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Next-to-leading order QCD corrections to highpt pion production in longitudinally polarized
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We present a calculation for single-inclusive lafgepion production in longitudinally polarizegp colli-
sions in next-to-leading order QCD. We choose an approach where fully analytical expressions for the under-
lying partonic hard-scattering cross sections are obtained. We simultaneously rederive the corresponding cor-
rections to unpolarized scattering and confirm the results existing in the literature. Our results allow to calculate
the double-spin asymmet@", for this process at next-to-leading order, which will soon be used at the BNL
Relativistic Heavy lon Collider to measure the polarization of gluons in the nucleon.
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[. INTRODUCTION ideal process for measuring the gluon content of the nucleon,
due to the fact that the virtual photon in DIS couples directly
The measurement of the proton’s spin-dependent deemnly to quarks. Inclusive structure functions therefore de-
inelastic structure functiog! by the European Muon Col- pend on the gluon density only through scale evolution, and
laboration (EMC) [1] more than a decade ago made oncethrough higher orders in QCD perturbation theory. This ex-
again the spin structure of the nucleon an exciting topicplains why the existing polarized-DIS data have told us very
which deservedly continues to spark much activity by bothiittle aboutAg [3,4]. One may attempt to get access to the
theorists and experimentalists. The original result, that th@|u0n density by selecting the photon-gluon-fusion process
total quark spin contribution to the nucleon spin is only ofjn pis, which contributes to final states such as heavy flavor
the order of about 20% has subsequently been confirmed Byyirs or high-transverse momentumpy} hadron pairs. In-
other experiments and is well established today. For varioUgeeq, the COMPASS experimdisi at CERN and HERMES
reasons that we will not review here, gluons may very wellig) ot pESY follow this approach. Unfortunately, the rather
play a more Important role for the proton spin than qugrl_«siow energy in these fixed-target experiments and the ensuing
Consequently, there is now a flurry of experimental aCtIV'tylarge systematic uncertainties in the theoretical predictions

aiming at measuring the polarization of gluons in the : A ) _
: . . complicate these efforts significantly. Dedicated experiments
nucleon. In terms of a parton density, the required informa- iblv forth ing 1 lar lid h
tion is contained if2] at a possibly forthcoming future po arizexp collider, suc
as the BNL Electron lon Collide(EIC) [7], would presum-
. ably make these channels more promising, however.
! j dn @MxP* The BNL Relativistic Heavy-lon CollidefRHIC) [8] is
47xP* able to run in a mode with polarized protons. Very inelastic
pp collisions will then open up unequaled possibilities to

X(P,S[G""(0)G, (Am[P,S)[,., (1)  measureAg. RHIC has the advantage of operating at high
energies (/S=200 and 500 GeV), where the theoretical de-

written in A" =0 gauge, where is the gluon's light-cone scription is under good control. In addition, it offers various
momentum fraction of the proton momentud’, and ug  different channels in whichAg can be studied, such as
the factorization scale appearing in a hard process to whicBrompt photon production, jet production, creation of heavy
the gluon contributesG*” is the field strength tensor, and flavor pairs, or inclusive-hadron production. In this way,
G*” its dual. In more simple term&\g(x, u¢) describes the RHIC is expected to provide the best source of information
difference in probabilities for finding a gluon with positive or on Ag for a long time to come.
negative helicity in a proton with positive helicity, at “reso-  The basic concept that underlies most of spin physics at

Ag(X,up)=

lution” scale ur: RHIC is the factorization theoref®], which states that large
momentum-transfer reactions may be factorized into long-
Ag(X, p) =01 (X, uE) — 95 (X, mg), (2)  distance pieces that contain the desired information on the

(spin) structure of the nucleon in terms of its parton densities
where superscriptsubscripts denote the protofgluon) he-  such asAg(x,ug), and parts that are short-distance and de-
licity. scribe the hard interactions of the partons. The two crucial

Deeply inelastic scatteringpIS), Ip—1’X, is a standard points here are that on the one hand the long-distance con-
process for studying nucleon structure. However, it is not arributions are universal, i.e., they are the same in any inelas-
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tic reaction under consideration, and that on the other hangA(}g,éO) is the leading-ordefLO) approximation to the par-

the short-distance pieces depend only on the large scales rgyi” cross section and is, for our case of pion production,

lated to the large momentum transfer in the overall reaCtio'?)btained from evaluating all basic-22 QCD scattering dia-
and, therefore, can be evaluated using QCD perturbatio rams. It is therefore of ordetﬁ. The lowest order, how-

theory. The factorized structure forces one to introduce int Lver, can generally only serve to give a rough description of

the calculation a scale of the order of the hard scale in th‘ﬁqe reaction under study. It merely captures the main fea-

reaction—but not specified further by the theory—that SePaiures, but does not usually provide a quantitative understand-

|iﬁg. The first-ordef“next-to-leading order”(NLO)] correc-
tions are generally indispensable in order to arrive at a firmer
YReoretical prediction for hadronic cross sections. For in-
stance, the dependence on the unphysical factorization and
Senormalization scales is expected to be much reduced when
" going to higher orders in the perturbative expansion. Only
with knowledge of the NLO corrections can one reliably ex-
tract information on the parton distribution functions from
the reaction. This is true, in particular, for spin-dependent
cross sections, where both the polarized parton densities and
where again the superscripts denote the helicities of the prdhe polarized partonic cross sections may have zeros in the
tons in the scattering. The statement of the factorization thedinematical regions of interest, near which the predictions at

rates the short- and long-distance contributions. This scale
the factorization scalg.,r mentioned above.

As an example, let us consider the spin-dependent cro
section for the reactiopp— X, where the pion is at high
transverse momentum, ensuring large momentum transf
This is the reaction we study in the following. The spin
dependent differential cross section is defined as

1
dAo= E[do++—da+7], 3

rem is then lowest order and the next order will show marked differ-
ences.
dAo= D f dxaf dxbf dz AT, (Xg, 1e) There has been a lot of effort in recent yept6—1§ to
a,b,c obtain the NLO corrections for the spin-dependent cross sec-

Y Af D7 , tions most relevant for the RHIC spin program. By now,
b(Xb, r)De (Ze . ip) essentially the only remaining uncalculated corrections are
~ those for the partonic cross sections in E4, i.e., inclusive
X ¢ . . . . Lo ST
dATap(XaPa XoPe Pr/Ze, irs st 1e), (4) pion production. These corrections will be presented in this
where the sum is over all contributing partonic chanreels paper. We er_npha5|ze ;hat_ It 'S_ very appropriate to prowd_e the

NLO corrections at this time: it is planned for the coming

+b—c+X, with dAog, the associated partonic cross sec-guc run (early 2003 to attempt a first measurement
tion, defined in complete analogy with E@), the helicities through exactly the spin asymmetry
now referring to partonic ones:

dAo B do™*—do’~

A 1 . .
dAog,= E[(dogb)++—(dagb)+_]. (5) AT = —
do  dott+dot™

)

A few further comments are in order here. First, Et).is . ) ) . o
actually a slight extension of the factorization theorem com{0r high-pr pion production. The main underlying idea here
pared to what we stated above: the fact that we are observirl§ thatA(, is very sensitive ta\g through the contributions
a specific hadron in the reaction requires the introduction offom polarized quark-gluon and gluon-gluon scatterings. \We
additional long-distance functions, the parton-to-pion frag-note that thepHeNIx collaboration has recently presented
mentation function®? . These functions have been deter- first, still preliminary, results for the unpolarized cross sec-
mined with some accuracy by observing leading pions irfion for pp—m°X at \/S=200 GeV, which are well de-

e*e™ collisions and in DIS. Even though there is certainly Scfibed by the NLO QCD calculatiofi7], providing confi-
room for improvement in our knowledge of tH2”, we dence that the theoretical framework based on perturbative-
c

assume for this study that the fragmentation functions ar@CD hqrd scattering and ;ummanzed by l':4)'.'3 adequate._

sufficiently known. ~ Section Il gives an outline of the calculation, summariz-
Secondly, we have displayed the full set of required scalel9 th‘? main |ngr¢d|ents. In Sec. Il we present some first

in Eq. (4). In addition to the factorization scajey for the ~numerical applications of our results.

initial-state partons, there is also a factorization sgglefor

the absorption of long-distance effects into the fragmentation  II. CALCULATION OF THE NLO CORRECTIONS

functions. In addition, we have a renormalization scale

associated with the running strong coupling constant
As mentioned above, the partonic cross sections may be The “parton-model” type picture employed in EG) im-

evaluated in perturbation theory. Schematically, they can bglies that the partonic cross sectiod&&gb are single-

A. Outline of the strategy of the calculation

expanded as inclusive cross sections for the reacticas b—c+X, i.e.,
summed over all final state@xcludingc) possible at the
So _gASSOy Fsgasey ... order considered, and integrated over the entire phase space
dAogp=dAoap +"dAog, ' ©) of X. Writing out Eq.(4) explicitly to NLO, we have
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dAc 1 Jldzc 1-(1-V)iz,  do
C

Zy Zg VW/z,

| as(pr) dASM(s,0,W, iR, ik 4F)

1

T dvdw

wherezy=1-V+ VW, with hadron-level variables

-
V=1+<, W S=(Pa+Pg)?,

SEMa
TE(PA_ Pw)za UE(PB_ P’n’)zi

and corresponding partonic ones

—u
w=—,
S+t

u=(pp—pc)*.

t 2
UEl+g' S=(PatPp)

t=(pa—Po)?,

Neglecting all masses, one has the relations
VW

Xa Xp
Cowz’

t=—T, u

ZC a ZC

S=XXpS, U, Xa

1-V

Xb:zc(l—v) '

The LO partonic cross sectiordA oS{?(v) are calcu-
lated from the 2-2 QCD scattering processes, that 3§,

9)

(10

(11)

U(l_U) VW ZWAfa(Xailu‘F)Afb(Xb1lu’F)D(7;T(ZC1/u‘|’:) dl)
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dA oSO
ab ( )ﬁ(l—W)

®

the “observed” final-state parton fragmenting into the had-
ron. At NLO, we haveO(«s) corrections to the above reac-
tions, and also the additional new processes

aqq’' —gX,

aq’'—gX,
qg—gX,
ag—q’X,
q9—q’X,
qg—aX. (13)

A single-inclusive-parton cross section is, of course,anot
priori infrared-finite in QCD, but sensitive to long-distance
dynamics through the presence of collinear singularities that
arise when the momenta of partons in the initial or final
states become parallel. Such a situation can appear for the

consists of only one parton, and its phase space is trivial anfirst time atO(a?2) (NLO), where 2-3 scattering diagrams
leads to thes(1—w) factor in Eq.(8). We do not need to contribute. From the factorization theorem discussed above it
present the cross sections here, which have been known forfallows that long-distance sensitive contributions may be
long time for both the unpolarized and the polarized casefactored into the bare parton distribution functions or frag-
[18]. There are actually only four generic reactiomngy’

—qq’, q9—qg, qq—gg, andgg—gg; all other processes partonic hard-scattering cross sectiohso?, . At intermedi-

fo_IIOW from crossing if one wor_ks in terms of helicit_y am- ate stages, however, the calculation will necessarily show
plitudes for each reaction, keeping all particles polarized. Allsingularities that represent the long-distance sensitivity. In

tree-level 2-2 helicity amplitudes are given ifil9]. The

mentation functions. The result of this procedure are finite

addition, for those processes that are already present at LO,

four generic processes give rise to the ten separate LO chareal 2—3 and virtual one-loop 2:2 diagrams contributing

nels
aq’'—aX,
qq’'—gX,
q9—q’'X,
ag—aX,
qg—aX,
q9—gX,
ag—aX,
ag—gX,
9g—9gX,

g99—aX,

12

to the calculation will individually have infrared singularities
that only cancel in their sum. Virtual diagrams will also pro-
duce ultraviolet poles that need to be removed by the renor-
malization of the strong coupling constant at a sqale As

a result, a regulator has to be introduced into the calculation
that makes all the singularities manifest so that they can be
canceled in the appropriate way. Our choice will be dimen-
sional regularization, that is, the calculation will be per-
formed ind=4—2¢ space-time dimensions. Subtractions of
singularities will generally be made in the modified minimal
subtraction MS) scheme.

Dimensional regularization becomes a somewhat subtle
issue if polarizations of particles are taken into account. This
is due to the fact that projections on helicities involve the
Dirac matrix ys for quarks and the Levi-Civita tensaf*”?”
for gluons. These two objects are genuinely four-dimensional
and hence do not have a natural extension t®24 dimen-
sions. In fact, some care has to be taken to avoid algebraic
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inconsistencies in the calculation when usipgand e*"*7.

At the level of the algebra the treatmentpf and e#"*“ of { + Y + ¢ } @
course only affects terms that are @f¢). However, poles
proportional to 1¢ and 1£2 present in the calculation may FIG. 1. Interference of generic virtuédbox, vertex, self-energy
combine with these to eventually result in nonvanishing concontributions with Born diagrams.

tributions. A widely-used scheme for dealing withs
and e*”?? in a fully consistent way is the one developed in
[20], the 't Hooft—Veltman—Breitenlohner-MaisaiVBM)
scheme. This is the scheme we have used for our calculatio

It is mainly characterized by splitting tlledimensional met- within a “global analysis”[24]. In addition, the “analytic

ric tensor into_afo_ur-dimens!onal and 4{4)—dimen§ional method” has also been employed in the unpolarized case
one. The Levi-Civita tensor is then defined by having com55) since the calculation of the unpolarized and the polar-
ponents within the four-dimensional subspace only, 8d  jzeq NLO terms largely proceeds along similar lines, we can
anticommutes with the other Dirac matrices in the four-compute both simultaneously. Our results for the unpolarized
dimensional subspace, but commutes with them in the (case may then be compared at amalytical levelto those
—4)-dimensional one. The HVBM scheme leads to a highegvailable in the numerical code §25], which provides an
complexity of the algebra and of phase space integrals. Howextremely powerful check on the correctness of all our cal-
ever, one may make use of computer algebra programs, suchilations.

as Traceff21], that allow us to handle the split-up of space- We will now separately address the virtuak2 and real-
time, and the treatment ofd(- 4)-dimensional components emission 2-3 NLO contributions. Then we will discuss

in phase space integrals has become rather standard by naleir sum and the cancellation of singularities.

We emphasize that for our present case the treatmemt of

ande”*?? has no bearing on the ultravioleenormalizatioh B. Virtual contributions

sector of the calculation, since we have no chiral vertices in

the calculation. For instance, we may perform all renormal- '.A‘t. O(as), thugl correctlons_ only contribute thro_ugh.
izations at the level of vertex and self-energy diagrams, with:[he'r interference with the qun d'agrams’ as sket'ched n '.:'g'
out reference to the polarizations of the external particles. 1. We have calculated the virtual contributions with wo dif-

As remarked above, we need to sum over all possible finaflerent methods. . .
states in each channab—cX, in compliance with the re- Firstly, we have performed a d|recfc calculation. Here we
quirement of single inclusiveness of the cross section. FofOUld make use of knowMS-renormalized one-loop vertex
instance, in case ajg—qX one needs, besides the virtual @nd self-energy structures as given[26], which may be

corrections toqg—qg, three different 2-3 reactionsqg readily inserted into the Born di_agrams. One then addit_ion—
— — ally needs to calculate the box diagrams which are ultraviolet

d—_>q(tggt)h, qg—;)q(qq)a qg;;q(q %)I (w?letrhe brackets in- finite and hence not subject to the renormalization procedure.
icate the unobserved parton pa Yy all INME€ Processes \va have simultaneously computed the virtual corrections for

combined will allow us to arrive at a finite answer in the end.the unpolarized case and found complete agreement with the
The summation oveX is therefore always implicitly under- results published ifi27]

stood in the following. The second approach makes use of the fact that in Ref.

btions noed to be integrated over ther entire phase spaciZ] e helicity amlitudes for all one-loop 22 QCD scat-
9 P P €ring diagrams were presented. It is clear that these contain

The integration may be performed in basically two dn‘ferent,[he information we need for our calculation. The only

ways. TT first Onﬁ rehe; 22 ;\/Ion:re] Carlq mtegrﬁnon gﬁCh'suthety is that the helicity method employed #8] will not
nlques.d s was s _ownl 22, ?i'b € regions V;/ ere eb immediately yield the answer for the HVBM prescription we
igg?rﬁtfofv;’;dlm%”xt.? %mer:jts eco;’ng _?Lngu ar can e, .o looking for. However, as was also pointed oujta8,28],

9 yigentified and separated. TNese regions Wi, o angjation between the results for the two schemes is

yield all the poles in ¥ after integration, which eventually fairly straightforward. In fact, by inspecting the singularity

must g:ancel as descr_lbeq . becomeg poss'.b.leépructure of the diagrams, one can derive a universal form for
organize the calculation in such a way that the smgularltle§

are extracted and canceled by hand, while the remainder ma?/e virtual contributiony’ that schematically reads

be integrated numerically over phase space. This approach 1 1

has the advantage of being very flexible; it may be used for V(s,t,u)=l’5’(s,t,u)[ R — 2 C,—— 2 7n]
n € n

much more amenable to a numerical evaluation, giving much
more stable results in a much shorter time. This may become
important at a later stage, when experimental data will have
Been obtained and one is aiming to extrag from them

any infrared-safe observable, with any experimental 28t &?

On the other hand, the numerical integration involved turns 1 2p,p

out to be rather delicate and time consuming. In case of _— Iog( n m)TS’mn(s,t,u)JrTJ(s,t,u),
polarized collisions, the method was employed for the reac- € m<n S

tions pp—jetX [13] andpp— yX [12] at NLO. (14)

The method we will employ is to perform the phase space
integration of the 2-3 contributionsanalytically. This has  wheren,m are summed over all external legs, heare the
several advantages. In the first place, the final answer iexternal parton momenta, aftidenotes the Born cross sec-
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tion for the reaction under consideration. TBg,, are the
so-called “color-linked” Born cross sections, to be calcu-
lated according to rules given if23]. The C; and vy; are
coefficients depending only on the type of external leg, with

F
Cq=Ce=4/3, Cy=Ca=3, yq=3Cl2, y,=fBo/2=11/2 Sfm<

IO

—ng/3, n¢ being the number of flavors. Finally, is the
finite remainder. The only difference between the result for
the virtual correction in the helicity amplitude method and

the conventional HVBM scheme resides in tBeand B, , S
terms. For the helicity method, these are four-dimensional different flavors identical flavors
guantities, whereas in conventional dimensional regulariza- a#q ¢=d
tion they are calculated ird dimensions in the HVBM ad = ad'g
scheme. This property allows a direct determination of the
full virtual correction in the HVBM scheme, sincg has
been calculated with helicity amplitude method$28]. This 99— 999

strategy for determining the virtual corrections was also

99 = 999

R
i

hi
Al

aG—d7g
a9 — 499

adopted in Ref[13].

We found complete agreement between the results ob M
tained for our two approaches for obtaining the virtual cor-
rections. M

99 — 999 g9 = qdg

£
H
K

C. 2—3 real contributions

Figure 2 shows some representative:2 Feynman dia-
grams contributing tab—cX to 0(a§)_ The squared spin- FIG. 2. Representative-23 Feynman diagrams contributing to
dependent matrix elements id dimensions, using the ab—cXto O(ad).

HVBM prescription for ys and the Levi-Civita tensor, are
too lengthy to be reported here. Again, we have SimU|ta'sz3:(k2+k3)2—

| \culated th d matrix el is for th =sv(1—w), andk, denotes the unspecifigd
neously calculated the squared matrix elements for the unpg: ) . .
larized case, and we recover the knof@¥] results ind %omponent ofk, and ks which can be trivially integrated

: : . i over since the matrix element does not depend on it. One
dimensions. The polarized matrix elements can be checkeg . < the three-body phase SpecE

in d=4 dimensions against the expressions[19], and
again we find agreement.

In d=4—-2¢ dimensions, as a consequence of using the
HVBM scheme with its distinction between four- and ( s 4\ 2 (1 1, -
—4)-dimensional subspaces, the squared matrix elements ‘DFW(—) f dvv="*(1-v)"°
contain scalar products of vectors separately in these sub- (47)°T(1-2¢)
spaces. For instance, while an outgoing unobserved parton 1
with momentumk is massless?=0, we may encounter its X fo dwfw(l-w)]"*
(d—4)-dimensional invariant mass, denoted ifs in the
calculation, ~ which is  constructed from the m e m —
(d—4)-dimensional components &f Such terms need to be X jo dé, sin' 91f0 désin ezﬂ

B —&

S

carefully taken into account in the phase space integrations.
The most economical way of organizing the phase space

integration is to work in the rest frame of the two unobserved 1 dx
final-state partons whose momerka and k; can then be j x~(1+e) (16)
parametrized as 0 {J1—x

ko= (Kg,kq Sin ky K k 4 . . -
2= (ko ko Sin 61 €0S6; Ky ko COSO, k), where x is k? normalized to its upper limit, x

= 4Kk?/ 5,5 Si6, Sint6,.
K3=(ko,—Kgsin#; cosd,,—ky,— Ko cosb;,—k), The integrations we do analytically are oweffor those
(15  terms in the squared matrix elements that have dependence
i i on Rz) and the angle®, and #,. v andw, defined in Eq.
and to define the momenta of the other three particles to li¢10) hecome integration variables in the convolution with
in the x-z pIAane in the four-dimensional space. In this casehe parton densities, according to E¢8) and (11). Exten-
the above k? is the only invariant arising from the sive partial fractioning of the squared matrix elements al-
(d—4)-dimensional subspace. In E@5) ko= /s,y/2 with  ways leads to the master integral for the angular integrations
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1
(1—cos6,)!(1—cosé, cosy—sin#; cosh, siny)'

f dé, sianalf dé,sin 220,
0 0

N1-2¢) . B(l—e—j,1—e—1) i . X
IZWWZ - F(l—s) ZFl(j,|,l—8,CO§§), (17)

where the last line is the result given in REZ9]. B(x,y) is

_ ag (1 dATgq qq(XSXt,U, &)
the Euler beta function angF,(a,b,c;z) denotes the hyper- - —f dXAHgq(X, ug) q
geometric function. mJo v
The final step in the evaluation of the-23 contributions X S[x(s+1)+u] (20)

is to extract the poles arising when the invariant mass of the
unobserved partons becomes smal;—0. According to  where
Eq. (10) or the definition ofs,; below Eq.(15), this is the

case forw— 1. The fact that the LO contribution is propor- 1 s |°

tional to 5(1—w) indicates that the dependence wris in AHg(Zpe)=| =S+ 7’E_|”477) Aqu(z)<—2)

the sense of a mathematical distribution. At NLO, the inte- F

grated matrix elements have terms proportional to 1/(1 +Afq4(2). (21

—w) which, after inclusion of the factor (2w) ¢ from the

phase space integrél?7), can be expanded as Here the Euler constantz and In4r are the terms that are
commonplace to subtract in order to work in & scheme.

1 In(1—w) Afq4(2) is an additional finite piece in the subtraction that
(1-w) 1 e=——5(1-w)+ —8< ) represents the freedom in choosing a factorization prescrip-
& (1=w), 1-w /., tion and will be discussed below. We see in E2{l) how the

factorization scale.z emerges in the subtraction. In general,

2
+0O(e%), (18) a process at NLO will require several collinear subtractions,
in both the initial and the final states. Depending on which
making the singularities at =0 manifest. Here the +” types of partons are collinear, the other splitting functions
distributions are defined in the usual way, APy, APgq, APgy4, as well as other 2:2 cross sections,

will contribute. In the final-state collinear case, a singularity

N . occurs when the observed parton and an unobserved one be-
j f(W)[g(W)]+dW:f [f(w)—f(1)]g(w)dw. (19)  come collinear. The subtraction needed here can be easily

0 0 written down in a form analogous to E@Q1); it will involve
the final-state factorization scale- . Note that, since we are
not considering polarization in the final state, only spin-
independent splitting functions appear in the final-state fac-

After cancellation of genuine infrared singularities in the torization subtraction.

sum of virtual and real contributions, only collinear poles are  Taking theMS scheme literally, one would not have any
left. Figure 3 sketches a typical collinear situation in a 2additional finite pieces in the subtraction, beyond those in-
—3 process. The contribution displayed will require a sub-volving ye and In4r. That is, one would defineA)f;;(2)
traction of the formocl/gAquXAa'qqﬂqq, whereAPyqis =0 in the functions 4)H;; involved in the various subtrac-
the spin-dependent LQ— q Altarelli-Parisi splitting func-  tions in the polarized and unpolarized cases. However, there

tion [30] and Aqq_.qq represents the subsequent polarizedS @ Well-known[11,31,33 subtlety arising in thej—q split-
LO scatteringqg—qq, evaluated ind dimensions. More tng In the polarized case that is related to the use of the

precisely, the structure of this particular collinear subtractiort!VBM scheme. It is a property of the HVBM-scheme defi-
is nition of ys that it leads to helicity nonconservation at

the qgg vertex ind dimensions. This can be seen from the
1 nonvanishing difference of unpolarized and polarized
(.6'6\ Pa (1-2)pa d-dimensional LO quark-to-quark splitting functions:

D. Collinear factorization

TP — — 1 AP % (x) = Pgg 2 (x)=4Cre(1-X). (22)
— l I _ . i
I I A disagreeable consequence of this is a nonzero first moment
T . (x integra) of the flavor nonsinglet NLO anomalous dimen-
- sion for the evolution of spin-dependent quark densities, in
FIG. 3. Representative collinear contribution to the subprocessonflict with the conservation of flavor nonsinglet axial cur-
gg—0qqg (see text rents[31-33. Beyond NLO, it even turns out that a naive
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MS subtraction without restoration of helicity conservationt© be regarded as an artifact of the prescription and may be

leads to inconsistencies and uncanceled singularities in tH&€moved in a straightforward way by exploiting the conser-

renormalization of the axial curren34]. We therefore Vvation of nonsinglet axial currents, results of polarized NLO

slightly deviate from th1S scheme in the polarized case by c@lculations are usually regarded as being “genuinely” in the

choosing[31,37) conventionaMS scheme onlyith the choice(23). All other
possibleAf;; are, however, set to zero, as in the usMS

Afyy(2)=—4Ce(1-2). 23 ?chETe._l\]!eeEIfess_tg ga)ll\/l_tgat in the unpolarized case one has
o . _ . ag= Tag=Tgg=Tgg="Y IN Mo,

It is important to point out that in general the choice of the

function Af,4(z) corresponds to the freedom in defining a _

factorization scheme other thaWS. Of course, a physical E. Final results

quantity like the pion production cross section must not de- Once we have performed the factorization of collinear

pend on the convention regarding which finite terms are subsingularities, we arrive at the final results for the NLO par-

tracted from the partonic cross sections along with the coltonic hard-scattering cross sections. We first of all note that,
linear poles. Indeed, the parton distribution functions areas mentioned earlier, we have calculated in parallel the NLO
scheme dependent as well, so that at any given ordes in corrections for the unpolarized case. We have compared
the scheme dependence cancels in the physical observabirem term-by-term with the known analytical results in the

The factorization scheme defined by the chdiz® has also  code of[25] and found complete agreement.

been used in the available sets of spin-dependent NSO Our results for the spin-dependent NLO corrections may
parton densities, so our definition is consistent with thesdor each of the 16 subprocesses be cast into the following
densities. Since the HVBM 9;-effect” mentioned above is form:

dAoi(s,0. W, ur. ik f) [ as(pr)|? 1 7% 1
S - “WIFBor Wy, T <+ ~W)+B———
dvdw ( ™ ) (Ao5(1 w) BO(l—W)+ Co Ins A16(1—w) Bl(l—w)+
12 2
- KR 1 In(1—w)
+C1 In?+A25(1—W)In?+A5(1—W)+Bm+C+D(W .

+EInw+FInv+GIn(l-v)+HIn(1—w)+1In(1—ovw)+JIn(1—v+ovw)

| 1-v
L nw +Ln1—vW+M|n(l—v+vW) .
1-w 1-w 1-w ' (24)
|
where all coefficients are functions ofandw, except those dA 50— ol 25)
multiplying the distributionss(1—w), 1/(1—-w)., [In(1 aq aq

—w)/(1—w)]; which may be written as functions just of  should be fulfilled for this process. The only way in which
Terms with distributions are present only for those subprothis relation could be broken is if the regularization we adopt
cesses that already contribute at the Born level, se€12).  in the NLO calculation does not respect helicity conserva-
We finally make a few observations about our results forttion. As we discussed earlier, the HVBM prescription fgr
the polarized case. Consider, for example, the subproce#’deed has this deficiency. However, as known fi@h,32,
qa—>q’X in Eq. (12). All Feynman diagrams contributing to the a_lddition_al finitg terrrzqu_q (23) in the fac_torization sgb-
this cross section at NLO, virtual as well as real, are annihi{raction(21)is precisely designed to cure this shortcoming of
lation diagrams, meaning that the initial quark and antiquardh® HVBM prescription and to restore helicity conservation.
legs are part of the same fermion line. Independently of thd NiS iS probably the most tangible reason why the choice Eq.
number of gluons attaching to the fermion line, helicity con-(23) IS required from a physical point of view. The implica-
servation in QCD demands that the annihilation can onlytion of this is that our final results fajg—q’X should in-
occur if the quark and antiquark have opposite helicitiesdeed satisfy25), which we have verified. We can actually go
Keeping in mind the definition5) for the polarized cross one step further: the channeig—gX and qg—gX have
section, we are led to the expectation that contributions from annihilation diagrams as well, but also
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d(A)c /dp; [pb/GeV]

ones from nonannihilation diagrams, for which ttmanda
scatter viat-channel gluon exchange. Helicity conservation
makes no immediate statement about the nonannihilation

diagrams. However, the channejﬁ’ﬂgx and qa’ﬂqx

are described by the nonannihilation diagraahene If we
subtract the corresponding cross sections from the ones for
gg—gX andqg—qgX, respectively, we can use helicity con- 10°
servation again for the remainder. Explicitly, we expect

~ (1) gA~A (I rana(D)_ gna(1)
[dAqu dAa'qq, 1= [d(rqq dO'qq, 1, (26) 104
and similarly for an observed gluon. Again we have verified

that our final results obey this relation, which we consider a
very powerful check on the correctness of our results. 10

III. NUMERICAL RESULTS

In this section we present a first numerical application of
our analytical results. Instead of presenting a full-fledged
phenomenological study of single-inclusive hadron produc-
tion in polarizedpp collisions, which we leave for a future L
study, we only report the main features of the NLO correc- 10 15
tions and describe their impact on the cross sections and the Py [GeV]
spin asymmetnA?”, . Predictions forA?, are in immediate  FIG. 4. Unpolarized and polarizes® production cross sections
demand for an extraction afg at RHIC in the very near N NLO (solid) and LO(dashedlat yS=200 GeV. The lower panel
future. shows the ratios of the NLO and LO results in each case.

For our calculations we assume the same kinematic cov-
erage as in the receRHENIX measurement of the unpolar- ized cross sections at NLO and LO, where we have chosen
ized cross section afS=200 GeV[17], that is, we consider the scalesugr=pug=ui=pr. The lower part of the figure
pion transverse momenta in the rangs ;<13 GeV and displays the K factor”
pseudorapiditie$ 7| <0.38. We also take into account that

<
th

the pion measurement is at present possible only over half d(A)gNo
the azimuthal angle. =—15" (27
We will evaluate cross sections and spin asymmetries at d(A)e

both LO and NLO, in order to study the size and importance

of the corrections we have calculated. We will always PE"One can see that in the unpolarized case the corrections are
form the NLO (LO) calculations using NLOLO) parton P

0, I 1d-
distribution functions, fragmentation functions, and the two-ronghly constant and about 50% over hieregion consid

. ered. In the polarized case, we find generally smaller correc-
loop (one-loop expression foras. To calculate the NLO hich b f similar size as those for the unpolar-
(LO) unpolarized pion cross section needed for the denomiyons which become of - ) P

] 0. ized case only at the higbr end. The cross section fqt
nator of the spin asymmetrp”, in Eq. (7), we use the yajyes smaller than about 2 GeV is outside the domain of
CTEQS5M (CTEQSL) [35] parton distribution functions. In perturbative calculations as indicated by rapidly increasing
all our calculations we use the pion fragmentation functions\y|.0O corrections and, therefore, is not considered here.
of Ref.[36], which provides both a LO and a NLO set. For A5 we have mentioned in the Introduction, one reason
the polarized cross section, we will mainly use #.O/  yhy NLO corrections are generally important is that they
LO) “standard” sets of the spin-dependent Gluck-Reya-should considerably reduce the dependence of the cross sec-
Stratmann-Vogelsang(GRSV) [3] parton distributions  tions on the unphysical factorization and renormalization
(‘GRSV-std"). Since we also want to investigate the sensi-scales. In this sense, the factor is actually a quantity of
tivity of A[", to the polarized gluon densityg, we use an- limited significance since it is likely to be rather scale depen-
other set of GRSV distributions, for which the gluon is as-dent through the presence of the LO cross section in its de-
sumed to be particularly larg¢GRSV-max”). We note that nominator. The improvement in scale dependence when go-
the value of the strong couplings to be used in conjunction ing from LO to NLO is, therefore, a better measure of the
with the unpolarized parton distributions differs from that impact of the NLO corrections, and, perhaps, provides also a
employed in the fits for the polarized sets and the fragmenrough estimate of the relevance of even higher order QCD
tation functions. Our convention will be to calculate the corrections. Figure 5 shows the scale dependence of the spin-
cross sections always with the strong coupling constant aclependent cross section at LO and NLO. In each case the
companying the parton distributions used. shaded bands indicate the uncertainties from varying the un-

Figure 4 shows our results for the unpolarized and polarphysical scales in the rangs/2< ug=ur=pur<2ps. The
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10— 0.1~
: E AP
10°F dAc /dp; [pb/GeV] ] 008 | LL GRSV-max ]
al N r
10 006 | ]
10°k ] [
3 E 0.04 ]
102;— = L i
i 3 002 - 4
10 E 4
i 3 0
1 F E | I R S
F 1 1 1 - 0 5 10 GeV 15
0 5 10 15 pr [GeV]

Pr [GeV] FIG. 6. Spin asymmetry forr® production, using the “stan-
FIG. 5. Scale dependence of the polarized cross sectionor dard” set of GRSV[3] and the one with “maximal” gluon polar-
production at LO and NLO in the rangp(/2<ur=ur=pug ization. The dashed line shows the asymmetry at LO for the GRSV
=<2ps. We have rescaled the LO results by 0.1 to separate thertfstandard” set. The “error bars” indicate the expected statistical
better from the NLO ones. In each case the solid line corresponds taccuracy targeted for the upcoming run of RHEge text

the choice where all scales are septe.

solid lines are for the choice where all scales are sgi;to ~ €vant for the spin asymmetd/, for high-py pion produc-

One can see that the scale dependence indeed becomes mtien in hadron-hadron collisions. This asymmetry is a prom-

smaller at NLO. ising tool to determine the spin-dependent gluon density in
Finally, we consider the spin asymmetry which is thethe nucleon and will be measured in the coming run with

main quantity of interest here. Figure 6 showgf, calcu- Polarized protons at RHIC. Our calculation is based on a
lated at NLO(solid lineg for the “standard” set of GRSV largely analytical evaluation of the NLO partonic cross sec-
parton distributions, and for the one with “maximal” gluon tions.

polarization[3]. We have again chosen all scales tofde We found that the NLO corrections to the polarized cross
For comparison, we also show the LO result for the GRS\section are somewhat smaller for RHIC than those in the
“standard” set(dashed ling As expected from the largé¢  unpolarized case. The polarized cross section shows a sig-
factor for the unpolarized cross section shown in Fig. 4, thenificant reduction of scale dependence when going from LO
asymmetry is somewhat smaller at NLO than at LO, showingo NLO. Upcoming RHIC data should be able to provide first
that inclusion of NLO QCD corrections is rather important information onAg even for rather moderate integrated lumi-
for the analysis of the data in terms &f. nosities.

We also conclude from the figure that there are excellent Note addedWhile nearing completion of our work, we
prospects for determiningg(x) from Aff measurements at learned that D. de Florian has perforn&8] the same cal-
RHIC: the asymmetries found for the two different sets ofculation, using the “Monte Carlo” method outlined in Sec.
polarized parton densities, which mainly differ in the gluonll. This provides an extremely welcome opportunity for com-
density, show marked differences, much larger than the exparing the results. Early comparisons show very good agree-
pected statistical errors in the experiment, indicated in thenent of the numerical results.
figure. The latter may be estimated by the formi8d]

1
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