PHYSICAL REVIEW D 67, 046004 (2003

Supersymmetry and branes in M-theory plane waves
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We study brane embeddings in M-theory plane waves and their supersymmetry. The relation with branes in
AdS backgrounds via the Penrose limit is also explored. Longitudinal planar branes originate from AdS branes
while giant gravitons of AdS spaces become spherical branes which are realized as fuzzy spheres in the
massive matrix theory.
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[. INTRODUCTION trix theory the moduli space is a discrete set of fuzzy spheres
of different radii, and there exists a dimensionless coupling
The physics of type IIB string theory and M theory in the constant which makes perturbative calculations possitile
maximally supersymmetric plane wave backgrourfd$ By exploiting the fact that the symmetry algebra contains a
turns out to be surprisingly rich. In the light-cone gauge theclassical Lie superalgebra $24) and studying its atypical,
superstring and the supermembrane Green-Schwarz actiong., short representations, it is shown that there exist pro-
both significantly simplify. The string worldsheet theory hastected states whose energies are free from perturbative cor-
free massive bosons and fermions, and the free string lightsctions[g—10.
cone spectrum is known exactl]. The supermembrane  The aim of this paper is to provide a list of supersymmet-
action is already interacting in the flat background, and thgic pranes in the eleven-dimensional plane waves through
gravitational wave adds two new types of terms to the lights;pergravity analysis. It can be taken as the M-theory answer
cone action: mass terms and bosonic cubic interaction termg, the paper by Skenderis and Tay[d1] who studied su-

2

ds?=—4dx*dx — 22

[3]. It is well known that the light-cone supermembrane aC-persymmetric D-branes in AdSS® and the plane-wave
tion can be discretized to give Yang-Mills quantum meChanbackgrounds of type 1B string theory. The motivation for
ics [4], which is usually called “matrix theory” providing & gy,ch 5 study is obvious when we recall the importance of
honperturbative partonic description of M thedBj. In re- b jyranes in modern string theory. Especially in terms of the
lation with type 1A string theory the cubic interaction terms aqs/conformal field theorn(CFT) correspondencfl2], the
are easily identified as describing the Myers’ dielectric effectyanes correspond to several interesting objects such as mag-
[6]: the constituent DO-branes are expandmg into fuzzyetic monopoles, baryonic vertét3], giant gravitong 14],
spheres. Let us quote here the plane-wave solution of elevenyy defect conformal field theorjl5]. The supergravity
dimensional supergravity which is of utmost interest in thisanalysis of Refs[11,16] is found to agree with microscopic
paper: constructions of D-branes as open string boundary conditions
2 [17] and as squeezed states of closed string s€didr.
(ﬁ y2+(ﬁ dx*2+dy2+dZ, These 1/2-Bogomoln'yi-Prasad-Sommerfigl@PS branes
3 6 are also constructed as localized supergravity solutions in
Ref.[19]. For M theory a comparison can be made with the
F=pdx"Ady'Ady?Ady?, (1) matrix model constructed in Reff3], where 1/2-BPS fuzzy
. sphere solutions are presented. A systematic search of super-
wherey,z are vectors inR3 R®, respectively. The matrix symmetric branes as matrix theory solitons is undertaken in
theory in this particular background is first given in Ref], Refs. [20,21], and a new matrix model of fivebranes in
and the derivation by discretizing the supermembrane actioplane-wave is constructed in R¢22] as/N'=8 gauge quan-
is demonstrated in Ref7]. One notable feature of this solu- tum mechanics with extra hypermultiplets. We find our result
tion is that at the level of the metric the symmetry of theconsistent with the literature, as it should be. For related
nine-dimensional transverse space is already broken tworks on eleven-dimensional plane-wave solutions see Ref.
SO(3)xS0O(6). Theexistence of a dimensionful parameter [23].
u renders the study of matrix model in some sense even The particular form of plane-wave makes it natural to
more tractable than the flat space counterpart. In the originailassify branes first according to the behavior in terms‘of
matrix theory a perturbative approach is hard to achieve firsand x~. We will be interested in the branes which are ex-
because of continuous moduli and secondly due to the lactended along botk™ andx~, and also the branes which are
of dimensionless parameter. Now with the plane-wave maextended along™ while localized inx~. We will call them
“longitudinal” and “transverse” branes, respectively. In the
matrix theory description the longitudinal M5-branes are re-
*Email address: kim@aei.mpg.de alized as four-dimensional objects, while it is the transverse
"Email address: jungtay@kias.re.kr spherical M2-branes which become fuzzy spheres of matrix
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TABLE I. AdS branes and the corresponding planar branes irbackground. The bosonic part of the supermembrane action

the plane wave. can be written a$25]
Brane Intersection  AdS embeddingpp-wave embedding
S=—TJ d3o(\/—detg—C), 2)
M2 (0|M2LM2) AdS,X S, (+,-.,1,0)
m: (imgi mg) A(fdff + 29 whereg and C are the induced metric and the three-form
(1] ) 53X S5 (+,7.22) gauge field pulled back on the world volume, respectively.
M5 (3[M5. M5) AdS5 XS, (+.-.04) Unbroken supersymmetry requires that the Killing spinors of
M> (1|M5.LM5) AdS;X S (+.-.2.2) the background geometry be consistent with the so-called
Kk-Symmetry projections, so
theory. For completeness we will also present longitudinal I'.e=¢€, 3)

M2-branes and transverse M5-branes in the plane wave as
well, although they are not immediately related to the soli-where
tons of matrix theory.

It is by now well established that the plane waves are the 1
Penroseylimit$24] of AdS solutions. In thg Penrose limit the FKzﬁEmnpﬁmeaanﬂpxprMNP‘ )
spacetime is blown up around the world line of a chosen null
geodesic. For the case of AdS backgrounds, if the massle€apital italic letters denote eleven-dimensional indices and
particle moves in the sphere the limits are plane waves, whileowercase is reserved for world volume indices. The equa-
for particles moving only in AdS the spacetime becomesion of motion is written as
Minkowski. Now an interesting question is what happens to
the supersymmetric branes in AdS space in the Penrose limit. 1
There are two types of half supersymmetric branes in AdS ?am( V=99™3,XN) Gun+ 9™ 0mX N3 XP Y
backgrounds: AdS branes and giant gravitons. In order to get
AdS branes it is convenient to start with intersecting branes 1
configurations and take the near horizon limit of one brane. =§em“pFanp, (5)
Let us take M5- and M2-branes intersecting on a string as an '
example. This system preserves eight supersymmetrie : : :
When we take the near horizon limit of M2-branes the back_i\)c:(;reaﬁd::s:bgcckground metricywnp are Christoffel sym-
ground geometry becomes Ag8S’, and likewise the six- ' ’
dimensional M5-brane world volume occupies AdSub-
space of Ad$ and S inside S. The supersymmetry is
enhanced to 16, and one can conjecture that this configura- These branes are one dimensional in the transverse nine-
tion is dual to a two-dimensional superconformal field theorydimensional space, and it is straightforward to see that they
with SO(4) global symmetry. Similar configurations are sum- satisfy the equation of motion with linear geometries. When
marized in the Table I. The giant gravitons are spherical M2ying along theith direction (hatted indices represent the
or M5 orbiting at light velocity in $or S'. If we choose null  tangent spage
geodesics moving along with the giant gravitons the brane
geometry is kept intact. They become transverse spherical I'e=T123 (6)
branes in plane waves. _ o o .

In the main part of this paper we ugesymmetric mem- and in order fo.r.the projection to be satisfied at every point
brane and fivebrane actions to check the equation of motioff x" the conditions
and supersymmetry of various brane embeddings in plane

A. Longitudinal branes

waves. We choose to use the same notation which is intro- '} 2je0= e, @)
duced in Ref[11] to denote different brane configurations.
World-volume directions are given in the parenthesis, so, for I';2il'153€0= €o 8

instance, {,—,2,2) means five-branes extended along o ) _ _
x*,x~, and two directions inR3 and R® each. When one have to be satisfied. We find that if the membrane is extended

checks the supersymmetry it is essential to have the explicRurely ini® it has at least 1/4 supersymmetry and the super-
form of Killing spinors. They can be found in the literature Symmetry is enhanced to one half when located at the origin.

but for completeness and to set the notation we show th&nd the longitudinal membranes lying ik’ direction break
derivations in the Appendix. the supersymmetry completely. It is essentially becduse

anticommutes witH 153.

1. M2 BRANES IN PLANE WAVES B. Transverse branes

It is a relatively simple matter to check the supersymme- Another class of supersymmetric membranes have spheri-
try of membranes with simple geometries in the plane waveal geometry inR3. The equations of motion for transverse
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scalarsz?’ force them to lie at the origin, and the radiusf with
the sphere is found to be arbitrary. We further get P
P
3 r2 M 2 Up:\/?, (13)
Fe=rili=3 g) T2 T3l ay°. 9 9" ImAdna

_ _ . whereH; is Hodge dual tdH; on the world volume
It turns out thatl’ ,e= € is satisfied for anyx™ andr, for

I':1 €9=0. This is precisely the projection of Killing spinors _ 1 -
which are linearly realized in the supermembrane action in Hm”p:§em”””"Hijk. (14)
the light-cone gauge or the matrix quantum mechanics. And '

it agrees with the observation in the matrix theory that theIt can be shown that upon double-dimensional reduction, one
fuzzy sphere solutions iR® preserve the whole linearly re- '

alized supersymmetry while breaking the nonlinearly real-OPt@ins dual form of DA4-brane action atti,, reduces to
ized supersymmetries completely. gauge field strer_lgth on the world v_olume. _

There also exist transverse branes of planar geometry. The 1h€ PST action has the following four different gauge
equations of motion are satisfied for(1,1) and ¢,0,2) Symmetries
branes. Due to Wess-Zumino couplings-,2,0) planar
branes do not satisfy the equation of motion without trans-
verse scalar excitations. None of these planar transverse

(1) S6A,=dA,

branes are supersymmetric. (2) oA=da/\¢, sa=0,
lll. M5 BRANES IN PLANE WAVES ¢ 20Lg
' (3) da=¢, OAmn= 5| ommn mn |
A. Introduction to PST formulation of five-brane action V—(da)”\ oH
M-theory five-branes and the gauge field theory confined (4) 6A,=B,, 6C;=dB,. (15)

on their world volume are certainly one of the most myste-
rious objects in string theory. The construction of covarian
action is a subtlety because of the self-dual three-form fiel
strength. There exist several proposals for M5-brane action
in the literaturd 26—28. Among them, covariant field equa-
tions from superembedding approal@v] is proven to be
equivalent to other approachE&9]. Noncovaraint action of
Ref.[28] can be obtained from Rdi26] with gauge fixing of
auxiliary field. In this paper we use the Pasti-Sorokin-Tonin
(PST) [26,3( formulation which is manifestly covariant. In
this section, we review Ref30] briefly.

ereLg= \/det(5n'3+ﬁn?). Note that the first symmetry is

e same as the usual gauge symmetry of the Dirac-Born-
nfeld action of D-branes and the fourth one is simply a
pullback of eleven-dimensional gauge symmetry. Upon
gauge fixing of scalar field, for example, asa=x°, we
obtain the noncovariant formulation of R¢28]. From the
equation of motion ofA,, self-duality constraint is incorpo-

rated automatically :

I 120 3
The bosonic part of PST action is _Hmn_ 1/2tH2H ot Hi, 16
mn— LBI . ( )
= 1 ~
_ 6y _ /_ i mn
S= TMSfMad X = de(Gmnt Himn) V= gH Hmn The equation of motion fokM is
—EI(C +dA,/\C3y) (10 my---Mg ipﬁw _L(Fm H
2 6 20 s € 6! M Ms  (31)? mymymg’ My Mg Mg
whereg,,, is the induced metric on the world volum&g _ g XTED H )| =— ET“‘“V G
and C; are pullback of Ramond-Ramond potentials which n myMyMmg™ “MyMsme/ | = menT
are subject to the eleven-dimensional Hodge duality condi-
tion 17
F,=dCs—CaAdCs=*F,. (1 ~ Where
. . . . o . 1 1
A, is world volume gauge field, which gives modified field T -2 mn( Loi— —H. H™N| — Z 4mpdfn 18
strength on the world volume, mn=<d Bl g7 mn 2 pa- (18)
Hy=dA,—Cs;. (12 In order to incorporate fermions and make the action super-
_ 3 _ symmetric one replaces the fields and coordinates by super-
There is an auxiliary scalar fielal(x) such that forms and supercoordinates. Thesymmetry is more in-
5 5 volved than that of membranes because of the gauge field
Hon=Hmnp?,  Hmn=Hmnp?, and the auxiliary scalaa:
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v ™ 1 null fluxes turned on due to Wess-Zumino couplings, so the
r——_..- — €Ty, analogy does not persist here. We give more comments on

“ /—de(g+F|) 51 1s this issue in Sec. IV.

2. (+,—,2,2) branes

p.pVa) For this type of branes the pull back of three-form field

(19 vanishes so the world volume gauge fi¢idcan be set to

zero. For clarity let us choosg',y?,z* z° to be world vol-
ume directions. Usind",=1"; ~i53z, the projection condi-
{ion gives the following equations:

1 .1 -
+ SN Ql P+ < emmraPar B,

1n2

I'n=e,"T'y is pullback of eleven-dimensional gamma ma-
trices on six-dimensional world volume. One can check tha
I' . as given above is traceless and squares to identity.

I'; 21535Q€0=Qeo, (24)
B. Longitudinal branes I'; 21525075 ~15360=0QI'; ~i33€0, (25
1. (+,—,3,1) branes
, _ T';-1535QT 13360= QT 13360, 26
We notice that there is a source term to the world volume +-1225Q1 12360= Q12360 (26)
flux from the Wess-Zumino coupling to the background four-
ping g 521535Q0 12 €o=QI'; ~ o, 27

form fields. This phenomenon is essentially the same as the
M5-brane baryonic vertices in Ad$ S* [31], and one could where
start from the configurations in the AdS background and take

the Penrose limit, but here we will derive the general solu-

tions of brane equation of motion. We set the notation for the Q=|1+ %yal“gl“;igg— %za'F5,F:1§§ . (29
null fluxes as(we takez* to be along the world volume

1 Now using the commutation properties of matrices involved,
H= zdx*/\dya/\dybfceabc+ dx*Ady?\dZ'g,, it is straightforward to see that E§24) is satisfied if the
transverse scalars are set to zero and

(20)
then from the Bianchi identity we get I': ~135€0= €0, 29
o fa implying that (+,—,2,2) branes are 1/2-BPS when they sit
a K at the origin. For the branes located away from the origin,
abe they still preserve 1/4 of the supersymmetries for the Killing
€7"9p9.=0. (21) spinors which are annihilated Hy- .
o _ We can also consider nonzero gauge fields on the world
Now when we choosa=z", it is straightforward to get volume. We will see that turning on null fluxesl ;5
] =H,,, does not break the supersymmetry provided the
Hia=—10a, brane is accordingly moved away from the origin. The origin
of such world volume fields in AdS backgrounds is not hard
H+a: —if, (22 to find. (+,—,2,2) branes are Penrose limits of AGSS®

branes, where nonzero three-form flux can be turned on
and when they are substituted into the generalized selthrough Ad$ and S. When the Penrose limit is taken the

duality equation(16) it gives simply flux becomes null just like the background four-form field.
This example is similar to AdS<S? D5-branes with non-
fa=0.. (23)  zero flux through & which was explicitly studied in Ref.
[11].

In fact when we evaluate the nonlinear terms in the equation We havel’,=I'; 23535—H . 4['215, and the branes are
we find they vanish. This is not unexpected since the fluxesupersymmetric if
are null and higher order Lorentz invariants constructed by

contracting indices typically vanish. One simple solution is I' Qeo=Qe, (30
given asf,=g,=(u/3)x®. Now we can check whether these

branes are supersymmetric, which me&ns= e should be I QI'; 2 153€0=QI'; 13360, (32)
satisfied everywhere on the world volume. When we spell

out the required conditions we find it is impossible to satisfy I QrI'; ~275360=QI'{53€0 (32

especially at everyx®. Essentially the reason is that

I'; 3535 does not commute with';33 which dictates thex* are satisfied. There are at least 1/4 supersymmetries with
dependence of all Killing spinors. Similar objects in [IB I'>e,=0, and the supersymmetry is enhanced to 1/2, with
plane waves are,—,4,0) supersymmetric D5-branes with Eg. (29) as the projection rule and
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should not be taken as contradictory with matrix theory re-

_M o3 . . . )
H+45—§y ; (33 sults. The matrix theory is obtained after light-cone gauge
fixing, andx™ is not at our disposal but determined by the
with other transverse scalars set to zero. Virasoro constraints. In this work™ is always set to a con-
stant for transverse branes. Usually the constraint equation
3. (+,—,1,3) branes does not allow us to set” to a constant, but for transverse

spherical membranes the constraint equation becomes trivial
and that is why two approaches coincide.
An alternative to soliton description is possible with five-
4. (+,—,0,4) branes branes in matrix theory. The open string modes between DO-
o and D4-branes in type-lIA string pictue2] give rise to
The analysis is similar to that oft(,—,2,2) branes. The phypermultiplets in the matrix quantum mechanics. The plane
branes are 1/2-BPS at the origin and 1/4-BPS away from ityaye deformation of this matrix theory is presented in Ref.
One might ask whether it is also possible to turnlo'n W(_)rlq[zz] for (+,—,2,2) branes in our notation, and certainly it
volume flux and move the branes away from the origin, Simiill pe interesting to construct the matrix theory of-(
lar to (+,—,2,2) branes. When one proceeds, for instance,_ 4) branes which are also supersymmetric.
with nonzeroH , gz=H , 45 One fi_n_ds that there is no _rel_ation By and large our result goes hand in hand with type-1IB
between the flux and the position of the brane similar to j,5nes in AdSX S and plane waves. Especially with AdS
(+,-,2,2) branes. So it is not possible to compensate thg anes and giant gravitons we find perfect analogy, so we
harmonic potential with null world volume fluxes in this ook for other pairs of supersymmetric branes in ten- and
case. eleven-dimensional plane waves. We are especially inter-
ested in two types of type-11B branes in plane waves which
C. Transverse branes have the peculiarity that supersymmetries do not depend

The consideration is analogous to the spherical M2-brane¥here they are located. Curiously we have not found similar
in R3. The effective harmonic potential of light-cone gauge ©PIECtS in M-theory plane waves.

action puts the five-dimensional sphere of arbitrary radius at First éherg exist D-strings from unstable D-strings in
the origin of R3, and we have AdS;x S° which are wrapped on a great circle of B3].

The supersymmetry is enhanced under Penrose limit and
2 2
r
F;——(ﬁ) |

For this orientation the branes are not supersymmetric ir
respective of positions.

6
r =

these D-strings have eight supersymmetries in plane waves
< ur 216

Iissaal'az® . (34 everywhere ink8. For these 1/4-BPS D-strings, the analogy
might be membranes wrapping 8f S* in AdS;x S*. This
The projection condition is again satisfied providEd e, configuration satisfies the equation of motion, but surely this
=0. They can be traced back to AgSS’ backgrounds in is not supersymmetrit.If we take the Penrose limit, the
the same way as giant gravitons or M5-branes orbitiAg S result should be {,—,1,0) membranes with enhanced sym-
Unlike spherical membranes, these solutions are not realizédetries. Just up to this point, situations seem to be the simi-
as solitons of the massive matrix model in R]. This is  1ar to type-1IB case, but this type of membranes are 1/2-BPS
not unrelated to the well-known difficulty of constructing at the origin differently from D-strings. And in fact+(,
odd-dimensional objects in matrix models. —,1,0) can be obtained from Ad8'S; membranes as pre-
The study of transverse planar M5-branes is again similapented in Table I.
to that of transverse planar M2-branes. Because of the Wess- We are also interested in{(, —,4,0) D5-branes with null
Zumino couplings ¢,3,2) should have gauge fields while World-volume flux turned on by Wess-Zumino couplings.
transverse scalar field has to be turned on-in@,5) branes. Once the gauge field is turned on they have 16 supersymme-
(+,2,3) and @,1,4) branes satisfy the equations of motiontries irrespective of positions. It is+,—,3,1) M5-branes

without field excitations. They are all nonsupersymmetric. Which can be matched with+(, —,4,0) D5-branes but ac-
cording to our analysis these M5-branes are not supersym-

metric. In our opinion this does not contradict the known
baryonic M5-branes wrapping*h AdS, x S* which are su-

In this paper we have employed symmetric membrane persymmetric[31]. The Penrose limits of baryonic D5-
and five-brane actions to find supersymmetric branes ifranes are studied in Rdf34], where it is illustrated that
eleven-dimensional plane waves. The result is consistenesulting configuration is localized ir™ which originates
with the predictions based on known supersymmetric bran&om the affine parameter of the null geodesic. It is because
configurations in AdS backgrounds, and the next step is natuhe null geodesics have a nonvanishing component along the
rally to compare with the branes found in the matrix theory.radial direction of Poincare coordinate system, so they inter-
From the matrix equation of motion one readily sees that theect with the brane world volume at a point. Static configu-
mass terms invalidate the planar membrane solutions of orations in global coordinates could give longitudinal branes
dinary matrix theory in flat space, let alone supersymmetry.

Membranes with rather nontrivial geometries such as hyper————
bolic surfaces can be found insteD]. The nonsupersym-  Wwe can check explicitly using the Killing spinors in global coor-
metric transverse planar membranes reported in this papeinates presented in the Appendix.

IV. DISCUSSIONS
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because massless particles moving purely hcdn be 7i2=7:2=1, 75i2=75--2=0, 7ii= 6ij
choser?. but the baryonic branes in the literature are all con-

structed in Poincare coordinates. Unfortunately finding su- - - 1[(,& 2
3

2
persymmetric baryonic branes which are static in global co-€- =2+ =73 y2+ Ik e =—1lel=4).
ordinates does not seem promising. In global coordinates the (A2)
Killing spinors depend on all coordinatdso satisfyingl",,

projection everywhere on the world volume is more difficult. Thus,

In fact it is not even clear how to put background D3-, M2-,

or M5-branes supersymmetrically. = E

We thus conclude that the analogy between type-IIB and 2
M-theory is not extended beyond AdS branes and giant
gravitons. It might simply mean that the Penrose limit acts r=-r-,
differently with different AdS solutions, but one cannot rule
out the possibility that D-strings and+(,—,4,0) D5-branes r-=2r-,
are in fact spurious and unphysical. We think it is an impor-
tant matter to check their consistency for instance following ol
the approach advocated in RE36]. z }F -

Note addedAfter this paper was completed we received (A3)
an interesting paper by Skenderis and Ta{l88], where _ o - .
open string boundary conditions for light-cone world sheetBY setting the variation of gravitino to zero we get the Kill-
action in type-IIB plane waves is carefully reinvestigated. It'Ng Spinor equations
is argued that one can restore some of the broken spacetime 1
supersymmetries by using world sheet symmetries. It will be — __= NPQR_ NPQ)
very exciting to check whether such additional symmetries Octhu=Vue 288(FMNPQRF 8Funpol T =0,

2

2

L
6

can be found also for branes in M-theory plane waves. (A4)
where
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Vae— =Tz 2153€=0, (A7)
APPENDIX: THE DERIVATION OF KILLING SPINORS 6

1. Plane waves

M
An explicit derivation of the Killing spinors in eleven Vare+ Slal2153€=0, (A8)
dimensional plane wave can be also found in R&T]. The
pp-wave solution of interest in this paper is given as w
) ) V. e+ 1—2(—F;;1§§+ 2I'753)e=0. (A9)
_ M M - >
ds?=—4dx"dx — (— y2+(— z?|dx*2+dy*+dZ,
3 6 Spin connections can be calculated as
Fyto5= 2, (A1) . ;pz_(ﬁ "
+ 3 y 1
where indices ofy? and z* are a=1,2,3 and a’ 5
=4,5,6,7,8,9 for each. We define the tangent space as fol- w+ﬁ“:_<%> A (A10)
lows:

From Eq.(A6), we know thate is independent of-. From
2For further details of choosing null geodesics when one takes thEAs. (A7), (A8), we get
Penrose limits in different coordinate systems we refer the readers
o

to Ref.[35]. (1 K ara s A T A T naan
=14+ =y '~5353— =22 T3/ "> , (A1l

3We could not find the explicit form of Killing spinors in global € 6 yhal ~123 12 alzizs)x, (ALD)
coordinates from the literature, so we decided to present the solu-

tions in an appendix. where y= x(+). Inserting this into Eq(A9), we get
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M
dixt p(—Ti2iss+2lN53)x=0. (Al2)

The solution is
y=eW/12X T a5 = (O Tidse (A13)

whereeg, is a 32 components constant spinor.
2. AdS X S in global coordinates
Global metric for AdSx S* is
ds?=R3 o — cospd 2+ dp?+sintfpdQ2) + R3S,
F,=3R3vol(S"), (A14)
where
dSi=d@>+sirfe?dS_, .
Here Rygs=2Rs. The Penrose limit is taken, witRg— oo,

Y

(A15)

Bi_E_R_S (I=1,2,3),
oz
P” Rags’
ux" o 6x”
T= ,
6 R,ZAdSM
xt  3x~
0= M3 5 (A16)
Rsu
where = 6,. We get
_ P |2 2 [ H ? 2| 4o t20 420 43
ds’=—4dxTdx™ — 3] V*+|5) 2 dx"2+dy?+dZz?,

Fa=pupdxtAdy'Ady?/Adys. (A17)

Killing spinor equations for global AdS< S* space are

1 1
d,e+ > sinhpl'; e~ Ecoshpl“;r‘,; €=0,

1
d,€— EI‘;,F; e=0,

1 “
V.e— > sinhpe '3 ; €=0,

1 5
Va/6+ —ea,a Fa\rl—‘; 6=0,

5 (A18)

where

(A19)
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Herea=¢;, ... ,¢s anda’=0y, ... ,0,. Vielbeins are de-
fined such thaeifejin;]=gij, whereg;; is metric of unit
sphere. The solution is

3
6:e<p/2)r,;r;e(¢1/2)r;,;bl( 11 e[(¢k+1)/21r;>k;sm)
k=1

3

> e—(el/z)rg,lr;( 1 e[(akﬂ)/z]r;k;m) (725
k=1

(A20)
The global metric for Adgx S’ is
ds?=R3 o —costtpd 2+ dp?+sinttpdQ3) + R3S,

F,=3R34s coshp sintPp sing,d7/\dp/\d ¢,/ \d 5,
(A21)

where

dSS=d@>+sirfe?dS_,.

Here Rpgs=1/2Rs. The Penrose limit is taken, witiRg

_>m,

(A22)

p=2_Zi=123
I_2 RS(I_ [l 1)1
-y
Rads’
xt  3x”
T='u3 + > ,
Raasw
xt  ex”
0:M6 5 (A23)
Rsu

where 6= 6;. We get the same metric as HA17).
Killing spinor equations for global Ads< S’ space are

1 . 1
d,e+ > sinhpl'; e~ > coshpl';I'; =0,

1
d,€— EF,;F; e=0,

1 R
V,e— > sinhp e,2T';I'; =0,

1 At
Va/€+ Eea/a Fé/r; e=0, (A24)
where
r; =I‘;,;(;,l;,,2. (A25)
Herea=¢,, ... ¢, anda’=0,, ... ,0;. Vielbeins are de-

fined such thaeifejinszgij, whereaj is metric of unit
sphere. The solution of the Killing spinor equation is

046004-7
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6
e= P35 g(d1/20T 55, 692120755 0= (01T T2 T el ks0)/2T3,5,,, | (72755 (A26)
k=1
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