1)56

gn
gq

gn
(1)2gn

gg
, rn

(2)5
1

6

gn
qg

gn
(2)2gn

qq
. ~2.32!

We note that the anomalous dimensions satisfy the r
tion

gn
qg

gn
(6)2gn

qq
5

gn
(6)2gn

gg

gn
gq

. ~2.33!

Comparison of Eqs.~2.28! and ~2.29! reveals thatgn
(1)

'gn
qq for all n andgn

(1)→gn
qq for n→`.

It is important to realize that any change of the definiti
of the gluon distribution amplitude~A5! is accompanied by a
corresponding change in the hard scattering amplitude. S
pose we changefPg by a factors

fPg
s 5s fPg . ~2.34!

Since any physical quantity, as for instance the transit
form factor, must be independent of the choice of the c
vention, the projection~A14! of gg state onto a pseudoscal
meson state is to be modified by a factor 1/s, i.e.,

P mn
g s5

1

s
P mn

g , ~2.35!

and the hard-scattering amplitude becomes altered acc
ingly. As an inspection of Eqs.~2.30!–~2.32! reveals, the
change of the definition of the gluon distribution amplitu
~2.34! has to be converted into a change of the off-diago
anomalous dimensions and the Gegenbauer coefficientsBPn

(6)

in order to leave the quark distribution amplitude as it is

gn
qg,s5

1

s
gn

qg , gn
gq,s5s gn

gq , ~2.36!

and

BPn
(2) s ~m0

2!5sBPn
(2) ~m0

2!, BPn
(1) s ~m0

2!5BPn
(1) ~m0

2!,
~2.37!

implying

BPn
g s ~mF

2 !5s BPn
g ~mF

2 !, BPn
q s ~mF

2 !5BPn
q ~mF

2 !.
~2.38!
05401
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We finally mention that, as can be easily seen from E
~2.34! and the evolutional equation~2.25!, along with the
change of the anomalous dimensions~2.36! the kernelsVqg
andVgq become modified.

The results for the anomalous dimensions can also be
derstood in the operator language, i.e., by considering
impact of a change of the definition of the gluonic compos
operator on the anomalous dimensions~for comments on the
use of the operator product expansion, see, for instance R
@6,7#!. One finds that only the anomalous dimensionsgn

qg

and gn
gq become modified, while the diagonal ones and

product gn
qg gn

gq , and consequently the eigenvaluesgn
(6) ,

remain unchanged. Redefinition of the gluonic composite
erator implies a corresponding change of the gluon distri
tion amplitude.

We are now in the position to compare the results p
sented in this work with other calculations to be found in t
literature. The entire set of conventions is not always eas
extract from the literature since often only certain aspects
the flavor-singlet system are discussed. For instance, in
@9# only the evolution kernels are investigated, or in Ref.@6#
only the anomalous dimensions. Using results from su
work in a calculation of a hard process necessitates the us
corresponding conventions for the other quantities. Car
also required if elsewhere determined numerical results
the Gegenbauer coefficientsBPn

(2) or BPn
g are employed since

according to Eqs.~2.37! and ~2.38!, they are convention de
pendent. For future reference, we systematize in Table I
important ingredients for the three conventions encounte
in the literature. Our expressions for the kernels and
anomalous dimensions correspond to the ones obtaine
Ref. @4# ~up to a typo inVgg). In Refs.@10,11# the anomalous
dimensions controlling the evolution of the forward and no
forward parton distribution were studied to NLO. Since t
nondiagonal anomalous dimension for the odd parity c
coincides with our ones@19#, we observe that the conventio
s5ACF /nf is used in Refs.@10,11#. The only result we do
not understand is the one presented in Ref.@5#: There is an
extra factor of 1/2 inVgq which changes the product of pre
actors. Moreover, there are factors 1/3 and 3 apparently m
ing in gqg and ggq . We note that occasionally the facto
@x(12x)#21 appearing in our projector~A14! is absorbed

TABLE I. List of common conventions for the anomalous d
mensions and thegg projector. Quoted are the prefactors of th
nondiagonal anomalous dimensions~2.28! and of thegg projector
~A14! for various choices ofs in Eqs. ~2.35!, ~2.36!. We also list
references where these conventions for the anomalous dimen
are used.

s gn
qg,s gn

gq,s P mn
gs references

1 Anf CF Anf CF 1 @4#

Anf

CF

CF nf ACF

nf

@6,7#

ACF

nf

nf CF Anf

CF

@9,11#
7-5
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into the gluon distribution amplitude@5,7#. This arrangemen
is accompanied by corresponding changes of the evolu
kernels, see Eq.~B21!.

Although, from the point of view of derivation, the con
ventions which lead to Eqs.~2.28! and~A14! seem to be the
most natural ones, it is perhaps more expedient to use
same conventions for the anomalous dimensions as for
larized deep inelastic lepton-proton scattering@20#, which
correspond to

s5Anf

CF
. ~2.39!

The corresponding set of conventions will be used in the
of the paper. The nondiagonal anomalous dimensions
read

gn
qg→CF

n~n13!

3~n11!~n12!
n>2,

gn
gq→nf

12

~n11!~n12!
n>2, ~2.40!

and the gluonic projector

P mn,ab
g → i

2
ACF

nf

dab

ANc
221

«'mn

u~12u!
. ~2.41!

Along with these definitions, Eqs.~2.30!–~2.32! have to be
used.

To the order we are working, the NLO evolution of th
quark distribution amplitudes should in principle be includ
~the convolution of the NLO term forfPg with TH,gg con-
tributes to orderas

2). To NLO accuracy the Gegenbau
polynomialsCn

3/2 are no longer eigenfunctions of the evol
tion kernel, so that their coefficientsBPn

i do not evolve inde-
pendently@11,21#. In analogy with the pion case@22#, the
impact of the NLO evolution on the transition form factors
expected to be small compared with the NLO corrections
the subprocess amplitudes. Therefore we refrain from c
sidering NLO evolution.

D. The NLO result for the transition form factor

To end this section we quote our final result for the flav
singlet contribution to thePg transition form factor to
leading-twist accuracy and NLO inas . The result, obtained
by inserting Eqs.~2.20! and ~2.23! ~multiplied by s21

5ACF /nf according to the new normalization of the gluon
projector! into Eq. ~2.12!, is
05401
n

he
o-

st
en

o
n-

-

FPg
1 ~Q2!5

f P
1 C1

Q2 H TH,qq̄
(0) ~x! ^ fPq~x,mF

2 !

1
as~mR

2 !

4p
CF [TH,qq̄

(1) ~x,Q2,mF
2 ! ^ fPq~x,mF

2 !

1TH,gg
(1) ~x,Q2,mF

2 ! ^ fPg~x,mF
2 !] J . ~2.42!

A subtlety has to be mentioned. The singlet decay const
f P

1 , depends on the scale but the anomalous dimension
trolling it is of order as

2 @23#. In our NLO calculation this
effect is tiny and is to be neglected as the NLO evolution
the distribution amplitude.

For completeness and for later use we also quote the
sult for the flavor-octet contribution to thePg transition
form factor at the same level of theoretical accuracy. In o
notation it reads

FPg
8 ~Q2!5

f P
8 C8

Q2 H TH,qq̄
(0) ~x! ^ fP8~x,mF

2 !

1
as~mR

2 !

4p
CF TH,qq̄

(1) ~x,Q2,mF
2 ! ^ fP8~x,mF

2 !J ,

~2.43!

where the renormalized hard scattering amplitude is give
Eq. ~2.20! and the charge factorC8 is obtained with the help
of Eq. ~A1!

C85
eu

21ed
222es

2

A6
. ~2.44!

The octet distribution amplitude,fP8 , being fully analogous
to the pion case, has the expansion

fP8~x,mF
2 !56x~12x!F11 (

n52,4, . . .
BPn

8 ~mF
2 !Cn

3/2~2x21!G ,
~2.45!

where the Gegenbauer coefficients evolve according to@1#

BPn
8 ~mF

2 !5BPn
8 ~m0

2!S as~m0
2!

as~mF
2 !

D gn
qq/b0

. ~2.46!

Summing the flavor-singlet and octet contributions accord
to Eq. ~2.6!, we arrive at the full transition form factors fo
the physical mesons.

As has been pointed in Refs.@3,13,24#, in the limit Q2

→` where the quark distribution amplitudes evolve into t
asymptotic form

fAS~x!56x~12x! ~2.47!

and the gluon one to zero, the transition form factor becom
7-6
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FPg ——→
Q2→` A2 f P

eff

Q2 F12
5

3

as

p G . ~2.48!

f P
eff combines the decay constants with the charge factorCi

f P
eff5

1

A3
@ f P

8 12A2 f P
1 #. ~2.49!

The result~2.48! holds also for the case of the pion withf h
eff

replaced byf p . In Ref. @3# an interesting observation ha
been reported: if the transition form factors for thep, h, and
h8 are scaled by their respective asymptotic results, the
for these processes@14,15# fall on top of each other within
experimental errors. This can be regarded as a hint at ra
similar forms of the quark distribution amplitudes in th
three cases and a not excessively large gluon one.

III. h-h8 MIXING

Using the results~2.42! and~2.43! for the transition form
factors, one may analyze the experimental data obtaine
CLEO @14# and L3 @15# with the aim of extracting informa-
tion on the six distribution amplitudesfPi(x,m0

2), i 51,8,g
or rather on their lowest Gegenbauer coefficientsBPn

i (m0
2).

In principle, this is an extremely interesting program since
would allow for an investigation ofh-h8 flavor mixing at the
level of the distribution amplitudes. In practice, however, t
program is to ambitious since the present quality of the d
is insufficient to fix a minimum number of six coefficien
which occur if the Gegenbauer series is truncated atn52.
Thus, we are forced to change the strategy and to empl
flavor mixing scheme right from the beginning in order
reduce the number of free parameters.

Since in hard processes only small spatial quark-antiqu
separations are of relevance, it is sufficiently suggestive
embed the particle dependence and the mixing behavio
the valence Fock components solely into the decay consta
which play the role of wave functions at the origin. Henc
following Refs.@16,24#, we take

fPi5f i , ~3.1!

for i 58,1,g. This assumption is further supported by t
observation @24,25# that, as for the case of the pio
@13,22,26#, the quark distribution amplitudes for theh and
h8 mesons seem to be close to the asymptotic formfAS(x)
for which the particle independence~3.1! holds trivially.
Note that we switch now back to the original notation for t
singlet distribution amplitude introduced in Sec. II A:

fP1[fPq , BPn
1 [BPn

q . ~3.2!

The decay constants can be parametrized as@16,23#

f h
85 f 8 cosu8 , f h

152 f 1sinu1 ,

f h8
8

5 f 8sinu8 , f h8
1

5 f 1cosu1 . ~3.3!
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Numerical values for the mixing parameters have been
termined on the basis of the quark-flavor mixing sche
@16#.

f 851.26f p , u85221.2°,

f 151.17f p , u1529.2°. ~3.4!

The value of the pion decay constant isf p50.131 GeV. As
observed in Ref.@16# ~see also Ref.@3#! h-h8 flavor mixing
can be parametrized in the simplest way in the quark-fla
basis. The mixing behavior of the decay constants in t
basis follows the pattern of state mixing, i.e., there is o
one mixing angle. The basis states of the quark-flavor mix
scheme are defined by

uhq&5coswuh&1sinwuh8&,

uhs&52sinwuh&1coswuh8&, ~3.5!

and the strange and non-strange decay constants are ass
to mix as

f h
q5 f q cosw, f h

s 52 f s sinw,

f h8
q

5 f q sinw, f h8
s

5 f s cosw. ~3.6!

As demonstrated in Ref.@16# this ansatz is well in agreemen
with experiment. The occurrence of only one mixing angle
this scheme is a consequence of the smallness of OZI
violations which amount to only a few percent and can saf
be neglected in most cases.SU(3)F symmetry, on the other
hand, is broken at the level of 10220 % as can be seen, fo
instance, from the values of the decay constantsf 8 and f 1 ,
and cannot be ignored.

Using Eq.~2.1! and particle independence, we obtain f
the valence Fock components of the basis states~3.5!

uhq&5
f q

2A2Nc

@fq~x,mF
2 !uqq̄ &1fopp~x,mF

2 !uss̄&

1A2/3 fg~x,mF
2 ! ugg&]

uhs&5
f s

2A2Nc

@fopp~x,mF
2 !uqq̄ &1fs~x,mF

2 !u ss̄&

1fg~x,mF
2 !ugg&/A3], ~3.7!

whereqq̄ is short for the combination (uū1dd̄)/A2 and

fq5
1

3
~f812f1!, fs5

1

3
~2f81f1!,

fopp5
A2

3
~f12f8!. ~3.8!

In deriving Eq.~3.7! we made use of the relations
7-7
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cos~w2u8!5
1

A3

f q

f 8
, cos~w2u1!5

1

A3

f s

f 1
,

sin~w2u8!5A2

3

f s

f 8
, sin~w2u1!5A2

3

f q

f 1
,

~3.9!

which can readily be obtained from results on decay c
stants and mixing angles reported in Ref.@16#.

In Eq. ~3.5! the ss̄ (qq̄) Fock component appears in th
hq(hs). These respective opposite Fock components lea
violations of the Okubo-Zweig-Iizuka~OZI! rule if they
were not suppressed. In order to achieve the mixing beha
~3.5!, ~3.6! and, hence, strict validity of the OZI rule,fopp
must be zero which implies

f8~x,mF
2 !5f1~x,mF

2 !5fq~x,mF
2 !5fs~x,mF

2 !. ~3.10!

However, except the distribution amplitudes assume
asymptotic form, this can only hold approximately for a lim
ited range of the factorization scale since the evolution of
distribution amplitudes will generate differences betweenf1
and f8 and, hence, the respective opposite Fock com
nents. In order to guarantee at least the approximate val
of the OZI rule and the quark-flavor mixing scheme as
required by phenomenology, we demand in our analysis
the transition form factor data that

Ufopp~x,mF
2 !

fAS~x!
U!1, ~3.11!

for any value ofx.

IV. DETERMINATION OF THE
DISTRIBUTION AMPLITUDES

Before we turn to the analysis of thePg transition form
factor data@14,15# and the determination of theh and h8
distribution amplitudes a few comments on the choice of
factorization and renormalization scales are in order. A c
venient choice of the factorization scale3 is mF

25Q2, it
avoids the lnmF

2/Q2 terms in Eqs.~2.20! and ~2.23!. Another
popular choice ismF

25Q2/2 which reflects the mean virtua
ity of the exchanged quark. This choice facilitates compa
son with the pion distribution amplitude as determined
Ref. @13# in exactly the same way we are going to fix theh
andh8 distribution amplitudes. For the renormalization sca
we choosemR

25Q2/2 for which choice arguments have be
given on the basis of a next-next-to-leading order calcula
of the pion form factor@12#.

The transition form factor is evaluated using the two-lo
expression for as with four flavors and L MS

(4)
5305

MeV @28#. The numerical values for the decay constants a

3A detailed discussion of the the role of the factorization scale
the resummation of corresponding logs is presented in R
@12,27#.
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mixing angles are given in Eq.~3.4!. As the starting scale o
the evolution we takem0

251 GeV2.
A comparison of the leading-twist NLO results evaluat

from the asymptotic quark distribution amplitudes~2.47! ~the
gluon distribution amplitude is zero in this case! with experi-
ment@14,15# is made in Fig. 2. It reveals that the distributio
amplitudes cannot assume their asymptotic forms for sc
of the order of a few GeV2; the prediction for the case ofh8
lies about 10% above the data. This parallels observat
made for the case of thepg transitions@13,22#.

Next let us inspect the Gegenbauer expansion of the t
sition form factor. Forx-independent factorization and reno
malization scales the integrations involved in Eqs.~2.42! and
~2.43! can be performed analytically leading to the expans

FPg
1 ~Q2!5

6 f P
1C1

Q2 H 11B2
1~mF

2 !1B4
1~mF

2 !

2
5

3

as~mR
2 !

p F12B2
1~mF

2 !S 59

72
2

5

6
ln

Q2

mF
2 D

2B4
1~mF

2 !S 10487

4500
2

91

75
ln

Q2

mF
2 D

1B2
g~mF

2 !S 55

1296
2

1

108
ln

Q2

mF
2 D

1B4
g~mF

2 !S 581

10125
2

7

675
ln

Q2

mF
2 D G1•••J . ~4.1!

d
s.

FIG. 2. The scaledPg transition form factor vsQ2. Dotted
~long-short dashed! lines represent the LO~NLO! predictions for
the asymptotic distribution amplitudes. Solid~dashed! lines are re-
sults obtained withB2

g(m0
2)521 (23), B2

1(m0
2)520.04 (20.12),

and B2
8(m0

2)520.04 (mF
25Q2, mR

25Q2/2, m0
251 GeV2). The

shaded areas indicate the range of the NLO predictions forB2
1 and

B2
g inside the allowed region~see text!. Data taken from Refs.

@14,15# ~rhombs represent theQ2Fh8g data, squares theQ2Fhg

ones!.
7-8



se
te

is

n

o
he
ng

or
-
ai
a
in
ib

in

te

f-
e

-
he
-
or

the

the

tion
va-
c.

op
by

ig-

med
of
in

he
f
is

ng

the
of

L3
n- he

r

TWO-GLUON COMPONENTS OF THEh AND h8 MESONS . . . PHYSICAL REVIEW D 67, 054017 ~2003!
Particle independence of the distribution amplitudes is u
in this expansion. A similar expansion holds for the oc
contribution with the obvious replacementsf P

1→ f P
8 , Bn

1

→Bn
8 , andBn

g→0. The expansion of the octet contribution
analogous to that one of thepg transition form factor
@12,13#.

In the expansion~4.1! one notes a strong linear correlatio
betweenB2

i and B4
i , only the mild logarithmicQ2 depen-

dence due to evolution and the running ofas restricts their
values to a finite region in parameter space. The gluon c
tributions to the form factors are strongly suppressed, t
appear only to NLO and the numerical factors multiplyi
their Gegenbauer coefficients are small. The coefficientsB2

g

andB4
g are also correlated.

With regard to these correlations and in view of the err
of the experimental data@14,15# as well as the rather re
stricted range of momentum transfer in which they are av
able, we are forced to truncate the Gegenbauer seriesn
52. Truncating atn54 does not lead to reliable results
contrast to the simpler case of the pion where this is poss
@13#. A fit to the CLEO and L3 data forQ2 larger than
2 GeV2 provides

B2
8~m0

2!520.0460.04,

B2
1~m0

2!520.0860.04,

B2
g~m0

2!59612, ~4.2!

where the values of the Gegenbauer coefficients are obta
for the factorization scalemF

25Q2. We repeat thatm0
2

51 GeV2 and the gluonic Gegenbauer coefficient is quo
for the normalizations5Anf /CF. For comparison we also
determine the Gegenbauer coefficients formF

25Q2/2; the
values found agree with those quoted in Eq.~4.2! almost
perfectly. The quality of the fit is shown in Fig. 2. The coe
ficients B2

1 and B2
g are strongly correlated as can be se

FIG. 3. 1s x2-contour plot for the coefficientsB2
1(m0

2) and
B2

g(m0
2) obtained from a three-parameter fit to the CLEO and

data on theh,h8-g transition form factors. Values of the Gege
bauer coefficients refer tom0

251 GeV2; the factorization scale is
mF

25Q2.
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from Fig. 3. The results ~4.2! satisfy A2uB2
8(mF

2)
2B2

1(mF
2)u/3!0.02 for all mF

2.m0
2 . This meets the require

ment ~3.11!, and, therefore no substantial violations of t
OZI rule follow from our distribution amplitudes. It more
over implies the approximative validity of the quark-flav
mixing scheme advocated for in Ref.@16#. In Fig. 4 we
present the singlet and gluon distribution amplitudes at
scalem0

2 obtained using the face values from Eq.~4.2!. Both
amplitudes are end-point suppressed as compared to
asymptotic one. This property holds for all values ofB2

1 and
B2

g inside the allowed region~4.2!.
The values ofB2

1 and B2
8 agree with each other within

errors as well as with the Gegenbauer coefficientB2
p(m0

2) of
the pion distribution amplitude for which a value of20.06
60.03 has been found in Ref.@13# from an analysis along
the same lines as our one. Thus, the three quark distribu
amplitudes are very similar. This result explains the obser
tion made in Ref.@3# and mentioned by us at the end of Se
II D that the data on three transition form factors fall on t
of each other within errors if the form factors are scaled
their respective asymptotic results~2.48!. Thehcg transition
form factor, on the other hand, behaves differently@29#. The
hc mass provides a second large scale which cannot be
nored in the analysis@30#.

We emphasize that our results on theh andh8 distribu-
tion amplitudes are to be considered as estimates perfor
with the purpose of getting an idea about the magnitude
the gluon distribution amplitude. As has been discussed
detail for the case of thepg transition form factor in Ref.
@13#, allowance of higher Gegenbauer coefficients in t
analysis will change the result onB2

p , essentially the sum o
theBn

p is fixed by the data on the transition form factor. Th
ambiguity also holds for the case of theh andh8. Taking a
lower renormalization scale than we do which may go alo
with a prescription for the saturation ofas and thus including
effects beyond a leading-twist analysis, will also change
results for the Gegenbauer coefficients. Another source

FIG. 4. Flavor-singlet and gluon distribution amplitudes at t
scalem0

251 GeV2 obtained using the face valuesB2
1 andB2

g from
Eq. ~4.2!. The asymptotic distribution amplitude is included fo
comparison.
7-9
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theoretical uncertainties in our analysis is the neglect
power and/or higher-twist corrections. Thus, for instance
Refs. @24,25# the LO modified perturbative approach@31#
has been applied where quark transverse degrees of free
and Sudakov suppressions are taken into account. In
case the asymptotic distribution amplitudes lead to go
agreement with the data on the transition form factors.

V. COMMENTS ON OTHER HARD REACTIONS

In this section we make use of the results obtained in
preceding sections and calculate other hard processes in
ing h andh8 mesons in order to examine the role of thegg
Fock component further.

A. Electroproduction of h,h8 mesons

As a first application of the gluon distribution amplitud
extracted from thehg and h8g transition form factors we
calculate deeply virtual electroproduction ofh and h8 me-
sons off protons. It has been shown@32,33# that for large
virtualities of the exchanged photonQ2 and small momen-
tum transfer from the initial to the final protont electropro-
duction of pseudoscalar mesons is dominated by longit
nally polarized virtual photons and the process amplitu
factorizes into a parton-level subprocessgL* q→Pq and soft
proton matrix elements which represent generalized pa
distributions@34#, see Fig. 5. The meson is generated by
leading-twist mechanism, i.e., by the transitionqq̄→P me-
diated through the exchange of a hard gluon. For the prod
tion of h andh8 mesons, however, one has to consider
gluon Fock component as well which, in contrast to the c
of the transition form factors, contributes to the same or
of as as theqq̄i components. The gluonic contribution ha
not been considered in previous calculations of the elec
production cross sections@35,36#.

The helicity amplitude for the processgL* p→Pp is again

decomposed into flavor octet and singlet componentsqq̄i
→P

M 06,06
Pi 5(

a
eeaCa

i A12j2E
21

1 dx̄

Ax̄22j2
H 06,06

Pi

3F H̃a~ x̄,j,t !2
j2

12j2
Ẽa~ x̄,j,t !G , ~5.1!

FIG. 5. The handbag-type diagram for meson electroproduc
of protons. The large blob represents a generalized parton dist
tion, the small one the subprocessgL* q→P q. The momentum
transfer ist5D2.
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whereH̃a andẼa are the axial vector and pseudoscalar ge
eralized parton distributions for the emission and reabso
tion of quarks of flavora. The Ca

i are flavor factors for the
qq̄i components of the mesonP; they can be read off from
Eq. ~A1!. The quark subprocess amplitudesgL* q→qq̄i q are
calculated from the LO Feynman diagrams for which e
amples are shown in Fig. 6@36#

H 06,06
Pi ~ ŝ,t,Q2!56 4pas~mR

2 !
CF

Nc
f P

i QA2ûŝ

Q21 ŝ

3E
0

1

dt
f i~t,mF

2 !

~12t!Q22tt

3F12
û

ŝ
1

1

12t

t

û
G . ~5.2!

They are expressed in terms of the subprocess Mandel
variablesŝ, û, t̂5t whereŝ1t1û52Q2, and hold for any
value ofQ2 and t. For the deeply virtual kinematical regio
of large Q2 and 2t!Q2, it is more appropriate to use th
scaling variablesj and x̄. The skewness is defined by th
ratio of light-cone plus components of the incoming~p! and
outgoing (p8) proton momenta

j5
~p2p8!1

~p1p8!1
. ~5.3!

For large Q2 the skewness is related tox-Bjorken by j
.xB j/2. The average momentum fraction the emitted a
reabsorbed partons carry, is defined as

x̄5
~k1k8!1

~p1p8!1
. ~5.4!

Here, k and k8 are the momenta of the emitted and rea
sorbed partons, respectively. For2t!Q2 the Mandelstam
variables are related to the skewness and the average
mentum fraction

ŝ5
Q2

2j
~ x̄2j!, û52

Q2

2j
~ x̄1j!. ~5.5!

Rewriting the subprocess amplitude in terms ofj and x̄ and
inserting the result into the factorization formula~5.1!, one
arrives at the well-known result for the leading-twist cont
bution to deeply virtual electroproduction of pseudosca
mesons@35#

n
u-

FIG. 6. Sample leading order Feynman diagrams that contrib
to the subprocess amplitudegL* q→qq̄iq.
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M 06,06
Pi ~Q2,j,t.0!56

4pas~mR
2 !

Q

CF

Nc
f P

i A12j2

3E
0

1

dt
f i~t,mF

2 !

t (
a

eeaCa
i

3E
21

1

dx̄F 1

x̄1j2 i«
1

1

x̄2j1 i«
G

3F H̃a~ x̄,j,t !2
j2

12j2
Ẽa~ x̄,j,t !G .

~5.6!

Next we calculate the subprocess amplitude for the g
onic component of the mesongL* q→ggq. There are six
graphs that contribute to the subprocess. Three represent
ones are depicted in Fig. 7, the other three ones are obta
from these by interchanging the gluons. We find for th
subprocess amplitude the result

H 06,06
Pg ~ ŝ,t,Q2!574pas~mR

2 !
f P

1

Anf

CF

Nc

Q

Q21 ŝ

2t

A2ûŝ

3E
0

1

dt
fg~t,mF

2 !

t2~12t!
. ~5.7!

In deriving this expression we made use of the antisymm
of the gluon distribution amplitude~A8!. The gluonic contri-
bution to thegL* p→Pp helicity amplitudes reads

M 06,06
Pg 5(

a
eeaA12j2E

21

1 dx̄

Ax̄22j2
H 06,06

Pg

3F H̃a~ x̄,j,t !2
j2

12j2
Ẽa~ x̄,j,t !G . ~5.8!

The full gL* p→Pp amplitudes are the sum of the flavo
octet and singlet contributions~5.6! and the gluonic one
~5.8!. In the deeply virtual region, however, the gluon co
tribution is suppressed byt/Q2 as one readily observes from
Eq. ~5.7!. It is, therefore, to be considered as a power c
rection to the leading quark contribution~5.6! and is to be
neglected in a leading-twist analysis of deeply virtual el
troproduction ofh andh8 mesons.

One may also consider wide-angle photoproduction
electroproduction ofh and h8 mesons. Using the method
proposed in Ref.@37# for wide-angle Compton scattering

FIG. 7. Representative LO Feynman diagrams that contribut
the subprocess amplitudegL* q→ggq.
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one can show that for wide-angle photoproduction and e
troproduction of pseudoscalar mesons the factorization
mulas~5.1! and ~5.8! hold as well provided2t and2u are
large as compared to the square of the proton mass andQ2

!2t @36#. To show that one has to work in a symmetr
frame in which the skewness is zero. One can also show
in this situation,ŝ and û are approximate equal to the Man
delstam variables for the full process,s andu, respectively.
Thus, in the wide-angle region and forQ2!2t,s but non-
zero, Eqs.~5.1! and ~5.8! simplify to

M 06,06
Pi ~s,t,Q2!2t !5eH 06,06

Pi (
a

eaCa
i RA

a~ t !,

M 06,06
Pg ~s,t,Q2!2t !5eH 06,06

Pg (
a

eaRA
a~ t !,

~5.9!

where the form factorsRA
a represent 1/x̄ moments of the

generalized parton distributionsH̃a at zero skewness. Thes
form factors also contribute to wide-angle Compton scat
ing @37#. The amplitudes for transversally polarized photo
can be obtained analogously. In contrast to the case of de
virtual electroproduction@38#, factorization for these ampli-
tudes holds in the wide-angle region, too.

In order to estimate the size of the gluon contribution
wide-angle electroproduction ofh,h8 mesons, we plot in
Fig. 8 the ratio

M 06,06
Pg

M 06,06
P1

5
2t2

2s21t21ts
E

0

1

dt
fg~t,mF

2 !

t2~12t!

3F E
0

1

dt
f1~t,mF

2 !

t G21

, ~5.10!

evaluated from the distribution amplitudes~4.2! for which
the ratio of the integrals is.25 B2

g(mF
2)/18. The ratio may

be large in particular in the backward hemisphere. Thus
least for electroproduction ofh8 mesons thegg Fock com-

to

FIG. 8. Ratio of gluon and flavor-singlet quark amplitudes f
wide-angle electroproduction ofh or h8 mesons (mF

2510 GeV2).
The shaded area indicates the range of predictions evaluated
B2

1(m0
2) andB2

g(m0
2) inside the allowed region according to Fig. 3
7-11
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ponent should be taken into account for sufficiently lar
momentum transfer. For the production of theh meson it
plays a minor role sinceh production is dominated by th
flavor-octet contribution (f h

1/ f h
850.16). Note, however, tha

the normalization of the meson electroproduction in both
regions, the deeply virtual and the wide-angle one, is
well understood in the kinematical region accessible
present day experiments.

B. The g* g* P vertex

A reliable determination of theg* g* h8 vertex is of im-
portance for the calculation of a number of decay proces
such asB→h8K, B→h8Xs , or of the hadronic production
processpp→h8X. The g* g* h8 vertex has been calculate
by two groups recently@39,40#. We reanalyze this vertex to
leading-twist order using our set of conventions. This w
allow us to examine the previous calculations, and prov
predictions forPg* transition form factor using the Gegen
bauer coefficients~4.2! in the distribution amplitudes.

We define the gluonic vertex in analogy to the elect
magnetic one, see Eq.~2.5!, as

Gab
mn5 i F Pg* ~Q̄ 2,v!dabe

mnabq1aq2b , ~5.11!

whereq1 andq2 denote the momenta of the gluons now a
a and b label the color of the gluon. It is evident that th
transition to a colorless meson requires the same colo
both the gluons. We consider spacelike gluon virtualities
simplicity; the generalization to the case of timelike gluons
straightforward. We introduce an average virtuality and
asymmetry parameter by

Q̄252
1

2
~q1

21q2
2!, v5

q1
22q2

2

q1
21q2

2
. ~5.12!

The values ofv range from21 to 1, but due to Bose sym
metry the transition form factor is symmetric in this variab
FPg* (Q̄2,v)5FPg* (Q̄2,2v).

The calculation of the transition form factor to leadin
twist accuracy and lowest order inas parallels that of the
meson-photon transition form factor which we presented
some detail in Sec. II. In contrast to the electromagnetic c
however, already to the lowest order inas the two partonic
subprocessesg* g* →qq̄ andg* g* →gg contribute. The rel-
evant Feynman diagrams are shown in Fig. 9. There a
few more diagrams which involve the triple and quadru
gluon vertices. The contributions from these diagrams
separately zero when contracted with either theqq̄ or thegg
projectors~A11!, ~2.41!. The following result for thePg*
transition form factor can readily be obtained:

FPg* ~Q̄2,v!54pas~mR
2 !

f P
1

Q̄2

Anf

Nc
FAqq̄~v!1

Nc

2nf
Agg~v!G

1O~as
2!, ~5.13!

where
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Aqq̄~v!5E
0

1

dxf1~x,mF
2 !

1

12v2~122x!2
,

Agg~v!5E
0

1

dx
fg~x,mF

2 !

xx̄

122x

12v2~122x!2
.

~5.14!

There is no contribution from theqq̄8 component to this
vertex.

Inserting the Gegenbauer expansions~2.30! into Eq.
~5.14! the integrals can be performed analytically term
term analogously to Eq.~4.1! resulting in the expansions

Aqq̄~v!5c0~v!1c2~v!B2
1~mF

2 !1•••,

Agg~v!5g2~v!B2
g~mF

2 !1•••, ~5.15!

where

c0~v!5
3

2v2 F12
1

2v
~12v2!ln

11v

12vG ,
c2~v!5

3

4v4 F15213v22
3

2v
~526v21v4!ln

11v

12vG ,
g2~v!5

25

12v4 F322v22
3

2v
~12v2!ln

11v

12vG .
~5.16!

The behavior of functionsc0(v), c2(v), andg2(v) is illus-
trated in Fig. 10. Examining the functionc2(v) and Eq.
~5.15!, one notice that the form factors become increasin
less sensitive to the coefficientsB2

1(mF
2) with decreasinguvu.

This behavior is characteristic of all functionscn(v) (n
.0) @13#. On the other hand, the functionsc0(v) andg2(v)

FIG. 9. Relevant lowest order Feynman diagrams for
g* g* →qq̄ ~a! andg* g* →gg subprocess~b!.
7-12
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do not depend so drastically onv and they are nonzero a
v50. One can easily show that allgn(v), for n.0 and
even, possess this property.

Let us discuss two interesting limiting cases. Forv!1,
i.e., for q1

2'q2
2, the form factors behave as

FPg* ~Q̄2,v!5
4pas~mR

2 !

A3Q̄2
f P

1 F12
1

12
B2

g~mF
2 !

1
1

5
v2S 11

12

7
B2

1~mF
2 !2

5

28
B2

g~mF
2 ! D G

1O~v4,as
2!. ~5.17!

Thus, the limiting value forv→0 is sensitive to the form o
the gluon distribution amplitude while it does not depend
the Gegenbauer coefficients of the quark one. This is to
contrasted with thePg* transition form factor which, ac-
cording to Ref.@13#, is independent of both the quark and t
gluonic Gegenbauer coefficients in the limitv→0.

For v→61, i.e., in the limit where one of the gluon
goes on shell, thePg transition form factor becomes

FPg~Q2,v561!5
4A3pas~mR

2 !

Q2

3 f P
1 F11B2

1~mF
2 !2

5

36
B2

g~mF
2 !G

1O~as
2!, ~5.18!

where Q252q1
2(2q2

2) as in the electromagnetic case.
Fig. 11 we display our predictions for the scaledh8g* tran-
sition form factor evaluated from the distribution amplitud
determined in Sec. IV, choosingmF

25mR
25Q̄2. Given the

large difference in the magnitude ofB2
1(m0

2) andB2
g(m0

2), see
Eq. ~4.2!, we observe a strong sensitivity of thePg transition
form factors on the gluon distribution amplitude in contra
to the electromagnetic case. Due to the badly determi
coefficientB2

g the uncertainties in the predictions forFh8g*
are large. Because of the smallness of the mixing angleu1 ,
see Eqs.~3.3! and ~3.4!, the hg* transition form factor is

FIG. 10. Functionsc0 , c2 , andg2 , defined in Eq.~5.16!, vs v.
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much smaller then theh8g* one. The ratio of the two form
factors Fhg* (Q̄2,v)/Fh8g* (Q̄2,v) is given by 2tanu1 .
This result offers a way to measure the angleu1 as has been
pointed out in Ref.@16#.

Let us compare our results for theh8g* transition form
factors with those presented in Refs.@39,40#. First we remark
that there is perfect agreement for the contribution from
meson’sqq̄1 component. As for the contribution from th
gluonic component we differ by a factor 1/(2nf) from Refs.
@39,40#.4 Furthermore, in Ref.@40#, there is an additiona
factor of v multiplying the gluonic term rendering it anti
symmetric inv in conflict with Bose symmetry. We suspe
that a gluonic projector;«mnabq1aq2b /Q̄2 is used in Ref.
@40# which turns into;v«'

mn in a frame where the meso
moves along the 3-direction. This is in conflict with Eq
~A12!, ~A13! except atv51.

4We corrected a typo in Ref.@39# where only the case ofv51 has
been dealt with—the relative sign between the contributions fr
the two Feynman diagrams shown in Fig. 9~b! should be minus.
Moreover, in this work Ohrndorf’s results@5# for the anomalous
dimensions are used which are flawed while they have the s
normalization as in Eq.~2.40!.

FIG. 11. Predictions for theh8g* transition form factor as a

function of v for two values ofQ̄2. The shaded areas indicate th
range of predictions evaluated fromB2

1(m0
2) andB2

g(m0
2) inside the

allowed region according to Fig. 3.
7-13
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The origin of the missing factor 1/(2nf) is not easy to
discover since in Refs.@39,40# the form of the gluonic pro-
jector is not specified. Given the anomalous dimensi
quoted in Refs.@39,40#, which are the same as in Eq.~2.40!,
this incriminated factor cannot be assigned to a particu
normalization of the gluonic projector, Eq.~2.41! must be

applied. On the other hand, usings51/(2Anf CF) as the
normalization of the gluonic projector, the results for t
transition form factors given in Refs.@39,40# would be cor-
rect ~ignoring the problem with the factorv in Ref. @40#!,
provided the corresponding anomalous dimensions are
plied, see Eq.~2.36!, and they differ from the ones quoted
these papers. Hence, the quoted anomalous dimensions
the result for the gluon part of the hard-scattering amplitu
seem not to be in agreement. In Ref.@13# the leading term of
the expansion~5.17! has been derived from the results pr
sented in Ref.@40# and it therefore disagrees with our resu

VI. SUMMARY

In this work we have investigated the two-gluon Fo
components of theh and h8 mesons to leading-twist accu
racy. Since the integral over the gluon distribution amplitu
is zero, see Eq.~2.4!, there is no natural normalization of
in contrast to the case of theqq̄ distribution amplitudes. Any
choice of this normalization goes along with correspond
normalizations of the anomalous dimensions and the pro
tor of a two-gluon state onto a pseudoscalar meson. We h
set up a consistent set of conventions for the three quant
which is imperative for leading-twist calculations of ha
exclusive reactions involvingh and/orh8 mesons. We have
also compared this set with other conventions to be foun
the literature.

As an application of the two-gluon components we ha
calculated the flavor-singlet part of thehg and h8g transi-
tion form factors to NLO inas and explicitly shown the
cancellation of the collinear singularities present in the h
scattering amplitude with the UV one occurring in the u
renormalized distribution amplitudes. Assuming particle
dependence of the distribution amplitudes, we have e
ployed the results for the transition form factors in
analysis of the available data@14,15# and determined the
Gegenbauer coefficients to ordern52 for the three remain-
ing distribution amplitudes, the flavor octet, singlet a
gluon one. The numerical results for the distribution amp
tudes quoted fors5Anf /CF are in agreement with the quar
flavor mixing scheme proposed in Ref.@16#.

The value for the lowest order gluonic Gegenbauer co
ficient is subject to a rather large error since the contributi
from the two-gluon Fock components to the transition fo
factors are suppressed byas as compared to theqq̄ contri-
butions. This suppression does not necessarily occur in o
hard exclusive reactions; examples of such reactions,
cussed by us briefly, are deeply virtual and wide-angle e
troproduction ofh or h8 mesons as well as theg* g* h(h8)
vertex. The latter two reactions, as it has turned out,
actually quite sensitive to the two-gluon components and
ture data for them should allow to pin down the gluon d
tribution amplitude more precisely than it is possible fro
05401
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the transition form factor data. Other hard exclusive re
tions which may be of relevance to our considerations a
for instance, the decaysxcJ→hh,h8h8 @17,41# or B

→h (8)K (* ) @42#. Last but not least we would like to mentio
that the two-gluon components of other flavor-neutral m
sons or even those of glueballs@43# can be studied in full
analogy to theh-h8 case.
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APPENDIX A: DEFINITIONS OF MESON STATES
AND DISTRIBUTION AMPLITUDES

The flavor content of the neutral pseudoscalar me
states we are interested in, is taken into account by

p0:
1

A2
~uū2dd̄! → C35

1

A2
l3 ,

qq̄8 :
1

A6
~uū1dd̄22ss̄! → C85

1

A2
l8 , ~A1!

qq̄1 :
1

A3
~uū1dd̄1ss̄! → C15

1

Anf

1f ,

wherel i are the usualSU(3) Gell-Mann matrices and1 is
the 333 unit matrix. For the flavor-singlet state, we use t
general notation@4# in which the flavor content is expresse
in terms ofnf which denotes the number of flavors contain
in qq̄1 (nf53 in our case!. This simplifies the comparison
with the results for kernels to be found in the literature.

As usual@2,44–46# we define the distribution amplitude
in a frame where the meson moves along the 3-direct
Neglecting the meson’s mass its momentum reads

p5@p1,0,0'#, ~A2!

where we use light-cone coordinatesv5@v1,v2,v'# with
v65(v06v3)/A2 for any four vectorv.5 We also introduce
a lightlike vector

n5@0,1,0'#, ~A3!

which defines the plus component of a vectorv15n•v. The
constituents of the meson, quarks or gluons, carry the f
tions u and 12u of the light-cone plus components of th
meson’s momentum.

5Different conventions for the light-cone components are d
cussed in Ref.@47#.
7-14



ns

p
st

tr

r
uark

lcu-

nd
on
-
ith

r
e
on

e
d by

po-
ar

an
ith

a
of
n-

n
p-
t

TWO-GLUON COMPONENTS OF THEh AND h8 MESONS . . . PHYSICAL REVIEW D 67, 054017 ~2003!
The distribution amplitudes are defined by Fourier tra
forms of hadronic matrix elements

FPi~u!5
f P

i

2A2Nc

fPi~u!

52 i E dz2

2p
ei [u2(12u)] p•z

3^0uC̄~2z!Ci

n”g5

A2Nc

VC~z!uP~p!&, ~A4!

and

FPg~u!5
f P

1

2A2Nc

fPg~u!

5
2

~n•p!
E dz2

2p
ei [u2(12u)] p•z

nmnn

ANc
221

3^0uGma~2z!VG̃a
n~z!uP~p!&, ~A5!

wherez5@0,z2,0'#.
Here, C denotes a quark field operator,Gmn the gluon

field strength tensor, andG̃mn its dual

G̃mn5
1

2
emnabGab . ~A6!

The quark and gluon operators in Eqs.~A4!, ~A5! are under-
stood as color summed. The path-ordered factor

V5expH igE
21

1

dsA~zs!•zJ , ~A7!

whereA is the gluon field, rendersfPi and fPg gauge in-
variant. The distribution amplitudes in Eqs.~A4!, ~A5! rep-
resent either the unrenormalized ones@fPi,g

ur (u)# if defined
in terms of unrenormalized quark or gluonic composite o
erators or the renormalized one. In the latter case the di
bution amplitudes are scale dependent@fPi,g(u,m2)#. The
distribution amplitudes defined above satisfy the symme
relations

fP1,8~u,m2!5fP1,8~12u,m2!,

fPg~u,m2!52fPg~12u,m2!. ~A8!

The definitions of the distribution amplitudes~A4! and~A5!
can be inverted to

^0uC̄~2z!Cin”g5VC~z!uP&

5 i n•p fP
i E

0

1

du e2 i (2u21)p•zfPi~u! ~A9!

and
05401
-

-
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y

nmnn^0uGma~2z!VG̃a
n~z!uP&

5
1

2
~n•p!2ACF f P

1E
0

1

du e2 i (2u21)p•zfPg~u!.

~A10!

The projection of a collinearqq̄ state onto a pseudoscala
meson state is achieved by replacing the quark and antiq
spinors @normalized asu†(p,l)u(p,l8)5A2n•pdll8] by
@2#

P ab,rs,kl
i ,q 5Ci ,rs

dkl

ANc
S g5p”

A2
D

ab

, ~A11!

wherea (r , k) and b (s, l ) represent Dirac~flavor, color!
labels of the quark and antiquark, respectively. When ca
lating amplitudes, the projector~A11! leads to traces. The
projector holds for both incoming and outgoing states a
corresponds to the definition of the the quark distributi
amplitudes~A4!. It is to be used in calculations of hard
scattering amplitudes which are to be convoluted w
f P

i /(2A2Nc)fPi subsequently.
The form of the projection of agg state on a pseudoscala

state with momentump can be deduced by noting that th
helicity zero combination of transversal gluon polarizati
vectorsem can be written as@48#

em~up,l!en
„~12u!p,2l…2em~up,2l!en

„~12u!p,l…

5 isgn~l!«'
mn , ~A12!

where «'
1252«'

2151 while all other components of th
transverse polarization tensor are zero. It can be expresse

«'
mn5«mnab

napb

n•p
. ~A13!

Instead ofn any other four vector can be used in Eq.~A13!
that has a nonzero minus and a vanishing transverse com
nent. The projector of an state of two incoming colline
gluons of colora andb and Lorentz indicesm andn, asso-
ciated with the momentum fractionsu and (12u), respec-
tively, onto a pseudoscalar meson state reads

P mn,ab
g 5

i

2

dab

ANc
221

«'mn

u~12u!
. ~A14!

The complex conjugated expression is to be taken for
outcominggg state. The projector is to be used along w
the distribution amplitudef P

i /(2A2Nc)fPg . The additional
factor @u(12u)#21 appearing as part of the projector, is
consequence of the fact that in perturbative calculations
reactions involving two-gluon Fock components, the pote
tial A of the gluon field occurs, while the gluon distributio
amplitude is defined in terms of the gluon field strength o
erator, see Eq.~A5!. The conversion from a matrix elemen
of field strength tensors~A10! to one of potentials is given
by @32,49#
7-15
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^0uAa~2z!Ab~z!uP&5
1

4
«'

abACF f P
1

3E
0

1

du e2 i (2u21)p•z
fPg~u!

u~12u!
.

~A15!

The gluonic projector~A14! is obtained„up to the factor
@u(12u)#21 explained above… by the coupling of two col-
linear gluons into a colorless pseudoscalar state. In the
text of mixing under evolution another normalization of
appears to be more appropriate, see Eq.~2.41!. This normal-
ization is accompanied by corresponding changes in
gluon distribution amplitudefPg and the anomalous dimen
sions, as is discussed in detail in Sec. II.

For Levi-Civita tensor we use the convention

«0123521, ~A16!

which leads to

Tr@g5gmgngagb#54i«mnab ~A17!

~with g55 ig0g1g2g3).

APPENDIX B: THE Pg TRANSITION FORM FACTOR—
DETAILS OF THE CALCULATION

In this appendix, we provide some details of the calcu
tion of the evolution kernels and the hard scattering am
tude for the flavor-singlet contribution to thePg transition
form factor. These quantities can, in principle, be taken fr
the literature~see, e.g., Refs.@4,7# and@50#6! but the conven-
tions and notations differ. However, since it is imperative
use a consistent set of conventions for the hard scatte
amplitude and the distribution amplitudes, we recalcul
them. In doing so we follow closely Ref.@12#. Dimensional
regularization inD5422e dimensions is used to regulariz
UV and collinear singularities which appear when calcul
ing the one-loop diagrams. According to@12#, the g5 prob-
lem, i.e, the ambiguity which enters the calculation due
the presence of oneg5 matrix and the use of dimensiona
regularization method, is resolved by matching the results
the hard-scattering part with the results for the perturbativ
calculable part of the distribution amplitude, since the phy
cal form factor is free of ambiguity. We employ theMS
coupling constant renormalization along the same lines a
Ref. @12#. We note in passing, that as long as the singulari
are not fully removed from the amplitudes, the followin
relations are to be used for the change of the scale of
coupling constant:

6In Ref. @50# the NLO corrections to the deeply virtual Compto
amplitudeg* p→g* p have been calculated. In the limiting case
zero skewness the Compton amplitude is related to our proces
crossing.
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as~m2!5S mR
2

m2D e

as~mR
2 !@11O~as!# ~B1!

and for theb function

b„as~m2!,e…5m2
]

]m2
as~m2!

52eas~m2!2
as

2~m2!

4p
b0 . ~B2!

The usual renormalization group coefficient is given by

b05
11

3
Nc2

2

3
nf . ~B3!

1. Amplitudes

The amplitudegg→qq̄ denoted byTqq̄ ~examples of con-
tributing Feynman diagrams are depicted in Fig. 12! has the
structure already quoted in Eq.~2.15! where

Tqq̄
(0)~u!5

1

12u
1

1

u
,

Tqq̄
(1)~u!5

21

e
Acol,qq̄

(1) ~u!1A qq̄
(1)~u!. ~B4!

The functionsA read

Acol,qq̄
(1) ~u!5

1

12u
@312ln~12u!#1~u→12u!,

A qq̄
(1)~u!5

1

12u F292
12u

u
ln~12u!1 ln2~12u!G

1~u→12u!. ~B5!

In obtaining the above results the projector~A11! is em-
ployed. The results for the flavor-octet and singlet cases
fer only in the flavor factors@see Eqs.~2.17! and ~2.44!#.

Next, we calculate the amplitudeTgg for the subprocess
g* g→gg. The appropriate gluonic projector is the compl
conjugate of Eq.~A14!. For the case of the transition form
factor we can work in a Breit frame where the momentum
the real photon,q2 , is proportional to the vectorn from Eq.
~A3!, and can therefore be employed in Eq.~A13!. There are
six one-loop diagrams that contribute to this subprocess
plitude. Three representative diagrams (G1, G2, G3) are
shown in Fig. 13. The other three reduce to the first th
by

FIG. 12. Sample NLO Feynman diagrams contributing to
g* g→qq̄ amplitude.
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ones by reversing the direction of the fermion flow in t
loop. Moreover, it is easy to see that

TG252TG1~u→12u!. ~B6!

Thus, one has only to calculate the contributions from
diagramsG1 andG3.

The complete unrenormalized NLO contribution is t
sum of individual contributions in which, expectedly, the U
singularities cancel. The hard-scattering amplitudeTgg has
the structure quoted in Eq.~2.15! whereTgg

(1) is given by

Tgg
(1)~u!5

21

e
Acol,gg

(1) ~u!1A gg
(1)~u!. ~B7!

The functionsA read7

Acol,gg
(1) ~u!52F 1

u2
ln~12u!2~u→12u!G ,

A gg
(1)~u!5

2

u~12u! F S 32
2

uD ln~12u!

1
12u

2u
ln2~12u!2~u→12u!G . ~B8!

2. Kernels

For the calculation of the renormalization matrixZ, re-
spectiveV(1) in Eq. ~2.13! we utilize the method proposed i
Refs. @12,45# of saturating the mesonic state by its valen
Fock components~2.1! which leads to

FP
ur~u!52 i f̃~u,v ! ^ S ^qq̄1 ;vuP&

^gg;vuP&
D . ~B9!

The elements of the matrixf̃ are defined as in Eqs.~A4! and
~A5! with the replacement ofuP& by uqq̄1& and ugg&. They
are thus perturbatively calculable and determine the ma
Z.

7Making use of the crossing relations, it can be shown that
functions~B5! and~B8! are in agreement with the coefficient fun
tions for the Compton amplitude quoted in Ref.@50#.

FIG. 13. Distinct one-loop Feynman diagrams contributing
the g* g→gg amplitude. Other contributing diagrams are obtain
from these by reversing the direction of the fermion flow in t
loops.
05401
e

ix

The calculation of the matrix elementZqq proceeds along
the same lines as indicated for the flavor-octet case in R
@12# and the contributing diagrams are displayed there. T
respective kernelVqq reads

Vqq~u,v !52 CFH u

v F11
1

v2uGQ~v2u!1S u→12u

v→12v D J
1

,

~B10!

where the usual plus distribution is defined as

$F~u,v !%1[F~u,v !2d~u2v !E
0

1

dz F~z,v !. ~B11!

This result also holds for the flavor-octet case.
We proceed to the evaluation ofZqg , or ratherVqg . Ac-

cording to the definition of theqq̄1 distribution amplitude,
the matrix element that is of interest here, is given byz
5@0,z2,0'#)

f̃qg~u!5E dz2

2p
ei (2u21)p•z

3^0uC̄~2z!C1

n”g5

A2Nc

VC~z!ugg&. ~B12!

The relevant Feynman diagrams for the calculation off̃qg
are depicted in Fig. 14. Theqq̄ vertex, ^ , is of the form
@12,45#

C1

1c

ANc

n”g5

2A2
d~u n•p2n•k!, ~B13!

wherek represents the momentum of the quark entering
circle. The vertex~B13! occurs also in the calculation of th
f̃qq where the LO contribution is obtained by contracting t
vertex just with theqq̄ projector~A11! and, hence, one ob
tains f̃qq(u,v)5d(u2v) as it should be@see Eq.~2.13!#.

Due to the presence of only oneg5 matrix, we are con-
fronted with theg5 problem, as in the calculation ofTqq̄ .
When using the naiveg5 scheme, in which theg5 matrix
retains its anticommuting properties inD dimensions, we
obtain three different results depending on the position ofg5
inside the trace

e

FIG. 14. LO Feynman diagrams that contribute tof̃qg . The

crossed circle denotes the vertex of^0uC̄(2z)C1n”g5 /A2NcC(z).
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f̃qg,D1~u,v !

52AnfCF

as

4p H ~4p!2

i Fm2eE dDl

~2p!D

1

~ l 21 ih!2G J
3F u

v2
Q~v2u!2

~12u!

~12v !2
Q~u2v !1

2e

12e/2

3dS u

v2~12v !
Q~v2u!1

~12u!

v~12v !2
Q~u2v !D G ,

~B14!

where

dP$2~2v21!,21,1%. ~B15!

The loop integral can be worked out analytically8 and we
refer to Ref.@12# for the result.

One can easily see that

f̃qg,D2~u,v !52f̃qg,D1~u,12v ! ~B16!

and finally

f̃qg~u,v !5f̃qg,D1~u,v !2f̃qg,D1~u,12v !. ~B17!

The kernelVqg is a residue of the UV singularity embodie
in the loop integral appearing in Eq.~B14! and, hence, is
related to the term multiplying the integral in Eq.~B14!.
Since the term proportional tod is finite @;e(1/e)#, it does
not contribute toVqg . Moreover, sincef̃qg being antisym-
metric under the replacement ofv by 12v, is to be convo-
luted with the matrix element̂gguP& @see Eq.~B9!#, which
has the same symmetry properties as the full gluon distr
tion amplitude @see Eq. ~A8!#, one can replacef̃qg by
f̃qg8 (u,v)52f̃qg,D1(u,v) in order to obtain a more compac
representation of the kernel

Vqg~u,v !522AnfCFH u

v2
Q~v2u!2S u→12u

v→12v D J .

~B18!

The set of LO evolution kernels is completed by

Vgq~u,v !52AnfCFH u2

v
Q~v2u!2S u→12u

v→12v D J ,

~B19!

8The treatment of the integral in Eq.~B14! was explained in detai
in Ref. @12#. The crucial point is to retain a distinction between U
and collinear singularities.
05401
u-

Vgg~u,v !52NcH u

v F S Q~v2u!

v2u D
1

1
2u21

v
Q~v2u!G

1S u→12u

v→12v D J 1b0d~u2v !. ~B20!

Since, except of the normalization, there is general ag
ment in the literature on these kernels, see, e.g. Refs.@4,7#,
we quote them without giving any detail of their calculatio
Finally, we comment on an alternative definition of the glu
distribution amplitude which one occasionally encounters
the literature. In that definition the factor@u(12u)#21 is
included infPg instead in thegg projector ~A14!. The re-
sults for Tgg ~B7!, ~B8! will, hence, be multiplied byu(1
2u), while the kernels take the form

Vqg→Vqg v~12v !, Vgq→
Vgq

u~12u!
, Vgg→Vgg

v~12v !

u~12u!
.

~B21!

The result for the transition form factor, as for any oth
physical quantity, is, obviously, invariant under the redefi
tion of the gluon distribution amplitude.

APPENDIX C: SOME PROPERTIES
OF THE EVOLUTION KERNEL

It is easy to verify that the evolution kernels~B10! and
Eqs.~B18!–~B20! satisfy the symmetry relations

v~12v !Vqq~u,v !5u~12u!Vqq~v,u!,

v2~12v !2Vgg~u,v !5u2~12u!2Vgg~v,u!,

v2~12v !2Vqg~u,v !5u~12u!Vgq~v,u!.
~C1!

The kernelsVi j , convoluted with the weighted Gegenbau
polynomialsCn

m of orderm53/2,5/2, result in

Vqq~u,v ! ^ v~12v !Cn
3/2~2v21!

5gn
qq u~12u!Cn

3/2~2v21!,

Vqg~u,v ! ^ v2~12v !2Cn21
5/2 ~2v21!

5gn
qg u~12u!Cn

3/2~2v21!,

Vgq~u,v ! ^ v~12v !Cn
3/2~2v21!

5gn
gq u2~12u!2 Cn21

5/2 ~2v21!,

Vgg~u,v ! ^ v2~12v !2Cn21
5/2 ~2v21!

5gn
gg u2~12u!2Cn21

5/2 ~2v21!. ~C2!
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The factors on the right hand side of Eq.~C2! multiplying
the Gegenbauer polynomials are the anomalous dimens
The results quoted for them in Eq.~2.28! can be read off
from Eq. ~C2! ~for a detailed discussion see Ref.@7#!. Fi-
nally, we mention that the off-diagonal anomalous dime
sions in Eq.~2.28! satisfy the relation

gn
qg

gn
gq

5
Nn21

5/2

Nn
3/2

, ~C3!

where

Nn
3/25

~n11!~n12!

4~2n13!
, ~C4!

Nn21
5/2 5

n~n13!

36
Nn

3/2, ~C5!
/
et
9,

.

05401
ns.

-

represent the normalization constants of the correspon
Gegenbauer polynomials

E
0

1

du u~12u!Cn
3/2~2u21!Cm

3/2~2u21!5Nn
3/2dnm ,

E
0

1

du u2~12u!2Cn
5/2~2u21!Cm

5/2~2u21!5Nn
5/2dnm .

~C6!

Throughout the paper we investigate only the LO behavio
the evolution kernels and corresponding anomalous dim
sions. Beyond leading order, the relations corresponding
Eqs.~C2! and~C3! get modified due to mixing of conforma
operators starting at NLO~see, for example, Ref.@51#!.
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