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Initial-state interactions in the unpolarized Drell-Yan process
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We show that initial-state interactions contribute to the cos 2f distribution in unpolarized Drell-Yan lepton

pair productionpp and pp̄→,1,2X, without suppression. The asymmetry is expressed as a product of

chiral-odd distributionsh1
'(x1 ,p'

2 )3h̄1
'(x2 ,k'

2 ), where the quark-transversity functionh1
'(x,p'

2 ) is the trans-
verse momentum dependent, light-cone momentum distribution of transversely polarized quarks in anunpo-
larized proton. We compute this~naive! T-odd and chiral-odd distribution function and the resulting cos 2f
asymmetry explicitly in a quark-scalar diquark model for the proton with initial-state gluon interaction. In this
model the functionh1

'(x,p'
2 ) equals theT-odd ~chiral-even! Sivers effect functionf 1T

' (x,p'
2 ). This suggests

that the single-spin asymmetries in the semi-inclusive deep inelastic scattering and the Drell-Yan process are
closely related to the cos 2f asymmetry of the unpolarized Drell-Yan process, since all can arise from the same
underlying mechanism. This provides new insight regarding the role of the quark and gluon orbital angular
momentum as well as that of initial- and final-state gluon exchange interactions in hard QCD processes.

DOI: 10.1103/PhysRevD.67.054003 PACS number~s!: 12.38.Bx, 13.85.Qk, 13.88.1e
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I. INTRODUCTION

Single-spin asymmetries in hadronic reactions have b
among the most challenging phenomena to understand
basic principles in QCD. Several such asymmetries h
been observed experimentally, and a number of theore
mechanisms have been suggested@1–6#. Recently, a new
way of producing single-spin asymmetries in semi-inclus
deep inelastic scattering~SIDIS! and the Drell-Yan proces
has been put forward@7,8#. It was shown that the exchang
of a gluon, viewed as initial- or final-state interactions, cou
produce the necessary phase leading to a single trans
spin asymmetry. The main new feature is that, despite
presence of an additional gluon, this asymmetry occurs w
out suppression by a large energy scale appearing in the
cess under consideration. It has been recognized since
@9# that this mechanism can be viewed as the so-called Si
effect @1,10#, which was thought to be forbidden by time
reversal invariance@4#. Apart from generating Sivers effec
asymmetries, the mechanism offers new insight regarding
role of orbital angular momentum of quarks in a hadron a
their spin-orbit couplings; in fact, the sameS•W LW matrix ele-
ments enter the anomalous magnetic moment of the pr
@7#. The new mechanism for single target-spin asymmet
in SIDIS necessarily requires noncollinear quarks and g
ons, and in the Sivers asymmetry the quarks carry no po
ization on average. As such it is very different from mech
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nisms involving transversity~often denoted byh1 or dq),
which correlates the spin of the transversely polarized had
with the transverse polarization of its quarks.

In further contrast, the exchange of a gluon can also l
to transversity of quarks inside anunpolarizedhadron. This
chiral-odd partner of the Sivers effect has been discusse
Refs. @6,11#, and in this paper we will show explicitly how
initial-state interactions generate this effect. Goldstein a
Gamberg reported recently thath1

'(x,p'
2 ) is proportional to

f 1T
' (x,p'

2 ) in the quark-scalar diquark model@12#. We con-
firm this and find that these two distribution functions are
fact equal in this model. Although this property is not e
pected to be satisfied in general, nevertheless, one may
pect these functions to be comparable in magnitude, s
both functions can be generated by the same mechanism
investigate the consequences of the present model resu
the unpolarized Drell-Yan process. We obtain an express
for the cos 2f asymmetry in the lepton pair angular distrib
tion. Heref is the angle between the lepton plane and
plane of the incident hadrons in the lepton pair center
mass. This asymmetry was measured a long time ago@13,14#
and was found to be large. Several theoretical explanat
~some of which will be briefly discussed below! have been
put forward, but we will show that a natural explanation c
come from initial-state interactions which are unsuppres
by the invariant mass of the lepton pair.

II. THE UNPOLARIZED DRELL-YAN PROCESS

The unpolarized Drell-Yan process cross section has b
measured in pion-nucleon scattering:p2N→m1m2X, with
N deuterium or tungsten and ap2 beam with energy of 140
194, 286 GeV @13# and 252 GeV@14#. Conventionally
©2003 The American Physical Society03-1
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the differential cross section is written as

1

s

ds

dV
5

3

4p

1

l13

3S 11l cos2u1m sin2u cosf1
n

2
sin2u cos 2f D .

~1!

These angular dependencies1 can all be generated by pertu
bative QCD corrections where, for instance, initial qua
radiate off high energy gluons into the final state. Such
perturbative QCD calculation at next-to-leading order lea
to l'1,m'0,n'0 at a very small transverse momentum
the lepton pair. More generally, the Lam-Tung relation
2l22n50 @17# is expected to hold at orderas and the
relation is hardly modified by next-to-leading order (as

2) per-
turbative QCD corrections@18#. However, this relation is no
satisfied by the experimental data@13,14#. The Drell-Yan
data show remarkably large values ofn, reaching values of
about 30% at transverse momenta of the lepton pair betw
2 and 3 GeV~for Q25mg*

2
5(4212 GeV)2 and extracted in

the Collins-Soper frame@19# to be discussed below!. These
large values ofn are not compatible withl'1 as also seen
in the data.

A number of explanations have been put forward, such
a higher twist effect@20,21#, following the ideas of Berger
and Brodsky@22#. In Ref.@20# the higher twist effect is mod
eled using an asymptotic pion distribution amplitude, and
appears to fall short in explaining the large values ofn.

In Ref. @18# factorization-breaking correlations betwee
the incoming quarks are assumed and modeled in orde
account for the large cos 2f dependence. Here the correl
tions are both in the transverse momentum and the spi
the quarks. In Ref.@6# this idea was applied in a factorize
approach@23# involving the chiral-odd partner of the Siver
effect, which is the transverse momentum dependent di
bution function calledh1

' . From this point of view, the large
cos 2f azimuthal dependence can arise at leading order,
it is unsuppressed, from a product of two such distribut
functions. It offers a natural explanation for the large cosf
azimuthal dependence, but at the same time also for
small cosf dependence, since chiral-odd functions can o
occur in pairs. The functionh1

' is a quark helicity-flip matrix
element and must therefore occur accompanied by ano
helicity flip. In the unpolarized Drell-Yan process this ca
only be a product of twoh1

' functions. Since this implies a
change by two units of angular momentum, it does not c
tribute to a cosf asymmetry. In the present paper we w
discuss this scenario in terms of initial-state interactio
which can generate a nonzero functionh1

' .
We would also like to point out the experimental obs

vation that the cos 2f dependence as observed by the NA

1We neglect sinf and sin 2f dependencies, since these are
higher order inas @15,16# and are expected to be small.
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Collaboration does not seem to show a strong dependenc
A, i.e. there was no significant difference between the de
rium and tungsten targets. Hence, it is unlikely that the asy
metry originates from nuclear effects, and we shall assum
to be associated purely with hadronic effects. We refer
Ref. @24# for investigations of nuclear enhancements.

We compute the functionh1
'(x,p'

2 ) and the resulting
cos 2f asymmetry explicitly in a quark-scalar diquark mod
for the proton with an initial-state gluon interaction. In th
modelh1

'(x,p'
2 ) equals theT-odd ~chiral-even! Sivers effect

function f 1T
' (x,p'

2 ). Hence, assuming the cos 2f asymmetry
of the unpolarized Drell-Yan process does arise from n
zero, largeh1

' , this asymmetry is expected to be close
related to the single-spin asymmetries in the SIDIS and
Drell-Yan process, since each of these effects can arise f
the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Io
Collider ~RHIC! should both be able to investigate azimuth
asymmetries such as the cos 2f dependence. Since polarize
proton beams are available, RHIC will be able to meas
single-spin asymmetries as well. Unfortunately, one mi
expect that the cos 2f dependence inpp→,,̄X ~measurable
at RHIC! is smaller than for the processp2N→m1m2X,
since in the former process there are no valence antiqu
present. In this sense, the cleanest extraction ofh1

' would be

from pp̄→,,̄X.

III. CROSS SECTION CALCULATION

In this section we will assume nonzeroh1
' and discuss the

calculation of the leading order unpolarized Drell-Yan cro
section~given in Ref.@6# with slightly different notation!

ds~h1h2→,,̄X!

dVdx1dx2d2q'

5
a2

3Q2 (
a,ā

ea
2H A~y!F @ f 1 f̄ 1#

1B~y!cos~2f!F F ~2ĥ•p'ĥ•k'

2p'•k'!
h1

'h̄1
'

M1M2
G J . ~2!

This is expressed in the so-called Collins-Soper frame@19#,
for which one chooses the following set of normalized ve
tors ~for details see, e.g.@25#!:

t̂[q/Q, ~3!

ẑ[
x1

Q
P̃12

x2

Q
P̃2, ~4!

ĥ[q' /Q'5~q2x1P12x2P2!/Q' , ~5!

whereP̃i[Pi2q/(2xi), Pi are the momenta of the two in
coming hadrons andq is the four momentum of the virtua
photon or, equivalently, of the lepton pair. This can be rela
to standard Sudakov decompositions of these momenta

f

3-2
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P1
m[

Q

2x1
n̄m1

x1M1
2

2Q
nm, ~6!

P2
m[

x2M2
2

2Q
n̄m1

Q

2x2
nm, ~7!

qm[
Q

2
n̄m1

Q

2
nm1q'

m , ~8!

with Q'
2 [2q'

2 [q'
2 !Q2, via the identification of the light-

like vectors

n̄m5F t̂m1 ẑm2
Q'

Q
ĥmG , ~9!

nm5F t̂m2 ẑm2
Q'

Q
ĥmG . ~10!

The azimuthal angles lie inside the plane orthogonalt
and z. In particular,dV52dydf l , wheref l gives the ori-
entation ofl̂'

m[(gmn2 t̂m t̂ n1 ẑmẑn) l n , the perpendicular par

of the lepton momentuml; f is the angle betweenĥ ~the
direction of q') and l̂' . In the cross sections we also e
counter the following functions ofy5 l 2/q2, which in the
lepton center of mass frame equalsy5(11cosu)/2, whereu
is the angle of the momentum of the outgoing leptonl with
respect toẑ ~cf. Fig. 1!:

A~y!5S 1

2
2y1y2D 5

cm1

4
~11cos2u!, ~11!

B~y!5y~12y!5
cm1

4
sin2u. ~12!

Furthermore, we use the convolution notation

FIG. 1. Kinematics of the Drell-Yan process in the lepton cen
of mass frame.
05400
F @ f f̄ #[E d2p'd2k'd2~p'1k'2q'! f a~D,p'
2 ! f̄ a~D̄,k'

2 !,

~13!

whereD,D̄ are light cone momentum fractions anda is the
flavor index.

In order to obtain the cross section expression one c
tracts the lepton tensor with the hadron tensor@6,23#:

W mn5
1

3E dp2dk1d2p'd2k'd2~p'1k'2q'!

3Tr~F~p!gmF̄~k!gn!up1,k21S q↔2q

m↔n
D ,

~14!

wherep15DP1
15Dq1/x1 , k25D̄P2

25D̄q2/x2. The cor-
relation functionF is parametrized in terms of the transver
momentum dependent quark distribution functions@11#

F~D,r' ;P,S!5
M

2P1 F f 1~D,r'!
P”

M
1 f 1T

' ~D,r'!

3emnrsgm
Pnr'

r ST
s

M2
2g1s~D,r'!

P” g5

M

2h1T~D,r'!
ismng5ST

mPn

M

2h1s
' ~D,r'!

ismng5r'
mPn

M2

1h1
'~D,r'!

smnr'
mPn

M2 G , ~15!

and similarly forF̄.
We end this section by giving the resulting expression

n @6#:

n52(
a,ā

ea
2F F ~2ĥ•p'ĥ•k'2p'•k'!

h1
'h̄1

'

M1M2
G Y

(
a,ā

ea
2F @ f 1 f̄ 1#. ~16!

IV. ASYMMETRY CALCULATION

The above cross section in terms ofF and F̄ can be
represented by the diagram in Fig. 2.

Insertion of the parametrization ofF andF̄ will yield the
cos 2f asymmetry, among many other terms. However,
the lowest order quark-scalar diquark model the diagram F
2 will not lead to nonzeroh1

' in F, and consequently, als
not to a nonzero cos 2f asymmetry. To generate such a
asymmetry we will include initial-state interactions corr
sponding to diagrams such as those depicted in Fig. 3.
lowing the reasoning of Refs.@9,26#, this should be equiva-

¯ '

r

lent to Fig. 2 with an effectiveF ~andF) with nonzeroh1

3-3
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function. Here we do not intend to give a full demonstrati
of this in the Drell-Yan process; a generalized factorizat
theorem which includes transverse momentum depen
functions and initial- or final-state interactions remains to
proven@27#. Instead we present how to arrive at an effect
F from initial- and/or final-state interactions and use th
effective F in Fig. 2. Also, for simplicity we will perform
the explicit calculation in QED. Our analysis can be gen
alized to the corresponding calculation in QCD. The fin
state interaction from gluon exchange has the stren
ue1e2u/4p→CFas(m

2), whereei are the photon couplings t
the quark and diquark.

The diagram in Fig. 3 coincides with Fig. 6~a! of Ref. @28#
used for the evaluation of a twist-4 contribution (;1/Q2) to
the unpolarized Drell-Yan cross section. The differenc
compared to Ref.@28# are that in the present case there
nonzero transverse momentum of the partons, and the
sumption that the matrix elements are nonvanishing in c
the gluon has a vanishing light-cone momentum fraction~but
nonzero transverse momentum!. This results in an unsup
pressed asymmetry which is a function of the transverse
mentum Q' of the lepton pair with respect to the initia
hadrons. If this transverse momentum is integrated over,
the unsuppressed asymmetry will average to zero and
diagrams will only contribute at order 1/Q2 as in Ref.@28#.

FIG. 2. The leading-order contribution to the Drell-Yan proce

FIG. 3. The initial-state interaction contribution to the Drell-Ya
process.
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First we will calculate theF matrix to lowest order
~called FL

ab) in the quark-scalar diquark model which wa
used in Ref.@7#. ~Although the model is based on a point-lik
coupling of a scalar diquark to elementary fermions, it can
softened to simulate a hadronic bound state by differentia
the wave function formally with respect to a parameter su
as the proton mass.! As indicated earlier, no nonzerof 1T

' and
h1

' will arise from FL
ab . Next we will include an additional

gluon exchange to model the initial- and/or final-state int
actions~relevant for timelike or spacelike processes! to cal-
culateF I /F

ab and do obtain nonzero values forf 1T
' and h1

' .
Our results agree with those recently obtained in the sa
model by Goldstein and Gamberg@12#. We can then obtain
an expression for the cos 2f asymmetry from Eq.~16! and
perform a numerical estimation of the asymmetry.

A. F matrix in the lowest order „FL
ab

…

As indicated in Fig. 4 the initial proton has its momentu
given by Pm5(P1,P2,P')5(P1,M2/P1 ,0'), and the fi-
nal diquark P8m5(P81,P82,P'8 )5„P1(12D),(l2

1r'
2 )/P1(12D),r'…. We use the conventiona65a06a3,

a•b51/2 (a1b21a2b1)2a'•b' .
We will first calculate theF matrix to lowest order (FL

ab)
in the quark-scalar diquark model used in Ref.@7#. By cal-
culation of Fig. 4 one readily obtains

FL
ab5ag2F ū~P,S!

r”1m

r 22m2GbF r”1m

r 22m2
u~P,S!Ga

1

P1~12D!

5ag2@ ū~P,S!~r”1m!#b@~r”1m!u~P,S!#a
1

P1~12D!

3S 1

DS M22
m21r'

2

D
2

l21r'
2

12D D D
2

, ~17!

with a constanta51/@2(2p)3#. The normalization is fixed
by the condition

E dDd2r' f 1~D,r'!51. ~18!

In Eq. ~17! we used the relation

.

FIG. 4. Diagram which gives the lowest orderF ~calledFL
ab).
3-4
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r 22m25r 1S r 22
m21r'

2

r 1 D
5r 1S P22

l21r'
2

~12D!P1
2

m21r'
2

r 1 D
5DS M22

l21r'
2

12D
2

m21r'
2

D D . ~19!

This model is similar to the so-called spectator mo
~see, e.g. Ref.@29#!, where in addition a vector diquark i
included and the coupling constantg is treated as a form
factor ~in order to guarantee convergence!. Of course, this
can be assumed in the present model calculation as well
will be discussed in Sec. IV D. Assuming real form facto
the functionsf 1T

' and h1
' are strictly zero in the spectato

model.

Calculation of f1„D,r�…

For the calculation of the denominator of the asymme
one needs to know the functionf 1(D,r'), which can be ob-
tained fromFab given in Eq.~15!:

f 1~D,r'!5
1

2 (
6S

1

2
Fab~g1!ba. ~20!

We now takeF5FL and for the numerator spinor contra
tion, we calculate

1

2 (
6S

@ ū~P,S!~r”1m!#b@~r”1m!u~P,S!#a~g1!ba

5
1

2
Tr@~P” 1M !~r”1m!g1~r”1m!#

52P1@r'
2 1~DM1m!2#. ~21!

Then, from Eqs.~17!, ~20! and ~21!, we arrive at

f 1~D,r'!5ag2@r'
2 1~DM1m!2#

3
1

~12D! S 1

DS M22
m21r'

2

D
2

l21r'
2

12D D D
2

5
g2

2~2p!3

~12D!@r'
2 1~DM1m!2#

~r'
2 1B!2

5C
r'

2 1D

~r'
2 1B!2

, ~22!
05400
l

nd
,

y

where we defineC[g2(12D)/@2(2p)3#, D[(DM1m)2

and

B[D~12D!S 2M21
m2

D
1

l2

12D D . ~23!

Since we consider the proton state with massM as a bound
state composed of a quark with massm and a diquark with
massl, the functionB as given in Eq.~23! is always non-
zero and positive. The integral in Eq.~18! with f 1(D,r')
given in Eq.~22! can, for instance, be regulated by assum
a cutoff in the invariant mass:M 25( i@(k' i

2 1mi
2)/xi #

,L2, and the value ofg2 is adjusted to satisfy the norma
ization condition Eq.~18! @30#.

B. F matrix with final-state interaction „FF
ab

…

In order to obtain theF matrix with final-state interaction
~called FF

ab), from which one can trivially obtain the on
with initial-state interaction, we calculate the diagram giv
in Fig. 5~b!. This is equal to the diagram calculated by Ji a
Yuan @31# to obtain nonzerof 1T

' , starting from the formal
gauge invariant definition of this transverse momentum
pendent distribution function@9,26#. In Fig. 5~b! we attached
the virtual photon line to the later end of the eikonal line
order to emphasize that the final-state interaction effect
become an ingredient of the distribution functions of the t
get proton. In reality, the whole eikonal line should be co
sidered to be at the same point.

Defining FF
ab through Fig. 5~b! ~in the Feynman gauge!,

we have

FIG. 5. Diagrams which yieldF with final-state interaction
(FF

ab).
3-5
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FF
ab5 iag2e1e2E d4k

~2p!4

1

2

2P1@~12x!1~12D!#

P1~12D!

2

P1@~x2D!1 i e#

3
@ ū~P,S!~r”1m!#b@~k”1m!u~P,S!#a

~k22m21 i e!@~k2r !22lg
21 i e#@~k2P!22l21 i e#

1

r 22m2 1~H.c.!

52 iag2e1e2E d2k'

2~2p!4E P1dx
1

P13x~x2D!~12x!

2~12x!2~12D!

2P1~12D!

2

~x2D!1 i e

3
1

DS M22
m21r'

2

D
2

l21r'
2

12D D E dk2@ ū~P,S!~r”1m!#b@~k”1m!u~P,S!#a

3
1

S k22
~m21k'

2 !2 i e

xP1 D S ~k22r 2!2
@lg

21~k'2r'!2#2 i e

~x2D!P1 D S ~k22P2!1
~l21k'

2 !2 i e

~12x!P1 D 1~H.c.!, ~24!

where we usedk15xP1. The derivation of the starting formula of Eq.~24! is given in the Appendix. This underlies the ste
from Fig. 5~a! to Fig. 5~b! and hence the step from Fig. 3 to Fig. 2.

For FF
ab in Eq. ~24!, we consider only the contribution from the imaginary part of 1/@(x2D)1 i e#, that is, the contribution

from 2 ipd(x2D). There is no contribution from the real part of 1/@(x2D)1 i e#, since the Hermitian conjugate term cance
it. Then, we have

FF
ab54~2 iag2e1e2!E d2k'

2~2p!4E P1dx
1

P13 x~x2D!~12x!

2~12x!2~12D!

2P1~12D!
@2 ipd~x2D!#

3
1

DS M22
m21r'

2

D
2

l21r'
2

12D D E dk2@ ū~P,S!~r”1m!#b@~k”1m!u~P,S!#a

3
1

S k22
~m21k'

2 !2 i e

xP1 D S ~k22r 2!2
@lg

21~k'2r'!2#2 i e

~x2D!P1 D S ~k22P2!1
~l21k'

2 !2 i e

~12x!P1 D . ~25!

When we perform thek2 integration, we have

FF
ab54pag2e1e2E d2k'

2~2p!4E dx
1

P13 x~x2D!~12x!

~12x!1~12D!

2~12D!
d~x2D!

3
1

DS M22
m21r'

2

D
2

l21r'
2

12D D @ ū~P,S!~r”1m!#b@~k”1m!u~P,S!#a

32p i
1

S P22
~l21k'

2 !2 i e

~12x!P1
2

~m21k'
2 !2 i e

xP1 D F S P22
~l21k'

2 !2 i e

~12x!P1
2r 2D 2

~lg
21~k'2r'!2!2 i e

~x2D!P1 G . ~26!

When we perform thex integration, we have
054003-6
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FF
ab52 iag2e1e2E d2k'

~2p!2

1

P1D~12D!

1

DS M22
m21r'

2

D
2

l21r'
2

12D D @ ū~P,S!~r”1m!#b@~k”1m!u~P,S!#a

3
1

S M22
~l21k'

2 !

~12D!
2

~m21k'
2 !2 i e

D D @lg
21~k'2r'

2 !#

52 iag2e1e2

~12D!

P1~r'
2 1B!

E d2k'

~2p!2

@ ū~P,S!~r”1m!#b@~k”1m!u~P,S!#a

~k'
2 1B!@~k'2r'!21lg

2#
, ~27!
r

e in

of
whereB is given in Eq.~23!.

1. Calculation of f1T
�
„D,r�…

One obtainsf 1T
' (D,r') from Fab given in Eq. ~15! by

extracting the proton spin-dependent part ofFab(g1)ba:

Fab~g1!ba52e i j ST
i r'

j
f 1T
'

M
, ~28!

wheree12511.
We now apply this toFF and for the numerator spino

contraction we calculate

@ ū~P,S!~r”1m!#b@~k”1m!u~P,S!#a~g1!ba

5TrF ~P” 1M !S 1

2
g5S” D ~r”1m!g1~k”1m!G

5S 2
1

2D ~24i e nrs
1 !@mPnSr~k2r !s1Mr nSr~k2r !s#

522iP1~DM1m!e i j ST
i ~k'2r'! j when x5D,

~29!

where we used e0123511 and Tr@g5a”b”c”d” #5
24i emnrsambncrds.

When we insert Eq.~29! into Eq. ~27!, we obtain

FF
ab~g1!ba ~S dependent part!

52 iag2e1e2

~12D!

P1~r'
2 1B!

3E d2k'

~2p!2

22iP1~DM1m!e i j ST
i ~k'2r'! j

~k'
2 1B!@~k'2r'!21lg

2#

522ag2e1e2

~DM1m!~12D!

~r'
2 1B!
05400
3e i j ST
i E d2k'

~2p!2

~k'2r'! j

~k'
2 1B!@~k'2r'!21lg

2#
. ~30!

Then, from Eqs.~28! and ~30! we get

f 1T
' ~D,r'!52

1

4p
ag2e1e2

M ~DM1m!~12D!

~r'
2 1B!

3
1

r'
2

lnS r'
2 1B

B D . ~31!

From Eq. ~15! we find that in terms off 1 and f 1T
' the

single-spin asymmetry transverse to the production plan
the SIDIS is given by~with ST5ST

y ŷ)

PyST
y5

e12 i j r'
i ST

j f 1T
' ~D,r'!

2M f 1~D,r'!
52

r'
1

M

f 1T
' ~D,r'!

f 1~D,r'!
ST

y .

~32!

Then, using the results in Eqs.~22! and ~31!, we get

Py5
e1e2

4p

~DM1m!r'
1

r'
2 1~DM1m!2

r'
2 1B

r'
2

lnS r'
2 1B

B D , ~33!

which agrees with Eq.~21! of Ref. @7#.

2. Calculation of h1
�
„D,r�…

Similarly, one obtainsh1
'(D,r') from Fab given in Eq.

~15! by extracting the proton spin independent part
Fab(s i 1)ba:

Fab~s i 1!ba52r'
i
h1

'

M
, ~34!
3-7
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wheresmn5( i /2)@gm,gn#. We again apply this toFF and
for the numerator spinor contraction, we obtain

1

2 (
6S

@ ū~P,S!~r”1m!#b@~k”1m!u~P,S!#a~s i 1!ba

5
1

2
TrF ~P” 1M !~r”1m!S i

2
~g ig12g1g i ! D ~k”1m!G

522iP1@M ~Dki2xri !1m~k2r ! i #

522iP1~DM1m!~k'2r'! i when x5D. ~35!

Then, from Eqs.~27!, ~34! and ~35! we obtain

h1
'~D,r'!52

1

4p
ag2e1e2

M ~DM1m!~12D!

~r'
2 1B!

3
1

r'
2

lnS r'
2 1B

B D . ~36!

Thus, from Eqs.~31! and ~36! we find the relation

f 1T
' ~D,r'!5h1

'~D,r'!. ~37!

We note that the equality Eq.~37! is a special property of the
quark-scalar diquark model.

We can write f 1T
' and h1

' given in Eqs.~31! and ~36!
schematically as

f 1T
' ~D,r'!5h1

'~D,r'!5
A

r'
2 ~r'

2 1B!
lnS r'

2 1B

B D , ~38!

with B as given in Eq.~23! and

A5
g2

2~2p!3S 2
e1e2

4p D M ~DM1m!~12D!. ~39!

We have the same formulas forf̄ 1T
' and h̄1

' with D,r' ,A,B

replaced byD̄, r̄' ,Ā,B̄.
We note that we obtainedf 1T

' andh1
' in Eq. ~38! from the

final-state interaction diagram shown in Fig. 5~b!. These are
the functions relevant for semi-inclusive DIS@7#. The func-
tions arising from initial-state interactions have an over
minus sign compared to those in Eq.~38!, as pointed out by
@9# and confirmed in@8#. However,f̄ 1T

' andh̄1
' also have this

property; therefore, the asymmetry factorn given in Eq.~16!

is in fact independent of whether we useh1
' and h̄1

' from
initial- or final-state interactions.

C. The cos 2f asymmetry

We now consider the convolution terms in the numera
and denominator of the analyzing powern of the asymmetry
@Eq. ~16!#:
05400
ll

r

F[F @~2ĥ•p' ĥ•k'2p'•k'!h1
'h̄1

'#

5E d2p'd2k'd2~p'1k'2q'!~2ĥ•p'ĥ•k'2p'•k'!

3h1
'~D,p'

2 !h̄1
'~D̄,k'

2 !,
~40!

G[F @ f 1 f̄ 1#

5E d2p' d2k'd2~p'1k'2q'! f 1~D,p'
2 ! f̄ 1~D̄,k'

2 !,

where we left out the flavor indices. With these definitio
we can write

n5
2

M1M2

(
a,ā

ea
2Fa

(
a,ā

ea
2Ga

. ~41!

We will insert the schematic form Eq.~22! for f 1 and f̄ 1 and
Eq. ~38! for h1

' and h̄1
' .

We first rewrite the denominator termG:

G5E d2b'

~2p!2
exp~2 ib'•q'! f̃ 1~D,b'

2 ! f! 1~D̄,b'
2 !, ~42!

where we have defined the Fourier transform off 1(D,k'
2 )

f̃ 1~D,b'
2 ![E d2p' exp~ ib'•p'! f 1~D,p'

2 !

52pCS K0~ABb!1
~D2B!

2AB
bK1~ABb!D ,

~43!

where b[ub'u, and similarly for f̄ 1. Thus, we obtain the
exact expression forG:

G52pCC̄E
0

`

dbb J0~buq'u!

3S K0~ABb!1
~D2B!

2AB
bK1~ABb!D

3S K0~AB̄b!1
~D̄2B̄!

2AB̄
bK1~AB̄b!D . ~44!

Obtaining such an exact expression forF is much more dif-
ficult ~if possible at all!, hence we will expressF in a form
amenable to numerical evaluation. We first write

F52E
0

` db

2p
bJ2~buq'u!h̃1

'~D,b!h! 1
'~D̄,b!, ~45!

where we have defined the Fourier transform
3-8
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h̃1
'~D,b![E d2p'exp~ ib'•p'!

b'•p'

b
h1

'~D,p'!

52p iAE dpJ1~bp!lnS p21B

B D 1

p21B
,

~46!

where p[up'u. This can be approximated from below b
expanding

lnS p21B

B D5S p2

p21B
D 1

1

2 S p2

p21B
D 2

1
1

3S p2

p21B
D 3

1•••.

~47!

For each term an exact Fourier transform expression ca
obtained in terms ofKi functions. Keeping only the first term
will lead, for instance, to

h̃1
'~D,b!*2

ipA

AB
S K1~ABb!

2
1

2
bAB@K0~ABb!1K2~ABb!# D , ~48!

which is roughly a factor of 2 too small compared to t
numerical evaluation without approximation. Equation~48!
leads to an asymmetry with approximately the right sha
but about a factor of 4 smaller in magnitude. This discre
ancy can be reduced by taking further terms in the Tay
expansion into account.

We will now investigate the obtained expressions forF
and G by a numerical evaluation. In order to simplify th
numerical calculation somewhat~since no absolute predic
tion can be made at this stage, because the overall magn
of A andĀ are not known!, we assume the situation of equ
hadron masses (M15M25M ) and take momentum frac
tions such thatB5B̄ andD5D̄. This results in the follow-
ing expressions, after expressing all dimensionful tw
vectors in units ofAB, i.e. rescalingb'→ABb' and q'

→q' /AB ~the same forp' andk'):

F5
2pAĀ

B2 E dbb J2~buq'u!

3S E dpJ1~bp!ln~p211!
1

p211
D 2

,

G5
2pCC̄

B E dbbJ0~buq'u!S E dpp J0~bp!
p21D/B

~p211!2D 2

.

~49!
05400
be

e,
-
r

de

-

Next we make some generic choices for the various par
eters. We takeM50.94 GeV, m50.3 GeV, l50.8 GeV
andD/B54, which implies thatD'0.2 or 0.5 and also for
D̄.

Figure 6 displays the quantityP[BCC̄F/(AĀG) as a
function of uq'u in GeV ~using D50.2, AB'0.24 GeV).
The quantityP still has to be related ton which cannot
be done without further assumptions. First of all, w
will assume u quark dominance, which yieldsn
'2Fu /(M1M2Gu). Next we will use some results obtaine
in Ref. @6#, where the same asymmetryn was investigated
and the following form was assumed~based on very genera
arguments and the simple model result of Ref.@4#!:

h1
'~D,p'

2 !

f 1~D,p'
2 !

5cH

MCMH

p'
2 1MC

2
, ~50!

whereMH is the mass of the hadron andcH and MC were
used as fitting parameters. The valuescH'1 and MC'2
were obtained from fitting the 194 GeV data of the NA1
Collaboration by considering the case of one dominant qu
flavor contribution. In the present model calculation the ra
takes the form

h1
'~D,p'

2 !

f 1~D,p'
2 !

5
A

C

1

p'
2

p'
2 1B

p'
2 1D

lnS p'
2 1B

B D . ~51!

Unfortunately this shape is very different from Eq.~50! for
the choices ofB and D made earlier (D'0.2 such thatB
'1/16 andD'1/4). Although both forms have similar larg
p'

2 behavior, it is mostly the smallp'
2 behavior that is rel-

evant. By comparing the curves resulting from Eq.~50! ~with
cH51, MC52MH52 GeV) and Eq.~51! ~with D54B
51/4), one may expect 0.1&A/C&0.5, which then implies
that 2&ue1e2u&12 ~incidentally this matches the value o
ue1e2u'5, which was used for the numerical estimation
Ref. @7#!. This range of values may then be used for cru
estimates of asymmetries containing the functionh1

' for a
quark inside a proton, or equivalently an anti-quark inside
anti-proton. For a quark inside an anti-proton, or equiv
lently an anti-quark inside a proton, the overall prefactor

FIG. 6. Numerical result forP[BCC̄F/(AĀG), using M

50.94 GeV, m50.3 GeV, l50.8 GeV andD5D̄50.2.
3-9
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BOER, BRODSKY, AND HWANG PHYSICAL REVIEW D67, 054003 ~2003!
expected to be smaller. So if we restrict ourselves topp̄

collisions here and takeA/C5Ā/C̄50.3, then one obtains a
a very crude estimate:n'2F/(M1M2G)52A2P/(BC2)
'3P, which means that the maximum ofn is on the order of
30%. As said this is a very crude estimate and many assu
tions went in. It cannot be viewed as more than an orde
magnitude estimate, but we think it is an encouraging res

D. Discussion

In this section we give a more general discussion of
qualitative features of the asymmetry, in particular itsQ'

2

dependence. It may be good to note that the starting poin
the calculation, that is, the factorized description of t
asymmetry, requires thatQ'

2 !Q2, such that for large value
of Q'

2 the asymmetry is not appropriately described by
above formulas. AtQ'

2 ;Q2, the perturbative correction
will be the dominant source of an asymmetry.

In order to obtain the generalQ'
2 dependence of the

asymmetry for small and largeQ'
2 , we start with the original

convolution expression forF @the first line of Eq.~40!#. After
multiplication by a trivial factorQ'

2 /Q'
2 and using thek'

integration to eliminate the delta function, we shift the in

gration variablep'→p'8 5p'2 1
2 q' , to arrive at

F5
AĀ

Q'
2 E d2p'8 S Q'

4

4
1p'8

2Q'
2 22~q'•p'8 !2D

3
1

S p'8 1
1

2
q'D 2S p'8 2

1

2
q'D 2

3
1

F S p'8 1
1

2
q'D 2

1BGF S p'8 2
1

2
q'D 2

1B̄G

3 lnS S p'8 1
1

2
q'D 2

1B

B
D lnS S p'8 2

1

2
q'D 2

1B̄

B̄
D .

~52!

In caseB5B̄ ~which, as said, means equal masses of
initial hadrons and equal light-cone momentum fractions
the quark and antiquark!, then one can perform symmetr
integration to reduce

S Q'
4

4
1p'8

2Q'
2 22~q'•p'8 !2D→

Q'
4

4
. ~53!

For smallQ' one can ignore the6 1
2 q' terms in the de-

nominators and ln terms of the expression Eq.~52!, such that
symmetric integration is appropriate and one can imme
ately conclude thatF;Q'

2 .
Next we turn to the denominator ofn @Eq. ~16!# which is

given by
05400
p-
f

lt.

e

of

e

-

e
f

i-

G5CC̄E d2p'8
S p'8 1

1

2
q'D 2

1D

F S p'8 1
1

2
q'D 2

1BG2

S p'8 2
1

2
q'D 2

1D̄

F S p'8 2
1

2
q'D 2

1B̄G2 .

~54!

At Q'
2 50, GÞ0, hence the asymmetry (n;F/G) vanishes.

For largeQ' the obtained model expressions do not yie
an accurate description, although one does obtain a po
law fall-off ~see below!, as one also would expect from pe
turbative QCD~which determines the large transverse m
mentum region!. The point is that one runs into convergen
problems. This applies, for instance, to the integral off 1

@Eq. ~18!#. Also h1
' does not fall off fast enough at largeQ'

2

to guarantee convergence of certainQ'
2 -weighted and inte-

grated asymmetries~such as investigated in Refs.@6,11#!.
Although one obtains a finite result for

E d2r'h1
'~D,r'

2!5
p3A

6B
, ~55!

this is, however, not the object one encounters in the cosf
asymmetry, nor inQ'

2 -weighted and integrated asymmetrie
Rather one encounters in such weighted asymmetries
quantity

E d2r'r'
2h1

'~D,r'
2!, ~56!

which diverges in the quark-scalar diquark model employ
here.

Therefore, one often assumes that the proton-qua
diquark coupling constantsg are in fact form factors, see, fo
instance, Ref.@29#. In the present quark-scalar diquark mod
calculation no such form factors are included~although the
use of a regulator is implicitly assumed!, because it would
add another complication to the evaluation of the asymme
and more importantly, in separating the perturbatively gen
ated cos 2f asymmetry~which is only relevant at largeQ'

2 ),

from the nonperturbative contribution;h1
'3h̄1

' , one has to
impose an upper cutoff on theQ'

2 range anyway. Our interes
here is not in the specific fall-off of the asymmetry at lar
Q'

2 , but rather in the moderateQ'
2 region, where the contri-

bution to the asymmetry arising from initial-state interactio
is maximal.

For largeQ'
2 one concludes from the above expressio

~after including a regulator to insure convergence, e.g
transverse momentum fall-off ing), that F,G and n;F/G
decrease for largeQ'

2 . To see this in more detail, we wil
approximateF/G crudely by settingp'8

250 in the denomi-

nators and by ignoringB,B̄,D,D̄ and the ln terms altogethe
In this way we obtain for the largeQ' behavior of the ratio

F

G
;

1

Q'
2

, ~57!
3-10
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INITIAL-STATE INTERACTIONS IN THE . . . PHYSICAL REVIEW D 67, 054003 ~2003!
i.e. the asymmetry indeed falls off for largeQ'
2 . Since at

small Q'
2 the ratio F/G grows asQ'

2 , there has to be a
turnover inn as a function ofQ'

2 , which has not yet been
observed in experiment, but is clearly seen in the model
culation reported here.

We want to emphasize that the quantities which determ
the magnitude~and width! of the asymmetryn are the same
as those appearing in the expression for the single-
asymmetry proportional toh13h1

' and in the context of the
model also for the single-spin asymmetries discussed
Refs. @7,8# that depend on the Sivers distribution functio
Thus, the parametric dependencies of these asymmetrie
in principle be checked for consistency, in order to s
whether it is at least consistent to assume that the asym
tries are generated by the same underlying mechanism
example of such a comparison was given in Ref.@32#.

One final comment is on theQ2 scale. The model doe
not produce a dependence on that scale and theQ2 depen-
dence of transverse momentum dependent asymmetries
notoriously difficult problem~cf. e.g. @33,34#!. Due to the
lack of knowledge of thisQ2 dependence, we can only ex
pect that the asymmetry expression and the result from
model calculation should apply to the sameQ2 range@Q2

5mg*
2

5(4212 GeV)2# as that of the existing Drell-Yan
data, from which we used fitting results.

V. CONCLUSIONS

In this paper we have studied the cos 2f distribution in
unpolarizedDrell-Yan lepton pair production within the con
text of a quark-scalar diquark model for the proton, includi
an initial-state gluon interaction. Such initial- or final-sta
interactions lead to the appearance of~naive! T-odd distribu-
tion functions, such as the Sivers effect functionf 1T

' (x,p'
2 )

and its chiral-odd partnerh1
'(x,p'

2 ) @12,31#. We calculated
those functions in the quark-scalar diquark model and fo
that they are equal in this model. Even though this equalit
not expected to be satisfied generally in other models,
result does show thatf 1T

' (x,p'
2 ) and h1

'(x,p'
2 ) are closely

related and are expected to have similar magnitudes in
eral. With the model expressions forf 1 andh1

' we were able
to write down an expression for the analyzing powern of the
cos 2f asymmetry in the unpolarized Drell-Yan process. U
der the assumption ofu quark dominance and by using fittin
results of Ref.@6#, we have given a numerical estimation
the asymmetry for thepp̄→,1,2X process. As an order o
magnitude estimate we obtained for the maximum ofn a
value of 30%. Despite the considerable uncertainty it is cl
that based on this model calculation the cos 2f asymmetry
can be of the same order of magnitude inpp̄→,1,2X as
experimentally measured results inp2 N→m1m2 X ~in the
same range ofQ2 values!. It is natural to expect that the
asymmetry inpp→,1,2X will be considerably smaller, bu
may still be expected to be on the percent level.

Since the same mechanism~initial- and/or final-state in-
teractions! leads to nonzero functionsf 1T

' (x,p'
2 ) and

h1
'(x,p'

2 ), it is clear that the single-spin asymmetries in t
05400
l-

e

in

in
.
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e
e-
n

s a

e
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is
is
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r

SIDIS and the Drell-Yan process are closely related to
cos 2f asymmetry of the unpolarized Drell-Yan proces
Since the width and the magnitude of these asymmetries
determined by the same parameters in the model, one
relate the asymmetries and this may be tested by experim
tal data. All this provides new insight into the role of qua
and gluon orbital angular momentum as well as of initi
and final-state gluon exchange interactions in hard QCD p
cesses.
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APPENDIX: DERIVATION OF EQ. „24…

We present the derivation~based on Ref.@9#! of the start-
ing formula of Eq.~24!:

ū~q1r !g2
1

k”1q”2M
gm

5
1

~k2r !11 i e
ū~q1r !g2~k2r !1

1

k”1q”2M
gm

.
1

~k2r !11 i e
ū~q1r !2~k”2r” !

1

k”1q”2M
gm

5
2

~k2r !11 i e
ū~q1r !@~k”1q”2M !

2~q”1r”2M !#
1

k”1q”2M
gm

5
2

~k2r !11 i e
ū~q1r !~k”1q”2M !

1

k”1q”2M
gm

5
2

~k2r !11 i e
ū~q1r !gm, ~A1!

where we used the equation of motionū(q1r )(q”1r”2M )
50 in the fourth line. In the above, 2/@(k2r )11 i e# is the
eikonal propagator.

Before going from the second to the third line in Eq.~A1!,
we deformed the contour of integration to the upper infin
in the complex (k2r )1 plane so that u(k2r )1u
@u(k2r )2u,u(k2r ) i u is satisfied along the new contour. W
note that what we deformed is the line along which thek
2r )1 integration is performed, and the pole position ofk
2r )11 i e50 ~at which we compute the value of the res
due! is not influenced by this deformation.
3-11
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