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Next-to-leading order QCD corrections to high-pT pion production in longitudinally polarized
pp collisions
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We present a calculation for single-inclusive large-pT pion production in longitudinally polarizedpp colli-
sions in next-to-leading order QCD. We choose an approach where fully analytical expressions for the under-
lying partonic hard-scattering cross sections are obtained. We simultaneously rederive the corresponding cor-
rections to unpolarized scattering and confirm the results existing in the literature. Our results allow to calculate
the double-spin asymmetryALL

p for this process at next-to-leading order, which will soon be used at the BNL
Relativistic Heavy Ion Collider to measure the polarization of gluons in the nucleon.
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I. INTRODUCTION

The measurement of the proton’s spin-dependent de
inelastic structure functiong1

p by the European Muon Col
laboration ~EMC! @1# more than a decade ago made on
again the spin structure of the nucleon an exciting top
which deservedly continues to spark much activity by b
theorists and experimentalists. The original result, that
total quark spin contribution to the nucleon spin is only
the order of about 20% has subsequently been confirme
other experiments and is well established today. For vari
reasons that we will not review here, gluons may very w
play a more important role for the proton spin than quar
Consequently, there is now a flurry of experimental activ
aiming at measuring the polarization of gluons in t
nucleon. In terms of a parton density, the required inform
tion is contained in@2#

Dg~x,mF!5
i

4pxP1E dl eilxP1

3^P,SuG1n~0!G̃n
1~ln!uP,S&umF

, ~1!

written in A150 gauge, wherex is the gluon’s light-cone
momentum fraction of the proton momentumP1, and mF
the factorization scale appearing in a hard process to w
the gluon contributes.Gmn is the field strength tensor, an
G̃mn its dual. In more simple terms,Dg(x,mF) describes the
difference in probabilities for finding a gluon with positive o
negative helicity in a proton with positive helicity, at ‘‘reso
lution’’ scale mF :

Dg~x,mF![g1
1~x,mF!2g2

1~x,mF!, ~2!

where superscripts~subscripts! denote the proton~gluon! he-
licity.

Deeply inelastic scattering~DIS!, lp→ l 8X, is a standard
process for studying nucleon structure. However, it is not
0556-2821/2003/67~5!/054005~10!/$20.00 67 0540
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ideal process for measuring the gluon content of the nucle
due to the fact that the virtual photon in DIS couples direc
only to quarks. Inclusive structure functions therefore d
pend on the gluon density only through scale evolution, a
through higher orders in QCD perturbation theory. This e
plains why the existing polarized-DIS data have told us v
little about Dg @3,4#. One may attempt to get access to t
gluon density by selecting the photon-gluon-fusion proc
in DIS, which contributes to final states such as heavy fla
pairs, or high-transverse momentum (pT) hadron pairs. In-
deed, the COMPASS experiment@5# at CERN and HERMES
@6# at DESY follow this approach. Unfortunately, the rath
low energy in these fixed-target experiments and the ens
large systematic uncertainties in the theoretical predicti
complicate these efforts significantly. Dedicated experime
at a possibly forthcoming future polarizedep collider, such
as the BNL Electron Ion Collider~EIC! @7#, would presum-
ably make these channels more promising, however.

The BNL Relativistic Heavy-Ion Collider~RHIC! @8# is
able to run in a mode with polarized protons. Very inelas
pp collisions will then open up unequaled possibilities
measureDg. RHIC has the advantage of operating at hi

energies (AS5200 and 500 GeV), where the theoretical d
scription is under good control. In addition, it offers vario
different channels in whichDg can be studied, such a
prompt photon production, jet production, creation of hea
flavor pairs, or inclusive-hadron production. In this wa
RHIC is expected to provide the best source of informat
on Dg for a long time to come.

The basic concept that underlies most of spin physics
RHIC is the factorization theorem@9#, which states that large
momentum-transfer reactions may be factorized into lo
distance pieces that contain the desired information on
~spin! structure of the nucleon in terms of its parton densit
such asDg(x,mF), and parts that are short-distance and d
scribe the hard interactions of the partons. The two cru
points here are that on the one hand the long-distance
tributions are universal, i.e., they are the same in any ine
©2003 The American Physical Society05-1
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tic reaction under consideration, and that on the other h
the short-distance pieces depend only on the large scale
lated to the large momentum transfer in the overall reac
and, therefore, can be evaluated using QCD perturba
theory. The factorized structure forces one to introduce i
the calculation a scale of the order of the hard scale in
reaction—but not specified further by the theory—that se
rates the short- and long-distance contributions. This sca
the factorization scalemF mentioned above.

As an example, let us consider the spin-dependent c
section for the reactionpp→pX, where the pion is at high
transverse momentum, ensuring large momentum tran
This is the reaction we study in the following. The spi
dependent differential cross section is defined as

dDs[
1

2
@ds112ds12#, ~3!

where again the superscripts denote the helicities of the
tons in the scattering. The statement of the factorization th
rem is then

dDs5 (
a,b,c

E dxaE dxbE dzcD f a~xa ,mF!

3D f b~xb ,mF!Dc
p~zc ,mF8 !

3dDŝab
c ~xaPA ,xbPB ,Pp /zc ,mR ,mF ,mF8 !, ~4!

where the sum is over all contributing partonic channelsa

1b→c1X, with dDŝab
c the associated partonic cross se

tion, defined in complete analogy with Eq.~3!, the helicities
now referring to partonic ones:

dDŝab
c [

1

2
@~dŝab

c !112~dŝab
c !12#. ~5!

A few further comments are in order here. First, Eq.~4! is
actually a slight extension of the factorization theorem co
pared to what we stated above: the fact that we are obser
a specific hadron in the reaction requires the introduction
additional long-distance functions, the parton-to-pion fra
mentation functionsDc

p . These functions have been dete
mined with some accuracy by observing leading pions
e1e2 collisions and in DIS. Even though there is certain
room for improvement in our knowledge of theDc

p , we
assume for this study that the fragmentation functions
sufficiently known.

Secondly, we have displayed the full set of required sca
in Eq. ~4!. In addition to the factorization scalemF for the
initial-state partons, there is also a factorization scalemF8 for
the absorption of long-distance effects into the fragmenta
functions. In addition, we have a renormalization scalemR
associated with the running strong coupling constantas .

As mentioned above, the partonic cross sections may
evaluated in perturbation theory. Schematically, they can
expanded as

dDŝab
c 5dDŝab

c,(0)1
as

p
dDŝab

c,(1)1¯. ~6!
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dDŝab
c,(0) is the leading-order~LO! approximation to the par-

tonic cross section and is, for our case of pion producti
obtained from evaluating all basic 2→2 QCD scattering dia-
grams. It is therefore of orderas

2 . The lowest order, how-
ever, can generally only serve to give a rough description
the reaction under study. It merely captures the main f
tures, but does not usually provide a quantitative understa
ing. The first-order@‘‘next-to-leading order’’~NLO!# correc-
tions are generally indispensable in order to arrive at a firm
theoretical prediction for hadronic cross sections. For
stance, the dependence on the unphysical factorization
renormalization scales is expected to be much reduced w
going to higher orders in the perturbative expansion. O
with knowledge of the NLO corrections can one reliably e
tract information on the parton distribution functions fro
the reaction. This is true, in particular, for spin-depend
cross sections, where both the polarized parton densities
the polarized partonic cross sections may have zeros in
kinematical regions of interest, near which the predictions
lowest order and the next order will show marked diffe
ences.

There has been a lot of effort in recent years@10–16# to
obtain the NLO corrections for the spin-dependent cross s
tions most relevant for the RHIC spin program. By no
essentially the only remaining uncalculated corrections
those for the partonic cross sections in Eq.~4!, i.e., inclusive
pion production. These corrections will be presented in t
paper. We emphasize that it is very appropriate to provide
NLO corrections at this time: it is planned for the comin
RHIC run ~early 2003! to attempt a first measurement ofDg
through exactly the spin asymmetry

ALL
p 5

dDs

ds
5

ds112ds12

ds111ds12
~7!

for high-pT pion production. The main underlying idea he
is thatALL

p is very sensitive toDg through the contributions
from polarized quark-gluon and gluon-gluon scatterings.
note that thePHENIX collaboration has recently presente
first, still preliminary, results for the unpolarized cross se
tion for pp→p0X at AS5200 GeV, which are well de-
scribed by the NLO QCD calculation@17#, providing confi-
dence that the theoretical framework based on perturbat
QCD hard scattering and summarized by Eq.~4! is adequate.

Section II gives an outline of the calculation, summar
ing the main ingredients. In Sec. III we present some fi
numerical applications of our results.

II. CALCULATION OF THE NLO CORRECTIONS

A. Outline of the strategy of the calculation

The ‘‘parton-model’’ type picture employed in Eq.~4! im-
plies that the partonic cross sectionsdDŝab

c are single-
inclusive cross sections for the reactionsa1b→c1X, i.e.,
summed over all final states~excluding c) possible at the
order considered, and integrated over the entire phase s
of X. Writing out Eq.~4! explicitly to NLO, we have
5-2
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Ep

dDs

d3pp

5
1

pS (
a,b,c

E
z0

1dzc

zc
2 EVW/zc

12(12V)/zc dv
v~12v !

E
VW/vzc

1 dw

w
D f a~xa ,mF!D f b~xb ,mF!Dc

p~zc ,mF8 !FdDŝab
c,(0)~v !

dv
d~12w!

1
as~mR!

p

dDŝab
c,(1)~s,v,w,mR ,mF ,mF8 !

dvdw
G , ~8!
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wherez0512V1VW, with hadron-level variables

V[11
T

S
, W[

2U

S1T
, S[~PA1PB!2,

T[~PA2Pp!2, U[~PB2Pp!2, ~9!

and corresponding partonic ones

v[11
t

s
, w[

2u

s1t
, s[~pa1pb!2,

t[~pa2pc!
2, u[~pb2pc!

2. ~10!

Neglecting all masses, one has the relations

s5xaxbS, t5
xa

zc
T, u5

xb

zc
U, xa5

VW

vwzc
,

xb5
12V

zc~12v !
. ~11!

The LO partonic cross sectionsdDŝab
c,(0)(v) are calcu-

lated from the 2→2 QCD scattering processes, that is,X
consists of only one parton, and its phase space is trivial
leads to thed(12w) factor in Eq.~8!. We do not need to
present the cross sections here, which have been known
long time for both the unpolarized and the polarized ca
@18#. There are actually only four generic reactions,qq8

→qq8, qq→qq, qq̄→gg, andgg→gg; all other processes
follow from crossing if one works in terms of helicity am
plitudes for each reaction, keeping all particles polarized.
tree-level 2→2 helicity amplitudes are given in@19#. The
four generic processes give rise to the ten separate LO c
nels

qq8→qX,

qq̄8→qX,

qq̄→q8X,

qq→qX,

qq̄→qX,

qq̄→gX,

qg→qX,

qg→gX,

gg→gX,

gg→qX, ~12!
05400
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the ‘‘observed’’ final-state parton fragmenting into the ha
ron. At NLO, we haveO(as) corrections to the above reac
tions, and also the additional new processes

qq8→gX,

qq̄8→gX,

qq→gX,

qg→q8X,

qg→q̄8X,

qg→q̄X. ~13!

A single-inclusive-parton cross section is, of course, noa
priori infrared-finite in QCD, but sensitive to long-distanc
dynamics through the presence of collinear singularities
arise when the momenta of partons in the initial or fin
states become parallel. Such a situation can appear for
first time atO(as

3) ~NLO!, where 2→3 scattering diagrams
contribute. From the factorization theorem discussed abov
follows that long-distance sensitive contributions may
factored into the bare parton distribution functions or fra
mentation functions. The result of this procedure are fin
partonic hard-scattering cross sectionsdDŝab

c . At intermedi-
ate stages, however, the calculation will necessarily sh
singularities that represent the long-distance sensitivity.
addition, for those processes that are already present at
real 2→3 and virtual one-loop 2→2 diagrams contributing
to the calculation will individually have infrared singularitie
that only cancel in their sum. Virtual diagrams will also pr
duce ultraviolet poles that need to be removed by the ren
malization of the strong coupling constant at a scalemR . As
a result, a regulator has to be introduced into the calcula
that makes all the singularities manifest so that they can
canceled in the appropriate way. Our choice will be dime
sional regularization, that is, the calculation will be pe
formed ind5422« space-time dimensions. Subtractions
singularities will generally be made in the modified minim
subtraction (MS) scheme.

Dimensional regularization becomes a somewhat su
issue if polarizations of particles are taken into account. T
is due to the fact that projections on helicities involve t
Dirac matrixg5 for quarks and the Levi-Civita tensoremnrs

for gluons. These two objects are genuinely four-dimensio
and hence do not have a natural extension to 422« dimen-
sions. In fact, some care has to be taken to avoid algeb
5-3
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inconsistencies in the calculation when usingg5 andemnrs.
At the level of the algebra the treatment ofg5 andemnrs of
course only affects terms that are ofO(«). However, poles
proportional to 1/« and 1/«2 present in the calculation ma
combine with these to eventually result in nonvanishing c
tributions. A widely-used scheme for dealing withg5

andemnrs in a fully consistent way is the one developed
@20#, the ’t Hooft–Veltman–Breitenlohner-Maison~HVBM !
scheme. This is the scheme we have used for our calcula
It is mainly characterized by splitting thed-dimensional met-
ric tensor into a four-dimensional and a (d24)-dimensional
one. The Levi-Civita tensor is then defined by having co
ponents within the four-dimensional subspace only, andg5

anticommutes with the other Dirac matrices in the fo
dimensional subspace, but commutes with them in thed
24)-dimensional one. The HVBM scheme leads to a hig
complexity of the algebra and of phase space integrals. H
ever, one may make use of computer algebra programs,
as Tracer@21#, that allow us to handle the split-up of spac
time, and the treatment of (d24)-dimensional component
in phase space integrals has become rather standard by
We emphasize that for our present case the treatment og5
andemnrs has no bearing on the ultraviolet~renormalization!
sector of the calculation, since we have no chiral vertice
the calculation. For instance, we may perform all renorm
izations at the level of vertex and self-energy diagrams, w
out reference to the polarizations of the external particle

As remarked above, we need to sum over all possible fi
states in each channelab→cX, in compliance with the re-
quirement of single inclusiveness of the cross section.
instance, in case ofqg→qX one needs, besides the virtu
corrections toqg→qg, three different 2→3 reactions:qg

→q(gg), qg→q(qq̄), qg→q(q8q̄8) ~where brackets in-
dicate the unobserved parton pair!. Only all three processe
combined will allow us to arrive at a finite answer in the en
The summation overX is therefore always implicitly under
stood in the following.

In addition, the two unobserved partons in the 2→3 con-
tributions need to be integrated over their entire phase sp
The integration may be performed in basically two differe
ways. The first one relies on Monte Carlo integration te
niques. As was shown in@22,23#, the regions where the
squared 2→3 matrix elements become singular can
straightforwardly identified and separated. These regions
yield all the poles in 1/« after integration, which eventually
must cancel as described above. It then becomes possib
organize the calculation in such a way that the singulari
are extracted and canceled by hand, while the remainder
be integrated numerically over phase space. This appro
has the advantage of being very flexible; it may be used
any infrared-safe observable, with any experimental cut@22#.
On the other hand, the numerical integration involved tu
out to be rather delicate and time consuming. In case
polarized collisions, the method was employed for the re
tions pp→ jetX @13# andpp→gX @12# at NLO.

The method we will employ is to perform the phase spa
integration of the 2→3 contributionsanalytically. This has
several advantages. In the first place, the final answe
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much more amenable to a numerical evaluation, giving m
more stable results in a much shorter time. This may beco
important at a later stage, when experimental data will h
been obtained and one is aiming to extractDg from them
within a ‘‘global analysis’’ @24#. In addition, the ‘‘analytic
method’’ has also been employed in the unpolarized c
@25#. Since the calculation of the unpolarized and the po
ized NLO terms largely proceeds along similar lines, we c
compute both simultaneously. Our results for the unpolari
case may then be compared at ananalytical levelto those
available in the numerical code of@25#, which provides an
extremely powerful check on the correctness of all our c
culations.

We will now separately address the virtual 2→2 and real-
emission 2→3 NLO contributions. Then we will discus
their sum and the cancellation of singularities.

B. Virtual contributions

At O(as
3), virtual corrections only contribute throug

their interference with the Born diagrams, as sketched in F
1. We have calculated the virtual contributions with two d
ferent methods.

Firstly, we have performed a direct calculation. Here
could make use of knownMS-renormalized one-loop verte
and self-energy structures as given in@26#, which may be
readily inserted into the Born diagrams. One then additi
ally needs to calculate the box diagrams which are ultravio
finite and hence not subject to the renormalization proced
We have simultaneously computed the virtual corrections
the unpolarized case and found complete agreement with
results published in@27#.

The second approach makes use of the fact that in R
@28# the helicity amplitudes for all one-loop 2→2 QCD scat-
tering diagrams were presented. It is clear that these con
the information we need for our calculation. The on
subtlety is that the helicity method employed in@28# will not
immediately yield the answer for the HVBM prescription w
are looking for. However, as was also pointed out in@23,28#,
the translation between the results for the two scheme
fairly straightforward. In fact, by inspecting the singulari
structure of the diagrams, one can derive a universal form
the virtual contributionV that schematically reads

V~s,t,u!5B~s,t,u!H 2
1

«2 (
n

Cn2
1

« (
n

gnJ
1

1

« (
m,n

logS 2pn•pm

s D B̃mn~s,t,u!1Ṽ~s,t,u!,

~14!

wheren,m are summed over all external legs, thepi are the
external parton momenta, andB denotes the Born cross se

FIG. 1. Interference of generic virtual~box, vertex, self-energy!
contributions with Born diagrams.
5-4
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tion for the reaction under consideration. TheB̃mn are the
so-called ‘‘color-linked’’ Born cross sections, to be calc
lated according to rules given in@23#. The Ci and g i are
coefficients depending only on the type of external leg, w
Cq5CF54/3, Cg5CA53, gq53CF/2, gg5b0/2511/2
2nf /3, nf being the number of flavors. Finally,Ṽ is the
finite remainder. The only difference between the result
the virtual correction in the helicity amplitude method a
the conventional HVBM scheme resides in theB and B̃mn
terms. For the helicity method, these are four-dimensio
quantities, whereas in conventional dimensional regular
tion they are calculated ind dimensions in the HVBM
scheme. This property allows a direct determination of
full virtual correction in the HVBM scheme, sinceV has
been calculated with helicity amplitude methods in@23#. This
strategy for determining the virtual corrections was a
adopted in Ref.@13#.

We found complete agreement between the results
tained for our two approaches for obtaining the virtual c
rections.

C. 2\3 real contributions

Figure 2 shows some representative 2→3 Feynman dia-
grams contributing toab→cX to O(as

3). The squared spin
dependent matrix elements ind dimensions, using the
HVBM prescription for g5 and the Levi-Civita tensor, are
too lengthy to be reported here. Again, we have simu
neously calculated the squared matrix elements for the un
larized case, and we recover the known@27# results in d
dimensions. The polarized matrix elements can be chec
in d54 dimensions against the expressions in@19#, and
again we find agreement.

In d5422« dimensions, as a consequence of using
HVBM scheme with its distinction between four- and (d
24)-dimensional subspaces, the squared matrix elem
contain scalar products of vectors separately in these
spaces. For instance, while an outgoing unobserved pa
with momentumk is massless,k250, we may encounter its
(d24)-dimensional invariant mass, denoted ask̂2, in the
calculation, which is constructed from th
(d24)-dimensional components ofk. Such terms need to b
carefully taken into account in the phase space integratio

The most economical way of organizing the phase sp
integration is to work in the rest frame of the two unobserv
final-state partons whose momentak2 and k3 can then be
parametrized as

k25~k0 ,k0 sinu1 cosu2 ,ky ,k0 cosu1 ,k̂!,

k35~k0 ,2k0 sinu1 cosu2 ,2ky ,2k0 cosu1 ,2 k̂!,
~15!

and to define the momenta of the other three particles to
in the x-z plane in the four-dimensional space. In this ca
the above k̂2 is the only invariant arising from the
(d24)-dimensional subspace. In Eq.~15! k05As23/2 with
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s235(k21k3)25sv(12w), andky denotes the unspecifiedy
component ofk2 and k3 which can be trivially integrated
over since the matrix element does not depend on it. O
then has the three-body phase space@11#

F35
s

~4p!4G~122«!
S 4p

s D 2«E
0

1

dvv122«~12v !2«

3E
0

1

dw@w~12w!#2«

3E
0

p

du1 sin122«u1E
0

p

du2 sin22«u2

1

BS 1

2
,2« D

3E
0

1 dx

A12x
x2(11«), ~16!

where x is k̂2 normalized to its upper limit, x

[4k̂2/s23sin2u1 sin2u2.
The integrations we do analytically are overx ~for those

terms in the squared matrix elements that have depend
on k̂2) and the anglesu1 and u2 . v and w, defined in Eq.
~10!, become integration variables in the convolution w
the parton densities, according to Eqs.~8! and ~11!. Exten-
sive partial fractioning of the squared matrix elements
ways leads to the master integral for the angular integrati

FIG. 2. Representative 2→3 Feynman diagrams contributing t
ab→cX to O(as

3).
5-5
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E
0

p

du1 sin122«u1E
0

p

du2 sin22«u2

1

~12cosu1! j~12cosu1 cosx2sinu1 cosu2 sinx! l

52p
G~122«!

G~12«!
22 j 2 l

B~12«2 j ,12«2 l !

G~12«! 2F1S j ,l ,12«;cos2
x

2D , ~17!
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where the last line is the result given in Ref.@29#. B(x,y) is
the Euler beta function and2F1(a,b,c;z) denotes the hyper
geometric function.

The final step in the evaluation of the 2→3 contributions
is to extract the poles arising when the invariant mass of
unobserved partons becomes small:s23→0. According to
Eq. ~10! or the definition ofs23 below Eq.~15!, this is the
case forw→1. The fact that the LO contribution is propo
tional to d(12w) indicates that the dependence onw is in
the sense of a mathematical distribution. At NLO, the in
grated matrix elements have terms proportional to 1
2w) which, after inclusion of the factor (12w)2« from the
phase space integral~17!, can be expanded as

~12w!212«52
1

«
d~12w!1

1

~12w!1
2«S ln~12w!

12w D
1

1O~«2!, ~18!

making the singularities at«50 manifest. Here the ‘‘1 ’’
distributions are defined in the usual way,

E
0

1

f ~w!@g~w!#1dw5E
0

1

@ f ~w!2 f ~1!#g~w!dw. ~19!

D. Collinear factorization

After cancellation of genuine infrared singularities in t
sum of virtual and real contributions, only collinear poles a
left. Figure 3 sketches a typical collinear situation in a
→3 process. The contribution displayed will require a su
traction of the form}1/«DPqq3Dŝqq→qq , whereDPqq is
the spin-dependent LOq→q Altarelli-Parisi splitting func-
tion @30# and Dŝqq→qq represents the subsequent polariz
LO scatteringqq→qq, evaluated ind dimensions. More
precisely, the structure of this particular collinear subtract
is

FIG. 3. Representative collinear contribution to the subproc
qq→qqg ~see text!.
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0

1

dxDHqq~x,mF!
dDŝqq→qq~xs,xt,u,«!

dv

3d@x~s1t !1u#, ~20!

where

DHqq~z,mF![S 2
1

«
1gE2 ln 4p DDPqq~z!S s

mF
2 D «

1D f qq~z!. ~21!

Here the Euler constantgE and ln 4p are the terms that are
commonplace to subtract in order to work in theMS scheme.
D f qq(z) is an additional finite piece in the subtraction th
represents the freedom in choosing a factorization presc
tion and will be discussed below. We see in Eq.~21! how the
factorization scalemF emerges in the subtraction. In gener
a process at NLO will require several collinear subtractio
in both the initial and the final states. Depending on wh
types of partons are collinear, the other splitting functio
DPqg , DPgq , DPgg , as well as other 2→2 cross sections
will contribute. In the final-state collinear case, a singular
occurs when the observed parton and an unobserved on
come collinear. The subtraction needed here can be ea
written down in a form analogous to Eq.~21!; it will involve
the final-state factorization scalemF8 . Note that, since we are
not considering polarization in the final state, only sp
independent splitting functions appear in the final-state f
torization subtraction.

Taking theMS scheme literally, one would not have an
additional finite pieces in the subtraction, beyond those
volving gE and ln 4p. That is, one would define (D) f i j (z)
50 in the functions (D)Hi j involved in the various subtrac
tions in the polarized and unpolarized cases. However, th
is a well-known@11,31,32# subtlety arising in theq→q split-
ting in the polarized case that is related to the use of
HVBM scheme. It is a property of the HVBM-scheme de
nition of g5 that it leads to helicity nonconservation
the qqg vertex in d dimensions. This can be seen from th
nonvanishing difference of unpolarized and polariz
d-dimensional LO quark-to-quark splitting functions:

DPqq
422«~x!2Pqq

422«~x!54CF«~12x!. ~22!

A disagreeable consequence of this is a nonzero first mom
(x integral! of the flavor nonsinglet NLO anomalous dime
sion for the evolution of spin-dependent quark densities
conflict with the conservation of flavor nonsinglet axial cu
rents @31–33#. Beyond NLO, it even turns out that a naiv
s
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MS subtraction without restoration of helicity conservati
leads to inconsistencies and uncanceled singularities in
renormalization of the axial current@34#. We therefore
slightly deviate from theMS scheme in the polarized case b
choosing@31,32#

D f qq~z!524CF~12z!. ~23!

It is important to point out that in general the choice of t
function D f qq(z) corresponds to the freedom in defining
factorization scheme other thanMS. Of course, a physica
quantity like the pion production cross section must not
pend on the convention regarding which finite terms are s
tracted from the partonic cross sections along with the c
linear poles. Indeed, the parton distribution functions
scheme dependent as well, so that at any given order inas
the scheme dependence cancels in the physical observ
The factorization scheme defined by the choice~23! has also
been used in the available sets of spin-dependent NLOMS
parton densities, so our definition is consistent with th
densities. Since the HVBM ‘‘g5-effect’’ mentioned above is
ro

fo
ce

o
ih
ar
th
n
nl
es

05400
he
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e

ble.

e

to be regarded as an artifact of the prescription and may
removed in a straightforward way by exploiting the cons
vation of nonsinglet axial currents, results of polarized NL
calculations are usually regarded as being ‘‘genuinely’’ in t
conventionalMS scheme onlywith the choice~23!. All other
possibleD f i j are, however, set to zero, as in the usualMS
scheme. Needless to say that in the unpolarized case on
f qq5 f qg5 f gq5 f gg50 in MS.

E. Final results

Once we have performed the factorization of colline
singularities, we arrive at the final results for the NLO pa
tonic hard-scattering cross sections. We first of all note th
as mentioned earlier, we have calculated in parallel the N
corrections for the unpolarized case. We have compa
them term-by-term with the known analytical results in t
code of@25# and found complete agreement.

Our results for the spin-dependent NLO corrections m
for each of the 16 subprocesses be cast into the follow
form:
s
dDŝab

c,(1)~s,v,w,mR ,mF ,mF8 !

dvdw
5S as~mR!

p D 2F S A0d~12w!1B0

1

~12w!1
1C0D ln

mF
2

s
1S A1d~12w!1B1

1

~12w!1

1C1D ln
mF8

2

s
1A2d~12w!ln

mR
2

s
1Ad~12w!1B

1

~12w!1
1C1DS ln~12w!

12w D
1

1E ln w1F ln v1G ln~12v !1H ln~12w!1I ln~12vw!1J ln~12v1vw!

1K
ln w

12w
1L

ln
12v

12vw

12w
1M

ln~12v1vw!

12w
G , ~24!
h
pt

va-

of
n.
Eq.
-

o

so
where all coefficients are functions ofv andw, except those
multiplying the distributionsd(12w), 1/(12w)1 , @ ln(1
2w)/(12w)#1 which may be written as functions just ofv.
Terms with distributions are present only for those subp
cesses that already contribute at the Born level, see Eq.~12!.

We finally make a few observations about our results
the polarized case. Consider, for example, the subpro

qq̄→q8X in Eq. ~12!. All Feynman diagrams contributing t
this cross section at NLO, virtual as well as real, are ann
lation diagrams, meaning that the initial quark and antiqu
legs are part of the same fermion line. Independently of
number of gluons attaching to the fermion line, helicity co
servation in QCD demands that the annihilation can o
occur if the quark and antiquark have opposite heliciti
Keeping in mind the definition~5! for the polarized cross
section, we are led to the expectation that
-

r
ss

i-
k
e
-
y
.

dDŝqq̄
q8,(1)

[2dŝqq̄
q8,(1)

~25!

should be fulfilled for this process. The only way in whic
this relation could be broken is if the regularization we ado
in the NLO calculation does not respect helicity conser
tion. As we discussed earlier, the HVBM prescription forg5
indeed has this deficiency. However, as known from@31,32#,
the additional finite termD f qq ~23! in the factorization sub-
traction~21! is precisely designed to cure this shortcoming
the HVBM prescription and to restore helicity conservatio
This is probably the most tangible reason why the choice
~23! is required from a physical point of view. The implica
tion of this is that our final results forqq̄→q8X should in-
deed satisfy~25!, which we have verified. We can actually g
one step further: the channelsqq̄→gX and qq̄→qX have
contributions from annihilation diagrams as well, but al
5-7
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ones from nonannihilation diagrams, for which theq and q̄
scatter viat-channel gluon exchange. Helicity conservati
makes no immediate statement about the nonannihila
diagrams. However, the channelsqq̄8→gX and qq̄8→qX
are described by the nonannihilation diagramsalone. If we
subtract the corresponding cross sections from the ones
qq̄→gX andqq̄→qX, respectively, we can use helicity con
servation again for the remainder. Explicitly, we expect

@dDŝqq̄
q,(1)

2dDŝqq̄8
q,(1)

#[2@dŝqq̄
q,(1)

2dŝqq̄8
q,(1)

#, ~26!

and similarly for an observed gluon. Again we have verifi
that our final results obey this relation, which we conside
very powerful check on the correctness of our results.

III. NUMERICAL RESULTS

In this section we present a first numerical application
our analytical results. Instead of presenting a full-fledg
phenomenological study of single-inclusive hadron prod
tion in polarizedpp collisions, which we leave for a future
study, we only report the main features of the NLO corre
tions and describe their impact on the cross sections and

spin asymmetryALL
p0

. Predictions forALL
p0

are in immediate
demand for an extraction ofDg at RHIC in the very near
future.

For our calculations we assume the same kinematic c
erage as in the recentPHENIX measurement of the unpola
ized cross section atAS5200 GeV@17#, that is, we consider
pion transverse momenta in the range 2<pT<13 GeV and
pseudorapiditiesuhu<0.38. We also take into account th
the pion measurement is at present possible only over
the azimuthal angle.

We will evaluate cross sections and spin asymmetrie
both LO and NLO, in order to study the size and importan
of the corrections we have calculated. We will always p
form the NLO ~LO! calculations using NLO~LO! parton
distribution functions, fragmentation functions, and the tw
loop ~one-loop! expression foras . To calculate the NLO
~LO! unpolarized pion cross section needed for the deno

nator of the spin asymmetryALL
p0

in Eq. ~7!, we use the
CTEQ5M ~CTEQ5L! @35# parton distribution functions. In
all our calculations we use the pion fragmentation functio
of Ref. @36#, which provides both a LO and a NLO set. F
the polarized cross section, we will mainly use the~NLO/
LO! ‘‘standard’’ sets of the spin-dependent Gluck-Rey
Stratmann-Vogelsang~GRSV! @3# parton distributions
~‘‘GRSV-std’’ !. Since we also want to investigate the sen

tivity of ALL
p0

to the polarized gluon densityDg, we use an-
other set of GRSV distributions, for which the gluon is a
sumed to be particularly large~‘‘GRSV-max’’ !. We note that
the value of the strong couplingas to be used in conjunction
with the unpolarized parton distributions differs from th
employed in the fits for the polarized sets and the fragm
tation functions. Our convention will be to calculate th
cross sections always with the strong coupling constant
companying the parton distributions used.

Figure 4 shows our results for the unpolarized and po
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ized cross sections at NLO and LO, where we have cho
the scalesmR5mF5mF85pT . The lower part of the figure
displays the ‘‘K factor’’

K5
d~D!sNLO

d~D!sLO
. ~27!

One can see that in the unpolarized case the corrections
roughly constant and about 50% over thepT region consid-
ered. In the polarized case, we find generally smaller cor
tions which become of similar size as those for the unpo
ized case only at the high-pT end. The cross section forpT
values smaller than about 2 GeV is outside the domain
perturbative calculations as indicated by rapidly increas
NLO corrections and, therefore, is not considered here.

As we have mentioned in the Introduction, one reas
why NLO corrections are generally important is that th
should considerably reduce the dependence of the cross
tions on the unphysical factorization and renormalizat
scales. In this sense, theK factor is actually a quantity of
limited significance since it is likely to be rather scale depe
dent through the presence of the LO cross section in its
nominator. The improvement in scale dependence when
ing from LO to NLO is, therefore, a better measure of t
impact of the NLO corrections, and, perhaps, provides als
rough estimate of the relevance of even higher order Q
corrections. Figure 5 shows the scale dependence of the s
dependent cross section at LO and NLO. In each case
shaded bands indicate the uncertainties from varying the
physical scales in the rangepT/2<mR5mF5mF8<2pT . The

FIG. 4. Unpolarized and polarizedp0 production cross section
in NLO ~solid! and LO~dashed! at AS5200 GeV. The lower pane
shows the ratios of the NLO and LO results in each case.
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solid lines are for the choice where all scales are set topT .
One can see that the scale dependence indeed becomes
smaller at NLO.

Finally, we consider the spin asymmetry which is t

main quantity of interest here. Figure 6 showsALL
p0

, calcu-
lated at NLO~solid lines! for the ‘‘standard’’ set of GRSV
parton distributions, and for the one with ‘‘maximal’’ gluo
polarization@3#. We have again chosen all scales to bepT .
For comparison, we also show the LO result for the GR
‘‘standard’’ set~dashed line!. As expected from the largerK
factor for the unpolarized cross section shown in Fig. 4,
asymmetry is somewhat smaller at NLO than at LO, show
that inclusion of NLO QCD corrections is rather importa
for the analysis of the data in terms ofDg.

We also conclude from the figure that there are excel

prospects for determiningDg(x) from ALL
p0

measurements a
RHIC: the asymmetries found for the two different sets
polarized parton densities, which mainly differ in the glu
density, show marked differences, much larger than the
pected statistical errors in the experiment, indicated in
figure. The latter may be estimated by the formula@37#

dALL
p .

1

P2ALsbin

, ~28!

where P is the polarization of one beam,L the integrated
luminosity of the collisions, andsbin the unpolarized cross
section integrated over thepT bin for which the error is to be
determined. We have used the very moderate valuesP50.4
andL57/pb, which are targets for the coming run. As me
tioned above, we also take into account that at present
the PHENIX experiment a pion measurement is poss
only over half the azimuthal angle.

IV. CONCLUSIONS

We have presented in this paper the complete NLO Q
corrections for the partonic hard-scattering cross sections

FIG. 5. Scale dependence of the polarized cross section fop0

production at LO and NLO in the rangepT/2<mR5mF5mF8
<2pT . We have rescaled the LO results by 0.1 to separate t
better from the NLO ones. In each case the solid line correspond
the choice where all scales are set topT .
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evant for the spin asymmetryALL
p for high-pT pion produc-

tion in hadron-hadron collisions. This asymmetry is a pro
ising tool to determine the spin-dependent gluon density
the nucleon and will be measured in the coming run w
polarized protons at RHIC. Our calculation is based on
largely analytical evaluation of the NLO partonic cross se
tions.

We found that the NLO corrections to the polarized cro
section are somewhat smaller for RHIC than those in
unpolarized case. The polarized cross section shows a
nificant reduction of scale dependence when going from
to NLO. Upcoming RHIC data should be able to provide fi
information onDg even for rather moderate integrated lum
nosities.

Note added. While nearing completion of our work, we
learned that D. de Florian has performed@38# the same cal-
culation, using the ‘‘Monte Carlo’’ method outlined in Se
II. This provides an extremely welcome opportunity for com
paring the results. Early comparisons show very good ag
ment of the numerical results.
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FIG. 6. Spin asymmetry forp0 production, using the ‘‘stan-
dard’’ set of GRSV@3# and the one with ‘‘maximal’’ gluon polar-
ization. The dashed line shows the asymmetry at LO for the GR
‘‘standard’’ set. The ‘‘error bars’’ indicate the expected statistic
accuracy targeted for the upcoming run of RHIC~see text!.
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