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Initial-state interactions in the unpolarized Drell-Yan process
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We show that initial-state interactions contribute to the epsi&tribution in unpolarized Drell-Yan lepton
pair productionpp and pEH(fW’X, without suppression. The asymmetry is expressed as a product of
chiral-odd distributionshi(xl,pf)xﬂ(xz,kf), where the quark-transversity functitbli(x,pf) is the trans-
verse momentum dependent, light-cone momentum distribution of transversely polarized quarksipoan
larized proton. We compute thignaive) T-odd and chiral-odd distribution function and the resulting a#s 2
asymmetry explicitly in a quark-scalar diquark model for the proton with initial-state gluon interaction. In this
model the functiorhf(x,pf) equals theT-odd (chiral-even Sivers effect function‘fT(x,pf). This suggests
that the single-spin asymmetries in the semi-inclusive deep inelastic scattering and the Drell-Yan process are
closely related to the cosfasymmetry of the unpolarized Drell-Yan process, since all can arise from the same
underlying mechanism. This provides new insight regarding the role of the quark and gluon orbital angular
momentum as well as that of initial- and final-state gluon exchange interactions in hard QCD processes.
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[. INTRODUCTION nisms involving transversityoften denoted byh, or 8q),
which correlates the spin of the transversely polarized hadron
Single-spin asymmetries in hadronic reactions have beewith the transverse polarization of its quarks.

among the most challenging phenomena to understand from In further contrast, the exchange of a gluon can also lead

basic principles in QCD. Several such asymmetries havé0 transversity of quarks inside ampolarizedhadron. This

been observed experimenta”)/, and a number of theoretic&hiral-Odd partner of the Sivers effect has been discussed in

mechanisms have been suggesfée6]. Recently, a new Refs.[6,11], and in this paper we will show explicitly how

way of producing single-spin asymmetries in semi-inclusivelnitial-state interactions generate th|zs gﬁect. Go!dsteln and

deep inelastic scatteringIDIS) and the Drell-Yan process Gamberg reported recently thiat (x,p?) is proportional to

has been put forwart?,8]. It was shown that the exchange fir(x.p?) in the quark-scalar diquark modg12]. We con-

of a gluon, viewed as initial- or final-state interactions, couldfirm this and find that these two distribution functions are in

produce the necessary phase leading to a single transver&€t equal in this model. Although this property is not ex-

spin asymmetry. The main new feature is that, despite th@€cted to be satisfied in general, nevertheless, one may ex-

presence of an additional gluon, this asymmetry occurs withPect these functions to be comparable in magnitude, since

out suppression by a large energy scale appearing in the prB-Oth 1;lectt|otr;]s can be generatedfti%/ the sam(: meghlanlsmI:[ \fNe
cess under consideration. It has been recognized since th yestigate the consequences of the present model resutt for

[9] that this mechanism can be viewed as the so-called Sive@se lrJ]npoIanzed DreII-Yan_ prrc]) celss. We o_btaln aln e;_prgzsmn
effect [1,10], which was thought to be forbidden by time- prt € cos Zb_asymmetry In the lepton pair angular distribu-

T . . tion. Here ¢ is the angle between the lepton plane and the
reversal invariancg4]. Apart from generating Sivers effect

. h hani p insiah di hplane of the incident hadrons in the lepton pair center of
asymmetrl_es, the mechanism offers new Insig tregarding the << This asymmetry was measured a long time 28d4]
role of orbital angular momentum of quarks in a hadron an

i _ ) i _ = ) nd was found to be large. Several theoretical explanations
their spin-orbit couplings; in fact, the saneL. matrix ele-  (some of which will be briefly discussed belpwave been
ments enter the anomalous magnetic moment of the protoput forward, but we will show that a natural explanation can

[7]. The new mechanism for single target-spin asymmetriegome from initial-state interactions which are unsuppressed
in SIDIS necessarily requires noncollinear quarks and glupy the invariant mass of the lepton pair.

ons, and in the Sivers asymmetry the quarks carry no polar-
ization on average. As such it is very different from mecha- Il. THE UNPOLARIZED DRELL-YAN PROCESS

The unpolarized Drell-Yan process cross section has been

*Email address: dboer@nat.vu.nl measured in pion-nucleon scattering” N— w1~ X, with
"Email address: sjbth@slac.stanford.edu N deuterium or tungsten anda  beam with energy of 140,
*Email address: dshwang@sejong.ac.kr 194, 286 GeV[13] and 252 GeV[14]. Conventionally
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the differential cross section is written as Collaboration does not seem to show a strong dependence on
A, i.e. there was no significant difference between the deute-
rium and tungsten targets. Hence, it is unlikely that the asym-

i d_" _ i 1 metry originates from nuclear effects, and we shall assume it
odQ 47 N+3 to be associated purely with hadronic effects. We refer to
Ref.[24] for investigations of nuclear enhancements.
X | 14\ cof6+ u sirfé cose + gsir@g cos 24 | . We compute the functiorhi(x,p?) and the resulting

cos 2p asymmetry explicitly in a quark-scalar diquark model
(1)  for the proton with an initial-state gluon interaction. In this

modelhf(x,pf) equals theT-odd (chiral-even Sivers effect
These angular dependendiesin all be generated by pertur- function fiT(x,pf). Hence, assuming the cog asymmetry
bative QCD corrections where, for instance, initial quarksof the unpolarized Drell-Yan process does arise from non-
radiate off high energy gluons into the final state. Such aero, largehy, this asymmetry is expected to be closely
perturbative QCD calculation at next-to-leading order leadselated to the single-spin asymmetries in the SIDIS and the
toA=~1,u~0,ry~0 at a very small transverse momentum of Drell-Yan process, since each of these effects can arise from
the lepton pair. More generally, the Lam-Tung relation 1the same underlying mechanism.
—A—2v=0 [17] is expected to hold at order; and the The Fermilab Tevatron and BNL Relativistic Heavy lon
relation is hardly modified by next-to-leading order? per-  Collider (RHIC) should both be able to investigate azimuthal
turbative QCD correctiongl8]. However, this relation is not asymmetries such as the cag @ependence. Since polarized
satisfied by the experimental daf4a3,14. The Drell-Yan proton beams are available, RHIC will be able to measure
data show remarkably large values mf reaching values of single-spin asymmetries as well. Unfortunately, one might
about 30% at transverse momenta of the lepton pair betweeskpect that the cos2dependence ip p_>(3?x (measurable
2 and 3 GeMfor Q2=m2y* =(4—12 GeVY and extracted in at RHIC) is smaller than for the process N—pu ' u ™ X,

the Collins-Soper framgl9] to be discussed belgwThese ~Since in the former process there are no valence antiquarks
large values of are not compatible with ~1 as also seen Present. In this sense, the cleanest extractiam;ofvould be

in the data. from pp— €€ X.
A number of explanations have been put forward, such as
a higher twist effec{20,21], following the ideas of Berger ll. CROSS SECTION CALCULATION

and Brodskyf 22]. In Ref.[20] the higher twist effect is mod- . . . .
eled using an asymptotic pion distribution amplitude, and it In th'? section we W!" assume nonzdn_@ and discuss the
appears to fall short in explaining the large valuesof calculation of the leading order unpolarized Drell-Yan cross

In Ref. [18] factorization-breaking correlations between Section(given in Ref.[6] with slightly different notation
the incoming quarks are assumed and modeled in order to _
account for the large cosf2dependence. Here the correla- do(hih,—€€X) o?

tions are both in the transverse momentum and the spin of dOd 2 an? Z eg A(y) FLfafa]
- S . xdx,d“q, 3Q° aa
the quarks. In Ref6] this idea was applied in a factorized
approacH 23] involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri- +B(y)c0£{2¢)]—{(2ﬁ-plﬁ- k,
bution function callech; . From this point of view, the large
cos 2p azimuthal dependence can arise at leading order, i.e. hiﬁi
it is unsuppressed, from a product of two such distribution -p. -k)) , 2
functions. It offers a natural explanation for the large cés 2 M1iM;

azimuthal dependence, but at the same time also for they;s is expressed in the so-called Collins-Soper fraf,

small cosp dependence, sirlc_e chiral-odd functions can onlyor which one chooses the following set of normalized vec-
occur in pairs. The functiohy is a quark helicity-flip matrix  tors (for details see, e.425)):

element and must therefore occur accompanied by another
helicity flip. In the unpolarized Drell-Yan process this can

: : == t=q/Q, 3
only be a product of twd; functions. Since this implies a arQ &
change by two units of angular momentum, it does not con-

. . A Xim  Xoo
tribute to a cogh asymmetry. In the present paper we will 7=—P,— 2P, (4)
discuss this scenario in terms of initial-state interactions, Q Q
which can generate a nonzero functiop.
We would also like to point out the experimental obser- h=q,/Q, =(q—x;P;—X,P,)/Q, , (5)

vation that the cos@ dependence as observed by the NA10 _
whereP;=P;—q/(2x;), P; are the momenta of the two in-
coming hadrons and is the four momentum of the virtual
We neglect sinp and sin 2> dependencies, since these are of photon or, equivalently, of the lepton pair. This can be related
higher order inag [15,16 and are expected to be small. to standard Sudakov decompositions of these momenta
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FLITI= [ ook, %0, +k —a) (AT KD,
(13

whereA,A are light cone momentum fractions aads the
flavor index.

In order to obtain the cross section expression one con-
tracts the lepton tensor with the hadron ten€y23]:

1
W’“’=§f dp~dk*d?p, d%k, 6%(p, +k, —q,)

lepton plane (cm)

FIG. 1. Kinematics of the Drell-Yan process in the lepton center — Y q<—q
of mass frame. XTr(@(p) y @ (K)y")|p+ k- + ,
Mm—=v
14
u Q—, x M7 u o o (149
P1=2—X1n + 20 " (6) wherep™=AP] =Aq*/x,, k" =AP, =Aq /x,. The cor-

relation functiond is parametrized in terms of the transverse
momentum dependent quark distribution functiphs]

XoMZ_
pi= ;Q “y %n“, (7) P
2 O(ArP,S)= 5w | fa(Ar )or +Fin(A )
Q— 0 P ri st Py
b= __MtL M M i 5
q 2 e+ 2 ne+aL, ® Xeﬂvpayuv_gls(A’rl)v
with Q?>=—q?=¢? <Q?, via the identification of the light- he(Aur )ioMVYsS’r‘P”
like vectors e M
- - io v75rfpy
ol PR - —hi(A,r )~
n#= t“+z“—%h“ , (9) 1s(A.11) M2
- o, P
_ _ +hi(A,rL>—“M§ , (15
[ 10 N
: Q| and similarly for®.

We end this section by giving the resulting expression for
The azimuthal angles lie inside the plane orthogonal to » [6]:

andz In particular,dQ=2dyd¢', where ¢' gives the ori-

entation ofl “=(g**—t*t"+2#2")|,, the perpendicular part , o hihi

of the lepton momentunh, ¢ is the angle betweeh (the VZZaEg &l (Zh'pLh'kL_pl'kl)[\/|1|\/|2 /
direction ofq,) and TL. In the cross sections we also en- ’

counter the following functions ofy=1"/q~, which in the Z eif[flf_l]- (16)
lepton center of mass frame equgls (1+ coséd)/2, wheref aa

is the angle of the momentum of the outgoing leptamith
respect taz (cf. Fig. 1): IV. ASYMMETRY CALCULATION

The above cross section in terms ®f and ® can be
om represented by the diagram in Fig. 2.

A(y)=(1—y+y2) =1(1+c0§6), (12) Insertion of the parametrization df and® will yield the

2 4 cos 2p asymmetry, among many other terms. However, in
the lowest order quark-scalar diquark model the diagram Fig.
2 will not lead to nonzerd; in ®, and consequently, also

) not to a nonzero cos® asymmetry. To generate such an
B(Y)ZY(l_Y):ZS'nZH- (12 asymmetry we will include initial-state interactions corre-
sponding to diagrams such as those depicted in Fig. 3. Fol-
lowing the reasoning of Ref$9,26], this should be equiva-

lent to Fig. 2 with an effectivab (and®) with nonzeroh;
054003-3
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—2, . 2.
_ & —
k|t | ]k -
q.
YaVa V¥ avaV FIG. 4. Diagram which gives the lowest order(called ®#).
pT + , "lp First we will calculate the® matrix to lowest order
(called ®{*#) in the quark-scalar diquark model which was
_‘ o | }_ used in Ref[7]. (Although the model is based on a point-like
T; ? coupling of a scalar diquark to elementary fermions, it can be
1 ! 1 softened to simulate a hadronic bound state by differentiating

the wave function formally with respect to a parameter such
as the proton magsAs indicated earlier, no nonzefg; and
h will arise from®{**. Next we will include an additional

f‘;”t‘;]t_'o'?- Tﬁ reDwe"d\t() not mtend_to give a fll.J" ?jefrnotns'_[rattl_ongluon exchange to model the initial- and/or final-state inter-
of this in the Drell-yan process; a generaiized factoriza Ionactlons(relevant for timelike or spacelike procespés cal-
theorem which includes transverse momentum dependent

culate®* and do obtain nonzero values f and hL
functions and initial- or final-state interactions remains to be IIF ofr

Our results agree with those recently obtained in the same
proven[27]. Instead we present how to arrive at an effectlvemoolel by Goldstein and GambefgZ]. We can then obtain
& from initial- and/or final-state interactions and use this y .

effective ® in Fig. 2. Also, for simplicity we will perform an expression for the cogizasymmetry from Eq(16) and

the explicit calculation in QED. Our analysis can be generperform a numerical estimation of the asymmetry.

alized to the corresponding calculation in QCD. The final-

state interaction from gluon exchange has the strength A. ® matrix in the lowest order (®¢F)

|e,e,| /47— Cray(u?), wheree; are the photon couplings to .y o o ,

the quark and diquark. As indicated Irl Flg_. 4 the |n|tJ|raI p£0t0+n has its momentum
The diagram in Fig. 3 coincides with Fig(# of Ref.[2g]  9iven by P“=(P ’P, ’PL):,QP ;'YI /P ’OL)+’ and the f2|

used for the evaluation of a twist-4 contributior {/Q?) to nal diquark  P*=(P'",P'",P1)=(P" (1~ AO) (A

the unpolarized Drell-Yan cross section. The differences’ rf)/P*(1—A),r,). We use the conventioa®=a’+a’,

compared to Ref[28] are that in the present case there is@ P=1/2 @b +ab")—a b .

nonzero transverse momentum of the partons, and the as- We will first calculate theb matrix to lowest order®{*)

sumption that the matrix elements are nonvanishing in cas# the quark-scalar diquark model used in Réfl. By cal-

the gluon has a vanishing light-cone momentum fractmrt ~ culation of Fig. 4 one readily obtains

nonzero transverse momentunthis results in an unsup-

FIG. 2. The leading-order contribution to the Drell-Yan process.

pressed asymmetry which is a function of the transverse mo- f+m 1?l f+m a
mentum Q, of the lepton pair with respect to the initial CD“'8=ag u(P, S) 5 > Uu(P.S) P (1=1)
hadrons. If this transverse momentum is integrated over, then —mire=m
the unsuppressed asymmetry will average to zero and the -
diagrams will only contribute at orderQ@f as in Ref.[28]. :agz[u(P,S)(H—m)]'g[(r‘-i-m)u(P,S)]“m
2
P . P 1
2 : 2
;[ | ; X il a7
A 1-A
VAV with a constana=1/[2(27)3]. The normalization is fixed
S by the condition

%_> P_> J dAd?r, f1(Ar)=1. (18)

FIG. 3. The initial-state interaction contribution to the Drell-Yan
process. In Eqg. (17) we used the relation
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2, .2
me+r;

r2—m2=r+(r—
+

r
A2+r2 m?+r?

(1-A)P" r*

2, 2
me+ry

A

A2+r?
1-A

(19

A(MZ—

This model is similar to the so-called spectator model

(see, e.g. Refl29]), where in addition a vector diquark is
included and the coupling constagtis treated as a form
factor (in order to guarantee convergehc®f course, this

can be assumed in the present model calculation as well an
will be discussed in Sec. IV D. Assuming real form factors,

the functionsf;; and hy are strictly zero in the spectator
model.

Calculation of fi(A,r )

PHYSICAL REVIEW D 67, 054003 (2003

9-2002
8652A2

(b)

FIG. 5. Diagrams which yieldP with final-state interaction

For the calculation of the denominator of the asymmetry(®2¥).

one needs to know the functidn(A,r, ), which can be ob-
tained from®<# given in Eq.(15):

1
| 5P e (20

N[ =

fl(A1rL):

We now taked =®, and for the numerator spinor contrac-

tion, we calculate

;S [u(P,S)(r +m)J°[(F +m)u(P,9)]%(y ")k«

N| =

%Tr[(P-l—M)(r‘—l—m)y*(r‘-i—m)]

=2P"[r?+(AM+m)?]. (21
Then, from Eqs(17), (20) and(21), we arrive at
f1(A,r )=ag’r’+(AM+m)?]
L1 1 2
(1-4) m?+rf AZrf
M2— -
A 1—-A
92 (1-M)[rZ+(AM+m)?]
= 3
2(2m) (r>+B)?
2
ro+D
—c— | 22
(rf+B)? 22

where we defineC=g?(1—A)/[2(2m)%], D=(AM+m)?
and

2 )\2

— M2+ —
M“+ +1—A'

B=A(1-4) A

(23

Since we consider the proton state with mbtsis a bound
state composed of a quark with massand a diquark with
mass\, the functionB as given in Eq(23) is always non-
zero and positive. The integral in E¢L8) with f(A,r))
given in Eq.(22) can, for instance, be regulated by assuming
a cutoff in the invariant massM?=3;[(k?,+m?)/x;]
<A?, and the value of? is adjusted to satisfy the normal-
ization condition Eq(18) [30].

B. ® matrix with final-state interaction ((I)f:“ﬂ)

In order to obtain the& matrix with final-state interaction
(called ®&F), from which one can trivially obtain the one
with initial-state interaction, we calculate the diagram given
in Fig. 5(b). This is equal to the diagram calculated by Ji and
Yuan [31] to obtain nonzerdy;, starting from the formal
gauge invariant definition of this transverse momentum de-
pendent distribution functiof®,26]. In Fig. 5b) we attached
the virtual photon line to the later end of the eikonal line in
order to emphasize that the final-state interaction effect has
become an ingredient of the distribution functions of the tar-
get proton. In reality, the whole eikonal line should be con-
sidered to be at the same point.

Defining ®## through Fig. Bb) (in the Feynman gauge
we have
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d*k 1 —PT[(1-x)+(1—-A)] 2
(2m)*2 PT(1—-A) P (x—A)+ie]

dEf=iag’ee,

[u(P,S)(Y + M) J’[(k+m)u(P,S)]"
(K—m?+ie)[ (k—1)2=N2+ie][(k—P)2—\?+ie] F*—m

5+ (H.c)

d?k 1 —(1-x)—(1-A) 2

— _ian2 _— +
agtese 2(277)4JP T m ) 2P A (oA

1 _
. m2+r2  A%2+r? fdki[u(P’S)("Jrm)]ﬁ[(ker)U(P,S)]“
L s
A|M*-—F——73
1

X (m2+k2)—ie [)\Z‘f‘(k —r )2]_i6 ()\2+k2)—i5 +(H.C.), (24)

[ e e i P

xP™ (x—A)P* (1-x)P*

where we usedt” =xP*. The derivation of the starting formula of E@4) is given in the Appendix. This underlies the step
from Fig. 5a) to Fig. 5b) and hence the step from Fig. 3 to Fig. 2.

For ®&# in Eq. (24), we consider only the contribution from the imaginary part {4+ A)+i€], that is, the contribution
from —i78(x—A). There is no contribution from the real part of &— A) +i €], since the Hermitian conjugate term cancels
it. Then, we have

, d?%k 1 —(1-x)—(1-A)
af_ _ 2 L + r_ _
PEr=a(—iag eleZ)J 2(277)4f P x(x—A)(1-x) 2PT(1-4) ! imolx—4)]
X ! fdk*_PSH AL (k+ P,S)]¢
mPAr? NEtrZ [u(P,S)(r + m)J"[(k+m)u(P,5)]
Al M2— -
A 1-A
X ! (25
k__(m2+ki)—ie)<(k__r_)_[)\s-i—(kL—rL)Z]—ie)((k__P_)+()\2+kf)—i6 :
xP* (x—A)P* (1-x)P™*
When we perform th&™ integration, we have
d?k 1 (1-x)+(1—A)
aff _ 2 L _
PEr=amag elezj 2(277)4j e x(x—=A)(1-x)  2(1-A) o(x—4)
x i Nerp [u(P,S)(F +m)][(k+m)u(P,S)]*
2__ - =
AlM A 1-A
X 277i ! (26)
| .
W(P_ (N2+KP)—ie (m2+kf)—ie){(P_ (\2+K3)—ie | (\2+(k,—r)P)—ie
(1-x)P~* xP~* (1-x)P™* r (x—A)P*

When we perform the integration, we have
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df=—iag? fdsz ! u(P,S)(f +m) AL (k+m)u(P,9)]*
F — Iag ele2 (277_)2 P+A(1_A) A ) m2+ri )\2+ri [u( ’ )( m)] [( m)u( ’ )]
M= 12
1
X 2 k2 2 k2 ;
2_()\+J_)_(m+J_)_|€ 24 (K 12
(1_A) A [ g ( L rl)]
o, (1-4A) [ d%k, [u(P,S)(f+m)I*[(k+m)u(P,9)]"
=—iag’e;e,—— 5 5 2 : (27
PT(ri+B)/ (2m) (kT +B)[(k —r)"+Ag]
|
whereB is given in Eq.(23). xeiisin d2k, (k,—r )] 0
1. Calculation of t(A,r,) (2m)? (ki +B)[(k, —1,)?+Ag]
One obtainsf{(A,r,) from ®*# given in Eq.(15) by
extracting the proton spin-dependent pardgf?(y ™)~ Then, from Eqs(28) and(30) we get
R o 1 M(AM+m)(1—A)
OF(yT)Pr=2€1Sr! —, (28) fir(A,r)=—-—ag’ee,
1 M 1T L A (I’i"‘B)
2
wheree?=+1. Xiln rn+B (31)
We now apply this tob and for the numerator spinor HZ B

contraction we calculate

From Eq.(15 we find that in terms off, and f;; the
single-spin asymmetry transverse to the production plane in

Y B af ., t\Ba
Lu(P.S)(r+m) FL(k+mu(P.S)]%7) the SIDIS is given bywith S;=S} §)

1
=Tr (P+ M)(E%S (r+m)y* (k+m)
1 PS¥:6+7”"LSJT%T(A:U):_E frr(A,r))
z(—5)(—4ie*yp,,)[mP”S”(k—r)"JrMr"SP(k—r)"] Y 2Mf(Ar)) M fi(Ar))
(32)
=—2iP"(AM+m)éeiSi(k, —r, ) when x=A,
(29) Then, using the results in EqR2) and(31), we get
where we used €"#=+1 and Tfysabéd]= L 5
—die,,,,a"b"c’d’. » e (AM+myry ri+B (ri+B 33
When we insert Eq(29) into Eqg.(27), we obtain Y 4m r’+(AM+m)?2  r? B /)’
(I)g,B(,y+)ﬁa (S dependent part which agrees with Eq21) of Ref.[7].
o (1-4) 2. Calculation of hi(A,r,)
=—iag°ee, ———— o _ . _
P*(rf+B) Similarly, one obtainsh; (A,r,) from ®“# given in Eq.
o , (15 by extracting the proton spin independent part of
J d’k, —2iP*(AM+m)e'S (k, —r ) DB +)Be:
(2m)? (K +B)[(k —r)+\]]
B , (AM+m)(1-A) h
- _2ag €,€; (rf+B) (paﬁ(o.i+)5a:2rlml’ (34)
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where o#*"=(i/2)[ y*,y"]. We again apply this tab and
for the numerator spinor contraction, we obtain

% Zs [u(P,S) (Y +m) 1L (k+mu(P,S)]%(o' )~

=—2iP"[M(AK -

IE(VW* 7*7i))(k+ m)

(P+M)(F+m)
xr)+m(k—r)']
=—2iP"(AM+m)(k, —r,)' when x=A. (35

Then, from Eqs(27), (34) and(35) we obtain

1 M(AM+m)(1—A)
hi(A,r — - ag’ee
(A,r)= g 162 (rf+B)
" 1I r’+B 39
—In
r? B

Thus, from Eqgs(31) and (36) we find the relation

fir(A,r )=hi(Ar,). (37)
We note that the equality EG37) is a special property of the
quark-scalar diquark model.

We can writef;; and hy given in Egs.(31) and (36)
schematically as

fI(A,r,)=hi(A,r)) A | il (39
J)= J)= n ,
1T 1 1 1 ri(ri—FB) B
with B as given in Eq(23) and
2
S M(AM+m)(1—A) (39
22m)3\ 4 '

We have the same formulas fét; andh] with A,r, ,A,B
replaced byA,r, ,A,B.

We note that we obtaineif; andh; in Eq. (38) from the
final-state interaction diagram shown in Fighp These are
the functions relevant for semi-inclusive D|3]. The func-

tions arising from initial-state interactions have an overall

minus sign compared to those in E88), as pointed out by

[9] and confirmed ifi8]. However,fi; andhl also have this
property; therefore, the asymmetry faciogiven in Eq.(16)

is in fact independent of whether we ubkg andﬂ from
initial- or final-state interactions.

C. The cos 2p asymmetry

We now consider the convolution terms in the numerator

and denominator of the analyzing powepf the asymmetry
[Eq. (16)]:

PHYSICAL REVIEW D67, 054003 (2003

F=F[(2h-p, h-k,—p, -k, )hihi]

:f dzpidzkiéz(pi+ki_qi)(2ﬁ'piﬁ' K. —p.-kp)

Xhi(A,p?)hi(AK?),

o (40)
G=F[f.f,]

= [, ok, +k, AR TR,

where we left out the flavor indices. With these definitions
we can write

2

MM '
TP elG,

a,a

v= (41

We will insert the schematic form E2) for f; andf_l and
Eq. (38) for hy andhy .
We first rewrite the denominator ter(:

G:f (dZ:

where we have defined the Fourier transforrn‘ng,kf)

JT1(A,62)f 1(A,07), (42

exp(—ib, -q,

Ta(a.b)= [ o, expib,-p)1u(a.60)

=27C o(\Eb)‘*' bKMEb)

J—

(43)

where b=|b, |, and similarly for f,. Thus, we obtain the
exact expression faB:

G=27TCEfwdbb (bla, )
0

( 0(\/_b)+ bKl(\/—b))

\/—

(MH wfb) w

2\B

Obtaining such an exact expression Fors much more dif-
ficult (if possible at all, hence we will expresE in a form
amenable to numerical evaluation. We first write

=db ~ =10
_foﬁbjz(b|ql|)hl(A,b)h1(A,b), (45

where we have defined the Fourier transform
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_ . p 0.12 T T T T
hi(A,b)EJ’ d’p, explib, -p,) lb ——hi(A,p,) ol |
P
0.08| |
2 'Afd Ji(b )|n(p2+B o081 ]
=2i ,
PBP B /p%+B 0.04} :
(46) 0.02} :
where p=|p,|. This can be approximated from below by 0 05 1 15 2 25 3
expanding Qr[GeV]
FIG. 6. Numerical result forPEBCEF/(AEG), using M
| p2+B p2 +1 p2 \? 1( p2 )3 =0.94 GeV, m=0.3 GeV, A=0.8 GeV andA=A=0.2.
n _ - ot L IR
2 2 2
B p?+B/ 2\p*+B 3\ p?+B Next we make some generic choices for the various param-

(47)  oters. We takeM =0.94 GeV, m=0.3 GeV, A\=0.8 GeV

. . andD/B=4, which implies than~0.2 or 0.5 and also for
For each term an exact Fourier transform expression can

obtained in terms oK; functions. Keeping only the first term

will lead, for instance, to Figure 6 displays the quantitP=BCCF/(AAG) as a

function of |q, | in GeV (using A=0.2, \B~0.24 GeV).
The quantityP still has to be related tar which cannot
be done without further assumptions. First of all, we
hi(A b)w—— 1(\/_b) will assume u quark dominance, which yieIdSy
JB ~2F,/(M{M,G,). Next we will use some results obtained
in Ref. [6], where the same asymmetpywas investigated

1 .
and the following form was assumébased on very general
—-= +
2 b\BIKo(VBD) +Kz(\VBD)]|, (49 arguments and the simple model result of Réf):

which is roughly a factor of 2 too small compared to the hL(A D2
numerical evaluation without approximation. Equati@8) 1(4,p0) =c McM
leads to an asymmetry with approximately the right shape, fl(A,pf) 4 pf+ M(Z:’
but about a factor of 4 smaller in magnitude. This discrep-
ancy can be reduced by taking further terms in the Taylowhere My is the mass of the hadron amg, and M were
expansion into account. used as fitting parameters. The valugg~1 and Mc~2

We will now investigate the obtained expressions For were obtained from fitting the 194 GeV data of the NA10
and G by a numerical evaluation. In order to simplify the Collaboration by considering the case of one dominant quark
numerical calculation somewhésince no absolute predic- flavor contribution. In the present model calculation the ratio
tion can be made at this stage, because the overall magnitugkkes the form

of A andA are not knowi, we assume the situation of equal
hadron massesM;=M,=M) and take momentum frac-

(50

= z s 2 2 2
tions such thaB=B andD=D. This results in the follow- hi(4,p) = Alp+B B o[PFB (51)
ing expressions, after expressing all dimensionful two- f(A,p°) Cp? p?+D
vectors in units ofyB, i.e. rescalingb, —+Bb, and q,
—q, /\/B (the same fop, andk,): Unfortunately this shape is very different from E&O) for

the choices ofB and D made earlier £=0.2 such thaB
~1/16 andD~ 1/4). Although both forms have similar large
p? behavior, it is mostly the smap? behavior that is rel-
evant. By comparing the curves resulting from Egf) (with
cy=1, Mc=2Myu=2 GeV) and Eq.(51) (with D=4B
)2 =1/4), one may expect 04A/C=0.5, which then implies

that 2<|e,e,|=12 (incidentally this matches the value of
|eie,|~5, which was used for the numerical estimation in
Ref. [7]). This range of values may then be used for crude
estimates of asymmetries containing the functignfor a
quark inside a proton, or equivalently an anti-quark inside an
anti-proton. For a quark inside an anti-proton, or equiva-
(49 lently an anti-quark inside a proton, the overall prefactor is

+1

1
f dpJy(bp)In(p?+1) -

+D/B
(p?+1)2

(JdppJo( bp)———
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2 —_—

expected to be smaller. So if we restrict ourselvespﬁ: +D

collisions here and takd/C=A/C=0.3, then one obtains as —(
a very crude estimatev~2F/(M;M,G)=2A%P/(BC?) G=Ccf d“p;
~ 3P, which means that the maximum efis on the order of

30%. As said this is a very crude estimate and many assump-
tions went in. It cannot be viewed as more than an order of
magnitude estimate, but we think it is an encouraging resultAt Qf

! 1 2 ! 1
Pt 5 +D P50

2
+B

2 2

1 \? _—
(pi—zm) +B

( p.+ pall
(54

=0, G#0, hence the asymmetry{-F/G) vanishes.
_ _ For largeQ, the obtained model expressions do not yield
D. Discussion an accurate description, although one does obtain a power

In this section we give a more general discussion of thdaw fall-off (see below, as one also would expect from per-
qualitative features of the asymmetry, in particular @3 turbative Q(?D(Which qetgrmines the Iarg_e transverse mo-
dependence. It may be good to note that the starting point gPentum region The point is that one runs into convergence
the calculation, that is, the factorized description of theProblems. This ?pplles, for instance, to the integralf of
asymmetry, requires th@? <Q2, such that for large values [Ed- (18)]. Also hy does not fall off fast enough at Iarg@f
of Q2 the asymmetry is not appropriately described by thel® guarantee convergence of cert@ﬁ-welg.hted and inte-
above formulas. AtQ®>~Q?, the perturbative corrections grated asymmetriessuch as investigated in Reff6,11]).
will be the dominant source of an asymmetry. Although one obtains a finite result for

In order to obtain the generapf dependence of the N
asymmetry for small and larg@? , we start with the original f d?r hi(A,r %)= 77_, (55)
convolution expression fd¥ [the first line of Eq(40)]. After 6B

multiplication by a trivial factorQ?/Q? and using thek, o _ _
integration to eliminate the delta function, we shift the inte-this is, however, nozt the object one encounters in the ¢os 2
asymmetry, nor irQ7-weighted and integrated asymmetries.

. . r_ 1 .
gration variablep, —p; =p, — 20, , to arrive at Rather one encounters in such weighted asymmetries the

quantity
AA Q!
F= — d2 == 4 122 _ 2 n 2)
Qi pL 4 pL QL (q_L pL) f dzrl rLthi(A,rLz), (56)
X 1 which diverges in the quark-scalar diquark model employed

2 2
m+£m)(m—1m) here.
2 2 Therefore, one often assumes that the proton-quark-
diquark coupling constantsare in fact form factors, see, for
1 instance, Ref.29]. In the present quark-scalar diquark model
2 _] calculation no such form factors are includedthough the
+B use of a regulator is implicitly assumedecause it would
add another complication to the evaluation of the asymmetry
and more importantly, in separating the perturbatively gener-

1 1
P+ a0 B ( P PR ated cos 2 asymmetry(which is only relevant at larg®?),
XIn B In B ' from the nonperturbative contributionhi X hi , one has to
impose an upper cutoff on t@f range anyway. Our interest
(52 here is not in the specific fall-off of the asymmetry at large
Q?, but rather in the modera@? region, where the contri-

In caseB=B (which, as said, means equal masses of thgyytion to the asymmetry arising from initial-state interactions
initial hadrons and equal light-cone momentum fractions ofis maximal.

the quark and antiquarkthen one can perform symmetric  For JargeQ? one concludes from the above expressions

2
+B

, 1
pL_EQL

L1
pi"'qu

2 2

+B

integration to reduce (after including a regulator to insure convergence, e.g. a
o o transverse momentum fall-off ig), thatF,G and v~F/G
Ly ' il 2 is i i i
TWLPLZQE_Z(QLPL)Z - (53) decrea_se for larg®7 . To see th_|s |r,12mor§ detail, we WI||
approximateF/G crudely by settingp; “=0 in the denomi-

nators and by ignorin@,ED,D and the In terms altogether.

For smallQ, one can ignore the- 2q, terms in the de In this way we obtain for the larg®, behavior of the ratio

nominators and In terms of the expression &), such that
symmetric integration is appropriate and one can immedi-
ately conclude thafF ~Q? .

Next we turn to the denominator of[Eq. (16)] which is
given by

~— (57)
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i.e. the asymmetry indeed falls off for Iarg@f. Since at SIDIS and the Drell-Yan process are closely related to the
small Qf the ratio F/G grows asQf, there has to be a €0s2) asymmetry of the unpolarized Drell-Yan process.
turnover inv as a function 0fQ2 , which has not yet been Since the width and the magnitude of these asymmetries are

observed in experiment, but is clearly seen in the model caidetermined by the same parameters in the model, one can

culation reported here. relate the asymmetries and this may be tested by experimen-
We want to emphasize that the quantities which determiné@l data. All this provides new insight into the role of quark

the magnitudéand width of the asymmetry are the same and gluon orbital angular momentum as well as of initial-

as those appearing in the expression for the single-spiﬁnd final-state gluon exchange interactions in hard QCD pro-

asymmetry proportional th, X hy and in the context of the CESS€S:

model also for the single-spin asymmetries discussed in

Refs.[7,8] that depend on the Sivers distribution function. ACKNOWLEDGMENTS

Thus, the parametric dependencies of these asymmetries can . ) )
in principle be checked for consistency, in order to see We wish to thank John Collins and Piet Mulders for help-

whether it is at least consistent to assume that the asymm&!! discussions. The research of D.B. has been made possible

tries are generated by the same underlying mechanism. Ay financial support from the Royal Netherlands Academy of

example of such a comparison was given in R8g]. Arts and Sciences. This work was patrtially supported by the
One final comment is on th®? scale. The model does Department of Energy, contract DE-AC03-76SF00515, and

not produce a dependence on that scale and¥helepen- PY the LG Yonam Foundation.

dence of transverse momentum dependent asymmetries is a

notoriously difficult problem(cf. e.g.[33,34]). Due to the APPENDIX: DERIVATION OF EQ. (24)

lack of knowledge of thi<Q? dependence, we can only ex- o

pect that the asymmetry expression and the result from the We present the derivatiofbased on Re{9]) of the start-

model calculation should apply to the saf®@ range[Q? N9 formula of Eq.(24):

=mi*=(4—12 GeVY] as that of the existing Drell-Yan

data, from which we used fitting results.

ug+r)yy ——y#
@try 7 PRV
V. CONCLUSIONS
1 — 1
In this paper we have studied the ca@s distribution in = (k_r)—++i6u(q+r)y*(k—r)*kﬂa—_l\/I yH

unpolarizedDrell-Yan lepton pair production within the con-
text of a quark-scalar diquark model for the proton, including

L - . L . 1 — 1
an initial-state gluon interaction. Such initial- or final-state -~ u(q+)2(k—f)———— y*
interactions lead to the appearancermdive T-odd distribu- (k=r)"+ie K+d—M
tion functions, such as the Sivers effect functibr(x,p?)

and its chiral-odd partnehn; (x,p?) [12,31. We calculated u(g+n)[(K+¢—M)

those functions in the quark-scalar diquark model and found (k—=r)"+ie

that they are equal in this model. Even though this equality is

not expected to be satisfied generally in other models, this —(4+r—M)] 1 yr
result does show thati(x,p?) and hi(x,p?) are closely k+d—M

related and are expected to have similar magnitudes in gen-

. . L — 1
eral. With the model expressions fby andh; we were able — (g (Kt d—M) o

to write down an expression for the analyzing powesf the (k=) + K+¢—M
cos 2p asymmetry in the unpolarized Drell-Yan process. Un-

der the assumption af quark dominance and by using fitting _ 2 (a4 1) v~ Al
results of Ref[6], we have given a numerical estimation of - (k—r)++ieu(q bl (A1)

the asymmetry for thep— € "¢~ X process. As an order of

magnitude estimate we obtained for the maximumvo&  \yhere we used the equation of motiafg+r)(¢+f—M)
value of 30%. Despite the considerable uncertainty it is cleaL g in the fourth line. In the above, [Zk—r)* +i€] is the
that based on this model calculation the cgsasymmetry  aikonal propagator.

can be of the same order of magnitudepip—¢* ¢~ X as Before going from the second to the third line in E41),
experimentally measured resultsin N—u*u~ X (inthe  we deformed the contour of integration to the upper infinity
same range of)? values. It is natural to expect that the in the complex k—r)* plane so that |(k—r)"|
asymmetry inppp—¢ "¢~ X will be considerably smaller, but >|(k—r)~|,|(k—r)| is satisfied along the new contour. We

may still be expected to be on the percent level. _ note that what we deformed is the line along which tke (
Since the same mechaniginitial- and/or final-state in- —r)* integration is performed, and the pole position &f (
teractiony leads to nonzero functionsi(x,p?) and —r)*+ie=0 (at which we compute the value of the resi-

hf(x,pf), it is clear that the single-spin asymmetries in thedue is not influenced by this deformation.
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