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We present expressions for shape variableB diecay distributions in several different mass schemes, to
order @28, and A%CDlmg. Such observables are sensitive to thquark mass and matrix elements in the
heavy quark effective theory, and recent measurements allow precision determinations of some of these pa-
rameters. We perform a combined fit to recent experimental results from CLEO, BABAR, and DELPHI, and
discuss the theoretical uncertainties due to nonperturbative and perturbative effects. We discuss the possible
discrepancy between the OPE prediction, recent BABAR results and the measured branching fréctod to
D* states. We findV,|=(40.8+0.9)x 10 % and mgs= 4.74+0.10 GeV, where the errors are dominated by
experimental uncertainties.
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[. INTRODUCTION been recently carried out by the CLEO, BABAR and
DELPHI Collaborationg7-13). A potential source of uncer-
The study of flavor physics ar@P violation is entering a  tainty in the OPE predictions is the size of the possible vio-
phase when one is searching for small deviations from théations of the quark-hadron dualiff4]. Studying the shapes
standard model. Therefore it becomes important to reexanff inclusive B decay distributions may be the best way to
ine the theoretical predictions for inclusive decay rates angonstrain these effects experimentally, since it should influ-
their uncertainties, which provide clean ways to determiné@Nce the relationship between shape variables of different

fundamental standard model parameters and test the consgReCtra. Thus, testing our understanding of these spectra is
tency of the theory. important to assess the reliability of the inclusive determina-

Experimental studies of inclusive semileptonic and iBre tion of |_Vcb|’ and also of V|- .
decays provide measurements of fundamental parameters of In tk_us paper we present expressions for_ Ieptqn and had-
the standard model. such as the Cabibbo-Kobayashlr-on'C invariant mass moments for the inclusive decay
Maskawa(CKM) elementdV.y|, |V, and the bottom and B—Xclv, as well as photon energy momentsBna-Xgy
charm quark masses. Inclusive and rare decays are also sétfEcays: We give these results as a function of cuts on the
sitive to possible new physics contributions, and the theore epton and photon energy, _respectlvely. Most results in t_he
ical computations are model independent. The operator pro flerature have been given in terms of the pole mass, which

uct expansion(OPE shows that in themp>Aqcp limit

|ricI2u5|vechdecay rat_es are equal to tbegu;rk decay;’;es certainties. We present all results in four different mass
[1,2], and the corrections are suppressed by powers schemes: the pole mass, theS Imass, the potential-

Aqcp/my . High-precision comparison of theory and experi- g htracted PS mass, and the modified minimal subtraction

ment requires a precise det_ermination of th_e heavy quar§cheme M_S) mass. We then carry out a combined fit to all
nla}ssetsr,] as well aés Lhet.matrlx elet_mem%, yvhllch_parag"n— currently available data and investigate in detail the uncer-
ebrllze Kg [Qonp/er ur2 aA:;/e gOI’I’Fj\C |on/s 03|nc_ USIVE ODSeNViainties on the extracted parametgvs,| andm,,.

ables alO(A qcp/My)”. At order (Aqcp/My)”, six new ma- The results of this paper can be combined with indepen-

trix elements occur, u;ually denoted W,z and. D234 dent determinations of theandc quark masses from studies
There are two constraints on these six matrix elements

which reduces the number of parameters that afted¢cays of QQ states. _We have ch(_)sen not to O.I'SC“SS those_con-
at order (AQCD/mb)S to four. straints here, since there exist many detailed analyses in the

The accuracy of the OPE predictions depends primaril))iteraturf[w]' Furthermore, the determinationsraf andm,
on the error of the quark masses, and to a lesser extent on th@m QQ states have theoretical uncertainties which are to-
matrix elements of these higher dimensional operators. [tally different from the current extraction. Consistency be-
was proposed that these quantities can be determined Byeen t.he gxtractions is therefore a powerful check on both
studying shapes @ decay spectr3—6]. Such studies have determinations.

introduces artificially large perturbative corrections in inter-
mediate steps, making it difficult to estimate perturbative un-

Il. SHAPE VARIABLES
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$Electronic address: amanohar@ucsd.edu trum [5,18,14 in semileptonicB— X .{v decays, and the
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photon spectrum iB— X,y [6,19-21. Similar studies are For B— Xsy, we define the mean photon energy and vari-
also possible iB—X¢* ¢~ andB— Xvv decay[22], but ~ ance, with a photon energy chy,

at the present such processes do not give competitive infor-

mation.

The B— X {v decay rate is known to order?B, [23]
and Adcp/m; [16], where B,=11-2n/3 is the coefficient
of the first term in the QCDB function, and the terms pro-
portional to it often dominate at ordeiﬁ. For the charged

lepton spectrum we define shape variables which are mo-

ments of the lepton energy spectrum with a lepton energy/neredl’/dE, is the photon szpectrum in tk% rest;rame.
cut, Again, T, , are known to ordews 3, [19] and A 5o/ My [21].

In this case the OPE is expected to descilhgE,) once
Mg/2—E¢>Aqcp. Precisely how lowE, has to be to trust

_( dr dr the results can only be decided by studying the data as a
Ro(Eo.E1) = e EdE@ £ d_|5€dE€' function of Ey; one may expect thdf,=2 GeV available at
1 0 . .. . .

present is sufficient. Note that the perturbative corrections

included are sensitive to tha. dependence of the—ccs

dr dr four-quark operator@,) contribution. This is a particularly
Rn(Eg)= | Ej5=dE —dE (1) : i ; i
n(Eo) = e (dE, e dE, large effect in theD,— O interferencg 19], but its relative
0 0 influence on the moments of the spectrum is less severe than

wheredI'/dE, is the charged lepton spectrum in tBerest that on the total decay rate. The varian€e, is very sensi-
frame.R. has dimension GeV and is known to orden?g tive to any boost of the decayiri§y meson; this contribution
Y oSO hancesT, by 8%/3 at leading ordef19], wherep is the

[17] and Adcy/m [16]. Note that these definitions differ &' 2 by 9 ’

- : boost[ 8=0.064 if theB originates fromY (4S) decayl. This
lightly f h Ref[4 foll he CLE 1 . . :
i(l)gt]atti())/n ro;_nh; OSELInge E:c}ilgggra(t)io?[\l\llzt] emcéasgegs’ ('z]he is absent ifdl'/dE,, is reconstructed from a measurement of

dl/dEy, .

Tl(EO):<E7>|Ey>EO!

TZ(EO):<(E7_<Ey>)2>|E7>EOv (4)

mean lepton energy and its variang®sth without any en-

ergy cul, which are equal tdR;(0) and R,(0)—R;(0)?,

respectively. _ Ill. MASS SCHEMES
For the B— X v hadronic invariant mass spectrum we

define the mean hadron invariant mass and its variance, both The OPE results for the differential and total decay rates
with leptonenergy cutsE,, are given in terms of thé quark massm,,, and the quark

mass ratio,m./my. (Throughout this paper quark masses
without other labels refer to the pole masghe pole mass

31(E0)2<m>2<_a%>|54,>50, can be related to the known meson masses via the, 1/
expansion

Sa(Eo) = (M= (M) >k, )

o — N Ftdyha(mg)  pitdyp;

My=mg+A— + >
2mq 4md

where ED=(mD+3mD*)/4 is the spin average® meson

mass. It is conventional to subtrac in the definition of
: . . ) T+ T3+dy(7o+ 7,

the first momens;(E,). S, has dimension (GeV#, and is _1 s ""2( 2+ 7a) +.
known to ordera? g, [18] and Adcy/mp [16]. For a given 4myg
Ey, the maximal kinematically allowed hadronic invariant
mass ismjya=./m2—2mgE,. Onceman—aD>AQco, the wheremy (M=P,V) is the hadron massn, is the heavy
OPE is expected to describe the data. quark mass, andp=3 for pseudoscalar and,=—1 for

The above shape variables can be combined in numero§ctor mesons. The;'s andp;’s are matrix elements of local
ways to obtain observables that may be more suitable fofimension-5 and 6 operators in heavy quark effective theory
experimental studies because of reduced correlations. For edHQET), respectively, while thef’s are matrix elements of

ample,S; andR, can be combined to obtain predictions for time ordered products of operators with terms in the HQET
Lagrangian, and are defined [A6]." The ellipses denote

AgCD/m% corrections, which can be neglected to the order
> — _ S1(Eg)Ro(0.E0) = S1(E1)Ro(0.E1) we are working. Using Eq5), we can eliminaten, in favor
(mic—mp)|e,>e,>e,= Ro(0.Eq) —Ro(0E;) ’ of m, and the higher order matrix elements,

3

that allows comparing regions of phase space that do not'These are related to the parameieis p3s, p2., p3c, p2, and
overlap[24]. p3 introduced in[25].

- (5)
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mb_mc:mB_aD_)\l( — 5 scheme is used. When using pole masses it is important to

always work to a consistent order in the perturbative expan-

1 sion, sinceA can have large changes at each order in pertur-
_4m2 - _4m2 ' (6) bation theory, even though the relations between measurable
¢ b quantities such as the shape variables and the total semilep-

tonic decay rate have much smaller changes. Sihcde-
pends strongly on the order of the calculation in perturbation
theory, one can get a misleading impression about the con-
vergence of the calculation, and its uncertainties. The advan-
tage of using renormalon-free mass schemes is that the con-
vergence may be manifest.

Several mass definitions which do not suffer from this
ambiguity have been proposed in the literature, and we con-

OPE, which amount to the replacement—\,+(7; sider here thS, 1S, and PS masseéThere is a renorma-

+37;)/mb and \yhp+ (To+379)/(3my) SinlceTllJr 372 lon ambiguity in the B and PS masses, but it is of relative
. 4 4 - : .

=(Ti+T2)+3(T+ T) — (Ta+3T4), only three linear com- ordeﬂQCD/mb-and so is irrelevant for our considerations.

binations are independent. Therefore, we mayZset0, and ~ 1he MS mass is related to the pole mass through

the fit then projects on the linear combinations

1 1 higher order terms may be smaller if a renormalon-free
2m, 2mb)

+(Pl—71—73)(

wheremy, = (mp+ 3my/)/4 denotes the spin averaged meson
masses.

Only three linear combinations & _, appear in the ex-
pressions forB meson decays$a fourth linear combination
would be required to descriti®* decay$. The reason is that
the 7;_, terms originate from two source&) the mass re-
lations in Egs.(5) and (6) which depend orif; +7; and 7,
+1,; and(ii) corrections to the ordek 5c,/mj terms in the

my(m ag(m,)C ag(my)?
T,-3T,, T+T,, T+37,. () —br(nb o), 2(M)Cr 7f) T L L
a
The mass splittings between the vector and pseudoscalar me- (11)
sons,
andCg=4/3 in QCD. The parametes=1 is a new expan-
2k(Mg)No(my)  po—(To+Ty) sion parameter, which for th®lS mass is the same as the

AmMEmV—mp: — + ..

order in ag. While the MS mass is appropriate for high
(8) energy processes, such Asor h—bb, it is less useful in
) . _processes where the typical momenta are betgw TheMS
constrain the numerical values of some of the HQET matrixyass is defined in full QCD with dynamicklquarks and is
elements. Herex(mc) =[as(m.)/as(my)]*#0~1.2 is the  appropriate for calculating the scale dependence abmye
scaling of the magnetic moment operator betwegnand  oever, it does not make sense to run K8 mass below
M. In terms of the measuregt” —B andD* —D mass split- 1, - this only introduces spurious logarithms that have no
tings, Amg andAmp, physical significance. Thus, although tMS mass is well-
defined, it is not a particularly useful quantity to describe

m 2
Q Mg

m2Amg—mZAm decays. Therefore, several “threshold mass” definitions have
No(mp)= M= r(m)ma] 9 been introduced that are more appropriate for low energy
[mp = k(mc)me] processes.
The 1S mass is related to the pole mass through the per-
mem-T e (MIYMeA Ma— m.Am turbative relatior[28,29
Pz_(lrz"’?:t): b C[ ( c) b B c D]

m,— k(M) Mg
(10)

Bot -

(12

These equations differ slightly from those in REE6], and e 3

are consistent to order rmg. Since orderaS(AQCD/mQ)2 b

corrections in the OPE have not been computed, whether we

setk(m,) to its physical valuex(m.)=1.2, or to unity is a _

higher order effect that cannot be consistently included awvhere the right hand side is the mass of Wi S) bb bound

present. Using(m.)=1.2 or 1 in the fits gives effects which state as computed in perturbation theory, ard

are negligible compared with other uncertainties in the cal=In[u/(as(x)Cemy)]. For the IS mass there is a subtlety in

culation. the perturbative expansion due to a mismatch between the
It is well known that the pole masses suffer from a renor-order ine and the order inxg, so that terms of ordecy{;1+1 in

malon ambiguity[26], which only cancels in physical ob- Eq. (12) are of ordere" [28].

servables against a similar ambiguity in the perturbative ex- The potential-subtracted mas0] is defined with respect

pansiong27]. Although any quark mass scheme can be usedo a factorization scalet. It is related to the pole mass

to relate physical observables to one another, the neglectedrough the perturbative relation

1S 2 11
m ag(un)C as(uw
b 1 [ s( )Cr] [IE €2 s( )(€
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mp X i) as(n)Cr convenience. The form E@L4) is chosen so that the value of
m =1-  m Ais nu_mgncally of prder{\QCD. We can therefore expand
b b the radiative corrections in powers af and keep only the
ag(pm) 1 leading term and the first derivative. This is convenient be-
X|le+ € py (5 LA (13 cause it avoids having to compute the radiative corrections,

which involve a lengthy numerical integration, for each trial

where now€=In(u/u;). In this paper we will choosg:; value of the quark mass in the fit. Note also that in t% 1

=2 GeV. PS andMS schemes the dependence mg—m, is purely
Another popular definition is the kinetic, or “running,” kinematic and is treated exactly, although it is formally of

massm,(u) introduced in[25,31. The kinetic mass has orderAgcp.

properties similar to the PS mass, since it is defined with a Thus the decay rates will be expressed in terms of 9 pa-

cutoff that explicitly separates long- and short-distance physrameters: the\’s in each mass scheme which we treat as

ics. It should give comparable results, so we will not con-orderAo¢cp, two parameters of orde‘(QCD, N1, andx,, and

sider it here. We note, however, that in this scheme matrixix parameters of ordek 2 ocps P1s P2, andTy_,. Of these,

elements such as,; are also naturally defined with respect to only 6 are independent unknowns as is determined by

a momentum cutoff. This has the advantage of absorbingq. (9), p,— (7;+7;) is determined by Eq.10), andZ, can

some “universal” radiative corrections into the definitions of be set to zero as explained preceding &9.

the matrix elements instead of the coefficients in the OPE,

and is expected to improve the behavior of the perturbative

series relating\, to physical quantities. However, as usual, IV. EXPANSIONS AND THEIR CONVERGENCE

the perturbative relation between physical quantities is un- ] o ) o
changed, and adopting this definition leaves our fitsig)| The computauons in this paper include contributions of
andm, unchanged. order 1r‘n2 and 1mQ, as well as radiative contribution of

The results for the various shape variables are functmn@rdere and €a.m » the so-called BLM contribution at order
of the b quark mass. To simplify the expressions, in analogye which is proportional toB,. The dominant theoretical

with A defined in Eq.(5), we define new hadronic param- €Tors arise from the higher order terms which we have ne-
eters by the following relations: glected. In the perturbative series, we have neglected the

non-BLM part of the two-loop correction. We have also ne-
glected the unknown ordets/m3 and 1mg corrections in
AlS— My mis the OPE. The decay distributio_ns dﬂ)end on the charm quark
2 b mass, which is determined fromg— mp using Eq.(6). This
formula mtroduces\ D/m corrections. Sincen, only en-
my ters inclusive decay rates in the formZ/mb, the largest
APS= — 5 —mps, 1/m* corrections are of ordengcy/(mgmz). Finally, the
O(eA) corrections forS; andS, have only been calculated
without a cut on the lepton enerd8].

AMS=42 GeW my(m). (14 For theB—>Xc€;decay rate and the shape variables de-
. o fined in Eqs(1), (2), and(4) we give results in the Appendix
We will refer to A, A'S, APS and AMS generically asA.  in the four different mass schemes discussed, for the coeffi-

Note that the introduction ol is purely for computational cientsX*"1)(E,) in the expansion

X(Eg)=XM(Eg) + XPEg) A+ XCUEg) A2+ XA(Eg) A3+ XOUE)N 1+ XO(Eg)A+ XT(Eg)N 1A + XE(E)N,A
+XO(Eg) py+ XN Eg) po+ XAV(E() T3 + X2 E ) T+ XAI(Ep) To+ XM E) T, + X(Ey) €

+XOO(Eg) €3+ XAINEg) €A, (15)

whereX(E,) is any ofRy(0,Ep), Ri(Ep), Si(Ep), or T;(Ep) expressions foRy(0,Ey) are also convenient for deriving the
andi=1,2. Note that to obtaiRy(Ey,E;) one needs to re- predictions for other observables, such as those in(&q.
expandRy(0,E1)/Ry(0,Ep), but usingRy(0,Ey) allows us to Unfortunately there is no simple way to relate the results
tabulate the results as a function of only one variable. Thén different mass schemes, because a particular value of the
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physicalE, cut corresponds to different limits of integrations constrain one linear combination df and \; much better
in the dimensionless variablésuch as E,/my) in different  than the orthogonal combination.
mass schemes. We list the coefficients of the expansions of |f instead of the second moment we consider the variance,
the shape variables in the various mass schemes in the Agre may combine the two series to find
pendix.

Before using these expressions, one has to assess the con- _
vergence of both the perturbative expansions and of the 1 2\2 A? N p1
power suppressed corrections. As each shape variable arisesa {Mx~ (M) >|E€>o:0-01m% —0-14m% —0-86m%
from a ratio of two series, the result can be worse or better B B B
behaved than the individual series in the numerator and de- —
nominator. We have checked that this is the reason for the 10 02ﬁ+0 OG&A (17)
apparent poor behavior of, for exampk,(1.5 GeV) in the CAm T Ammg
1S scheme, where one sees that order, term
R{"™(1.5 GeV)=0.001, whereas the ordes? Brodsky- The variance gives constraints in the- \, plane which are
Lepage-MackenzigBLM) term R(lle)(l.S GeV)=0.003 is almost orthogonal to those of the first moment, but since it is
larger. Since separately the numerator and denominator shosimply a linear combination of the first and second moments,
good convergence, one should not conclude thait cannot constrain the parameters any better. However, it is
R;(1.5 GeV) is not a useful observable to constrain thealso no worse: none of the coefficients are larger than would
HQET parameters. In general, one cannot conclude whethdre expected by dimensional analysis. The apparent poor con-
a series is poorly behaved or not by comparing dfeterm  vergence of the variance is due to a cancellation inAhe
with the a¢ term because of possible cancellations. |nSteaannd to a lesser extent thg) terms between the two series.
one should compare with the expected size of terms based orherefore, there is no reason to expect(ﬂ(&/m‘é) terms to
a naive dimensional estimate. o be anomalously large. Constraints arising fr@n[or from

In Refs. [5,18] thze sigogd hadronlc. |nvar|ant. mass mo-<(m)2(_ﬁ%)2>] therefgre need not be dismissgd, althpugh
ment defined ag(my—mp)°) was studied, and it was ob- they are very sensitive tp, and so are of limited utility
served that the size of thedc,/my correction was compa- unless a sufficiently large number of observables is measured
rable to both theAéCD/mﬁ and asAgcp/Mmy, terms. The  thatp, is also constrained.
authors therefore concluded that the convergence of the OPE
was suspect for this moment, and argued that useful con- V. EXPERIMENTAL DATA

i A Id n ined. A very similar .
straints onA and\, could not be obtained ery simiia The experimental data for the lepton spectrum from the

situation holds for the varianc®,. However, one can obtain .
more insight into the convergence of this moment by exam—CI‘EO collaboration are the three lepton momeis.0)

ining the behavior of the relevant terms in the OPE(im)
and(m5) separately. In the pole schertfer simplicity), the Ro(1.5 GeV, 1.7 GeY=0.61870.0021,
expressions are

R,(1.5 GeVj=(1.7810-0.001) GeV,

1, m3 A A? A
—2<mx>|E(>0= —2+024m—+026—2 +102—2
Mg - s B mg mg R,(1.5 GeVj=(3.1968-0.0026 Ge\2.
o (18
a as A
+2.2p—;+0.21—s+0.41—s—, For R, and R;, we used the averaged electron and muon
m 4 47 mg

B values, with the full correlation matrix as given in RE3).
For R,, we have used the weighted average of the electron

and muon dat410]. The DELPHI Collaboration measures

1 mg A A? A :
P D 0072 1014 +0.15-L the lepton energy and varianf&2],
Mg 7 mg Mg m3 m3

R,(0)=(1.383+0.015 GeV,

A
—0.23%% 10,082 402728
3 A

Mg 4T mg

R,(0)—R;(0)2=(0.192£0.009 Ge\~. (19

(16) For the hadronic invariant mass spectrum we have CLEO

The OPE for both observables is well behaved. with the caMeasurements of the mean invariant mass and variance with

nonical size of the; term a factor of 5-10 smaller than the a lepton energy cut of 1.5 Gej8]

N1 term. The corresponding constraints in tﬁexl plane
have slopes which differ by roughly a factor of two, and so S,(1.5 GeV)=(0.251+0.066 Gel?,
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S,(1.5 GeV)=(0.576+0.170 GeV*, (200 the O(1/md) terms in the different observables, and also in-

. . dicates the relative importance of the theoretical and experi-
and DELPHI measurements of the mean invariant mass angiental uncertainties.

variance with no lepton energy cL3] We use the fitting routine Minuit to fit simultaneously for
the shape variables and the total semileptonic branching frac-
S,(0)=(0.553-0.089 Ge\? tion, by minimizing x2, and present results for the fit in the

1S scheme(the other schemes give comparable regults
In addition to the experimental uncertainties, there are
S,(0)=(1.26+0.23 Ge\*. (21 also uncertainties in the theory because the formulas used in
the fit are not exact. From naive dimensional analysis we find
Both collaborations also measure the second mort(emi the fractional theory errors 0.0003 fromxd4m)? terms,
—m3)?), but we do not use this result since it is not inde-0.0002 from @g/4m)Adcy/m; terms, and 0.001 from
pendent ofS; andsS,. Aded/(mim?) terms. In some cases, naive dimensional
The BABAR Collaboration measures the first moment ofanalysis underestimates the uncertainties, and an alternative
the hadron spectrum for various values of the lepton energis estimating the uncertainties by the size of the last term
cut[11]. The data points are highly correlated, and the variacomputed in the perturbation series. We combine these esti-
tion of the first moment with the energy cut appears to be imates by adding in quadrature half of tlaé_M term and a
poor agreement with the OPE predictions. We will do our fitsg.001mj theoretical error for quantities with mass dimension
without the BABAR data, as well as including the BABAR n, |n computingy?, we add this theoretical error in quadra-
data for the two extreme values of their lepton energy cutture to the experimental errors. This procedure avoids giving
E=0.9 andE=1.5 GeV [11], to avoid overemphasizing a large weight in the fit to a very accurate measurement that

many points with correlated errors in the fit, cannot be computed reliably. Because the perturbative results
in the 1S scheme are not expected to be artificially badly
S,(1.5 GeV)=(0.354+0.080 Ge\?, behaved(as they are in, for example, the pole schenés

estimate of the perturbative uncertainty should be reason-
able. We will examine the convergence of perturbation
S1(0.9 GeV)=(0.694+0.114 Ge\?. (220  theory later in this section.
The unknown matrix elements of theni] operators are
Note that we took into account that CLEO] and BABAR  the largest source of uncertainty in the fit. One expects these
[11] usedmp=1.975 GeV to obtain the quoted values3if matrix elements to be of orde\r%CD. To allow for this the-
whereas DELPH[13] usedmp=1.97375 GeV. oretical input, we include an additional contribution 3
For the photon spectrum we use the CLEO requits from the matrix elements of eachmy operators,p, , and
T, _4, that we denote generically {y)),

T.(2 GeV)=(2.346:0.039 GeV,
0 (O)|<m?,

2 L

T,(2 GeV)=(0.0226:0.0069 Ge\?. (23 Ax*(my,M,)= 312/ 6 3

2 X X [|<O>| mX] /M)(’ |<O>|>m)(’

The final piece of data is the semileptonic decay width,
for which we use the average Bf* andB° data[32],
where (n, ,M,) are both thought of as quantities of order
_ i Aqcp- This way we do not prejudiceé?) to have any par-
['(B—X{v)=(42.7-1.4x 10 2 MeV. (24 ticular value in the rang{ O)|<m> . In the fit we takeM ,

o . =500 MeV, and varym, between 500 MeV and 1 GeV to
We do not average this with thig; and b-baryon semilep fest that our results foV.,| and m, are insensitive to this

tonic widths, as the power suppressed corrections can diffe : : o
in these decays. input (our final results are obtained witim, =500 MeV).

Equations(18)—(24) provide a total of 14 measurements The data are sufficient to co_nstrain t_heng/operators in the
that enter our fit. sense that they can be consistently fit with reasonable values,
but they are not determined with any useful precision. Fi-
nally, since only three linear combinationsBf_, appear in
the formulas, we fit settin@;=0, so that the fit values for

In this section we perform a simultaneous fit to the vari-7;—3 with this choice forZ, are the values of;—37,, 7,
ous experimentally measured moments and the semileptonit 7, and 73+ 37,.
rate. It is important to note that we do not include any cor- The fit results are summarized in Tables | and Il. In Table
relations between experimental measurements beyond thokwe show the results of the fit fg¥,|, mi> and 4, as well
presented if9,10], and so the experimental uncertainties areas the “effective” combination\,+ (7;+37,)/m, which
not completely taken into account. Nevertheless, the fit dementers in the OPE, and which, due to correlated errors, is
onstrates the importance of including the full correlation ofbetter constrained than,. From these results we can also

VI. THE FIT
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TABLE |. Fit results for |Vq|, my, Ny and \;+ (73+37;)/m, in the 1S scheme. ThgV,,| value
includes electromagnetic radiative corrections; see(#8). The upper or lower blocks are fits excluding or
including the BABAR data, and have 5 and 7 degrees of freedom, respectively.

17,+37

m, [GeV] X [Vep| X 10° m:° [GeV] N [GeV?] Nt ——— [GeV?]
b
0.5 5.0 40.80.9 4.74-0.10 -0.22+0.38 -0.31+0.17
1.0 35 41.1+0.9 4.74-0.11 —0.40+0.26 —-0.31+0.22
0.5 12.9 40.80.7 4.74-0.10 —-0.14+0.13 —0.29+0.10
1.0 8.5 40.9-0.8 4.76-0.11 —-0.22+0.25 -0.17+0.21

obtain an expression fdV.,| as a function of the semilep- but not in DELPHI. It is thus crucial to precisely and model

tonic branching ratio and thB meson lifetime. We find independently measure thmey_ distribution in semileptonic
B— X v decay. A comparison of the BABAR hadronic mo-
— 112 ment data with our fit is given in Fig. 1.
_ -3 B(B—X.tv) 1.6 p To get more insight into the obtained uncertainties, we
0.105 T8 have performed several additional fits in which we turn off

(260 individual contributions to the errors. Here we present the
_ o results for the fits withm,=0.5 and not including the
The quoted error contains all uncertainties from, A;, the  BABAR data. Similar results are true when the BABAR val-
1/m§ matrix elements, as well as perturbative uncertaintiesyes are included. Neglecting aIInlz terms, as well as the
The parametemqep~1.007 is the electromagnetic correc- najve estimate of the theoretical uncertainties gives a fit with
tion to the inclusive decay rate, which has been included ir}(zzgl for 9 degrees of freedom. Including only them@/
the values for|Vy| presented in Table 1. Including the terms giveg(®=21 for 5 degrees of freedom. This is a vastly
BABAR data increases thgq“ by about a factor of two. petter fit, reducingy? by about 60 by adding only 4 new
Doubling the allowed range of themg parameters increases parameters_ NevertheleSS, the fact th%.per degree of free-
the uncertainties only minimally and reduce® somewhat.  dom is about 5 shows that there is a statistically significant
The reason we carried out separate fits excluding and indiscrepancy between theory and experiment if other theoret-
cluding the BABAR data or8, (E,) is because of its incon- jcal uncertainties are not included. Only after including this
sistency at lowE, with the fit done without it. To see this, estimate do we get?’ DOF~1. We also estimated the size
note that on very general groun8g(E,) is a monotonically  of the theoretical uncertainties by setting all experimental
decreasing function oE,. The theoretical prediction corre- errors to zero. This reduces all uncertainties by roughly a
sponding to the fit in the first line of Table | i§,(0) factor of three. Thus, the fit is dominated by experimental
=(0.42+0.03) GeV, which is significantly below the low- uncertainties.
est BABAR data pointS;(0.9 GeVJ=(0.694+0.114 GeV. The fit gives a value of thb quark mass which is consis-
Assuming that the branching ratio to nonresonant channelgnt with other extractions, and with an uncertainty at the 100
betweerD* andD** is negligible, this prediction fos;(0) MeV level. For comparisorly sum rules extractions in Refs.
implies an upper bound on the fraction of exciléé., non-  [33,34 give méS:4.69i 0.03 GeV and mé5=4.78

D™)) states inB— X v decay[16], which is below 25%, +0.11 GeV, respectively by a fit to thBB system near
and is in contradiction with the measurd8—D*)¢»  threshold. The error ok, is larger than previous extractions
branching fractions. To resolve this, either the assumptioiirom T, and S, [8], because we are including more conser-
that low-mass nonresonant channels are negligible could beative estimates of the theoretical uncertainties. Despite this,
wrong, or some measurements or the theory have to be sethe uncertainty ofiV,| is smaller than from previous extrac-
eral standard deviations off. Th&, spectrum effectively has tions. Note that we have only used the value of the semilep-
this (assumed feature in the CLEO and BABAR analyses tonic branching ratio oB mesons. It is inconsistent to com-

TABLE II. Fit results for the 1dnﬁ coefficients in the $ scheme. The upper or lower blocks are fits
excluding or including the BABAR data. The constraint in Ef0) is used to determing,.

m, [GeV] p1 [GeV] p2 [GeV] T,+T; [GeV 7,+37, [GeV’]
0.5 0.15-0.12 ~0.01+0.11 ~0.15+0.84 ~0.45+1.11
1.0 0.16-0.18 —0.05+0.16 0.41+0.40 0.45-0.49
0.5 0.17:0.09 —0.04+0.09 ~0.34+0.16 —0.66+0.32
1.0 0.08-0.18 ~0.12+0.15 0.11-0.33 0.23-0.47
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FIG. 1. Comparison of the BABAR measurement of the hadron ™ C I ]
invariant mass spectrurill] vs the lepton energy cutblack x‘ 40 L T ]
squarel and our prediction from the fit not including BABAR >° - T .
hadronic mass dat@riangles. L I ]
B8 T ]
bine the average semileptonic branching ratiobofuarks == ‘4'4‘ ' '4'6' ' '4'8‘ E— '4'4' ! '4'6' : '4'8' =
(includingBg and A , state$ with the moment analyses, since R ’ o ’
hadronic matrix elements have different values in Bi8* ms (GeV) ms (GeV)

system,_and in the/B; ogAb. ] FIG. 2. The I error ellipse in themi® vs |V | plane, using
The fit results for the T, parameters are shown in Table gjtferent mass schemes for the fit. For each scheme we show the

ll. Clearly, one is not able to determine the values of thecontours obtained at the tree levédotted curvel at order e

1/mj parameters from the present fit. All that can be said iSdashed curvésand at orde?,,, (solid black curves

that the preferred values are consistent with dimensional es-

timates. There is also some indication tpatis small, as is  terms, such a&SKZ, which are large in the pole scheme. The
expected in some mode]$6]. _ larger uncertainties in th®1S scheme are due to large con-
One can also use the fits to predict other observables thgty tions at BLM order. which are included in the uncer-

can be measured. For example, we predict the values for thg;ny estimate, as explained at the beginning of this section.
fractional moment®Rs,, Ray, Rsa, Rap, D3 andDy, given

by Bauer and Trotf35]. The predicted values are given in
Table Ill. The results are robust, and do not depend on the
width chosen for the 14* operators, or whether or not we  Experimental studies of the shape variables discussed in
include the BABAR data. this paper are crucial in determining from experimental data
Finally, it is useful to study the convergence of perturba-the accuracy of the theoretical predictions for inclusBe
tion theory by carrying out the fit at different orders in the decays rates, which rest on the assumption of local duality.
perturbation expansion. In Fig. 2 we show the &rror el-  Detailed knowledge of how well the OPE works in different
lipse in themi>—|V,,| plane, for the four different mass regions of phase spa¢and a precise value of,) will also
schemes. For each scheme we show three contours, obtaineed important for the determination p# ;| from inclusiveB
at the tree leve(dotted curvek at ordere (dashed curvgs  decays. A serious discrepancy between theory and data
and including order.sé,_,\,I corrections as wellsolid black  would imply, for example fotV|, that only its determina-
curves. For each of these curves, the conversion of the fittedion from exclusive decays has a chance of attaining a reli-
mass to the $ mass has been done at the consistent order inble error below the-5% level.
perturbation theory. One can see that the convergence of the The analysis in this paper shows that at the present level
perturbative expansion is slightly better for th& and the of accuracy, the data from the lepton and photon spectra are
PS schemes compared with the pole scheme. This is becausensistent with the theory, with no evidence for any break-
there is an incomplete cancellation of formally higher orderdown of quark-hadron duality in shape variables. Two related

VIl. SUMMARY AND CONCLUSIONS

TABLE lll. Fit predictions for fractional moments of the electron spectrum. The upper or lower blocks are fits excluding or including the
BABAR data.

m, [GeV] Rsa Rap Ria Rap Ds D,
0.5 0.302:0.003 2.261*0.013 2.127#0.013 0.684:0.002 0.526:0.002 0.6040.002
1.0 0.302:0.002 2.261*0.011 2.1280.011 0.684:0.002 0.51%0.002 0.6040.001
0.5 0.302:0.002 2.261+0.012 2.127%0.012 0.6840.002 0.52@:-0.002 0.604:0.001
1.0 0.302:0.002 2.2620.012 2.1290.012 0.6840.002 0.5190.001 0.604:0.001
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Setting experimental errors to zero gives errorg\ip,|
and miS of 0.35<10°% and 35 MeV, respectively. These
numbers indicate the theoretical limitations, although their
precise values depend on details of how the theoretical un-
certainties are estimated. If the agreement between the ex-
perimental results improve in the future, then a full two loop

calculation of the total semileptonic rate and B)f—>XC€7
decay spectra would help to further reduce the theoretical
uncertainty in|V¢,| andm,.
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erage hadronic invariant mass as a function of the lepton
energy cut and the total branching fraction Boand D*
states, both of which appear problematic to reconcile with
the other measurements combined with the OPE. However,
both problems depend on assumptions about the invariant . . _ .
mass distribution of the decay products, which needs to be In @5 appendix we give numerical results for tBe
better understood. Excluding the BABAR data and the prob-—Xc{ v decay rate and the shape variables defined in Egs.
lem of theB—D®)¢» branching ratios, the fit provides a (1), (2), and(4), in the four mass schemes discussed. For all

APPENDIX: COEFFICIENT FUNCTIONS
IN VARIOUS MASS SCHEMES

good description of the experimental results, with=5.0

for 12 data points and 7 fit parameters in the scheme.
The main resultgin the 1S schemg are summarized in

Fig. 3 where we compare our determinatior{\¢f,| andm:°

with those from exclusivd® decays and upsilon sum rules.

We obtain the following values:
|Vep| =(40.850.9)x 10" 3,

miS=(4.74+0.10 GeV. (27)
This corresponds to theMS mass my(m,)=4.22
+0.09 GeV. We have also presented the valufvgf| as a
function of the semileptonic branching ratio and Bieneson
lifetime

B(B—X.v) 1.6 pj v

=(41.1+0.7)x 103
|Vep| = (41.1£0.7) X 10 { 9105 -

(28)

quantities the coefficients of the expansions are defined as in
Eq. (15), and all numerical values are in units of GeV to the
appropriate power. We usey(my) =0.22 and the spin- and

isospin-averaged meson masseg=>5.314 GeV andED
=1.973 GeV.

1. The 1S mass scheme

The B— X £ v decay width in the $ scheme is given by

[(B—XLv)
G2|Vp|? [my\®
= M(—Y) [0.534-0.232\ —0.023\2
19273 2

+0.A%—0.11\;—0.15.,— 0.02\ ;A + 0.05\ ,A
—0.020,+0.03,—0.057; + 0.017,— 0.077;

—0.037,—0.051e—0.016¢3,,+ 0.016A], (A1)

We have constrained thert? matrix elements and predicted We tabulate the shape variables defined in @in Tables
the values for fractional moments of the electron spectrum tdV, V, and VI, and those defined in EQ) in Tables VIl and

better than 1% accuracy.

VIII in the 1S mass scheme. F@; andS, we do not show
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TABLE IV. Coefficients forRy(0,E,) in the 1S scheme as a function &,.

E0 Rgl) R((JZ) RE)3) RSA) RE)S) Rgﬁ) Rg) R(()S) R(()Q) Rglo) Rgll) R(()lZ) R(()B) Rgl4) Rng) R((JlG) Rgﬂ)
0.5 0.972 —-0.003 —0.002 0. 0. -0.01 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0.
0.7 0.927 —-0.008 —0.005 0. -0.01 -0.03 -0.01 -o0.01 0. 0. —-0.01 0 —-0.01 -0.01 0.001 0.001 0.
0.9 0.853 —-0.016 —-0.01 -0.01 —-0.02 —-0.06 —-0.02 -0.03 0. 0.01 -o0.01 0 —-0.02 -0.01 0.002 0.001 0.
1.1 0.749 -0.028 -0.015 -0.01 -0.04 -0.1 -0.03 —-0.05 —-0.01 0.01 -0.02 0 —-0.03 —-0.02 0.002 0.001 0.
1.3 0.615 —-0.043 -0.022 -0.01 -0.06 —-0.15 —-0.05 —-0.08 —0.01 0.02 -0.03 0. —0.04 -0.03 0.003 0.002 0.
1.5 0.455 -0.062 -0.029 -0.01 -0.08 —-0.2 -—0.07 —-0.11 —-0.01 0.03 —-0.04 0 —-0.05 —-0.04 0.003 0.002 0.
1.7 0.279 -0.084 -0.037 -0.02 -0.1 -0.25 -0.08 —-0.15 —-0.01 0.03 —-0.04 —-0.01 —-0.06 —0.05 0.002 0.003 —0.001
TABLE V. Coefficients forR,(Ey) in the 1S scheme as a function &j.
Eo R(ll) R(lZ) R(ls) R(14) R‘f’) R(ls) R(17) R(ls) R(lg) R(llo) R(lu) R(llz) R(lla) R(114) R(lls) R(lle) R(ln)
0 1.392 —-0.077 —-0.026 —0.01 —-0.11 -—-0.22 —-0.07 —-0.08 —0.04 0.01 -0.04 —-0.02 —-0.05 —0.05 0.003 0.003 oO.
0.5 1422 -0.076 —-0.025 —-0.01 -0.11 -0.22 -0.06 —-0.08 —0.04 0.01 -0.04 -0.02 —-0.05 —-0.05 0.003 0.003 O
0.7 1461 —-0.075 —-0.023 —-0.01 —-0.11 —-0.21 —-0.06 —-0.08 —0.04 0.01 —-0.04 —-0.02 —-0.05 —0.04 0.002 0.003 oO.
09 1517 -0.074 -0.022 -0.01 -0.11 -0.2 -0.06 —-0.08 —0.04 0.01 -0.04 -0.02 —-0.05 —-0.04 0.002 0.003 oO.
1.1 1.588 —-0.074 —-0.021 -0.01 -0.11 —-0.19 —-0.06 —0.08 —-0.04 0. —-0.04 —-0.03 —-0.04 —0.04 0.001 0.003 oO.
1.3 1.672 -0.075 -0.02 -0.01 -0.11 -0.19 -0.06 -0.07 —0.05 0. -0.04 —-0.03 —-0.04 -0.04 0.001 0.003 oO.
1.5 1.767 —-0.077 -0.02 -0.01 -0.12 -0.17 —-0.07 —-0.07 —-0.06 —0.02 —0.04 —0.04 —-0.04 —-0.04 0.001 0.003 O.
1.7 1872 -0.08 -0.0212 -0.01 -0.14 -0.16 -0.1 -006 —-01 -0.04 —-0.04 —-0.06 —0.03 —-0.03 0.0010 0.003 O.
TABLE VI. Coefficients forR,(E,) in the 1S scheme as a function &,.
E0 R(Zl) R(22) R(ZS) R(24) R(25) R(ZG) R(27) R(Zs) R(29) R(210) R(211) R(212) R(213) R(214) R(215) R(216) R(217)
0 2118 —-0.247 —-0.07 -0.02 —-0.36 —0.68 —0.19 —0.21 —0.15 0.02 -0.14 -0.08 —-0.16 —0.14 0.008 0.01 -0.001
0.5 2175 —0.247 —-0.069 —0.02 -0.36 —0.68 —0.19 —-0.22 -0.15 0.02 -0.13 —-0.08 —-0.16 —0.14 0.007 0.009 —0.001
0.7 2.263 —0.248 —-0.067 —0.02 -0.36 —0.68 —0.19 —-0.22 -0.16 0.01 -0.13 —-0.09 —-0.15 —-0.14 0.007 0.009 —0.001
0.9 2401 -0.252 -0.065 —0.02 -0.37 —-0.67 —-0.19 —-0.22 -0.17 0.01 -0.13 -0.1 -0.15 —0.14 0.005 0.009 —0.001
1.1 2593 -0.259 -0.064 —-0.02 —-0.38 —-0.67 —0.19 -0.23 -0.18 -0.01 -0.13 -0.11 -0.14 -0.14 0.004 0.009 —0.001
1.3 2.842 -0.271 —-0.063 —-0.02 —-041 -0.66 —-0.21 -0.23 —-0.21 -0.03 —-0.14 -0.13 —-0.14 -0.14 0.003 0.009 —0.001
15 315 -0.288 —0.066 —0.02 —-0.46 —-0.64 —-0.24 -0.23 —-0.28 -0.07 —-0.14 -0.18 —-0.13 -0.14 0.003 0.011 —0.001
1.7 3518 -0.311 -0.072 -0.02 —-0.58 -0.62 —0.35 -0.21 —-043 -0.16 —-0.16 —-0.26 —-0.12 —0.13 0.004 0.013 0.
TABLE VII. Coefficients forS,(Ey) in the 1S scheme as a function &,.
Eo S<11) S(lz) 3(13) 3(14) 8‘15) 8(16) 8(17’ S(ls) 5(19) S(110) 3(111) 3(112) 8‘113) 3(114) 8(115) S(llﬁ) 3(117)
0 0.832 1.633 0.416 013 149 -036 0.75 O. 0.46 —-024 053 025 05 0.14 0.044 —0.025 0.025
0.5 0.82 1.609 0409 012 15 -032 075 0.02 048 —-0.24 054 026 05 0.14 0.039 —0.028 —
0.7 0805 1578 0398 0.12 152-026 077 005 05 -023 054 027 05 0.16 0.032 -0.031 —
09 0.784 1533 0.38 0.11 156-0.16 079 0.12 055 —-0.22 055 0.3 0.51 0.18 0.023 —0.035 —
1.1 0759 1.479 0354 0.1 1.63-0.02 0.83 022 0.63 -0.2 057 034 052 0.2 0.011 -0.04 —
1.3 0734 1.42 0.319 0.09 174 0.18 091 038 0.7#70.16 059 041 054 0.24 —0.002 -0.046 —
1.5 0716 1371 0.277 0.06 1.97 045 107 065 103006 064 055 056 03 -0.018 -0.054 —
1.7 0.72 1.368 0.254 0.05 2.49 084 159 113 164 0.22 0.76 0.86 0.6 0:38.035 —0.066 —
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TABLE VIII. Coefficients for S,(Ep) in the 1S scheme as a function d&,.

E0 S(zl) 5(22) 3(23) 5(24) 5(25) 5(26) 3(27) 5(28) 8(29) 3(210) S(Zl 1) 8(212) 5(213) 8(214) 5(215) S(zlﬁ) 5(217)

0 0125 0472 0531 0.16-443 —-068 —1.04 —1.6 —5.46 1.07 -094 -28 -005 -0.13 0.381 —-0.428 0.171
0.5 0.123 0.467 0.524 0.16—4.34 —-0.66 —-0.99 —-155 —553 096 —-093 —-274 —-0.05 —-0.12 0405 —-042 —
0.7 0.123 0.465 0.521 0.16—4.23 —-0.64 —-091 -15 —5.64 0.81 -09 -267 —0.05 —-0.12 0.448 —0.408 —

0.9 0.124 0.468 0.524 0.16—4.08 —-0.62 —-0.78 —1.43 —-585 059 -087 —-258 —-0.05 -0.11 0526 —-0.391 —
1.1 0.126 0.477 0.533 0.16-389 —-06 -06 —-136 —-6.2 0.28 -0.83 —246 -0.05 —-0.11 0.661 —-0.37 —
1.3 0.128 0.486 0546 0.17-3.69 —-057 -035 —-128 -6.79 —-0.11 -0.79 —-233 —-005 —-0.1 0.892 —-0.344 —
15 0.128 0487 055 0.18-35 —-053 -004 -119 -7.88 -061 -075 —-221 -005 -01 1328 —-0.311 —
1.7 012 0.454 0.509 0.16—3.46 —0.49 0.16 —1.08 —10.34 —134 -0.74 —-218 —-0.05 —-0.09 2.345 —-0.273 —

the E, dependence of the orde\ terms, as they are not T(zll): —0.02. (A3)
known. For all quantities the coefficients of the expansions
are defined as in Eq15). The remainingE,-dependent coefficients of the perturbative

For theB— X4y shape variables defined in E@), only  corrections are listed in Table IX.
T 109 and T(*” are functions ofE,, oncemg/2—E,

> Aqcp- For the othef’s in the 1S scheme we find 2. The PS mass scheme
The expressions for thB—>XC€7 decay rate and the
My - 1 N shape variables in the PS scheme are almost identical to Eq.
T a T=—5, Ty'=Ti’=0, (Al), Tables IV-VIIl, and Egs(A2) and (A3), because we

choose to expandhi > aboutmy /2 as well. The difference in
the B— X € v rate compared with EqA1) is that the pertur-

T®¥=-0.05, T{¥=-0.16, bation series is replaced by—0.020:—0.003€3,
+0.02%A, and of course, the meaning a&f changes from
A'Sto APS

T{N=-0.01, T®=-0.03, Next we tabulate the coefficients of the perturbation series

of the shape variables defined in E¢b. and(2), that differ
from the entries in Tables IV-VIIl, in Table X in the PS
TM=-0.02, T{!M=0.18, mass scheme. F&; andS, we do not show in the tables the
ordereA terms again as theky-dependence is not known.
For all quantities the coefficients of the expansions are de-
TW=T1¥=-001, T{?=T{¥=-003,  (A2) fined asin Eq(15).
For the B— X,y shape variables defined in E@l), the
and expressions foil , are identical in the $ and PS schemes,
and so onlyT{*® | T(!®) andT{!" differ between these two
schemes. The results for these coefficients in the PS scheme
TO=TA=TF =T =T =TI =TE=TII=T{=0,  are shown in Table XI.

3. The MS mass scheme

1 _ —
TE=— e T®=-0.04, T§Y=-T{9=0.05, The B— X £ v decay width in theM'S scheme is given by

TABLE IX. Perturbative coefficients fof;(Ey) and T,(Ep) in F(B—>XC€7)
the 1S scheme as a function &.

2 2
(15) (16) (17) (15) (16) (17) Ge|V
Bo T L S S S - %(4.2 GeV)5[0.733-0.464A — 0.036: 2
T

1.7 -0.043 -0.017 0.016 0.016 0.011 —0.014
18 -0.038 —-0.014 0.021 0.012 0.009 —0.014
19 -0.032 -0.011 0.026 0.01 0.007 —0.014
2 —0.025 -0.006 0.033 0.007 0.006 —0.013
21 -0.017 -0.001 0.042 0.004 0.004 —0.012
2.2 —0.007 0.008 0.056 0.002 0.002-0.01

+0.01A3—0.220;— 0.22\ ,— 0.04\; A + 0.1\ ,A
—0.01p;+0.050,—0.167; +0.017,— 0.187;— 0.057;

+0.085+0.0653, , +0.022A ], (A%)
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TABLE X. Perturbative coefficients foRy(0,Eo), Ri(Ep), R2(Ep), Si(Ep), andS,(Ey) in the PS scheme, that differ from the results

in the 1S scheme, as a function &,.

E, R{® RE® R RESD RS RED  RAS RIS RAD (19 S{19 S S ge) S0

0o — — — 0.013 0.007 0.008 0.041 0.024 0.02+0.178 —0.106 —0.106 0.317 —0.452 0.022
05 0.001 O 0.001 0.013 0.007 0.007 0.041 0.023 0.020.18 -0.108 — 0.342 —0.443 —

0.7 0.002 0.001 0.002 0.012 0.007 0.007 0.04 0.023 0.020.182 —-0.109 — 0.385 —0.432 —

0.9 0.004 0.002 0.0083 0.012 0.007 0.007 0.04 0.023 0.0¢®.186 —0.111 — 0.462 —0.415 —

1.1 0.006 0.008 0.005 0.011 0.007 0.006 0.039 0.024 0.0¢9.19 -0.114 — 0.596 —-0.393 —

1.3 0.009 0.004 0.007 0.011 0.007 0.006 0.04 0.025 0.0149.195 -0.116 — 0.826 —0.368 —

1.5 0.011 0.006 0.009 0.011 0.007 0.006 0.042 0.027 0.020.205 -0.122 — 1.262 -0.335 —

1.7 0.013 0.007 0.01 0.012 0.008 0.007 0.046 0.031 0.028.221 -0.135 — 2.283 -0.296 —

We tabulate the shape variables defined in EQ. in 1
Tables XII, XllI, and XIV, and those defined in E@) in TS =— 12’
TablesXV and XVI in theMS mass scheme. F&; andS,
we do not show th&y-dependence of the ordeA terms, as
they are not known. For all quantities the coefficients of the (11)
expansions are defined as in Ef5). T3 7=-0.02.

For the B— X,y shape variables defined in E@4),
TP, ...TM are independent ofE,, once mg/2—E
> Aqcp, and are given in théS scheme by

TP=-0.04, T§8Y=-T{?=0.06,

(A6)

The remainingE,-dependent coefficients of the perturbative

corrections are listed in Table XVII. Since in this case we are
expanding theb quark mass about 4.2 GeV, we are only
1 showing results foEy<2 GeV. The large si f th tur-
(1) 2)__ = (3)_T(4)_ g 0 . g 1ze O e pertur
Ti'=21 Gev, Ty 70 TN 0, bative corrections td@,; (compared to its values in theSlor
PS schemegwccur to try to compensate for the bad choice of

mass scheme.
T®=-0.06, T{®=-0.18,

T{=-001, T¥=-004, T=-0.02,

4. The pole mass scheme

The B—>XC€;decay width in the pole scheme is given by

-I—(110): 0.37, F(B—>XC€7)
TE=T@=—001, T=T{=-0.04, G| Veol?
1= 1= = Mﬁg[o.:w& 0.115\ — 0.012A 2+ 0.A3
(AS) 1927
and —0.04\;—0.10\,— 0.01\ ;A + 0.0\ ,A — 0.02p,
TH=TA=TE =W =T =T =TE =T=T=, +0.02p,—0.027; + 0.7,— 0.0373— 0.027, — 0.04C¢
TABLE XI. Perturbative coefficients fofT,(Ey) in the PS —0.0226§LM+0.OO76A]. (A7)
scheme as a function &,.
Eo TS T{1® T We tabulate the shape variables defined in @gin Tables
XVIII, XIX, and XX, and those defined in Eq2) in Tables
L7 0.025 0011 0.022 XXIl and XXII in the pole mass scheme. F8f andS, we do
18 0.03 0.014 0.026 not show theE, dependence of the order\ terms, as they
1.9 0.036 0.018 0.032 are not known. For all quantities the coefficients of the ex-
2 0.043 0.022 0.038 pansions are defined as in H45).
2.1 0.051 0.028 0.047 For the B— X,y shape variables defined in E¢4),
29 0.061 0.036 0.062 TO .. T are independent ofE, once mg/2—E,

054012-12
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TABLE XII. Coefficients forRy(0,Ep) in the MS scheme as a function & .

PHYSICAL REVIEW 37, 054012 (2003

Eo Rgl) Rgz) Rg3) Rgt) RSS) Rge) Rg) Rgs) Rgg) Rém) RE)“) R(012) R813) Rgl“) RE)15) Rém) R(017)

0.5 0.969 —-0.007 —-0.005 0. -0.01 -0.01 -0.01 -0.01 O 0. -0.01 0. -0.01 0. 0.003 0.001 0.003

0.7 092 -0.017 —-0.013 —-0.01 —-0.02 —-0.04 —-0.02 -0.02 0 0.01 -0.01 0. —0.02 —-0.01 0.007 0.004 0.008

0.9 0.841 -0.033 —-0.025 —-0.02 -0.04 -0.07 —-0.04 —-0.05 O. 0.01 -0.03 0. -0.03 —-0.02 0.013 0.007 0.015

1.1 0.729 -0.054 —-0.04 —-0.03 —-0.06 —0.13 —-0.07 —0.09 O. 0.02 —-0.05 0. —0.06 —0.03 0.021 0.012 0.023

1.3 0584 -0.08 -0.056 —-0.04 -01 -02 -0.11 -0.14 oO. 0.03 -0.07 0. -0.08 —0.05 0.031 0.017 0.032

1.5 0411 -0.11 -0.071 -0.05 —-0.13 -0.29 —-0.15 —-0.22 O. 0.04 —-0.09 0. —0.11 -0.07 0.041 0.024 0.039

1.7 0.221 -0.145 -0.086 —-0.05 -0.16 —-0.36 -0.18 —-0.3 0.01 004 -0.11 -0.01 -0.13 —-0.09 0.052 0.032 0.046
TABLE XIlI. Coefficients for R,(Eg) in theM_S scheme as a function &.

Eo R(ln R(lz) R(la) R(14) R(ls) R(le) R(17) R(ls) R(le) R(llo) R(lu) R(llz) R(113) R(114) R(115) R(lle) R(lu)

0 1.342 —-0.117 —-0.054 -0.03 -0.16 —-0.27 -0.12 -0.12 -0.03 0.01 -0.09 —-0.03 —-0.1 —-0.07 0.043 0.026 0.027

05 1373 -0.113 -0.05 -0.03 -0.15 -0.27 -0.12 -0.12 -0.04 0.01 -0.09 —-0.03 —-0.1 -—0.06 0.042 0.025 0.025

0.7 1413 -0.11 -0.047 -0.02 -0.15 -0.26 —-0.11 -0.12 -0.04 0.01 —-0.09 —-0.03 —-0.1 -—-0.06 0.04 0.024 0.023

09 147 -0.106 —0.043 —-0.02 -0.15 -0.26 —-0.11 -0.12 -0.04 0.01 —-0.08 —0.03 —-0.09 —0.06 0.039 0.024 0.021

1.1 1.542 -0.104 —-0.039 —-0.02 -0.15 —-0.25 —-0.11 -0.12 —-0.05 0. —0.08 —0.04 —-0.09 —0.06 0.037 0.023 0.019

1.3 1.626 —-0.103 —-0.036 —0.02 -0.15 -0.24 -0.11 -0.12 —-0.06 —0.01 —-0.08 —0.05 —0.08 —0.06 0.037 0.023 0.017

1.5 172 -0.105 -0.035 -0.01 -0.17 -0.22 -0.13 —-0.12 —-0.08 —0.03 —0.08 —0.07 —0.07 —0.05 0.037 0.024 0.016

1.7 1.823 -0.109 —-0.036 —-0.01 -022 -02 -0.22 -01 -0.16 —-0.08 —0.08 —0.11 —-0.06 —0.05 0.039 0.025 0.017
TABLE XIV. Coefficients forR,(Ey) in theM_S scheme as a function d&.

Eo R(21) R(Zz) R(23) Rg;) R(ZS) Rge) R(27) R(28) R(zg) R(210) ng R‘le) Rgl:%) R(214) R(le’ R(216) R(217)

0 1.963 —-0.35 —-0.136 —-0.07 —-049 -0.82 -0.31 -0.31 -0.14 0.02 -0.27 -0.11 -03 -0.2 0.129 0.077 0.063

05 202 -0.348 —-0.132 —-0.06 —049 -0.82 —-0.31 -0.31 -0.15 0.02 -0.27 -0.11 -03 -—-0.2 0.127 0.077 0.061

0.7 2.108 —-0.346 —0.127 —-0.06 —-0.49 -0.82 -0.32 —-0.32 —-0.15 0.01 -0.27 -0.12 -0.3 -—-0.2 0.126 0.077 0.058

0.9 2245 —-0.346 —0.122 —-0.06 —-05 -0.82 -0.32 —-0.33 —-0.17 0. —-0.27 —-0.13 —-0.29 —-0.19 0.125 0.077 0.054

1.1 2435 -0.349 -0.115 -0.05 -052 -0.82 -0.33 -0.35 —-0.19 -0.02 -0.27 —-0.15 —-0.28 —-0.19 0.125 0.078 0.05

1.3 2.678 —0.359 —-0.11 —-0.05 —-055 —-0.81 —-0.36 —0.36 —0.24 —-0.05 —0.27 —0.19 —-0.27 —0.19 0.127 0.081 0.046

1.5 2975 -0.378 —-0.11 -0.04 -0.63 -08 —-0.43 -0.36 —-0.34 -0.12 —-0.27 —-0.26 —0.25 —0.19 0.134 0.086 0.045

1.7 3.329 —-0.409 -0.119 —-0.04 -0.8 —-0.75 —0.78 —0.32 —-0.65 —0.31 —-0.31 —0.44 —-0.22 —0.18 0.147 0.096 0.053
TABLE XV. Coefficients forS,(Eg) in the MS scheme as a function &,.

Eo 5(11) 8(12) 8(13) 5(14) S(15) S(le) S(17) 5(18) S(lg) S(llo) s<111) S(112) 5(113) S<114) 8(115) S(lle) 5(117)

0 1.837 2216 0.729 0.3 2. —-031 124 021 043 -026 1.05 039 1. 0.23 —0.711 —-0.456 —0.297

05 1811 2181 0.715 0.3 2.02-026 126 024 045 —-026 1.06 041 1. 0.24 —-0.707 —-0.452 —

0.7 1775 2134 0695 0.29 205-0.17 129 0.3 049 —-0.25 1.06 043 101 0.26 —0.7 —0.446 —

09 1724 2064 0664 028 211-0.03 134 041 057 —-023 1.08 046 102 029 —-0.691 -0437 —

1.1 1662 1971 0.615 026 221 0.18 143 059 0.7-0.19 111 053 105 0.34 —0.678 —-0.424 —

1.3 1593 1.858 0.542 0.23 2.38 0.5 1.6 0.9 0.92-0.12 1.17 0.63 109 041 —-0.664 -—-0.408 —

15 1532 1.735 0434 0.16 274 098 2. 146 1.38 0.07 128 085 1.17 0:5R.66 -0.391 —

1.7 1524 1684 0.351 0.08 3.76 1.81 364 288 261 071 159 147 134 072698 -0.396 —
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TABLE XVI. Coefficients forS,(Eg) in the MS scheme as a function & .
Eo SO ORI ORI OO S©) s @) S©) S0 Sy s S S gs) s(o) S
0 0549 1.175 078 0.09-513 —186 —-1.75 —3.01 -6.91 07 -134 -35 -03 -0.39 0.085 —1.169 —0.187
0.5 0542 1.16 0.769 0.09-5. -18 -—-165 —-291 -—7. 055 —-131 —-341 -03 -0.38 0.164 —1.131 —
0.7 054 1.155 0.766 0.09-4.84 —-174 —-151 —-278 —7.15 035 —-1.27 —-33 —-0.29 -0.36 0.282 —1.091 —
0.9 0544 1.163 0.774 01 —-46 —-166 —-129 —-262 —7.43 0.04 —-1.21 —-3.13 —-0.28 —-0.34 0477 —-1.032 —
1.1 0554 1.186 0.796 0.12—4.28 —-1.57 -097 —-243 -79 -037 —-114 —-29 -0.28 -0.32 079 -0.966 —
1.3 0567 1.218 0.831 0.15-3.88 —-146 —-048 —-219 -87 -09 -105 —-261 -—-0.27 —-0.29 1318 —-0.891 —
15 057 1236 0.867 0.19-3.44 —-1.34 0.23 —195 —-10.24 —-1.61 —-095 —228 —-0.28 —0.26 2.363 —0.799 —
1.7 0529 1.138 0.786 0.17—-3.22 —-1.26 0.78 —2. —1443 —-279 —-094 -207 -033 —-0.25 5272 —-0.667 —
TABLE XVII. Perturbative coefficients foif; and T, in the MS scheme as a function & .
(= T(115) T(lle) T(117) T(215) T(Zle) T517)
17 0.143 0.083 —0.009 0.008 0.006 -0.014
1.8 0.151 0.0888 —0.002 0.005 0.004 —0.013
1.9 0.161 0.095 0.008 0.003 0.003 -0.011
2 0.173 0.106 0.03 0.001 0.001 —0.008
TABLE XVIII. Coefficients for Ry(0,E,) in the pole scheme as a function B§.
E0 R(Ol) R(OZ) Rg%) RgA) RgS) RBG) R(O7) RS)B) Rgg) R(Ol(]) Rgll) Rng) Rgls) RBIA) RBIS) Rglﬁ) Rgl7)
0.5 0.973 —0.002 —0.001 0. 0. -0.01 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0.7 0.93 —-0.004 —0.002 0. —-0.01 —-0.02 0. -0.01 0. 0. 0. 0. 0. 0. 0.001 0. 0.
0.9 0.86 —0.009 —0.004 0. —-0.01 -0.04 —-0.01 —0.02 0. 0.01 —-0.01 0. —-0.01 —-0.01 0.001 0. 0.
1.1 0.761 —0.016 —0.007 0. -0.02 -0.08 —-0.02 -0.03 —-0.01 0.01 —0.01 0. —0.01 —-0.01 0.001 0. 0.
1.3 0.634 —0.025 —-0.01 0 —-0.03 -0.11 -0.02 -0.05 —-0.01 0.02 —-0.01 0. —-0.02 —-0.02 0.001 -0.001 0.
1.5 0.483 —-0.038 -0.014 —-0.01 —-0.05 -0.15 —-0.03 —0.07 —0.010 0.02 —0.02 0. —0.03 —-0.03 0. —0.002 —0.001
1.7 0.318 —0.054 —-0.018 —0.01 —-0.06 —0.19 —0.04 —0.08 —0.01 0.02 —-0.02 —-0.01 —-0.03 —0.03 —0.001 —0.003 —0.002
TABLE XIX. Coefficients forR,(Eg) in the pole scheme as a function 6§.
E, RP R R® R® RE R(® R() R® R(® RED  REY R RED RO RS R(®) R
0 1429 -0.054 —-0.014 0. —0.07 —-0.18 —0.04 —0.05 —0.03 0.01 —0.02 —-0.01 —-0.03 —-0.03 0. —0.002 —0.001
0.5 1459 —-0.054 -0.014 0. —-0.07 —-0.18 —0.03 —0.05 —-0.03 0.01 -0.02 -0.01 —-0.03 —0.03 0. —0.002 —-0.001
0.7 1498 —-0.054 —-0.013 0. —-0.07 —-0.17 —-0.03 —-0.05 —0.03 0.01 —0.02 —-0.02 —-0.03 —0.03 —0.001 —0.003 —0.001
0.9 1554 —-0.054 -0.013 0. —-0.07 —-0.17 —-0.03 —0.05 —-0.04 0.01 -0.02 —-0.02 —-0.03 —0.03 —0.001 —0.003 —0.001
1.1 1.625 —0.055 —0.012 0. —-0.07 —0.16 —0.03 —0.05 —0.04 0. —-0.02 -0.02 —-0.02 —-0.03 —0.002 —0.003 —0.001
1.3 1.71 -0.056 —-0.012 0. -0.08 —-0.15 —-0.03 —0.05 —0.04 0. -0.02 —-0.02 —-0.02 —-0.03 —0.002 —-0.003 —0.001
1.5 1.806 —0.058 —0.013 0. —0.08 —0.14 —-0.04 —-0.05 —-0.05 —-0.01 —-0.02 -0.03 —-0.02 —-0.03 —0.002 —0.003 —0.001
1.7 1913 -0.06 -0.013 0. -0.1 -0.13 —-0.05 —-0.04 —-0.07 —0.02 —-0.02 —-0.04 —-0.02 —-0.02 —0.003 —0.003 —0.001
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TABLE XX. Coefficients forR,(Ey) in the pole scheme as a function B§.

PHYSICAL REVIEW 37, 054012 (2003

E0 R(Zl) R(22) Rf’) R(24) R(25) R(ZG) R(27) R(28) R(29) R(zw) Rgll) R(212) R(213) R(214) R(215) R(216) R(217)
0 2241 -0.184 —0.041 —0.01 —0.26 —058 —0.11 —-0.15 —0.13 0.02 -0.08 —0.06 —0.09 —0.11 —0.002 —0.008 —0.003
0.5 2.299 —-0.185 —0.041 —0.01 -0.26 —0.58 —0.11 —-0.15 —0.14 0.02 -0.08 —0.06 —0.09 —0.11 —0.003 —0.009 —0.003
0.7 2.388 —0.188 —-0.04 -0.01 -0.26 —-0.57 -0.11 -0.15 -0.14 0.02 -0.08 —0.07 —-0.09 —-0.11 —-0.004 -0.01 -0.003
0.9 2529 —-0.193 -0.04 -0.01 -0.26 —0.57 —-0.11 —-0.15 —-0.15 0.01 -0.08 —0.07 —0.09 —0.11 —0.005 —0.011 —0.003
11 2726 -02 -004 -001 -0.27 -056 —0.11 -0.15 —0.16 0. -0.08 -0.08 —0.09 —-0.11 —0.007 —0.012 —0.003
1.3 2981 —0.211 —0.041 —-0.01 —-0.29 —-0.55 —-0.12 —-0.15 —0.18 —0.02 —-0.08 —-0.1 —-0.08 —0.1 -0.008 —0.012 —0.003
1.5 3.298 —0.225 —0.043 -0.01 —-0.33 —-0.54 -0.14 -0.15 —-0.22 -0.04 —-0.09 -0.12 -0.08 —-0.1 -0.01 -0.013 —0.003
1.7 3.678 —0.243 —0.047 —-0.01 -04 -052 -0.19 -0.14 -0.32 -0.09 -0.1 -0.17 —-0.07 —-0.1 -0.01 -0.013 —0.003
TABLE XXI. Coefficients forS,(Ey) in the pole scheme as a function B§.
EO S&l) S&Z) 55-3) 55-4) 85-5) 85-6) Sg_” S&B) S&Q) Sg-lo) Sg_ll) Sg-lz) 55-13) 85_14) 5515) Sg-lﬁ) 55-17)
0 0 1.248 0.262 0.06 1.02 -0.32 041 -0.11 042 -0.21 0.3 0.15 0.28 0.08 0.102 0.111 0.038
0.5 0 1231 0.258 0.06 1.03 -0.29 041 -0.09 043 -021 031 016 0.28 0.08 0.097 0.107 —
0.7 0 1209 0.251 0.06 1.05 -025 042 -0.07 045 -021 031 017 0.28 0.09 0.092 0.102 —
0.9 0 1.18 0.241 0.06 108 —0.18 0.44 —-0.03 048 -0.2 0.31 0.18 0.29 0.1 0.084 0.095 —
1.1 0 1.148 0.228 0.05 1.13 —0.08 0.46 0.03 054 -0.19 032 021 029 012 0.075 0.086 —
1.3 0 1.118 0.211 0.04 1.22 0.04 0.51 0.12 0.63-0.16 0.34 0.26 0.3 0.14 0.064 0.077 —
15 0 11 0.194 0.04 138 0.2 0.6 0.26 08-0.11 037 035 031 017 0.054 0.067 —
1.7 0 1.112 0.188 0.03 1.7 0.4 0.83 0.47 1.16 0.04 0.43 053 032 021 0.044 0.057
TABLE XXII. Coefficients for S,(E,) in the pole scheme as a function B§.

E, S sP @) s P S®) SN @) S o ) s S S gs) Sio) S0
0 0 0 0.297 0.1 -39 0 -0.86 —-0.82 —452 124 -073 -22 0 0 0.301 0.255 0.146
0.5 0 0 0.294 0.1 -—-3.84 0 -0.83 -0.8 —4.57 1.16 —-0.72 -—-2.17 0 0 0.273 0.235 —
0.7 0 0 0.293 0.1 -3.77 0 —-0.78 —-0.79 —4.66 1.04 -071 -213 0 0 0.241 0212 —
0.9 0 0 0.296 0.1 —3.67 0 -0.71 —-077 —-4.83 0.87 —-0.69 -—2.07 0 0 0.202 0.182 —
1.1 0 0 0301 0.1 -356 0 -061 -075 -51 0.65 —-067 -—201 0 0 0.16 0.149 —
1.3 0 0 0.307 0.11 —-3.46 0 —-048 —-0.72 -—556 0.37 —-0.65 -—-1.95 0 0 0.12 0.115 —
15 0 0 0.306 0.11 -34 0 -0.34 -069 -6.39 0.02 —-0.64 —-1.92 0 0 0.083 0.084 —
1.7 0 0 0.287 0.1 —-3.43 0 -0.27 -062 —-805 -043 -0.65 -—-1.94 0 0 0.051 0.056 —
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i ici i 10 11 13 12 14
TABLE XXIII. Perturpatlve coefficients forT, and T, in the T(1 ) — 0.11, -r(1 ):-|-(l )=O., -r(1 ):-|-(1 ) — —0.03,
pole scheme as a function &f. (A8)
E T(19) T(16) TN T9) T(16) TUN
0 1 1 1 2 2 2 and

17 -0077 -0069 0008 0022 0.014 —0.007
18 -0074 -0068 0012 002 0.013 —0.009
19 -0071 -0067 0016 0017 0012 —0011  TH=TA=TE=TW=TO=TN=TE=TII=T7(9=0,
2 —0068 -—0065 0021 0015 0011 —0.012
21 -0063 -0062 0026 0012 0.09 —0.013

22 -0.058 -0.059 0.031 0.009 0.008 —0.013 1
TP =——, T9=-0.03, T8=-T{?=0.05,

12
m, 1
MmH__B - _ = G = TW TG =T(N=
=7 T=—g TUST=Tr=Tr=0 qan__qop, (A9)
) ) © The remainingE,-dependent coefficients of the perturbative
Ty'=-0.14, T3"=-003, T;"=-0.02, corrections are listed in Table XXIII.
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