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We study the effects of chiral logs on theavy-light pseudoscalar meson transition form factors by using
standard and quenched chiral perturbation theory combined with the static heavy quark limit. The resulting
expressions are used to indicate the size of uncertainties due to the use of the quenched approximation in the
current lattice studies. They may also be used to assess the size of systematic uncertainties induced by missing
chiral log terms in extrapolating toward the physical pion mass. We also provide the coefficient multiplying the
guenched chiral log, which may be useful if the quenched lattice studies are performed with very light mesons.
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[. INTRODUCTION the heavy—light decay form factors, the following two stand
apart.

Over the past decade, a considerable amount of effort has Light cone QCD sum rulesLCSR). This analytic ap-
been put into studying the nonperturbative QCD dynamics ofroach contains the least number of assumptions and has the
the heavy- light decays. The main target waand still is ~ correct heavy quark mass scaling properties. The range of
the extraction of the Cabibbo-Kobayashi-Maska@kM)  applicability is, however, limited to lovg®'s [4].
matrix elemen{V,,|. The prerequisite for its determination  Lattice QCD. This method allows us to solve the nonper-
from the exclusiveB— ¢ v decay mode is a precise knowl- turbative QCD effects numerically. Because of the current
edge of the relevant form factors. Accurate information oninsufficient computing power, th— a transition is reached
the form factors is crucial also when studying the impact ofither(a) by extrapolating the directly computed form factors
physics beyond the standard model on the excludive from the region aroun(_j _the charm fo theuark mas$5,6l,

+p— or (b) by using a latticized effective theory of the heavy
—s{ "¢~ modes. o

The fact that the kinematically accessible region of mo_quark, such as nonre_latlwstlc.QC@JRQCD) [7].(see also
mentum transfers is very larg.g., for B—s v it is 0 Ref. [8]), or (c) by reinterpreting lattice QCD in terms of
—?=26.4 GeV?) makes QCD-based calculations of form NR_QCD when the heavy quark mass _becomes larger than the
e o X X , lattice UV cutoff[9]. All these strategies share one feature:
factors ever more difficult. The physical pictures emerging ate accessible form factors are restricted to the region of
the two extremities of the? region are quite different and small recoils.
effective field theory approache_s, based on the appropriate |t is fair to say that the LCSR and lattice QCD are
use of the heavy quark expansion, have been developed {mplementary to each other; it is important to use them
simplify the description of these processes. The heavy quarkoth in order to check their consistency and from their com-
effective theory(HQET), which is applicable for recoil mo- parison perhaps learn more about the underlying nonpertur-
menta close to zeroqfeqﬁqa,),l provides us with valuable bative QCD dynamics.
scaling laws for the form factorfdl]. In the region of large Since the lattice studies are expected to provide us with
recoils @°—0), instead, the large energy effective theorythe most accurate predictions about the shapes and absolute
and its descendants help resolve the heavy quark dependenadues of the form factors, it is important to have good con-
of the form factors[2,3]. Although these conceptual steps trol over the various assumptions that are currently used in
forward are highly beneficial for a better understanding oflattice simulation and the data analysis. Two sources of sys-
the underlying dynamics, a model-independent descriptiotematic uncertainty have so far been ignored: the quenched
(calculation of the form factors in the entire physical region approximation and possible deviations from the linear or
is still missing. quadratic chiral extrapolation forms.

Among the QCD-based approaches employed to compute All the available lattice results foB— 7€ v decay form
factors are obtained from simulations in the quenched ap-
proximation, where the sea quark loop effects in the QCD

1Zero recoil refers to the recoil of the daughter meson in the resvacuum fluctuations are neglected-E0). To get an idea
frame of the decaying one. IB— 7€ v, it means that the pion is about the systematic error induced by the quenched approxi-
soft. mation, one can confront the expressions for the form factors
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derived in the standard and in quenched chiral perturbatiopresent the one-loofstandard and quenchedhiral correc-
theory (ChPT and QChPT, respectivelySuch expressions, tions for our form factors; in Sec. IV we discuss the values of
at leading order in the heavy quark expansion and next-tothe low energy constants that we chose for the numerical
leading ordefNLO) in the chiral expansion, are provided in analysis, which we present in Secs. V and VI; we conclude in
the present paper. These expressions are also useful in &ec. VILI.

sessing the systematic uncertainties due to chiral extrapola-

tions. Current lattice studies deal with light mesons of Il. SETTING THE SCENE

masses=450 MeV. The physical pion mass is reached _ . .
through a linear or quadratic extrapolation in the light quark !N this section we recall some basic features of QChPT, as

mass. Although it is not clear for which light quark massesit Was developed in the papers by Shaffi] and by Ber-
one begins to probe the subtleties of the chiral expansion, fard and Goltermafl1]". Although QChPT resembles the
is beyond reasonable doubt that, very close to the chiraitandard ChPT in many aspects there are important differ-
limit, chiral log terms of the fornm?2log(m?) may modify enqes..The main one is the presence of the lightstate,

the result of the extrapolation. The coefficients multiplying Wich in the quenched QCIQQCD) does decouple from

the chiral logs are predicted H®)ChPT and will be pre- the octet of pseydoscalar mesons. As a result the “pion”
sented in this paper. Finally, in the caseBtK decay the propagator exhlblts_, not only a pole structure but also double-
standard lattice strategy is to consider the kaon as a mes le one, Wh'Ch. IS t_he source of the pathology of the
consisting of degenerate quark masses. The impact of nor‘iLuenCth approximation.

degeneracy in the quenched approximation may also be ad- ) .

dressed by using the QChPT expressions for the form fac- A. Quenched chiral Lagrangian

tors, as we shall see later on. In QQCD, in addition to the quarkg, (a=1,2,3), one

It is important to stress a difficulty in getting reliable nu- 4o has the bosonic “ghost” quarkg,, of spin% and with
merical estimates from this approach. As we just mentionedyantical massn. /m. = 1. Their role ’is to cancel the con-
9~ +-

it is not clear for what value of the light meson mass the, ., .. % . .
g tributions of the closed quark loops, i.e., they provide

chiral logs become relevant. That ambiguity is important hi it that th trv breaki ¢
since one extrapolates from the heavier light masses, fgpuenching. 11 one assumes that the symmetry breaking pat-

which chiral logs havenot been observed. Another obstacle tern of QQCD is similar to that of the full QCD, i.e., the

is the multitude of low energy constants that appear in th raded SU(gg)L@SU.(3|3)R. spontaneogsly breaks dO.WH to

Lagrangian and in the transition operators in both quenche U(3I3)v, the following chiral Lagrangian can be written

and unquenched ChPT. The values of some of those con- £2 2,

stants are unknown or simply guessed. Furthermore, as we E,ightzgstr(aﬂz&”ET)+ Tstr(MEJrMET)

shall see, the appearance of chirally divergent quenched chi-

ral logs obliges us to compare the full _and quenched expres- + agd, D g D o— m(2)<p(2)+ L, (1

sions for not-so-light mesons, for which the ChPT is less

predictive. For these three reasons, the numerical results igvhere we adopt the convention thixt 130 MeV, and the

ferred from this approach should always be taken with anhotation

grain of salt. In other words, rather than true estimates of the

guenching errors, our numerical results should be considered ® ¢ x'
2=exp<2i— , D=1y AR (2)

as a mere indicator of the size of those errors. ;

The rest of the paper is organized as follows. In Sec. Il we
recall the basic elements ¢Q)ChPT and its combination
with the leading order HQET Lagrangian; in addition to stan-The following comments are in order.
dard definitions of the form factors, we will introduce some In addition to the standardq) Goldstone bosons
that are more convenient for our purposes; in Sec. Ill wg(7,K,7) and they’ mesort organized in the ¥ 3 matrix

1 0 1 1 , n +
E’]T +%7]+ﬁ7y T K
) 1,01 1 .
b= T —E’]T +%77+E77 K , (3)
K™ KO —ir]-l-i’/]’
V6 3

2For an elegant alternative way to introduce partially quenched ChPT, seglREf.
SWe will neglect the mixing ofy and %’ states, as it is irrelevant for the discussion that follows.
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the ghost-ghost?{?) bosons §), as well as the pseudoscalar = yH1(v) 7, Whereas the covariant derivative and the axial

.= — . field h the following f :
fermionsqq (x") andqq (), also appear in Eq2). eid have the Toflowing forms
The global symmetry SU(3), ® SU(3|3)R is graded and 1. !
in Eq. (1), instead of the familiar trace, one deals with the DbaHp=0"Ha=HpVha=0"Ha=Hy5[£79,6+£9,€ Tha,
supertrace sti)=tr(¢)—tr(¢). As already stressedy’
does not decouple from the light pseudoscalar octet. Its effect

i
is included in two terms of the Lagrangiéh), each of them Aibzi[fTﬁﬂf—fﬁ,L%T]ab- (7)
multiplied by a new low energy constant, namedyy and
mo. Note thatd,=str(®)/\6=(7"—7")/ 2. In the above equatiorg andb run over the light quark fla-

The quark-ghost mass matrix is diagonaM  vors and¢= 3. With these ingredients in hand, we now
=diag(m,,mgq,ms,m,,my,ms). After diagonalizing the write the quenched chiral Lagrangian for the heavy-light me-
mass term in Eq(l1), one gets sons as

4 Lhean= — St T Haiv - DpHp]+gst, T HaHp y AL
mfr:4/1«0mq- mizzﬂo(mq'l'ms)- mi:$(mq+2ms)1 heavy all[Haiv - DpaHp]+ st TrH Hy Y, Af,ys]

4) +9' St T HaHay, vs]StAX) + L3, ®

whereg (g’) is the coupling of the heavy meson doublet to

the Goldstone bosofto 7’ or 7'). Aterm withg’ is thus an
artifact of the quenched theory. The higher order terms in the
expansion inv-p~O(p), O(p?), and inmy~0O(p?), de-
noted asl; in Eq. (8), have the following forn{15]:

verifying the familiar Gell-Mann—Okubo relation mﬁ
—mZ—3m’;=0. Notice that we neglect the isospin symme-
try breaking, i.e., we sah,=mg=m,.

In Eq. (1) £, stands for the terms @®(p*), of which we
write only those that are relevant to the heavy-to-light form
factors, namely, L= 2018t TH HaHp (M )pat KeSt T Haiv - DypcHp]

_ t T t =
La= 4utofL 4S9, 22 )SUME T2 M) X(M)cat koS T Haiv - DpaHpIStio( M. oot -

+Lsstfd, ST (MET+IMD]+--}. (5 )

L, andLs generate the mass correction to the decay conwith M., =(1/2)(E'MET+éME). We displayed only the
stants(and to the wave function renormalization constant terms that contribute to the heavy-to-light form factors. In

[13]. the above equations, “Tr” stands for the trace over Dirac
It is straightforward to verify that after setting sttr, indices, whereas “str” is the supertrace over the light flavor

®d—¢, n'—0, Eq. (1) leads to the standartfull QCD) indices.

chiral Lagrangiarf. As in the previous subsection, one can easily verify that

after replacing stetr, ®— ¢, ' —0, andg’—0, one re-
covers the standard chiral Lagrangian for heavy-light mesons

(for recent reviews see RdfL8], and for the original papers
QChPT has been combined with the leading order HQETsee Ref[19]).

in the work by Booth[15] and by Sharpe and Zharid6].
They applied the approach to compute the heavy-light decay

0_RO miyi NG
constants, th&™-B~ mixing parameter, and the Isgur-Wise A frequently encountered decomposition of the matrix el-

function” ements relevant to the leptonic, the semileptonic, and the
To devise a Lagrangian for the heavy-light mesons, it is P ' P '

necessary to include the heavy quark spin symmetry. This i§enguin-induced hadronic matrix elements is
achieved by combining the pseudoscal®®) and vector
(P ®) heavy-light mesons in one field:

B. Incorporating the heavy quark symmetry

C. Form factors

(0]ay,,¥sb|B(ps))=if&Pe,

Ltd (P(0)[T,b1B(pe)) = (P P, T
Ha(v)= =5~ [P}%() 7.~ P*(v) 7], ) PI187,DIE(Pe)? = | (P P)u ™02
2 2
. . 2 mB_mP 2
where (1+9)/2 projects out the particle component of the XF_ (g9 + 7 a.Fo(g),
heavy quark only. The conjugate field is definedHagv)
(P(p)|do,.,q"b|B(pe)) =i(q*(Pe+p),
“For a review of the standard ChPT see one of the references s F(g?)
listed in[14]. —(Mg=mp) Q) — -,
SFor a recent result on the Isgur-Wise function in partially QChPT, B P
see Ref[17]. (10
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where g=d or s, |[P(p)) is the light pseudoscalar meson
state(pion or kaon, andq”=(pg—p)".

We will be working in the static limitmg— . The eigen-
states of the QCD and HQET Lagrangians are related as

<0|a7’;n’5bv| B(U)>HQET: ifvﬂ

(P(P)[a7,0,B(0))oer=[p,—(v-P)v,1fo(v - P)
+vaU(v~p), (12

where the fieldo, does not depend on the heavy quark mass
[20]. The form factorsf, , are functions of the variable
m';Tw\/—|B(pB Yacp=|B(v))HoeT- (11 M2+ m2— g2

T (13)
which in the heavy meson rest frame is the energy of the
In the static limit it is more convenient to use definitions in light mesonE,. The relation between the quantities defined

which the form factors are independent of the heavy mesoin Egs.(10) and(12) is obtained by matching QCD to HQET

mass, namely, at the scaleu~m, [21]:
Cyoys(mb) ~
fp=———(f+O(1img)),
B \/m—B ( B
mz—m3
Fo () + ——7—{F+(q") = Fo(a")lg2~q2_ = C,,(my) Vmg[ f o(v - p) + O(1img) ],
mz—m3
(mg+Ep)F.(q%) —(mg—Ep) 7 [F+(q2)_Fo(qz)“qzwqfnaxzcyo(mb)\/m_Bfu(EP)+O(1/mB),
2mg
et (89 = oMo folu - p) Vime + O(Lim). (14

In the following, we set the matching constadls, to their  which is easily obtained by using the equation of motion

tree level value €, =1). By neglecting the subleading terms Yob,=b, . In the following our main concern will be the
in the heavy quark expansion, we héve evaluation of the long-distancéhiral) corrections to the
form factorsf, ,(v-p).

D. Heavy-light current

1
Fo(q2)|qz%q2 =——f,(v-p), Having in mind Eq.(16), we only need to consider the
m VMg (V—A) Dirac structure. In the static heavy quark limit and at
next-to-leading order in the chiral expansion, the bosonized

heavy-light current read$15]
/Mg
F+(q2)|q2~qr2naxz FT(q2)|q2mq2maX: Tfp(v p), _ i v .
(15 I=day* (1= v5) Q=5 T ¥*(1~ ys)Holépal 1
ia
’ T
which exhibit the usual heavy mass scaling laws for the HVL0)Po]+ o Ty (1= ¥v5)Helépa( M) ep

semileptonic form factors[1]. The equality F1(g?)

=F_(q?) arises from K
B T Ly Hy st Moo (17)

P(p)|qo'°(1+ ys)b,|B(v)
< | o '5 | JHer When bosonizing the curredt*, one could envisage an ar-
=i(P(p)|ay'(1—vs)b,|B(v))poer, (16)  bitrary functionV (®o) in the first term of the right of Eq.
(17), expanded in a Taylor series. Only the terms lineab in

are relevant to our purpose akg(0) can be normalized to
SCorrections at(1/m;,) have been discussed [i82—24. 1 [16]. The appearance &f (0) is yet another artifact of the
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B ‘ B

FIG. 1. The point(1) and the polg?2) tree level Feynman dia-
grams contributing ttneavy-light transition form factors. The box
denotes the weak current insertion.

u
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1 1 0 g
—— 1

p?-m3\0 -1 (19

agp?-—m3 (1 1
C(pP-m2)l1 1)

In the computation of the loop integrals, the naive dimen-
sional regularization has been used, with the renormalization

prescription modified minimal substraction schenS)

+1, whereA=2/e— y+In(4m)+1 is subtracted13]. We
quenched theory. The phase of the heavy meson can be cheeglect the isospin symmetry breaking(=myg=m,), as

sen in such a way tha¥|(0) is completely imaginary,

well as the mass differences betweBrBg,B*,BY meson

whereas the constants x,, andx, are real. Notice that, at states, whenever they appear in the loop. The resulting ex-

leading order in the chiral expansion, the constarn$ sim-
ply the heavy-light meson decay constant in the static limit

(mg—), i.e., T in Eq.(12.

lll. CHIRAL CORRECTIONS TO f(v-p) AND f,(v-p)

In this section we explain the main steps undertaken to
compute the chiral logarithmic corrections for fo(v-p),
andf,(v-p). Our results for the decay constafnagree with
those of Refs[15,16. They will be used in Sec. VC to
construct the ratios that are independent of counterterms. In
Ref. [25] ChPT was applied to compute the heavy-to-light
form factors. We repeat that calculation and extend it to the
guenched case.

A. f*(v-p) and f"**(v-p)

We start the discussion by writing the tree level expres-
sions

g

m, f=a. (18)

02 02
fov-p)=7 f(v-p)=7.

The point and the pole diagrams, depicted in Fig. 1, describe
f, and f,, respectively. The indexi® in Ai*=mBi*—mBi
labels the light quark flavor. When necessary, we will Bge
to denote the light pseudoscalar mesons with valence quark
contenta;q; .

Although the heavy quark spin symmetry suggesfs
—0, we will keep this term finite because it provides the
pole atmzlyk to the form factorf ,, or equivalently to the form

factorsF , 1.’ The form factorf,, (or Fy), on the other hand,
does not depend orv(p) at the tree level.

B. fgne-loop(v . p) and fgne-loop(v . p)

Neglecting the crosses, all the graphs shown in Fig. 2
describe the one-loop chiral contributions to the form factors
f, p(v-p) in the full ChPT. In the quenched theory, in con-
trast, graphs both with and without crosses appear. The cross
denotes the so-called hairpin vertex, i.e., the dipole term in
the “pion” propagator:

"The pole dominance is easily seen if one rewrites the denomina-
tor of fy(v-p) asv-p+A* —(mB* /2)(1 9%/m2,), where the
corrections g+ —mg)/mg and mp/mB are neglected.
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pressions can be written as follows.
Quenched ChPT:

B—»P” _ae 9 | Bj—Pj; k_
(v-p) fup+Ai*1+5f tom,
4o
_4L5f_2(mi+mj)},
—Pji B;—Pj; kl
] l( p)— 1+5f J I+ 2 +%1 m]
4
4L, f’ﬁo(m +m)}
- . kq
fJ-:a 1+5f]+ ?4—%1 I’nJ . (20)
Full ChPT:
BHP,] :ﬁ—g Bj—Pjj Ky
(v-p) fvp+Ai*1+5f +2ml
4pg
_4|—5f_2(mi+mj)
kz
5 —8L4 f2 (my+mg+my) |,
B*?P” _ BJHPU kl
(v-p)= 1+5f + 2+%1 m;
4
4L, ]féo(m +my)
Kk 4
+ §+%2_8L4$)(mu+md
+my) |,
~ ~ l k2
f]-=a 1+5fj+ ?"‘%1 mj+ ?‘F%z
X (my+mg+mg)|. (21
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3) 4) 5) 6)
B B B B
™ ™ ™ m
7) 8) 9) 10)
B B B B
m ™ T m
11) 12) 13) 14)
B B B B
™ iy ™ T

FIG. 2. The one-loop contributions to tle— 7 transition. Doublgsingle lines denote the heawight) meson, while the weak current
insertion is depicted by the empty box. Crosses stand fomghkairpin vertex 1 in Fig. 1. Each graph represents two Feynman diagrams in
quenched ChPTa) the diagram without the hairpin vertégross and(b) the same diagram with a cross. In full ChPT only the diagrams
without the cross are present. The amplitudes corresponding to the diagrams are listed in Appendix B.

We separated the chiral loop correctionsf) from those number of low energy constants. To do so we will mainly
involving the counterterms. The loop corrections to the formrely on the existing lattice data. In Table | we collect the
factors are written as parameters whosgange of values we were able to fix. In
the following we briefly discuss each of those values.

a: This constant is equal to the heavy-light decay constant
in the static limit of QCD. Its value can be obtained from
foymp and/or fgmg, which are then extrapolategh in-
where the sum runs over all diagrams shown in Fig. 2, anderse heavy-light meson mads the infinite mass limit as
5ZBj(pij) encodes the chiral loop contributions arising from
the wave function renormalization of the heavy-light and fyvVmy=a(1+A/my+B/mi+- - ). (23
light-light meson, respectively. The explicit expressions are ) o
lengthy and are collected in Appendixésr the quenched ~From lattice QCD and QCD sum rules, it is known that the
and (for the full theory. As can be seen from Eq&20) and ~ SlopeA is large and negative, whereas the value of the cur-
(21), no dependence o (p) arises from the counterterms. VatureB is small. Therefore, to a good accuracy, one can set
The modification of the tree-leveb(p) dependence of the B=0 and neglect higher terms inmy. In this way we
form factorsf, , is entirely due to the chiral loop correc- Obtain the following. o .
tions. It is worth noticing that in the quenched approximation  From extensive quenched lattice simulations by the MILC

B : Collaboration, one can deduad“®""=0.45(5) GeV?[28].
the form factorf, " is completely independent ob{p).

This is so because the contribution from diagram 4 in Fig. 2" the same paper, they also present the results of tRI?ir un-
vanishes in the isospin limit,=m,. quenched simulations, from which we extraat

- /2 : ;
An important feature emerging from this calculation is = 9-53(7) GeV. These numbers agree quite well with the

that the quenched form factofg , and quenched decay con- s
’ TABLE I. Low energy constants whose determination is dis-

stantf suffer from the common quenched pathology, that IS, ,ssed in the text.
from the presence of the quenched chiral logs

1 1
Bi—Pji _
oy o . 2

mglog(mg/u?). Such terms are divergent in the linitp Coupling Full theory Quenched theory
—0, suggesting that in the quenched approximation the chi- y
ral limit for any of F% 37 or fg is not defined. This feature is @ (GeV*) 0.56=0.04 0.48-0.03
also present in the light meson sector, e.g., for the chiral 9 0.50-0.10 0.56-0.12
condensate, the light meson decay constant consisting of f(GeV) 0.130 0.124:0.004
nondegenerate quark flavors, €t26,27. Mo (GeV) 1.14-0.20 1.13-0.04
La(X1073) —(0.5+£0.5) (0.0:0.5)
IV. CHOICE OF PARAMETERS Ls(10°?) 0805 0.8:02
m, (GeV) - 0.64-0.06
For numerical analysis of the expressions given in Egs. g’ (Gev) - —0.6 t0 0.6

(20) and (21) we need to make a specific choice of quite a
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values obtained by CP-PACS Collaboration, namef/e"" uo. From the Gell-Mann—Oakes—Renner form[4&)], it
=0.50(4) GeV"?, and a"=0.57(6) GeV" [29]. Notice s easy to identifyuo= —(qq)/f2. Its value (in the full
that both references use the same treatment of the hea\{l¥eory) can be fixed by using (qq)"S(2 Gev)=
quark on the latticéthe so-called Fermilab formalism 3 y g{aq .

The UKQCD[30] and APE[31] Collaborations compute |267(16) MeV® [43]. The quenched value is extracted
heavy-light meson decay constants using the fully relativistidrom the lattice data. Recent results in & schemeat the
lattice QCD, but only for the mesons of massesfenormalization scale 2 GeVareu=1.13(4) GeV[39] and
my e (1.8,2.7) GeV. From a linear fit of the form23),  mo=1.10(11) GeV[44]. With these numbers and by using
from their quenched data UKQCD obtlingdUeh  f=124+4 MeV, the corresponding numerical values for the
=0.49(4) GeV}?, in agreement with the previous result by chiral condensate in the quenched approximation are
APE, o°"*"=0.48(5) GeV'". (qq)MS(2 GeV)=—[259(6) MeV]® and (qq)™S(2 GeV)

Recent results obtained by using the QCD sum rules agree —[257 (10) MeVF.
quite well with the above unquenched values. From the com- L,s: These two couplings have been extensively dis-
p|f|jllt|on of the QCD/zsum rule estimates in RE32], one has  ¢yssed in the literatufd4]. Their values in the full theory, at
a™'=0.58(9) GeV"* (for the most recent result s¢a3]). the scaleu=1 GeV, are given in Table I. In quenched QCD,

g: This constant is related to the phenomenological couy,q couplingL s was recently computed in R4#5], with the

Pling gp+p as result ag=0.99(26) andLy= as/(12872)=0.8(2)x 1073,
On the other hand, the quenched estimatk pis not avail-

_ 2ympMps« o4 able. On the basis of the largé. expansion we only know
Goxon= 7 O @49 thatL, is smaller tharl_g (see Ref[13]). We will take it to

be zero and vary by-0.5x 10 3.

where one can also setyx =My, because the above relation ~ Mo: This mass characterizes the magnitude of the hairpin
is defined only in the static limit, in which the heavy quark insertion(crosses in Fig. R It enters in the coefficient of the
spin symmetry is exact. From the experimentally measureduenched chiral log, which, in the literature, is often referred

total width of theD* * meson, one getg™'=0.59(7)[34].  to asé=m/(24=?f2). The precise value af is unknown at

The subscript t” warns us that the valuce is obtained in the present, mainly because in realistic lattice studies it is very
charm quark mass sector. On the lattice, that value has bedlifficult (if possible at all to resolve the finite lattice volume
computed recently in the quenched approximation, leading téffects from the quenched chiral logs. This is why it is still
gguench: 0.66(9) [35]. To get the value ofj one needs to Nnot completely clear whether the observed deviations from a
extrapolate to the infinite heavy quark mass limit, ig,  linear dependence of the pseudoscalar meson squargd (
=g+ y/my+---. The lattice data of Ref35] suggest that on the light quark massesn) is due to the presence of the
the slopey is negligible, and thug/g.~1. On the other chiral logs, or if it is an artifact of the lattice geometisee,
hand, the LCSR calculation suggests that the same slope 9., Ref.[46]). With this remark in mind, we now quote
significant and positivgd36]. By neglecting the terms of recent values for the parametér as obtained from lattice
O(1/m3) and higher, Ref[36] leads tog/g.~0.7. We will  studies of the dependence b on mg : with Wilson fermi-
take the average of the twdattice and LCSR that is, ons, 6=0.10(2) [39]; with modified Wilson fermions,s
9/g.~0.85, and add the difference in the error bars of both=0.073(20) [47];'° with domain wall fermions, &

quenched and unquenched valdes. =0.029(7) [48]; with overlap fermions,s=(0.0-0.2)[49]
f: To get the chiral coupling constant we will uge  andé=(0.2-0.3)[50].
=132 MeV andfy=160 MeV, and the fact thams/m, For the pre-1996 results see the revieWai]. The value

=24.4+1.5 [38]. After linearly extrapolating to the chiral of & obtained by the CP-PACS Collaboration stands out be-
limit (my—0), we getf=130 MeV. The recent extensive cause they made an extensive high statistics study on large
quenched lattice study with Wilson fermions gives 119  lattice volumes and extrapolated to the continuf88]. A
+7 MeV [39], whereas the one with staggered fermionsworrisome aspect of this value, however, is that the light
gave f=125+9 MeV [40]. The latter result was also ob- Pseudoscalar mesons that they access directly lie in the range
tained on larger lattices with domain wall fermions, namely,mp € (300,750) MeV, for which the significance of the chi-
f=125+7 MeV [41]. As a weighted average, we will take rallogs may be questionable. Keeping this comment in mind
f=124+4 MeV. and using theis=0.102), we getm;=0.64(6) GeV.
g’': The value of this constant can be obtained from
Oss*, and gpp=,, the couplings of the lowest lying
8We thank G. Lacagnina for communicating this result to us. ~ heavy-light meson doublet the light quenchgdstate. Such
®We are aware of the result of RéB7], g=0.429), where this
coupling has been computed for the first time on the lattice, in the
static HQET. However, in view of the insignificant statistics, very °The final result of Ref{47], 5=0.065(13), is obtained by com-
coarse lattice and only two light quark masses, the vajue bining various ways of extracting this quantity from the lattice data.
=0.42(9) should be considered as exploratory. The improved calFor an easier comparison with other groups, we quote the result
culation ofg, along the lines described in R¢87] would be most  given in Eq.(29) of Ref.[47], which is obviously fully consistent
welcome, though. with their final value.
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a lattice study has not been made so far. To get a rougt
estimate we may rely on the lar@é¢, limit from which one
expectslg’|<g.
As for the other parameters appearing in the quenchec s
expressions, in the numerical analysis, we will first set them
to zero and then vary their values in the ranges suggested b 000
the large N, expansion. More specifically, we tak/| | 025 . ,
<0.5]x|,|k1|<32uoLs/f2, and|x,|=|k,|=0. The param- ; . . . ‘ :
eter a, will be varied in the rangéa,|<0.1. It is important
to stress that the effect of the variation of these latter param-
eters is completely negligible for our numerical estimates. FIG. 3. The ratio®Q,, ,(v-p) are defined in Eq25). The plots
Note that the low energy constants in Table | are extracteg@efer to mesons consisting of two degeneraeence quarks with
from lattice data at the tree level of ChR&xcept for the  massm,=rmgandr=0.25. The counterterm coefficierits,, x; »,
counterterms™* as well agV| (0)| are neglected, whilpe=1 GeV=A, . Values of
other parameters are given in Table I.

0.50 050
025

0.00

-0.25

V. QUENCHING ERRORS
. . . . rent quenched lattice studi¢5—9]. It is not clear whether
In this section we will use the expressions for the formg. ot 4 mass interval for which all of the above require-
factors(20) and(21), the parameters listed in Table I, to get mens are satisfied exists. We will assume that they are sat-
an estimate of the quenching errors. We reiterate that thgfieq for mp~330 MeV. From Eq.(4), a “pion” of
results of this section refer to the zeroth order in thel/ . ,<q mp~330 MeV is composed of two quarks of mass
expansion and to the leading logarithmic chiral CorreCtionscorresponding to r=mg/m=0.25, with respect to

with the specific choice of parameters discussed in the preg, . strange quark mags. In Fig. 3 we plot the ratios
vious section. We also stress that in all the following discus—Q (v-p,r=0.25) S '

: ; . >Qp, (v p,r=0.25).
sion we will keep the st:ﬂ_asnge quark mass fixed 10 its “"\ye notice that, regardless of the value chosergforthe
qlﬁnCthvaame of mg™(2 GeV)=105MeV, and  quenching errors in the form factdp(v - p) are not exces-
mg"/md"e"*’=0.85[51]. To examine the quenching errors we sjvely large for most of the - p where ChPT is applicable.

will study the following ratios: This is important since this form factor is the only one en-
l tering theB— 7€ v decay rate, from which we hope to be
fi(v-p)— 3"t - p) able to extract the value fQW,)|.

Qp,v(v-p,mg/mg) = (25) By specifyingg’ = +g, we observe tha®,(v-p)>0, for

any (v-p)/u<0.7 andr=0.2. In other words, quenched val-

The parameter that makes the strongest impact on the resul§s forf, are smaller than unquenched ones. If we tgke
for Q,, isg’. As stated above, its value is expected to liein~ ~ Y instead, the rati®,(v-p) has a zero. The point of

the range—g=<g'<g. Since even its sign is not known we €70 guenching errors in Fig. 3 is found ab-0/u)
will distinguish between the two “extreme” caseg = —g =0.47(3) forr=0.25 and the values of parameters given in
andg’ = +g. Table I. Figure 4 shows the curve of vanishing quenching

errors in thev - p—r plane, i.e.,Qy(v-p,r)=0+10%. This
curve really exists fog’=—g, while for g’ = +g only the
part corresponding t@,(v-p,r)=+10% can be reached
To examine the quenching errors B 7 decay we can- for r<0.4. In summary, it is possible to find combinations of
not set the pion mass to its physical value, because the spthe pion mass and the pion recoil energy such that the
rious quenched chiral logs would become dominant. How-quenching errors in the dominant form facty(v-p) are
ever, we cannot go far away from the chiral limit either, kept under the 10% level.
because théQ)ChPT approach then becomes inadequate. To From Fig. 3 we also see that there exists a point
those two competing requirements, we should add a third: - p/u)~0.3 such that the ratiQ, is independent of the
desire to be sufficiently close to the region of quark massesalue ofg’. At that point, we get
(i.e., pseudoscalar meson masses squgm@dbed by the cur-

fon(v-p)

A. B— 77 transition

Qp(0.3u,r=0.25=20%. (26)

YThe standard procedure would involve “undressing” the chiral This result is a useful estimate of the quenching error for
loops from the measured low energy constants. This procedure igalistic values of {- p) andr, which are currently probed
not applicable when using the lattice data because direct latticen the lattice. For the reader’s convenience, we have fitted
computations are made at,=400 MeV, and the physical results the points corresponding té{,/9g’) =0 to a polynomial in
are obtained through a linear or quadratic extrapolatiormfn re[0.1,1] and obtained
—(m2)P"Ys These extrapolations do not include the chiral logs, so
“undressing” the chiral loops would lead to unrealistic estimates of
the low energy constants. For this reason, we adopted the tree-level B =0.171)+0.81)r—1 3(2)r2+ 0 5&2)r3 (27)
approximation in extracting the low energy constants. )% ' ’ ' ' ‘
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T T T T vp/u=0.3
| f ’:—g | - : : -
o K K
= i ~ A 080 F + 1 0.80
06 | T =D 0, Q9
3 /,/ P o= ~J 0.60 T ;’:_::—f/ 0.60
= 04 " ] —_— ]
4 - el = = 040 + 1 040
et 0=0 1
- B Qp=]0% : 020 F ////, T B 1 020
0.2 i , ) 000 = 02 04 02 04
8§ =+8 , r r
0.0 [ T FIG. 5. The ratio®Q, ,(v-p) from Eq.(28). The plots refer to
* mesons whose one valence quark is fixed tostiaark mass, while
02 04 06 08 1 h ! kis fixed k mass, whil
_ the other has the valua,=rmg. The thick gray vertical line marks
r—mq/mé r=1/25 for which the physical kaon mass is reached. As before, the

counterterm coefficientk; ,,%;, as well asV((0) are neglected,
FIG. 4. The thick dashed line corresponds to the zero quenchinghile =1 GeV.

errors[Qp(v - p,r)=0] in the case wheg’' = —g (such a line is not

accessible forg’=+g). The shaded region corresponds to the In the quenched expressions figy, , given in Appendix B,
variation of Q,(v-p,r) by 10%. Notice that in the cagg = —g, we set for the active quarMi2=4,uoms, while for the spec-
the upper (lower) curve corresponds toQu(v-p,r) equal  tator one we taka/lj2=4,uomsr [see Eqs(B2), (B3)]. As in
to —10% (+10%). For the caseg’=+g, only the region the previous subsection, in Fig. 5 we pRf, for the two
Qp(v-p,r)<+10% is shown. “extreme” scenarios, namelyg’=+g and g'=—g. We
again observe that, regardless of the value @ér the

: K
satisfying Eq.(27), the quenching errors are kept under thequenchlng errors on the form factdy(v - p), Q, >0.5. The

; K S
25% level. This concludes our discussion of the form factorquenchmg ermorsQy, ?re only moderately large 1§’ =
f —g, and are large fog’' = +g.

Therefore, from this and the preceding subsection, we see
Wat in both channel8— = and B—K our approach sug-
ests that the quenching errors in the form fadid - p)

We also checked that for 0<r<0.35, withr and @ -p)

The situation with the form factoif,(v-p) is much
worse. From Fig. 3, we see that the quenching errors are |Ig
the range 30-60 %, and drop below that level only for largers : .
recoils for which the present approach is not appropriate. Th €. FO(q_Z)] are Iarzge230%. The quenching errors in
guenching errors remain large when varyingn the range P(”'p) li.e., F. r(a%)], on the other hand, qepend cru-
re[0.1,1]. A somewhat less pessimistic situation is presen ially on ﬂ,]e value ?f the low en"ergy c,onstagit they are
at zero recoil {-p=0) where, contrary to the case 6f, arge forg’>0, and*not so large” for g <0.

the form factorf, canbe extracted from the lattice data. For Before clos_lng th|s.subsectlon Igt us mention t.hat in the
mp=330 MeV, at zero recoil we get quenched lattice studies the kaon is usually considered as a
P— I}

composite state of two degenerate quarks. Usmé

8% (g'=+9), =4puomgr, omesvarigs in order to reach the physical kaon
0r=0.25~ massmp=my ", which occurs for =0.5. One may wonder
Q,(0r=0.29~ 23% (g'=-0). if the form factors with such a kaon differ from the ones in

which the quarks in the kaon are nondegenerate, with one of

. . _ the quarks fixed to the strange mass and the other varying
Once again, we warn the reader that the numerical estimatgg,ard r = 1/25 (i.e., the physical kaon massTo keep the

made in this section are obtained for the set of low energy,qs of the pseudoscalar meson the same in both situations,
constants specified in Table I. we will vary rgye4e[0.6,0.8 andrqq=2r4eq—1€[0.2,0.6.
As before, we takey(- p/ ) = 0.3 and examine the following

B. B—K transition ratio
We now turn to the case of a kaon in the final state. In the
discussion we shall fix one of the valence quarks to the fo’S(v-p,rndg)—fﬂ,er?(v-p,rdeg)
strange quark mass, and vary the other ang=rmy) in the Ryp(Tdeg = 199, . p,r )
range 1/25r<0.5. In this way the “kaon” mass is varied in P +nd "ndg™ 2" deg™ 1
the rangemi™*<mp<600 MeV. For simplicity we consider (29)

(v-p)/u=0.3 (reasonably small recgjl and examine the

quenching ratios in the quenched theory. From Fig. 6, we again observe the

same dichotomy: fog’ = — g the situation is quite favorable,
full (. p)— fauench, . ) i.e., the errors due to degeneracy in the quark masses are
ng(o,sﬂ,r): P o P (28)  very small, whereas fog'=+g the form factorf,‘:‘,eg is
' fou(v-p) highly overestimated with respect 4.
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FIG. 6. The ratioRR, , defined in Eq(29), measuring the errors r=me
induced by the degeneracy in the “kaon” quark masses in the §

quenched calculations. FIG. 7. lllustration of the effect of inclusion of the chiral log in

extrapolating to the physical pion from the masses accessed from
the lattice simulationgmarked by the shaded boxesThe full
(dashed curves are obtained by including the chiral logs in extrapo-
lation starting fromry,=0.15 and from 0.25gray vertical lines
using full (unquenched ChPT. For comparison we also show the
(dotted line corresponding to the linear extrapolation.

C. Useful ratios

The double ratiofffoB/f,E“KfBS is very gratifying
from the ChPT point of view. In a double ratio of the form

B;—P;;
fole " Te@ _

— Bi—P; ji
Bi=Pii f5 (0 1+t lq) "~ 0fiq "t Ofe0~ 5fBj(Q)’ tant effect. From the expressions presented in Sec. Il and in
v(Q : (30) Appendix B, for the very light mesomp<<(v - p), we obtain
2

— — m
whereB;~bg; andP;;~q;q;, the dependence amcancels  f (v-p)= % 1+(c?+c§m§,)ln(—§) +ch
completely and so do the counterterms. Quenching errors in (v-p+Aa%) M
this quantity are thus far more reliably predictable in the
framework of ChPT than for the separate form factors. This 4 ePmot P4 . .
quantity might then prove useful in future lattice simulations TP b2l :

with both Bs— P andB— P transitions.

A similar (partia) cancellation of dependence on counter- 2

m3
1+ (c2+cimd)in| —

terms occurs also for the quenching error in the ratiof (v- p)—% +Co+C2mp+
fBHK/fBﬂﬂ'.
(32)
B, —P; B; — Pjj . . .
fp'v(Q)' fo, " B, P, BiPy_ B Py The quenched chiral log term is proportional to
B—p B s-=0of 1 - 6f 5fJ
£8P §Bk—Pi p.v(Q) p.v(Q) 5 )
p.v(Q) p.v mg(1+39g°)
=T Te@mn? 33

+5f§kjplk—%(L§—L5)m§, (3D)
' f and it is a quenched artifact that diverges in the chiral limit.
The presence of this term has an important consequence, that
which does not depend on counterterm& ff'=L2*"" In  py approaching ever lightens, the form factorsf 3“*"*"and

Eq (31) we have neglected counterterms SUDPFESSEd byauenchincrease This is in contrast to the ful{dynam|ca)
m2/mi and assumed thatf is small (5f is independent of theory in which the effect is the opposite, i.e., the chiral logs
counterterms by constructipn lower the form factors for small masses, as we shall see in
the next subsectiofsee Fig. 7. The form factorf (v -p)

also picks a term linear imp in this limit, which is yet
another artifact of the quenched approximation. The accom-
panying coefficient reads

VI. CHIRAL EXTRAPOLATION IN B— s DECAY
A. Quenched case

So far the quenched lattice studies of B 7 transition
matrix element were confined to the region of not very light
pseudoscalar meson masses wilifobm the point of view of
QChPT) is almost fortunate since one stays away from the
region in which the spurious quenched chiral logs dominate
over the other(physica) contributions. Supposing that one
manages to push the lattice studies toward ever lighter The unquenched equivalents to the expressi@2s are
“pions,” the quenched chiral log will become a more impor- not straightforward to derive. The main obstacle comes

g’m3 A
(47f)23v-p’

cb=- (34

B. Unquenched case: An illustration
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TABLE Il. The parameters describing the linear chiral extrapolation for Bie = form factors
fft;(v'p) at fixed (©-p), as indicated in Eq(36). The values are those obtained in the quenched lattice
studies in Refs[6,7].

0 i 1 3/ 0 1/ 1 5/
(v-p) al? (GeV? all) (Gev3?) al® (Gev 19 al) (Gev Reference
0.55 GeV 2.5(2)°92 1.1(2)33 0.9(1)"39 0.7(1)"39 (6]
0.19 GeV 0.8(3) 0.3(3) 4.8(4) 3.6(4.5) [7]

from the fact that, instead of one mass in the integrals We will now assume thaa) these results are the same in
1,(M,v-p) and J;(M,v-p), one now has three masses: the full (unquenchedtheory®® (b) the form (36) holds true
Me{m,, mg, andm,}. The behavior of those integrals down to a pointmy~250 MeV or my,~330 MeV, where
depends on the sign of-4(v-p)/M (see Appendix A The  we smoothly match the lattice and ChPT results. The full

variation of the pion mass entails a changengf and m,, ChPT form factor, given in Appendix B, is used from the
which straddle ¢ - p). This then changes the behavior of the matching pointm,, down to the physical pion mass. In other
integralsl, andJ,. For theB— 7 transition, we have words, for a fixed value ofy(- p), we take
2\ 2 I ChPT,
P (1,1 . 92(4Jl(mﬁ,v~p) Fp.o(M2) = O(M— M2, ) £ (md) + (m?, — m)[ £$"P(md)
flo-p+A%)| " (4f) CchPT, latt
) [f (mM) f (mM)]
+3J1(mK,v-|0)+§J1(m,,,v~p)) (&fChPT/(?mP| m2=n? —ag%g)(m%—mfﬂ)]. (37

In Fig. 7 we show the effect for the form factby(v - p). We
observe that the form factor obtained by including the chiral
logs in the extrapolation tm3=m? is smaller than the one
obtained by extrapolating linearkdotted lines in the plot

The amount of that suppression obviously depends on the
value of mf,l=4,u0mer: the effect of the chiral log is

(9m2log(m?) +6mzlog(mz)

2 2
+mslog(m;)) |+df+ - - -

1 [15-27g2 smaller for smallery,. In our example we took,,=0.15
fo(v-p)= |1+ (477]‘)2{ B mZ2log(m?2) (my =250 MeV) andr,=0.25 (my,=330 MeV). Using
1— gz ) ) 1+ 3g2 ) ) fECL (37)_ fECL (36)
+ TmKIog(mK) 1 m:,log(m?) erfy,)= W (39

to measure the error due to chiral logs that were not included
in the extrapolation to the physical pion mass, we obtain the
(35  following results.

ry=0.15:

+2l(m,v-p)+1(mg,v-p)|+dy+---

whered}® is a constant and the ellipses stand for the higher
order terms in thenw k,, EXpansion.

To exemplify the impact of the chiral logs, we will now
use the existingquenchedllattice results for th&— 7 form
factors presented in Ref§6] and[7], in which the chiral
extrapolation has been made linearly, i.e.,

erff,(v-p=0.19 GeVj|=—2%,
erff,(v-p=0.54 GeVj|=—5%.
ry=0.25:

er{f (v-p=0.19GeV]=—7%,

2ty py=a®(w-p)+aBw-pmi. (36 "
erf f,(v-p=0.54GeVj]=—15%.

The parametera%;” of Ref.[7] are obtained by fitting in the

region of light pseudoscalar mesons that correspondssto The above analysis applied to the form facfgrleads to

e (450,800) MeV. Those of Ref6] are obtained from a fit €ven smaller uncertainties: efff, _015<3% and

in mMpe (340 ,840) MeV. The numerical values are given inerr(f,); —02s<6%, for both values Ofl( p).

Table 11

13Since the purpose of the discussion in this section is to illustrate
2\e are particularly indebted to Tetsuya Onogi for communicat-the impact of the chiral logs on the result of an extrapolation to the
ing these results to us. physical pion mass, this assumption should not worry the reader.
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- quenched chiral logs do not dominate the QChPT expres-
vp=200 MeV sions, yet small enough for the chiral expansion to be mean-
e ingful. Furthermore, for the numerical estimates a number of
low energy constants must be fixed by using both the avail-
able experimental data and the results of quenched lattice
100 MeV ] simulations. Our numerical estimates in which we use the
AAAAAAA QChPT expressions are highly sensitive to the value of the
parameteg’ (the coupling of the doublet of heavy-light me-
I B ‘J_v_'pfi() ad sons to a lighty” meson. Until a lattice computation of that
e BT parameter is made, we are not able to make firm quantitative
I statements. Even information about the sigrgbfwould be
= welcome. It turns out that, fog’ = —g (which, on the basis
of the largeN, expansion, is the limiting valyewe get a less
pessimistic scenario: one can even find combinations of

FIG. 8. The ratioFo(u - p)/(fg/t,) or f,/(T/f), which satisfies (v~ P) and the light meson mass, such that the quenching
the soft pion theorem at zero recoil (p—0). The figure shows the €ITors inF .. 1(g“) vanish. We were also able to find combi-
ratio in the dynamical theory at which the violation of the soft pion Nations of ¢ - p) andmp such that the quenching errors do
theorem grows fast with the recoil momentum. The illustration isnot depend on the value of ; at these points and for small
provided for three momenta and for masses corresponding to recoils the quenching errors are between 15% and 25%. We
€(0,0.5), i.e.,m_e(0,0.5) GeV. Notice that in the quenched reiterate that the numerical estimates do depend on the spe-
theory this ratio does not depend am- p) and is equal to 1. cific choice of the low energy constants.

As for the form factorFo(q?), the present approach sug-

This exercise is made just to illustrate how one can progests that the quenching errors are large regardless of the
ceed in order to get an estimate of the systematic uncertairvalue of the couplingy’, the quenched value being larger
ties due to the chiral extrapolation. As we saw, the amount ofhan the unquenched one. Only at the point corresponding to
estimated uncertainty is highly sensitive to the choice of thezero recoil are those errors reasonably small. Away from that
pointry,, which is why the outcome of this exercise should point, they are large.
be considered only as a rough estimate. The same observations apply also when the final meson is

It is important to stress again that had we used thea kaon. In that case, by using the QChPT expressions, we
quenched expressions 32 to guide the chiral extrapolationwere able to verify that the form factors obtained for the
the result would stay above the result of the linear extrapokaon consisting of degenerate and nondegenerate quarks are
lation, precisely the opposite to what happens in the fulleffectively indistinguishable, provided the value of the cou-

~
(=)
T

g
EN
e

v-p

F,(vp) ! (f,1f,)

~
S
T

theory (which we show in Fig. ¥. pling is g'=—g. For g’'=+g these uncertainties also be-
Finally, we would like to make a comment on the ratio come large.
f, /(1) or equivalentyFo(v - p)/(fg/f ), which, according Finally, the formulas presented in this work may be useful

to the soft pion theorem, should be equal to 1 at the zerd assessing the systematic uncertainty due to chiral extrapo-
recoil pointv - p—0. In the quenched theory the form factor lations. We showed how to include the chiral logs to extrapo-
F, is independent of - p and its chiral corrections are ex- late from the region in which the pion is heavier than
actly the same as ifig/f .. Therefore the ratio is indeed 1 400 MeV. As could have been anticipated, the estimated un-
for all combinations of (,v-p). In the full (unquenched certainty of the chiral extrapolation depends on the mass
theory’ in contrast, the chiral corrections cancel on|y atfrom which the chiral |OgS are included in the extrapolation.
v-p—0 and the soft pion theorem is satisfied. It is worth ~We also provided the quenched chiral log coefficient,
noticing, however, that when a small recoil is introduced thevhich might be useful if lattice calculations are performed

violation of the soft pion theorem is quite large in the full With very light mesons.
theory (see Fig. 8. We verified that the rati&5~™/(fg/f ) satisfies the soft

pion theorem, i.e., it is equal to 1 at zero recoil, in both

theories. In the quenched theory that value remains un-

changed even when a small recoil momentum is introduced.
In this paper we explored an approach that contains at itth the dynamical theory, instead, this ratio is significantly

core the leading order in the heavy quark expansion and thiarger than 1 away from zero recoil.

next-to-leading order in ChPT, to derive expressions for the
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APPENDIX A: CHIRAL LOOP INTEGRALS 2

A—228A2|m 44A2 2y
In this appendix we list the dimensionally regularized in- J2(m,4)=| 2m*=34%]In ; —g4atmm ) A
tegrals encountered in the course of the calculation. For more

details, se¢52] and references therein: 8 —_ 2 _ 2 4
7 +§A2(1+A)—§m2(1+3A)—§m2+§A2.

. f dq 1 L, (m) (A5b)
7 = m),
1 ombeq—m? 16n2 !
d* <q 1 1 1 The functions];(m,A),J,(m,A) differ from the ones in Ref.
i,uff R a— = 2Klz(m,A), [22] by the last two terms in Eq(A5), which are of
(2m)" < (q°=m°)(q-v—A) 16w O(m?,A?). These additionaffinite) terms originate from the

(Al fact that»*” is the (4— €)-dimensional metric tensor.
where

APPENDIX B: EXPLICIT EXPRESSIONS FOR THE ONE
— mZK’ LOOP CHIRAL CORRECTIONS

2 m2
I1(m)=mn —
72

As already mentioned in the body of the paper, the chiral

2 loop corrections to the form factors can be written in the
2 M 2| M 2014 A) form
Io(m,A)=—2A%In| — | —4A%F| | +2A%(1+A4),
w A
(A2)
— of,,=>, of() 4+ 1(sz""’F’Jr 1(sz'°°p (B1)
whereA = 2/e— y+In(4m)+1. The functionF (x) was calcu- po 44 Tipu B o EER

lated in Ref.[53], for both negative and positive values of
the argument: ) o
where the sum goes over all the graphs depicted in Fig. 2. In
o X what follows we give the explicit expressions for both form
——tanl( 2) ,Ix=1, factors graph by graph and in both chiral theoligsenched
1-x and standand

1-x?

A3 o

2

In(x+Vx>—1), Ix|=1.
X ( ) 3 1. Quenched theory
A
(A3 In the calculation of one-loop contributions, we made sev-
In addition to the integral§A1), one also needs the follow- eral approximations in order to simplify the final expres-
ing two: sions. We make use of the fact thatp>A* for the B
— P transition and thus consistently neglect the mass differ-
_ ef d* <q g ences betweeB, B*, Bg, andB} mesons in the loops. This
M - neglect induces a spurious singularity in the expression for
2 4—¢ 2_ 2 v—A g g p - ) g y p
(2m) (@°-m)(q-v—4) the diagrams 7a and 7b in Fig. 2,:atp— 0. To handle those
oM singularities we follow the proposal by Falk and Grinstein
= S[12(m,A)+15(m)], (A4)  [25] and resum the corresponding diagrams and then subtract
16m the term that would renormalize tH®* meson mass. We
recall thata (b) superscripts distinguish the diagrams without
i éf d*"<q a“q” (with) hairpin insertion. The formulas for th@;— P;; tran-
H (2m)* € (g°—m?)(q-v—A) sition (with the valence quark content of mesoBs~bg;
and P;;~q;q;) are expressed in terms of the pseudoscalar
2__ .
= S ALMA) 7 dp(mA)pry],  MESON MASSAT=Aom;:
1672
699’ 1 27
- St = Ji(M; v-p)— — —=M3|,
with p (4'7Tf)2 1(Mj,v-p) v-p 3 i

2

_ 2 2 2 m 4 2 2 m
Jl(m,A)— —m +§A In ) +§(A —m )F K 2

) g
2 1 2 4 5f§)7b): - (4’7Tf)2 a0+(a0Mi2_m%)W
_ A2 AL —m2 AV 2 A2 !
3A (1+A)+3m(2+3A)+3m gA, L2,
(A53) X Jl(Mi,U'P)_ﬁ?Mi),
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g9’ (M )l (M)
6f“’a’=—z{al<m-,v-p>+Jl<M-,v-p) S= —— . —
P (4rf) ' : T a2 °) EIVERPVE
1 27
—— = (MP+ M), 2 o 1M dli(My)
v-p 3 ] +(agM—m,
2 2 2
g JaoM mo 1 277
(9b) _ 3 + 1{(M;)+1{(M; . B3
5f 3an f)l — i[vp3M —J1i(Mj,v-p) ag(11(Mj)+11(M;)) (B3)
_ aOMiz—mé 1 27TM3 3(M: v-p) In the wave function renormalization factafg p, we sepa-
M?—Miz v-p 3 1Minv-p rate the one-loop chiral COhtI’IbUtIO&Z'OOp from the pieces
coming from the counterterm%ZB'P, ie.,
T 2mi— ag(M?+M?) Zgp=1+06Zg p=1+ 6Z5F+ 6Z% B4
M= aa f)z[ Srviryram (FNN R PURY e o
m o More specifically,
I1(M;) al1(M;)
+(agMf—m o) + (@M —mg)— =1, oop. 1 , , M?
. i 521—(4 )2 (ZgaOM — 699’ M gmo)l F
VI (0)f +agg?M?—mig®+ (—29°M7ap+ 699’ M?
ST = — ——— 1, (M),
V6(47f)? 202N
+g°mg)A |, (B5a)
al1(M;)
S = agl (M) + (agMZ—md) : R MZ/M
e Y o(Mi)+ (aMi=mig)— 527190P= [In )[2a MZM2—m3(M?
i Pij 9(4xf) l 0 0
(B2)
where T=0 for i=j, and T=1 otherwise. The functions +M?P)]+2mi— ap(MF + M,-z)], (B5b)
[1(m),J;(m,A) are given in Appendix A. As for the form
factor f,(v-p), the nonzero chiral loop corrections are ) i
while the counterterms contribute as
iTV!(0)f 4
5f(4a)=—L—[| Mi,v-p)—I(M;,v- oz =kimy, 6Zp =—8L m;+m, B6
\@(4771‘)2 2(Mj,v-p)=12(M;,v-p) 1m; P 5712 ( ). (B6)
Thus the wave function renormalization factor ferand K
+ - [1(M)—=1:(M)]],
o L11(M})=1a( ')]} mesons reads
T 1 Z.=1-8L Au ) (B7a
= m
S5F(40) = aoMZ—md)[1 (M, Sz T
v 6(41Tf)2 MJ2_MI2{( oVl 0)[ l( J)
+21,(M;,v-p)]— (agMZ—m3)[1,(M; 1 In(mg/m
2(M; 0-p)] = (agM?~M3)[11(M)) Zeo1- 2[ (Ms/Mg) et — g2
P 9(4mf)” | (mg—mz2)
+205(Mi v p) I} | @t (aoM=m)— an
i +mgm§)+2aom§—2mg] —8L5f—20(mq+ ms),
X[11(Mj) +215(M; ,v-p)]] (B7b)
where we ignore the isospin-breaking effects and ragt
’ :md:mq.
Sft4a) — _ L())f[l (M) +1(M)T, Finally, we also display the expression for the heavy-light
v 2\/6(47#)2 . meson decay constant:
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For theB— 7 transition,

o
fB:

T [ao—if BV (0)]11(M))

6(4 f)2 3 ) .
( 0 cia=5. Chd=1 c=g: cba=>.
Al 1 (M;
+(a0Mi2 o)

1
+ %1mi + = 5ZB y (BB)
2 (%) (92)
CBKWZO’ CBr]'rr: - 67
in agreement with Ref§15,16.

C(12a)__z cz) _ l C(lQEl)_O,

2. Full (unquenched theory Brm 3’ “BKw 3’ By

In this subsection we present the expressions for the form

factors in the full theory. The nonanalytic contributions to the clm_ 3 =) 1 cm)_ 1
form factors in this theory have already been calculated in Brm 4’ 2 “Bym 12°
Ref. [25]. Our results also include the analytic terms. As in
the quenched case, we work in the isospin limf=my For theBs—K transition,
=m, and neglect the differences of heavy meson masses in
the loops. We now list the results faﬁf,g')p in B;— P;; me- cla _ § cla 1 cla _ l cla _g
diated by the ¥ —A) operator, wheré®;; stands for_the light Bgmk 27 TBKKT T EBaK g Bgmk ™
pseudoscalar meson with the valence quark corggmt
The form factorf (v - p) receives the following one-loop cld) g ca _=.
corrections: BKK™ = ~BgyK ™ 3
Sf(7a) = 3_92 E c® 13m (12a) _ 1 (12a) _ 1 (12a) _
p (471-1:)2 < ij/pij l( P/,U'p) CBSﬂ.K__Z, CBSKK__E, CBS‘”K—_Z,
1 27 3 1 1
- (13a) _ _ = (13a) _ _ — (138) _ _ —
v-p 3 mP'H Co k= 4’ Chkk= 5 Chok= 12
o2 The nonvanishing one-loop chiral corrections to the
(9a) _ _ (9a) ) )
Sf ) = (477”2[; CBjP'Pij Jy(Mpr 0+ p) f,(v-p) form factor are
1 2 f(42) _ 1 D (4a) 1
___7Tm3 o v _(4—f)2 - Dijrpi lo(Mpr,v- p)+ I1(mp,)
v-p 3 ™ P
1 ] f—__— IS pl@ | (m ,)} (B10)
(122) _ = (128) v 2 B/P'P;; [1(mp/) |,
ofy (4mf)? ; Cgprp, l1(Mp) |, (4mf)°| e
where the process-dependent coefficiel%jsp,pij are as fol-
1] | |
(%) — (13a) OWS.
oty (47f)2 ; CBjP'Pijll(mP') ’ (B9) For theB—K transition,

(4a) _ (4a) _ (4a) _ 1. (14a) _
where the coefficient@BJ_p,pij depend on the final and initial D7k =0, Dgkk=2, Dgyx=1; Dpnx=—1/4,
states. A detailed list of coefficients includes the following.

(14a) _ (14a) _ _
For theB—K transition, Dk 172, Dgyi 112.

For theB— 7 transition,
CE=0, CHk=2, Cik=2/3; CLR=0,
DY =2, D{Y =1, D{¥ =0; D{®=-5/12
1 T ’ nm ’ T ’
Chek=0, cEa=x; (140 _ (14a)
w3 DG =—1/3, DER=—-1/12.
(12) 1 (122) 1 (122) 1 For theBs—K transition,
Conc= " 4 Cork= 2’ Con= 4 D) (4a) (4a)
B7TK_3/2 DB KK:]" DBSWK:]./Z;
1
(13a) _ (133)_ —_ (13) _ _ _ _
ci® =0, c{3 1, CER=—3. DE k= —14, DE&=—1/2, DE=—-1/12,
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The wave function renormalization factaZdor B mesons As in the previous subsection we close the list of results by
in the full theory are showing also the corresponding formulas for the heavy-light
decay constants. We have

Zg :1_3—92{_|1(mw)+|1(m|<)+1|1(m )}
v T (4rmf)2|2 657
+kimg+ ko (my+mgy+mg), a 1 1
3? X fg = \/m—B(l_ (4Wf)2{|1(m}<)+§|1(m1,) T Mg

ZBS=1—W[2I1(mK)+ §I1(m,7) +kymg L

+ko(my+mg+mg). (B11) +%2(mU+md+mS)+§6ZBS 7
while for light mesons we have
Zg=1+ —— E|1(m,,)+|1(mK)+ E|1(m,7)} a 1

(47f)2|2 2 fo, = \/m_B(l_(Mf)z[le(m”H Ell(mK)

8L (ot ma)— 160,240 (my + mg - my) 1
5742 Vs 4 g2 Vu T Td T TSh +1—2|1(m,7) + 261Mg+ 2¢5(My+ Mg+ my)
7 1+ — (20, (m)+15(me) ] 8Le - 0m Lsz B13
= — +—=
C TP T >z 29484/ (B13)
4o
—16L,——(my+mgy+mg). (B12) . .
f2 in agreement with the results of Ref45,16.
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