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B decay shape variables and the precision determination ofzVcbz and mb
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We present expressions for shape variables ofB decay distributions in several different mass schemes, to
order as

2b0 and LQCD
3 /mb

3 . Such observables are sensitive to theb quark mass and matrix elements in the
heavy quark effective theory, and recent measurements allow precision determinations of some of these pa-
rameters. We perform a combined fit to recent experimental results from CLEO, BABAR, and DELPHI, and
discuss the theoretical uncertainties due to nonperturbative and perturbative effects. We discuss the possible
discrepancy between the OPE prediction, recent BABAR results and the measured branching fraction toD and
D* states. We finduVcbu5(40.860.9)31023 andmb

1S54.7460.10 GeV, where the errors are dominated by
experimental uncertainties.

DOI: 10.1103/PhysRevD.67.054012 PACS number~s!: 13.20.He, 12.39.Hg, 14.65.Fy
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I. INTRODUCTION

The study of flavor physics andCP violation is entering a
phase when one is searching for small deviations from
standard model. Therefore it becomes important to reex
ine the theoretical predictions for inclusive decay rates
their uncertainties, which provide clean ways to determ
fundamental standard model parameters and test the co
tency of the theory.

Experimental studies of inclusive semileptonic and rareB
decays provide measurements of fundamental paramete
the standard model, such as the Cabibbo-Kobaya
Maskawa~CKM! elementsuVcbu, uVubu, and the bottom and
charm quark masses. Inclusive and rare decays are also
sitive to possible new physics contributions, and the theo
ical computations are model independent. The operator p
uct expansion~OPE! shows that in themb@LQCD limit
inclusiveB decay rates are equal to theb quark decay rates
@1,2#, and the corrections are suppressed by powers ofas and
LQCD/mb . High-precision comparison of theory and expe
ment requires a precise determination of the heavy qu
masses, as well as the matrix elementsl1,2, which param-
etrize the nonperturbative corrections to inclusive obse
ables atO(LQCD/mb)2. At order (LQCD/mb)3, six new ma-
trix elements occur, usually denoted byr1,2 and T1,2,3,4.
There are two constraints on these six matrix eleme
which reduces the number of parameters that affectB decays
at order (LQCD/mb)3 to four.

The accuracy of the OPE predictions depends prima
on the error of the quark masses, and to a lesser extent o
matrix elements of these higher dimensional operators
was proposed that these quantities can be determine
studying shapes ofB decay spectra@3–6#. Such studies have
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been recently carried out by the CLEO, BABAR an
DELPHI Collaborations@7–13#. A potential source of uncer
tainty in the OPE predictions is the size of the possible v
lations of the quark-hadron duality@14#. Studying the shapes
of inclusive B decay distributions may be the best way
constrain these effects experimentally, since it should in
ence the relationship between shape variables of diffe
spectra. Thus, testing our understanding of these spect
important to assess the reliability of the inclusive determi
tion of uVcbu, and also ofuVubu.

In this paper we present expressions for lepton and h
ronic invariant mass moments for the inclusive dec
B→Xc, n̄, as well as photon energy moments inB→Xsg
decays. We give these results as a function of cuts on
lepton and photon energy, respectively. Most results in
literature have been given in terms of the pole mass, wh
introduces artificially large perturbative corrections in inte
mediate steps, making it difficult to estimate perturbative u
certainties. We present all results in four different ma
schemes: the pole mass, the 1S mass, the potential-
subtracted~PS! mass, and the modified minimal subtractio
scheme (MS) mass. We then carry out a combined fit to
currently available data and investigate in detail the unc
tainties on the extracted parametersuVcbu andmb .

The results of this paper can be combined with indep
dent determinations of theb andc quark masses from studie
of QQ̄ states. We have chosen not to discuss those c
straints here, since there exist many detailed analyses in
literature@15#. Furthermore, the determinations ofmb andmc

from QQ̄ states have theoretical uncertainties which are
tally different from the current extraction. Consistency b
tween the extractions is therefore a powerful check on b
determinations.

II. SHAPE VARIABLES

We study three different distributions, the charged lep
spectrum@3,4,16,17# and the hadronic invariant mass spe
trum @5,18,16# in semileptonicB→Xc, n̄ decays, and the
©2003 The American Physical Society12-1
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photon spectrum inB→Xsg @6,19–21#. Similar studies are
also possible inB→Xs,

1,2 andB→Xsnn̄ decay@22#, but
at the present such processes do not give competitive in
mation.

The B→Xc, n̄ decay rate is known to orderas
2b0 @23#

and LQCD
3 /mb

3 @16#, whereb051122nf /3 is the coefficient
of the first term in the QCDb function, and the terms pro
portional to it often dominate at orderas

2 . For the charged
lepton spectrum we define shape variables which are
ments of the lepton energy spectrum with a lepton ene
cut,

R0~E0 ,E1!5E
E1

dG

dE,
dE,Y E

E0

dG

dE,
dE, ,

Rn~E0!5E
E0

E,
n dG

dE,
dE,Y E

E0

dG

dE,
dE, , ~1!

wheredG/dE, is the charged lepton spectrum in theB rest
frame.Rn has dimension GeVn, and is known to orderas

2b0

@17# and LQCD
3 /mb

3 @16#. Note that these definitions diffe
slightly from those in Ref.@4#, and follow the CLEO@9,10#
notation. The DELPHI Collaboration@12# measures the
mean lepton energy and its variance~both without any en-
ergy cut!, which are equal toR1(0) and R2(0)2R1(0)2,
respectively.

For theB→Xc, n̄ hadronic invariant mass spectrum w
define the mean hadron invariant mass and its variance,
with leptonenergy cutsE0,

S1~E0!5^mX
22m̄D

2 &uE,.E0
,

S2~E0!5^~mX
22^mX

2&!2&uE,.E0
, ~2!

where m̄D5(mD13mD* )/4 is the spin averagedD meson
mass. It is conventional to subtractm̄D

2 in the definition of
the first momentS1(E0). Sn has dimension (GeV)2n, and is
known to orderas

2b0 @18# and LQCD
3 /mb

3 @16#. For a given
E0, the maximal kinematically allowed hadronic invaria
mass ismX

max5AmB
222mBE0. OncemX

max2m̄D@LQCD, the
OPE is expected to describe the data.

The above shape variables can be combined in nume
ways to obtain observables that may be more suitable
experimental studies because of reduced correlations. Fo
ample,S1 andR0 can be combined to obtain predictions f

^mX
22m̄D

2 &uE1.E,.E0
5

S1~E0!R0~0,E0!2S1~E1!R0~0,E1!

R0~0,E0!2R0~0,E1!
,

~3!

that allows comparing regions of phase space that do
overlap@24#.
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For B→Xsg, we define the mean photon energy and va
ance, with a photon energy cutE0,

T1~E0!5^Eg&uEg.E0
,

T2~E0!5^~Eg2^Eg&!2&uEg.E0
, ~4!

wheredG/dEg is the photon spectrum in theB rest frame.
Again,T1,2 are known to orderas

2b0 @19# andLQCD
3 /mb

3 @21#.
In this case the OPE is expected to describeTi(E0) once
mB/22E0@LQCD. Precisely how lowE0 has to be to trust
the results can only be decided by studying the data a
function ofE0; one may expect thatE052 GeV available at
present is sufficient. Note that the perturbative correctio
included are sensitive to themc dependence of theb→cc̄s
four-quark operator (O2) contribution. This is a particularly
large effect in theO22O7 interference@19#, but its relative
influence on the moments of the spectrum is less severe
that on the total decay rate. The variance,T2, is very sensi-
tive to any boost of the decayingB meson; this contribution
enhancesT2 by b2/3 at leading order@19#, whereb is the
boost@b.0.064 if theB originates fromY(4S) decay#. This
is absent ifdG/dEg is reconstructed from a measurement
dG/dEmXs

.

III. MASS SCHEMES

The OPE results for the differential and total decay ra
are given in terms of theb quark mass,mb , and the quark
mass ratio,mc /mb . ~Throughout this paper quark mass
without other labels refer to the pole mass.! The pole mass
can be related to the known meson masses via the 1mQ
expansion

mM5mQ1L̄2
l11dMl2~mQ!

2mQ
1

r11dMr2

4mQ
2

2
T11T31dM~T21T4!

4mQ
2

1•••, ~5!

wheremM (M5P,V) is the hadron mass,mQ is the heavy
quark mass, anddP53 for pseudoscalar anddV521 for
vector mesons. Thel i ’s andr i ’s are matrix elements of loca
dimension-5 and 6 operators in heavy quark effective the
~HQET!, respectively, while theTi ’s are matrix elements o
time ordered products of operators with terms in the HQ
Lagrangian, and are defined in@16#.1 The ellipses denote
LQCD

4 /mQ
3 corrections, which can be neglected to the ord

we are working. Using Eq.~5!, we can eliminatemc in favor
of mb and the higher order matrix elements,

1These are related to the parametersrD
3 , rLS

3 , rpp
3 , rpG

3 , rS
3 , and

rA
3 introduced in@25#.
2-2
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mb2mc5m̄B2m̄D2l1S 1

2mc
2

1

2mb
D

1~r12T12T3!S 1

4mc
2

2
1

4mb
2D , ~6!

wherem̄M5(mP13mV)/4 denotes the spin averaged mes
masses.

Only three linear combinations ofT124 appear in the ex-
pressions forB meson decays~a fourth linear combination
would be required to describeB* decays!. The reason is tha
the T124 terms originate from two sources:~i! the mass re-
lations in Eqs.~5! and ~6! which depend onT11T3 andT2

1T4; and~ii ! corrections to the orderLQCD
2 /mb

2 terms in the
OPE, which amount to the replacementl1→l11(T1
13T2)/mb and l2→l21(T313T4)/(3mb). SinceT113T2
5(T11T3)13(T21T4)2(T313T4), only three linear com-
binations are independent. Therefore, we may setT450, and
the fit then projects on the linear combinations

T123T4 , T21T4 , T313T4 . ~7!

The mass splittings between the vector and pseudoscalar
sons,

DmM[mV2mP5
2k~mQ!l2~mb!

mQ
2

r22~T21T4!

mQ
2

1•••,

~8!

constrain the numerical values of some of the HQET ma
elements. Herek(mc)5@as(mc)/as(mb)#3/b0;1.2 is the
scaling of the magnetic moment operator betweenmb and
mc . In terms of the measuredB* 2B andD* 2D mass split-
tings,DmB andDmD ,

l2~mb!5
mb

2DmB2mc
2DmD

2@mb2k~mc!mc#
, ~9!

r22~T21T4!5
mbmc@k~mc!mbDmB2mcDmD#

mb2k~mc!mc
.

~10!

These equations differ slightly from those in Ref.@16#, and
are consistent to order 1/mQ

3 . Since orderas(LQCD/mQ)2

corrections in the OPE have not been computed, whethe
setk(mc) to its physical value,k(mc).1.2, or to unity is a
higher order effect that cannot be consistently included
present. Usingk(mc)51.2 or 1 in the fits gives effects whic
are negligible compared with other uncertainties in the c
culation.

It is well known that the pole masses suffer from a ren
malon ambiguity@26#, which only cancels in physical ob
servables against a similar ambiguity in the perturbative
pansions@27#. Although any quark mass scheme can be u
to relate physical observables to one another, the negle
05401
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higher order terms may be smaller if a renormalon-fr
scheme is used. When using pole masses it is importan
always work to a consistent order in the perturbative exp
sion, sinceL̄ can have large changes at each order in per
bation theory, even though the relations between measur
quantities such as the shape variables and the total sem
tonic decay rate have much smaller changes. SinceL̄ de-
pends strongly on the order of the calculation in perturbat
theory, one can get a misleading impression about the c
vergence of the calculation, and its uncertainties. The adv
tage of using renormalon-free mass schemes is that the
vergence may be manifest.

Several mass definitions which do not suffer from th
ambiguity have been proposed in the literature, and we c
sider here theMS, 1S, and PS masses.~There is a renorma-
lon ambiguity in the 1S and PS masses, but it is of relativ
order LQCD

4 /mb
4 and so is irrelevant for our considerations!

The MS mass is related to the pole mass through

m̄b~mb!

mb
512e

as~mb!CF

p
2e21.562

as~mb!2

p2
b01•••

~11!

andCF54/3 in QCD. The parametere[1 is a new expan-
sion parameter, which for theMS mass is the same as th
order in as . While the MS mass is appropriate for hig
energy processes, such asZ or h→bb̄, it is less useful in
processes where the typical momenta are belowmb . TheMS
mass is defined in full QCD with dynamicalb quarks and is
appropriate for calculating the scale dependence abovemb .
However, it does not make sense to run theMS mass below
mb ; this only introduces spurious logarithms that have
physical significance. Thus, although theMS mass is well-
defined, it is not a particularly useful quantity to describeB
decays. Therefore, several ‘‘threshold mass’’ definitions h
been introduced that are more appropriate for low ene
processes.

The 1S mass is related to the pole mass through the p
turbative relation@28,29#

mb
1S

mb
512

@as~m!CF#2

8 F1e1e2
as~m!

p S ,1
11

6 Db01•••G ,
~12!

where the right hand side is the mass of theY(1S) b̄b bound
state as computed in perturbation theory, and,
5 ln@m/„as(m)CFmb…#. For the 1S mass there is a subtlety i
the perturbative expansion due to a mismatch between
order ine and the order inas , so that terms of orderas

n11 in
Eq. ~12! are of orderen @28#.

The potential-subtracted mass@30# is defined with respec
to a factorization scalem f . It is related to the pole mas
through the perturbative relation
2-3
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mb
PS~m f !

mb
512

as~m!CF

p

m f

mb

3F1e1e2
as~m!

2p S ,1
11

6 Db01•••G , ~13!

where now,5 ln(m/mf). In this paper we will choosem f
52 GeV.

Another popular definition is the kinetic, or ‘‘running,
massmb(m) introduced in @25,31#. The kinetic mass has
properties similar to the PS mass, since it is defined wit
cutoff that explicitly separates long- and short-distance ph
ics. It should give comparable results, so we will not co
sider it here. We note, however, that in this scheme ma
elements such asl1 are also naturally defined with respect
a momentum cutoff. This has the advantage of absorb
some ‘‘universal’’ radiative corrections into the definitions
the matrix elements instead of the coefficients in the O
and is expected to improve the behavior of the perturba
series relatingl1 to physical quantities. However, as usu
the perturbative relation between physical quantities is
changed, and adopting this definition leaves our fits touVcbu
andmb unchanged.

The results for the various shape variables are functi
of the b quark mass. To simplify the expressions, in analo
with L̄ defined in Eq.~5!, we define new hadronic param
eters by the following relations:

L1S5
mY

2
2mb

1S ,

LPS5
mY

2
2mb

PS,

LMS54.2 GeV2m̄b~mb!. ~14!

We will refer to L̄, L1S, LPS and LMS generically asL.
Note that the introduction ofL is purely for computationa
-

h
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convenience. The form Eq.~14! is chosen so that the value o
L is numerically of orderLQCD. We can therefore expan
the radiative corrections in powers ofL and keep only the
leading term and the first derivative. This is convenient b
cause it avoids having to compute the radiative correctio
which involve a lengthy numerical integration, for each tr
value of the quark mass in the fit. Note also that in the 1S,
PS andMS schemes the dependence onmB2mb is purely
kinematic and is treated exactly, although it is formally
orderLQCD.

Thus the decay rates will be expressed in terms of 9
rameters: theL ’s in each mass scheme which we treat
orderLQCD, two parameters of orderLQCD

2 , l1, andl2, and
six parameters of orderLQCD

3 , r1 , r2, andT124. Of these,
only 6 are independent unknowns, asl2 is determined by
Eq. ~9!, r22(T21T4) is determined by Eq.~10!, andT4 can
be set to zero as explained preceding Eq.~7!.

IV. EXPANSIONS AND THEIR CONVERGENCE

The computations in this paper include contributions
order 1/mQ

2 and 1/mQ
3 , as well as radiative contribution o

ordere, andeBLM
2 , the so-called BLM contribution at orde

e2 which is proportional tob0. The dominant theoretica
errors arise from the higher order terms which we have
glected. In the perturbative series, we have neglected
non-BLM part of the two-loop correction. We have also n
glected the unknown orderas /mb

2 and 1/mb
4 corrections in

the OPE. The decay distributions depend on the charm qu
mass, which is determined fromm̄B2m̄D using Eq.~6!. This
formula introducesLQCD

4 /mc
4 corrections. Sincemc only en-

ters inclusive decay rates in the formmc
2/mb

2 , the largest
1/m4 corrections are of orderLQCD

4 /(mb
2mc

2). Finally, the

O(eL̄) corrections forS1 andS2 have only been calculate
without a cut on the lepton energy@18#.

For theB→Xc, n̄ decay rate and the shape variables d
fined in Eqs.~1!, ~2!, and~4! we give results in the Appendix
in the four different mass schemes discussed, for the co
cientsX(1217)(E0) in the expansion
X~E0!5X(1)~E0!1X(2)~E0!L1X(3)~E0!L21X(4)~E0!L31X(5)~E0!l11X(6)~E0!l21X(7)~E0!l1L1X(8)~E0!l2L

1X(9)~E0!r11X(10)~E0!r21X(11)~E0!T11X(12)~E0!T21X(13)~E0!T31X(14)~E0!T41X(15)~E0! e

1X(16)~E0!eBLM
2 1X(17)~E0!eL, ~15!
e

lts
f the
whereX(E0) is any ofR0(0,E0), Ri(E0), Si(E0), or Ti(E0)
and i 51,2. Note that to obtainR0(E0 ,E1) one needs to re
expandR0(0,E1)/R0(0,E0), but usingR0(0,E0) allows us to
tabulate the results as a function of only one variable. T
 e

expressions forR0(0,E0) are also convenient for deriving th
predictions for other observables, such as those in Eq.~3!.

Unfortunately there is no simple way to relate the resu
in different mass schemes, because a particular value o
2-4
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physicalE0 cut corresponds to different limits of integration
in the dimensionless variables~such as 2E0 /mb) in different
mass schemes. We list the coefficients of the expansion
the shape variables in the various mass schemes in the
pendix.

Before using these expressions, one has to assess the
vergence of both the perturbative expansions and of
power suppressed corrections. As each shape variable a
from a ratio of two series, the result can be worse or be
behaved than the individual series in the numerator and
nominator. We have checked that this is the reason for
apparent poor behavior of, for example,R1(1.5 GeV) in the
1S scheme, where one sees that orderas term
R1

(15)(1.5 GeV)50.001, whereas the orderas
2 Brodsky-

Lepage-Mackenzie~BLM ! term R1
(16)(1.5 GeV)50.003 is

larger. Since separately the numerator and denominator s
good convergence, one should not conclude t
R1(1.5 GeV) is not a useful observable to constrain
HQET parameters. In general, one cannot conclude whe
a series is poorly behaved or not by comparing theas

2 term
with the as term because of possible cancellations. Inste
one should compare with the expected size of terms base
a naive dimensional estimate.

In Refs. @5,18# the second hadronic invariant mass m
ment defined aŝ(mX

22m̄D
2 )2& was studied, and it was ob

served that the size of theLQCD
3 /mb

3 correction was compa
rable to both theLQCD

2 /mb
2 and asLQCD/mb terms. The

authors therefore concluded that the convergence of the
was suspect for this moment, and argued that useful c
straints onL̄ and l1 could not be obtained. A very simila
situation holds for the varianceS2. However, one can obtain
more insight into the convergence of this moment by exa
ining the behavior of the relevant terms in the OPE for^mX

2&
and^mX

4& separately. In the pole scheme~for simplicity!, the
expressions are

1

mB
2 ^mX

2&uE,.05
mD

2

mB
2 10.24

L̄

mB
10.26

L̄2

mB
2

11.02
l1

mB
2

12.2
r1

mB
3

10.21
as

4p
10.41

as

4p

L̄

mB
,

1

mB
4 ^mX

4&uE,.05
mD

4

mB
4

10.07
L̄

mB
10.14

L̄2

mB
2

10.15
l1

mB
2

20.23
r1

mB
3

10.08
as

4p
10.27

as

4p

L̄

m̄B

.

~16!

The OPE for both observables is well behaved, with the
nonical size of ther1 term a factor of 5–10 smaller than th
l1 term. The corresponding constraints in theL̄2l1 plane
have slopes which differ by roughly a factor of two, and
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constrain one linear combination ofL̄ and l1 much better
than the orthogonal combination.

If instead of the second moment we consider the varian
we may combine the two series to find

1

mB
4 ^mX

42^mX
2&2&uE,.050.01

L̄2

m̄B
2

20.14
l1

m̄B
2

20.86
r1

m̄B
3

10.02
as

4p
10.06

as

4p

L̄

m̄B

. ~17!

The variance gives constraints in theL̄2l1 plane which are
almost orthogonal to those of the first moment, but since i
simply a linear combination of the first and second momen
it cannot constrain the parameters any better. However,
also no worse: none of the coefficients are larger than wo
be expected by dimensional analysis. The apparent poor
vergence of the variance is due to a cancellation in theL̄
~and to a lesser extent thel1) terms between the two serie
Therefore, there is no reason to expect theO(1/mB

4) terms to
be anomalously large. Constraints arising fromS2 @or from
^(mX

22m̄D
2 )2&] therefore need not be dismissed, althou

they are very sensitive tor1 and so are of limited utility
unless a sufficiently large number of observables is meas
that r1 is also constrained.

V. EXPERIMENTAL DATA

The experimental data for the lepton spectrum from
CLEO collaboration are the three lepton moments@9,10#

R0~1.5 GeV, 1.7 GeV!50.618760.0021,

R1~1.5 GeV!5~1.781060.0011! GeV,

R2~1.5 GeV!5~3.196860.0026! GeV2.
~18!

For R0 and R1, we used the averaged electron and mu
values, with the full correlation matrix as given in Ref.@9#.
For R2, we have used the weighted average of the elect
and muon data@10#. The DELPHI Collaboration measure
the lepton energy and variance@12#,

R1~0!5~1.38360.015! GeV,

R2~0!2R1~0!25~0.19260.009! GeV2. ~19!

For the hadronic invariant mass spectrum we have CL
measurements of the mean invariant mass and variance
a lepton energy cut of 1.5 GeV@8#

S1~1.5 GeV!5~0.25160.066! GeV2,
2-5
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S2~1.5 GeV!5~0.57660.170! GeV4, ~20!

and DELPHI measurements of the mean invariant mass
variance with no lepton energy cut@13#

S1~0!5~0.55360.088! GeV2,

S2~0!5~1.2660.23! GeV4. ~21!

Both collaborations also measure the second moment^(mX
2

2m̄D
2 )2&, but we do not use this result since it is not ind

pendent ofS1 andS2.
The BABAR Collaboration measures the first moment

the hadron spectrum for various values of the lepton ene
cut @11#. The data points are highly correlated, and the va
tion of the first moment with the energy cut appears to be
poor agreement with the OPE predictions. We will do our
without the BABAR data, as well as including the BABA
data for the two extreme values of their lepton energy c
E50.9 and E51.5 GeV @11#, to avoid overemphasizing
many points with correlated errors in the fit,

S1~1.5 GeV!5~0.35460.080! GeV2,

S1~0.9 GeV!5~0.69460.114! GeV2. ~22!

Note that we took into account that CLEO@9# and BABAR
@11# usedm̄D51.975 GeV to obtain the quoted values ofS1,
whereas DELPHI@13# usedm̄D51.97375 GeV.

For the photon spectrum we use the CLEO results@7#

T1~2 GeV!5~2.34660.034! GeV,

T2~2 GeV!5~0.022660.0069! GeV2. ~23!

The final piece of data is the semileptonic decay wid
for which we use the average ofB6 andB0 data@32#,

G~B→X, n̄ !5~42.761.4!310212 MeV. ~24!

We do not average this with theBs and b-baryon semilep-
tonic widths, as the power suppressed corrections can d
in these decays.

Equations~18!–~24! provide a total of 14 measuremen
that enter our fit.

VI. THE FIT

In this section we perform a simultaneous fit to the va
ous experimentally measured moments and the semilept
rate. It is important to note that we do not include any c
relations between experimental measurements beyond t
presented in@9,10#, and so the experimental uncertainties a
not completely taken into account. Nevertheless, the fit d
onstrates the importance of including the full correlation
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the O(1/mb
3) terms in the different observables, and also

dicates the relative importance of the theoretical and exp
mental uncertainties.

We use the fitting routine Minuit to fit simultaneously fo
the shape variables and the total semileptonic branching f
tion, by minimizingx2, and present results for the fit in th
1S scheme~the other schemes give comparable results!.

In addition to the experimental uncertainties, there
also uncertainties in the theory because the formulas use
the fit are not exact. From naive dimensional analysis we fi
the fractional theory errors 0.0003 from (as/4p)2 terms,
0.0002 from (as/4p)LQCD

2 /mb
2 terms, and 0.001 from

LQCD
4 /(mb

2mc
2) terms. In some cases, naive dimension

analysis underestimates the uncertainties, and an altern
is estimating the uncertainties by the size of the last te
computed in the perturbation series. We combine these
mates by adding in quadrature half of theeBLM

2 term and a
0.001mB

n theoretical error for quantities with mass dimensi
n. In computingx2, we add this theoretical error in quadra
ture to the experimental errors. This procedure avoids giv
a large weight in the fit to a very accurate measurement
cannot be computed reliably. Because the perturbative res
in the 1S scheme are not expected to be artificially bad
behaved~as they are in, for example, the pole scheme! this
estimate of the perturbative uncertainty should be reas
able. We will examine the convergence of perturbati
theory later in this section.

The unknown matrix elements of the 1/mb
3 operators are

the largest source of uncertainty in the fit. One expects th
matrix elements to be of orderLQCD

3 . To allow for this the-
oretical input, we include an additional contribution tox2

from the matrix elements of each 1/mb
3 operators,r1,2 and

T124, that we denote generically bŷO&,

Dx2~mx ,Mx!5H 0, u^O&u<mx
3 ,

@ u^O&u2mx
3#2/Mx

6 , u^O&u.mx
3 ,

~25!

where (mx ,Mx) are both thought of as quantities of ord
LQCD. This way we do not prejudicêO& to have any par-
ticular value in the rangeu^O&u<mx

3 . In the fit we takeMx

5500 MeV, and varymx between 500 MeV and 1 GeV to
test that our results foruVcbu and mb are insensitive to this
input ~our final results are obtained withmx5500 MeV).
The data are sufficient to constrain the 1/mb

3 operators in the
sense that they can be consistently fit with reasonable val
but they are not determined with any useful precision.
nally, since only three linear combinations ofT124 appear in
the formulas, we fit settingT450, so that the fit values for
T123 with this choice forT4 are the values ofT123T4 , T2
1T4, andT313T4.

The fit results are summarized in Tables I and II. In Tab
I we show the results of the fit foruVcbu, mb

1S andl1, as well
as the ‘‘effective’’ combinationl11(T113T2)/mb which
enters in the OPE, and which, due to correlated errors
better constrained thanl1. From these results we can als
2-6
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TABLE I. Fit results for uVcbu, mb , l1 and l11(T113T2)/mb in the 1S scheme. TheuVcbu value
includes electromagnetic radiative corrections; see Eq.~26!. The upper or lower blocks are fits excluding o
including the BABAR data, and have 5 and 7 degrees of freedom, respectively.

mx @GeV# x2 uVcbu3103 mb
1S @GeV# l1 @GeV2# l11

T113T2

mb
@GeV2#

0.5 5.0 40.860.9 4.7460.10 20.2260.38 20.3160.17
1.0 3.5 41.160.9 4.7460.11 20.4060.26 20.3160.22

0.5 12.9 40.860.7 4.7460.10 20.1460.13 20.2960.10
1.0 8.5 40.960.8 4.7660.11 20.2260.25 20.1760.21
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obtain an expression foruVcbu as a function of the semilep
tonic branching ratio and theB meson lifetime. We find

uVcbu5~40.860.7!31023hQEDFB~B→Xc, n̄ !

0.105

1.6 ps

tB
G1/2

.

~26!

The quoted error contains all uncertainties frommb , l1, the
1/mb

3 matrix elements, as well as perturbative uncertaint
The parameterhQED;1.007 is the electromagnetic corre
tion to the inclusive decay rate, which has been included
the values foruVcbu presented in Table I. Including th
BABAR data increases thex2 by about a factor of two.
Doubling the allowed range of the 1/mb

3 parameters increase
the uncertainties only minimally and reducesx2 somewhat.

The reason we carried out separate fits excluding and
cluding the BABAR data onS1(E0) is because of its incon
sistency at lowE0 with the fit done without it. To see this
note that on very general groundsS1(E0) is a monotonically
decreasing function ofE0. The theoretical prediction corre
sponding to the fit in the first line of Table I isS1(0)
5(0.4260.03) GeV2, which is significantly below the low-
est BABAR data point,S1(0.9 GeV!5~0.69460.114! GeV.
Assuming that the branching ratio to nonresonant chan
betweenD* andD** is negligible, this prediction forS1(0)
implies an upper bound on the fraction of excited~i.e., non-
D (* )) states inB→Xc, n̄ decay@16#, which is below 25%,
and is in contradiction with the measuredB→D (* ), n̄
branching fractions. To resolve this, either the assump
that low-mass nonresonant channels are negligible could
wrong, or some measurements or the theory have to be
eral standard deviations off. TheXc spectrum effectively has
this ~assumed! feature in the CLEO and BABAR analyse
05401
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but not in DELPHI. It is thus crucial to precisely and mod
independently measure themXc

distribution in semileptonic

B→Xc, n̄ decay. A comparison of the BABAR hadronic mo
ment data with our fit is given in Fig. 1.

To get more insight into the obtained uncertainties,
have performed several additional fits in which we turn
individual contributions to the errors. Here we present
results for the fits withmx50.5 and not including the
BABAR data. Similar results are true when the BABAR va
ues are included. Neglecting all 1/mb

3 terms, as well as the
naive estimate of the theoretical uncertainties gives a fit w
x2581 for 9 degrees of freedom. Including only the 1/mb

3

terms givesx2521 for 5 degrees of freedom. This is a vast
better fit, reducingx2 by about 60 by adding only 4 new
parameters. Nevertheless, the fact thatx2 per degree of free-
dom is about 5 shows that there is a statistically signific
discrepancy between theory and experiment if other theo
ical uncertainties are not included. Only after including th
estimate do we getx2/DOF'1. We also estimated the siz
of the theoretical uncertainties by setting all experimen
errors to zero. This reduces all uncertainties by roughl
factor of three. Thus, the fit is dominated by experimen
uncertainties.

The fit gives a value of theb quark mass which is consis
tent with other extractions, and with an uncertainty at the 1
MeV level. For comparison,Y sum rules extractions in Refs
@33,34# give mb

1S54.6960.03 GeV and mb
1S54.78

60.11 GeV, respectively by a fit to theB̄B system near
threshold. The error onl1 is larger than previous extraction
from T1 andS1 @8#, because we are including more cons
vative estimates of the theoretical uncertainties. Despite t
the uncertainty onuVcbu is smaller than from previous extrac
tions. Note that we have only used the value of the semil
tonic branching ratio ofB mesons. It is inconsistent to com
ts
TABLE II. Fit results for the 1/mb
3 coefficients in the 1S scheme. The upper or lower blocks are fi

excluding or including the BABAR data. The constraint in Eq.~10! is used to determiner2.

mx @GeV# r1 @GeV3] r2 @GeV3] T11T3 @GeV3] T113T2 @GeV3]

0.5 0.1560.12 20.0160.11 20.1560.84 20.4561.11
1.0 0.1660.18 20.0560.16 0.4160.40 0.4560.49

0.5 0.1760.09 20.0460.09 20.3460.16 20.6660.32
1.0 0.0860.18 20.1260.15 0.1160.33 0.2360.47
2-7
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bine the average semileptonic branching ratio ofb quarks
~includingBs andLb states! with the moment analyses, sinc
hadronic matrix elements have different values in theB/B*
system, and in theBs /Bs* or Lb .

The fit results for the 1/mb
3 parameters are shown in Tab

II. Clearly, one is not able to determine the values of
1/mb

3 parameters from the present fit. All that can be said
that the preferred values are consistent with dimensiona
timates. There is also some indication thatr2 is small, as is
expected in some models@16#.

One can also use the fits to predict other observables
can be measured. For example, we predict the values fo
fractional momentsR3a , R3b , R4a , R4b , D3 andD4 given
by Bauer and Trott@35#. The predicted values are given
Table III. The results are robust, and do not depend on
width chosen for the 1/m3 operators, or whether or not w
include the BABAR data.

Finally, it is useful to study the convergence of perturb
tion theory by carrying out the fit at different orders in th
perturbation expansion. In Fig. 2 we show the 1s error el-
lipse in the mb

1S–uVcbu plane, for the four different mas
schemes. For each scheme we show three contours, obt
at the tree level~dotted curves!, at ordere ~dashed curves!,
and including ordereBLM

2 corrections as well~solid black
curves!. For each of these curves, the conversion of the fit
mass to the 1S mass has been done at the consistent orde
perturbation theory. One can see that the convergence o
perturbative expansion is slightly better for the 1S and the
PS schemes compared with the pole scheme. This is bec
there is an incomplete cancellation of formally higher ord

FIG. 1. Comparison of the BABAR measurement of the had
invariant mass spectrum@11# vs the lepton energy cut~black
squares!, and our prediction from the fit not including BABAR
hadronic mass data~triangles!.
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terms, such asasL̄
2, which are large in the pole scheme. Th

larger uncertainties in theMS scheme are due to large co
tributions at BLM order, which are included in the unce
tainty estimate, as explained at the beginning of this sect

VII. SUMMARY AND CONCLUSIONS

Experimental studies of the shape variables discusse
this paper are crucial in determining from experimental d
the accuracy of the theoretical predictions for inclusiveB
decays rates, which rest on the assumption of local dua
Detailed knowledge of how well the OPE works in differe
regions of phase space~and a precise value ofmb) will also
be important for the determination ofuVubu from inclusiveB
decays. A serious discrepancy between theory and
would imply, for example foruVcbu, that only its determina-
tion from exclusive decays has a chance of attaining a r
able error below the;5% level.

The analysis in this paper shows that at the present le
of accuracy, the data from the lepton and photon spectra
consistent with the theory, with no evidence for any brea
down of quark-hadron duality in shape variables. Two rela

n

FIG. 2. The 1s error ellipse in themb
1S vs uVcbu plane, using

different mass schemes for the fit. For each scheme we show
contours obtained at the tree level~dotted curves!, at order e
~dashed curves!, and at ordereBLM

2 ~solid black curves!.
ing the
TABLE III. Fit predictions for fractional moments of the electron spectrum. The upper or lower blocks are fits excluding or includ
BABAR data.

mx @GeV# R3a R3b R4a R4b D3 D4

0.5 0.30260.003 2.26160.013 2.12760.013 0.68460.002 0.52060.002 0.60460.002
1.0 0.30260.002 2.26160.011 2.12860.011 0.68460.002 0.51960.002 0.60460.001

0.5 0.30260.002 2.26160.012 2.12760.012 0.68460.002 0.52060.002 0.60460.001
1.0 0.30260.002 2.26260.012 2.12960.012 0.68460.002 0.51960.001 0.60460.001
2-8
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problems at present are the BABAR measurement of the
erage hadronic invariant mass as a function of the lep
energy cut and the total branching fraction toD and D*
states, both of which appear problematic to reconcile w
the other measurements combined with the OPE. Howe
both problems depend on assumptions about the inva
mass distribution of the decay products, which needs to
better understood. Excluding the BABAR data and the pr
lem of theB→D (* ), n̄ branching ratios, the fit provides
good description of the experimental results, withx255.0
for 12 data points and 7 fit parameters in the 1S scheme.

The main results~in the 1S scheme! are summarized in
Fig. 3 where we compare our determination ofuVcbu andmb

1S

with those from exclusiveB decays and upsilon sum rule
We obtain the following values:

uVcbu5~40.860.9!31023,

mb
1S5~4.7460.10! GeV. ~27!

This corresponds to theMS mass m̄b(m̄b)54.22
60.09 GeV. We have also presented the value ofuVcbu as a
function of the semileptonic branching ratio and theB meson
lifetime

uVcbu5~41.160.7!31023FB~B→Xc, n̄ !

0.105

1.6 ps

tB
G1/2

.

~28!

We have constrained the 1/m3 matrix elements and predicte
the values for fractional moments of the electron spectrum
better than 1% accuracy.

FIG. 3. The 1- and 2-s regions in themb
1S vs uVcbu plane using

the 1S mass scheme. Superimposed are the values and errors o
determination ofuVcbu from exclusive decays@32# and that ofmb

1S

from sum rules in Ref.@33# ~square! and Ref.@34# ~triangle!.
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Setting experimental errors to zero gives errors inuVcbu
and mb

1S of 0.3531023 and 35 MeV, respectively. Thes
numbers indicate the theoretical limitations, although th
precise values depend on details of how the theoretical
certainties are estimated. If the agreement between the
perimental results improve in the future, then a full two lo
calculation of the total semileptonic rate and ofB→Xc, n̄
decay spectra would help to further reduce the theoret
uncertainty inuVcbu andmb .
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APPENDIX: COEFFICIENT FUNCTIONS
IN VARIOUS MASS SCHEMES

In this appendix we give numerical results for theB

→Xc, n̄ decay rate and the shape variables defined in E
~1!, ~2!, and~4!, in the four mass schemes discussed. For
quantities the coefficients of the expansions are defined a
Eq. ~15!, and all numerical values are in units of GeV to th
appropriate power. We useas(mb)50.22 and the spin- and
isospin-averaged meson masses,m̄B55.314 GeV andm̄D
51.973 GeV.

1. The 1S mass scheme

The B→Xc, n̄ decay width in the 1S scheme is given by

G~B→Xc, n̄ !

5
GF

2 uVcbu2

192p3 S mY

2 D 5

@0.53420.232L20.023L2

10.L320.11l120.15l220.02l1L10.05l2L

20.02r110.03r220.05T110.01T220.07T3

20.03T420.051e20.016eBLM
2 10.016eL#, ~A1!

We tabulate the shape variables defined in Eq.~1! in Tables
IV, V, and VI, and those defined in Eq.~2! in Tables VII and
VIII in the 1S mass scheme. ForS1 andS2 we do not show

the
2-9
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TABLE IV. Coefficients forR0(0,E0) in the 1S scheme as a function ofE0.

E0 R0
(1) R0

(2) R0
(3) R0

(4) R0
(5) R0

(6) R0
(7) R0

(8) R0
(9) R0

(10) R0
(11) R0

(12) R0
(13) R0

(14) R0
(15) R0

(16) R0
(17)

0.5 0.972 20.003 20.002 0. 0. 20.01 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0.

0.7 0.927 20.008 20.005 0. 20.01 20.03 20.01 20.01 0. 0. 20.01 0. 20.01 20.01 0.001 0.001 0.

0.9 0.853 20.016 20.01 20.01 20.02 20.06 20.02 20.03 0. 0.01 20.01 0. 20.02 20.01 0.002 0.001 0.

1.1 0.749 20.028 20.015 20.01 20.04 20.1 20.03 20.05 20.01 0.01 20.02 0. 20.03 20.02 0.002 0.001 0.

1.3 0.615 20.043 20.022 20.01 20.06 20.15 20.05 20.08 20.01 0.02 20.03 0. 20.04 20.03 0.003 0.002 0.

1.5 0.455 20.062 20.029 20.01 20.08 20.2 20.07 20.11 20.01 0.03 20.04 0. 20.05 20.04 0.003 0.002 0.

1.7 0.279 20.084 20.037 20.02 20.1 20.25 20.08 20.15 20.01 0.03 20.04 20.01 20.06 20.05 0.002 0.003 20.001

TABLE V. Coefficients forR1(E0) in the 1S scheme as a function ofE0.

E0 R1
(1) R1

(2) R1
(3) R1

(4) R1
(5) R1

(6) R1
(7) R1

(8) R1
(9) R1

(10) R1
(11) R1

(12) R1
(13) R1

(14) R1
(15) R1

(16) R1
(17)

0 1.392 20.077 20.026 20.01 20.11 20.22 20.07 20.08 20.04 0.01 20.04 20.02 20.05 20.05 0.003 0.003 0.

0.5 1.422 20.076 20.025 20.01 20.11 20.22 20.06 20.08 20.04 0.01 20.04 20.02 20.05 20.05 0.003 0.003 0.

0.7 1.461 20.075 20.023 20.01 20.11 20.21 20.06 20.08 20.04 0.01 20.04 20.02 20.05 20.04 0.002 0.003 0.

0.9 1.517 20.074 20.022 20.01 20.11 20.2 20.06 20.08 20.04 0.01 20.04 20.02 20.05 20.04 0.002 0.003 0.

1.1 1.588 20.074 20.021 20.01 20.11 20.19 20.06 20.08 20.04 0. 20.04 20.03 20.04 20.04 0.001 0.003 0.

1.3 1.672 20.075 20.02 20.01 20.11 20.19 20.06 20.07 20.05 0. 20.04 20.03 20.04 20.04 0.001 0.003 0.

1.5 1.767 20.077 20.02 20.01 20.12 20.17 20.07 20.07 20.06 20.02 20.04 20.04 20.04 20.04 0.001 0.003 0.

1.7 1.872 20.08 20.021 20.01 20.14 20.16 20.1 20.06 20.1 20.04 20.04 20.06 20.03 20.03 0.001 0.003 0.

TABLE VI. Coefficients forR2(E0) in the 1S scheme as a function ofE0.

E0 R2
(1) R2

(2) R2
(3) R2

(4) R2
(5) R2

(6) R2
(7) R2

(8) R2
(9) R2

(10) R2
(11) R2

(12) R2
(13) R2

(14) R2
(15) R2

(16) R2
(17)

0 2.118 20.247 20.07 20.02 20.36 20.68 20.19 20.21 20.15 0.02 20.14 20.08 20.16 20.14 0.008 0.01 20.001

0.5 2.175 20.247 20.069 20.02 20.36 20.68 20.19 20.22 20.15 0.02 20.13 20.08 20.16 20.14 0.007 0.009 20.001

0.7 2.263 20.248 20.067 20.02 20.36 20.68 20.19 20.22 20.16 0.01 20.13 20.09 20.15 20.14 0.007 0.009 20.001

0.9 2.401 20.252 20.065 20.02 20.37 20.67 20.19 20.22 20.17 0.01 20.13 20.1 20.15 20.14 0.005 0.009 20.001

1.1 2.593 20.259 20.064 20.02 20.38 20.67 20.19 20.23 20.18 20.01 20.13 20.11 20.14 20.14 0.004 0.009 20.001

1.3 2.842 20.271 20.063 20.02 20.41 20.66 20.21 20.23 20.21 20.03 20.14 20.13 20.14 20.14 0.003 0.009 20.001

1.5 3.15 20.288 20.066 20.02 20.46 20.64 20.24 20.23 20.28 20.07 20.14 20.18 20.13 20.14 0.003 0.011 20.001

1.7 3.518 20.311 20.072 20.02 20.58 20.62 20.35 20.21 20.43 20.16 20.16 20.26 20.12 20.13 0.004 0.013 0.

TABLE VII. Coefficients forS1(E0) in the 1S scheme as a function ofE0.

E0 S1
(1) S1

(2) S1
(3) S1

(4) S1
(5) S1

(6) S1
(7) S1

(8) S1
(9) S1

(10) S1
(11) S1

(12) S1
(13) S1

(14) S1
(15) S1

(16) S1
(17)

0 0.832 1.633 0.416 0.13 1.49 20.36 0.75 0. 0.46 20.24 0.53 0.25 0.5 0.14 0.044 20.025 0.025

0.5 0.82 1.609 0.409 0.12 1.5 20.32 0.75 0.02 0.48 20.24 0.54 0.26 0.5 0.14 0.039 20.028 —

0.7 0.805 1.578 0.398 0.12 1.52 20.26 0.77 0.05 0.5 20.23 0.54 0.27 0.5 0.16 0.032 20.031 —

0.9 0.784 1.533 0.38 0.11 1.56 20.16 0.79 0.12 0.55 20.22 0.55 0.3 0.51 0.18 0.023 20.035 —

1.1 0.759 1.479 0.354 0.1 1.63 20.02 0.83 0.22 0.63 20.2 0.57 0.34 0.52 0.2 0.011 20.04 —

1.3 0.734 1.42 0.319 0.09 1.74 0.18 0.91 0.38 0.7720.16 0.59 0.41 0.54 0.24 20.002 20.046 —

1.5 0.716 1.371 0.277 0.06 1.97 0.45 1.07 0.65 1.0320.06 0.64 0.55 0.56 0.3 20.018 20.054 —

1.7 0.72 1.368 0.254 0.05 2.49 0.84 1.59 1.13 1.64 0.22 0.76 0.86 0.6 0.3820.035 20.066 —
054012-10
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TABLE VIII. Coefficients for S2(E0) in the 1S scheme as a function ofE0.

E0 S2
(1) S2

(2) S2
(3) S2

(4) S2
(5) S2

(6) S2
(7) S2

(8) S2
(9) S2

(10) S2
(11) S2

(12) S2
(13) S2

(14) S2
(15) S2

(16) S2
(17)

0 0.125 0.472 0.531 0.16 24.43 20.68 21.04 21.6 25.46 1.07 20.94 22.8 20.05 20.13 0.381 20.428 0.171

0.5 0.123 0.467 0.524 0.1624.34 20.66 20.99 21.55 25.53 0.96 20.93 22.74 20.05 20.12 0.405 20.42 —

0.7 0.123 0.465 0.521 0.1624.23 20.64 20.91 21.5 25.64 0.81 20.9 22.67 20.05 20.12 0.448 20.408 —

0.9 0.124 0.468 0.524 0.1624.08 20.62 20.78 21.43 25.85 0.59 20.87 22.58 20.05 20.11 0.526 20.391 —

1.1 0.126 0.477 0.533 0.1623.89 20.6 20.6 21.36 26.2 0.28 20.83 22.46 20.05 20.11 0.661 20.37 —

1.3 0.128 0.486 0.546 0.1723.69 20.57 20.35 21.28 26.79 20.11 20.79 22.33 20.05 20.1 0.892 20.344 —

1.5 0.128 0.487 0.55 0.1823.5 20.53 20.04 21.19 27.88 20.61 20.75 22.21 20.05 20.1 1.328 20.311 —

1.7 0.12 0.454 0.509 0.1623.46 20.49 0.16 21.08 210.34 21.34 20.74 22.18 20.05 20.09 2.345 20.273 —
t
n

ve

Eq.

ries

e
.
de-

,

eme
the E0 dependence of the ordereL terms, as they are no
known. For all quantities the coefficients of the expansio
are defined as in Eq.~15!.

For theB→Xsg shape variables defined in Eq.~4!, only
Ti

(15) , Ti
(16) , andTi

(17) are functions ofE0, oncemB/22E0

@LQCD. For the otherT’s in the 1S scheme we find

T1
(1)5

mY

4
, T1

(2)52
1

2
, T1

(3)5T1
(4)50,

T1
(5)520.05, T1

(6)520.16,

T1
(7)520.01, T1

(8)520.03,

T1
(9)520.02, T1

(10)50.18,

T1
(11)5T1

(13)520.01, T1
(12)5T1

(14)520.03, ~A2!

and

T2
(1)5T2

(2)5T2
(3)5T2

(4)5T2
(6)5T2

(7)5T2
(8)5T2

(13)5T2
(14)50,

T2
(5)52

1

12
, T2

(9)520.04, T2
(10)52T2

(12)50.05,

TABLE IX. Perturbative coefficients forT1(E0) andT2(E0) in
the 1S scheme as a function ofE0.

E0 T1
(15) T1

(16) T1
(17) T2

(15) T2
(16) T2

(17)

1.7 20.043 20.017 0.016 0.016 0.011 20.014
1.8 20.038 20.014 0.021 0.012 0.009 20.014
1.9 20.032 20.011 0.026 0.01 0.007 20.014
2 20.025 20.006 0.033 0.007 0.006 20.013
2.1 20.017 20.001 0.042 0.004 0.004 20.012
2.2 20.007 0.008 0.056 0.002 0.002 20.01
05401
s
T2

(11)520.02. ~A3!

The remaining,E0-dependent coefficients of the perturbati
corrections are listed in Table IX.

2. The PS mass scheme

The expressions for theB→Xc, n̄ decay rate and the
shape variables in the PS scheme are almost identical to
~A1!, Tables IV–VIII, and Eqs.~A2! and ~A3!, because we
choose to expandmb

PS aboutmY/2 as well. The difference in

theB→Xc, n̄ rate compared with Eq.~A1! is that the pertur-
bation series is replaced by20.020e20.003eBLM

2

10.025eL, and of course, the meaning ofL changes from
L1S to LPS.

Next we tabulate the coefficients of the perturbation se
of the shape variables defined in Eqs.~1! and~2!, that differ
from the entries in Tables IV–VIII, in Table X in the PS
mass scheme. ForS1 andS2 we do not show in the tables th
ordereL terms again as theirE0-dependence is not known
For all quantities the coefficients of the expansions are
fined as in Eq.~15!.

For theB→Xsg shape variables defined in Eq.~4!, the
expressions forT2 are identical in the 1S and PS schemes
and so onlyT1

(15) , T1
(16) , andT1

(17) differ between these two
schemes. The results for these coefficients in the PS sch
are shown in Table XI.

3. The MS mass scheme

TheB→Xc, n̄ decay width in theMS scheme is given by

G~B→Xc, n̄ !

5
GF

2 uVcbu2

192p3
~4.2 GeV!5@0.73320.464L20.036L2

10.01L320.22l120.22l220.04l1L10.1l2L

20.01r110.05r220.16T110.01T220.18T320.05T4

10.085e10.065eBLM
2 10.022eL#, ~A4!
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TABLE X. Perturbative coefficients forR0(0,E0), R1(E0), R2(E0), S1(E0), andS2(E0) in the PS scheme, that differ from the resu
in the 1S scheme, as a function ofE0.

E0 R0
(15) R0

(16) R0
(17) R1

(15) R1
(16) R1

(17) R2
(15) R2

(16) R2
(17) S1

(15) S1
(16) S1

(17) S2
(15) S2

(16) S2
(17)

0 — — — 0.013 0.007 0.008 0.041 0.024 0.02120.178 20.106 20.106 0.317 20.452 0.022

0.5 0.001 0. 0.001 0.013 0.007 0.007 0.041 0.023 0.0220.18 20.108 — 0.342 20.443 —

0.7 0.002 0.001 0.002 0.012 0.007 0.007 0.04 0.023 0.0220.182 20.109 — 0.385 20.432 —

0.9 0.004 0.002 0.003 0.012 0.007 0.007 0.04 0.023 0.01920.186 20.111 — 0.462 20.415 —

1.1 0.006 0.003 0.005 0.011 0.007 0.006 0.039 0.024 0.01920.19 20.114 — 0.596 20.393 —

1.3 0.009 0.004 0.007 0.011 0.007 0.006 0.04 0.025 0.01920.195 20.116 — 0.826 20.368 —

1.5 0.011 0.006 0.009 0.011 0.007 0.006 0.042 0.027 0.0220.205 20.122 — 1.262 20.335 —

1.7 0.013 0.007 0.01 0.012 0.008 0.007 0.046 0.031 0.02320.221 20.135 — 2.283 20.296 —
th

ve
re
ly

r-

of

y

x-
We tabulate the shape variables defined in Eq.~1! in
Tables XII, XIII, and XIV, and those defined in Eq.~2! in
TablesXV and XVI in theMS mass scheme. ForS1 andS2
we do not show theE0-dependence of the ordereL terms, as
they are not known. For all quantities the coefficients of
expansions are defined as in Eq.~15!.

For the B→Xsg shape variables defined in Eq.~4!,
Ti

(1) , . . .Ti
(14) are independent ofE0, once mB/22E0

@LQCD, and are given in theMS scheme by

T1
(1)52.1 GeV, T1

(2)52
1

2
, T1

(3)5T1
(4)50,

T1
(5)520.06, T1

(6)520.18,

T1
(7)520.01, T1

(8)520.04, T1
(9)520.02,

T1
(10)50.37,

T1
(11)5T1

(13)520.01, T1
(12)5T1

(14)520.04,
~A5!

and

T2
(1)5T2

(2)5T2
(3)5T2

(4)5T2
(6)5T2

(7)5T2
(8)5T2

(13)5T2
(14)50,

TABLE XI. Perturbative coefficients forT1(E0) in the PS
scheme as a function ofE0.

E0 T1
(15) T1

(16) T1
(17)

1.7 0.025 0.011 0.022

1.8 0.03 0.014 0.026

1.9 0.036 0.018 0.032

2 0.043 0.022 0.038

2.1 0.051 0.028 0.047

2.2 0.061 0.036 0.062
05401
e

T2
(5)52

1

12
, T2

(9)520.04, T2
(10)52T2

(12)50.06,

T2
(11)520.02. ~A6!

The remaining,E0-dependent coefficients of the perturbati
corrections are listed in Table XVII. Since in this case we a
expanding theb quark mass about 4.2 GeV, we are on
showing results forE0<2 GeV. The large size of the pertu
bative corrections toT1 ~compared to its values in the 1S or
PS schemes! occur to try to compensate for the bad choice
mass scheme.

4. The pole mass scheme

TheB→Xc, n̄ decay width in the pole scheme is given b

G~B→Xc, n̄ !

5
GF

2 uVcbu2

192p3
m̄B

5@0.37020.115L20.012L210.L3

20.04l120.10l220.01l1L10.02l2L20.02r1

10.02r220.02T110.T220.03T320.02T420.040e

20.022eBLM
2 10.007eL#. ~A7!

We tabulate the shape variables defined in Eq.~1! in Tables
XVIII, XIX, and XX, and those defined in Eq.~2! in Tables
XXI and XXII in the pole mass scheme. ForS1 andS2 we do
not show theE0 dependence of the ordereL terms, as they
are not known. For all quantities the coefficients of the e
pansions are defined as in Eq.~15!.

For the B→Xsg shape variables defined in Eq.~4!,
Ti

(1) , . . .Ti
(14) are independent ofE0, once mB/22E0

@LQCD, and are given in the pole mass scheme by
2-12
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TABLE XII. Coefficients forR0(0,E0) in the MS scheme as a function ofE0.

E0 R0
(1) R0

(2) R0
(3) R0

(4) R0
(5) R0

(6) R0
(7) R0

(8) R0
(9) R0

(10) R0
(11) R0

(12) R0
(13) R0

(14) R0
(15) R0

(16) R0
(17)

0.5 0.969 20.007 20.005 0. 20.01 20.01 20.01 20.01 0. 0. 20.01 0. 20.01 0. 0.003 0.001 0.003

0.7 0.92 20.017 20.013 20.01 20.02 20.04 20.02 20.02 0. 0.01 20.01 0. 20.02 20.01 0.007 0.004 0.008

0.9 0.841 20.033 20.025 20.02 20.04 20.07 20.04 20.05 0. 0.01 20.03 0. 20.03 20.02 0.013 0.007 0.015

1.1 0.729 20.054 20.04 20.03 20.06 20.13 20.07 20.09 0. 0.02 20.05 0. 20.06 20.03 0.021 0.012 0.023

1.3 0.584 20.08 20.056 20.04 20.1 20.2 20.11 20.14 0. 0.03 20.07 0. 20.08 20.05 0.031 0.017 0.032

1.5 0.411 20.11 20.071 20.05 20.13 20.29 20.15 20.22 0. 0.04 20.09 0. 20.11 20.07 0.041 0.024 0.039

1.7 0.221 20.145 20.086 20.05 20.16 20.36 20.18 20.3 0.01 0.04 20.11 20.01 20.13 20.09 0.052 0.032 0.046

TABLE XIII. Coefficients for R1(E0) in the MS scheme as a function ofE0.

E0 R1
(1) R1

(2) R1
(3) R1

(4) R1
(5) R1

(6) R1
(7) R1

(8) R1
(9) R1

(10) R1
(11) R1

(12) R1
(13) R1

(14) R1
(15) R1

(16) R1
(17)

0 1.342 20.117 20.054 20.03 20.16 20.27 20.12 20.12 20.03 0.01 20.09 20.03 20.1 20.07 0.043 0.026 0.027

0.5 1.373 20.113 20.05 20.03 20.15 20.27 20.12 20.12 20.04 0.01 20.09 20.03 20.1 20.06 0.042 0.025 0.025

0.7 1.413 20.11 20.047 20.02 20.15 20.26 20.11 20.12 20.04 0.01 20.09 20.03 20.1 20.06 0.04 0.024 0.023

0.9 1.47 20.106 20.043 20.02 20.15 20.26 20.11 20.12 20.04 0.01 20.08 20.03 20.09 20.06 0.039 0.024 0.021

1.1 1.542 20.104 20.039 20.02 20.15 20.25 20.11 20.12 20.05 0. 20.08 20.04 20.09 20.06 0.037 0.023 0.019

1.3 1.626 20.103 20.036 20.02 20.15 20.24 20.11 20.12 20.06 20.01 20.08 20.05 20.08 20.06 0.037 0.023 0.017

1.5 1.72 20.105 20.035 20.01 20.17 20.22 20.13 20.12 20.08 20.03 20.08 20.07 20.07 20.05 0.037 0.024 0.016

1.7 1.823 20.109 20.036 20.01 20.22 20.2 20.22 20.1 20.16 20.08 20.08 20.11 20.06 20.05 0.039 0.025 0.017

TABLE XIV. Coefficients forR2(E0) in the MS scheme as a function ofE0.

E0 R2
(1) R2

(2) R2
(3) R2

(4) R2
(5) R2

(6) R2
(7) R2

(8) R2
(9) R2

(10) R2
(11) R2

(12) R2
(13) R2

(14) R2
(15) R2

(16) R2
(17)

0 1.963 20.35 20.136 20.07 20.49 20.82 20.31 20.31 20.14 0.02 20.27 20.11 20.3 20.2 0.129 0.077 0.063

0.5 2.02 20.348 20.132 20.06 20.49 20.82 20.31 20.31 20.15 0.02 20.27 20.11 20.3 20.2 0.127 0.077 0.061

0.7 2.108 20.346 20.127 20.06 20.49 20.82 20.32 20.32 20.15 0.01 20.27 20.12 20.3 20.2 0.126 0.077 0.058

0.9 2.245 20.346 20.122 20.06 20.5 20.82 20.32 20.33 20.17 0. 20.27 20.13 20.29 20.19 0.125 0.077 0.054

1.1 2.435 20.349 20.115 20.05 20.52 20.82 20.33 20.35 20.19 20.02 20.27 20.15 20.28 20.19 0.125 0.078 0.05

1.3 2.678 20.359 20.11 20.05 20.55 20.81 20.36 20.36 20.24 20.05 20.27 20.19 20.27 20.19 0.127 0.081 0.046

1.5 2.975 20.378 20.11 20.04 20.63 20.8 20.43 20.36 20.34 20.12 20.27 20.26 20.25 20.19 0.134 0.086 0.045

1.7 3.329 20.409 20.119 20.04 20.85 20.75 20.78 20.32 20.65 20.31 20.31 20.44 20.22 20.18 0.147 0.096 0.053

TABLE XV. Coefficients forS1(E0) in the MS scheme as a function ofE0.

E0 S1
(1) S1

(2) S1
(3) S1

(4) S1
(5) S1

(6) S1
(7) S1

(8) S1
(9) S1

(10) S1
(11) S1

(12) S1
(13) S1

(14) S1
(15) S1

(16) S1
(17)

0 1.837 2.216 0.729 0.3 2. 20.31 1.24 0.21 0.43 20.26 1.05 0.39 1. 0.23 20.711 20.456 20.297

0.5 1.811 2.181 0.715 0.3 2.02 20.26 1.26 0.24 0.45 20.26 1.06 0.41 1. 0.24 20.707 20.452 —

0.7 1.775 2.134 0.695 0.29 2.05 20.17 1.29 0.3 0.49 20.25 1.06 0.43 1.01 0.26 20.7 20.446 —

0.9 1.724 2.064 0.664 0.28 2.11 20.03 1.34 0.41 0.57 20.23 1.08 0.46 1.02 0.29 20.691 20.437 —

1.1 1.662 1.971 0.615 0.26 2.21 0.18 1.43 0.59 0.720.19 1.11 0.53 1.05 0.34 20.678 20.424 —

1.3 1.593 1.858 0.542 0.23 2.38 0.5 1.6 0.9 0.9220.12 1.17 0.63 1.09 0.41 20.664 20.408 —

1.5 1.532 1.735 0.434 0.16 2.74 0.98 2. 1.46 1.38 0.07 1.28 0.85 1.17 0.5220.66 20.391 —

1.7 1.524 1.684 0.351 0.08 3.76 1.81 3.64 2.88 2.61 0.71 1.59 1.47 1.34 0.7220.698 20.396 —
054012-13
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TABLE XVI. Coefficients forS2(E0) in the MS scheme as a function ofE0.

E0 S2
(1) S2

(2) S2
(3) S2

(4) S2
(5) S2

(6) S2
(7) S2

(8) S2
(9) S2

(10) S2
(11) S2

(12) S2
(13) S2

(14) S2
(15) S2

(16) S2
(17)

0 0.549 1.175 0.78 0.09 25.13 21.86 21.75 23.01 26.91 0.7 21.34 23.5 20.3 20.39 0.085 21.169 20.187

0.5 0.542 1.16 0.769 0.0925. 21.8 21.65 22.91 27. 0.55 21.31 23.41 20.3 20.38 0.164 21.131 —

0.7 0.54 1.155 0.766 0.0924.84 21.74 21.51 22.78 27.15 0.35 21.27 23.3 20.29 20.36 0.282 21.091 —

0.9 0.544 1.163 0.774 0.1 24.6 21.66 21.29 22.62 27.43 0.04 21.21 23.13 20.28 20.34 0.477 21.032 —

1.1 0.554 1.186 0.796 0.1224.28 21.57 20.97 22.43 27.9 20.37 21.14 22.9 20.28 20.32 0.79 20.966 —

1.3 0.567 1.218 0.831 0.1523.88 21.46 20.48 22.19 28.7 20.9 21.05 22.61 20.27 20.29 1.318 20.891 —

1.5 0.57 1.236 0.867 0.1923.44 21.34 0.23 21.95 210.24 21.61 20.95 22.28 20.28 20.26 2.363 20.799 —

1.7 0.529 1.138 0.786 0.1723.22 21.26 0.78 22. 214.43 22.79 20.94 22.07 20.33 20.25 5.272 20.667 —

TABLE XVII. Perturbative coefficients forT1 andT2 in the MS scheme as a function ofE0.

E0 T1
(15) T1

(16) T1
(17) T2

(15) T2
(16) T2

(17)

1.7 0.143 0.083 20.009 0.008 0.006 20.014

1.8 0.151 0.0888 20.002 0.005 0.004 20.013

1.9 0.161 0.095 0.008 0.003 0.003 20.011
2 0.173 0.106 0.03 0.001 0.001 20.008

TABLE XVIII. Coefficients for R0(0,E0) in the pole scheme as a function ofE0.

E0 R0
(1) R0

(2) R0
(3) R0

(4) R0
(5) R0

(6) R0
(7) R0

(8) R0
(9) R0

(10) R0
(11) R0

(12) R0
(13) R0

(14) R0
(15) R0

(16) R0
(17)

0.5 0.973 20.002 20.001 0. 0. 20.01 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0.7 0.93 20.004 20.002 0. 20.01 20.02 0. 20.01 0. 0. 0. 0. 0. 0. 0.001 0. 0.

0.9 0.86 20.009 20.004 0. 20.01 20.04 20.01 20.02 0. 0.01 20.01 0. 20.01 20.01 0.001 0. 0.

1.1 0.761 20.016 20.007 0. 20.02 20.08 20.02 20.03 20.01 0.01 20.01 0. 20.01 20.01 0.001 0. 0.

1.3 0.634 20.025 20.01 0. 20.03 20.11 20.02 20.05 20.01 0.02 20.01 0. 20.02 20.02 0.001 20.001 0.

1.5 0.483 20.038 20.014 20.01 20.05 20.15 20.03 20.07 20.01 0.02 20.02 0. 20.03 20.03 0. 20.002 20.001

1.7 0.318 20.054 20.018 20.01 20.06 20.19 20.04 20.08 20.01 0.02 20.02 20.01 20.03 20.03 20.001 20.003 20.002

TABLE XIX. Coefficients forR1(E0) in the pole scheme as a function ofE0.

E0 R1
(1) R1

(2) R1
(3) R1

(4) R1
(5) R1

(6) R1
(7) R1

(8) R1
(9) R1

(10) R1
(11) R1

(12) R1
(13) R1

(14) R1
(15) R1

(16) R1
(17)

0 1.429 20.054 20.014 0. 20.07 20.18 20.04 20.05 20.03 0.01 20.02 20.01 20.03 20.03 0. 20.002 20.001

0.5 1.459 20.054 20.014 0. 20.07 20.18 20.03 20.05 20.03 0.01 20.02 20.01 20.03 20.03 0. 20.002 20.001

0.7 1.498 20.054 20.013 0. 20.07 20.17 20.03 20.05 20.03 0.01 20.02 20.02 20.03 20.03 20.001 20.003 20.001

0.9 1.554 20.054 20.013 0. 20.07 20.17 20.03 20.05 20.04 0.01 20.02 20.02 20.03 20.03 20.001 20.003 20.001

1.1 1.625 20.055 20.012 0. 20.07 20.16 20.03 20.05 20.04 0. 20.02 20.02 20.02 20.03 20.002 20.003 20.001

1.3 1.71 20.056 20.012 0. 20.08 20.15 20.03 20.05 20.04 0. 20.02 20.02 20.02 20.03 20.002 20.003 20.001

1.5 1.806 20.058 20.013 0. 20.08 20.14 20.04 20.05 20.05 20.01 20.02 20.03 20.02 20.03 20.002 20.003 20.001

1.7 1.913 20.06 20.013 0. 20.1 20.13 20.05 20.04 20.07 20.02 20.02 20.04 20.02 20.02 20.003 20.003 20.001
054012-14
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TABLE XX. Coefficients forR2(E0) in the pole scheme as a function ofE0.

E0 R2
(1) R2

(2) R2
(3) R2

(4) R2
(5) R2

(6) R2
(7) R2

(8) R2
(9) R2

(10) R2
(11) R2

(12) R2
(13) R2

(14) R2
(15) R2

(16) R2
(17)

0 2.241 20.184 20.041 20.01 20.26 20.58 20.11 20.15 20.13 0.02 20.08 20.06 20.09 20.11 20.002 20.008 20.003

0.5 2.299 20.185 20.041 20.01 20.26 20.58 20.11 20.15 20.14 0.02 20.08 20.06 20.09 20.11 20.003 20.009 20.003

0.7 2.388 20.188 20.04 20.01 20.26 20.57 20.11 20.15 20.14 0.02 20.08 20.07 20.09 20.11 20.004 20.01 20.003

0.9 2.529 20.193 20.04 20.01 20.26 20.57 20.11 20.15 20.15 0.01 20.08 20.07 20.09 20.11 20.005 20.011 20.003

1.1 2.726 20.2 20.04 20.01 20.27 20.56 20.11 20.15 20.16 0. 20.08 20.08 20.09 20.11 20.007 20.012 20.003

1.3 2.981 20.211 20.041 20.01 20.29 20.55 20.12 20.15 20.18 20.02 20.08 20.1 20.08 20.1 20.008 20.012 20.003

1.5 3.298 20.225 20.043 20.01 20.33 20.54 20.14 20.15 20.22 20.04 20.09 20.12 20.08 20.1 20.01 20.013 20.003

1.7 3.678 20.243 20.047 20.01 20.4 20.52 20.19 20.14 20.32 20.09 20.1 20.17 20.07 20.1 20.01 20.013 20.003

TABLE XXI. Coefficients forS1(E0) in the pole scheme as a function ofE0.

E0 S1
(1) S1

(2) S1
(3) S1

(4) S1
(5) S1

(6) S1
(7) S1

(8) S1
(9) S1

(10) S1
(11) S1

(12) S1
(13) S1

(14) S1
(15) S1

(16) S1
(17)

0 0 1.248 0.262 0.06 1.02 20.32 0.41 20.11 0.42 20.21 0.3 0.15 0.28 0.08 0.102 0.111 0.03

0.5 0 1.231 0.258 0.06 1.03 20.29 0.41 20.09 0.43 20.21 0.31 0.16 0.28 0.08 0.097 0.107 —

0.7 0 1.209 0.251 0.06 1.05 20.25 0.42 20.07 0.45 20.21 0.31 0.17 0.28 0.09 0.092 0.102 —

0.9 0 1.18 0.241 0.06 1.08 20.18 0.44 20.03 0.48 20.2 0.31 0.18 0.29 0.1 0.084 0.095 —

1.1 0 1.148 0.228 0.05 1.13 20.08 0.46 0.03 0.54 20.19 0.32 0.21 0.29 0.12 0.075 0.086 —

1.3 0 1.118 0.211 0.04 1.22 0.04 0.51 0.12 0.6320.16 0.34 0.26 0.3 0.14 0.064 0.077 —

1.5 0 1.1 0.194 0.04 1.38 0.2 0.6 0.26 0.8 20.11 0.37 0.35 0.31 0.17 0.054 0.067 —

1.7 0 1.112 0.188 0.03 1.7 0.4 0.83 0.47 1.16 0.04 0.43 0.53 0.32 0.21 0.044 0.057—

TABLE XXII. Coefficients for S2(E0) in the pole scheme as a function ofE0.

E0 S2
(1) S2

(2) S2
(3) S2

(4) S2
(5) S2

(6) S2
(7) S2

(8) S2
(9) S2

(10) S2
(11) S2

(12) S2
(13) S2

(14) S2
(15) S2

(16) S2
(17)

0 0 0 0.297 0.1 23.9 0 20.86 20.82 24.52 1.24 20.73 22.2 0 0 0.301 0.255 0.146

0.5 0 0 0.294 0.1 23.84 0 20.83 20.8 24.57 1.16 20.72 22.17 0 0 0.273 0.235 —

0.7 0 0 0.293 0.1 23.77 0 20.78 20.79 24.66 1.04 20.71 22.13 0 0 0.241 0.212 —

0.9 0 0 0.296 0.1 23.67 0 20.71 20.77 24.83 0.87 20.69 22.07 0 0 0.202 0.182 —

1.1 0 0 0.301 0.1 23.56 0 20.61 20.75 25.1 0.65 20.67 22.01 0 0 0.16 0.149 —

1.3 0 0 0.307 0.11 23.46 0 20.48 20.72 25.56 0.37 20.65 21.95 0 0 0.12 0.115 —

1.5 0 0 0.306 0.11 23.4 0 20.34 20.69 26.39 0.02 20.64 21.92 0 0 0.083 0.084 —

1.7 0 0 0.287 0.1 23.43 0 20.27 20.62 28.05 20.43 20.65 21.94 0 0 0.051 0.056 —
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TABLE XXIII. Perturbative coefficients forT1 and T2 in the
pole scheme as a function ofE0.

E0 T1
(15) T1

(16) T1
(17) T2

(15) T2
(16) T2

(17)

1.7 20.077 20.069 0.008 0.022 0.014 20.007
1.8 20.074 20.068 0.012 0.02 0.013 20.009
1.9 20.071 20.067 0.016 0.017 0.012 20.011
2 20.068 20.065 0.021 0.015 0.011 20.012
2.1 20.063 20.062 0.026 0.012 0.009 20.013
2.2 20.058 20.059 0.031 0.009 0.008 20.013
s.
,

v.
.

ys

v.

s

2

2

e,

05401
T1
(10)50.11, T1

(11)5T1
(13)50., T1

(12)5T1
(14)520.03,

~A8!

and

T2
(1)5T2

(2)5T2
(3)5T2

(4)5T2
(6)5T2

(7)5T2
(8)5T2

(13)5T2
(14)50,

T2
(5)52

1

12
, T2

(9)520.03, T2
(10)52T2

(12)50.05,

T2
(11)520.02. ~A9!

The remaining,E0-dependent coefficients of the perturbati
corrections are listed in Table XXIII.
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