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Supersymmetry and branes in M-theory plane waves
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We study brane embeddings in M-theory plane waves and their supersymmetry. The relation with branes in
AdS backgrounds via the Penrose limit is also explored. Longitudinal planar branes originate from AdS branes
while giant gravitons of AdS spaces become spherical branes which are realized as fuzzy spheres in the
massive matrix theory.
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I. INTRODUCTION

The physics of type IIB string theory and M theory in th
maximally supersymmetric plane wave backgrounds@1#
turns out to be surprisingly rich. In the light-cone gauge
superstring and the supermembrane Green-Schwarz ac
both significantly simplify. The string worldsheet theory h
free massive bosons and fermions, and the free string l
cone spectrum is known exactly@2#. The supermembran
action is already interacting in the flat background, and
gravitational wave adds two new types of terms to the lig
cone action: mass terms and bosonic cubic interaction te
@3#. It is well known that the light-cone supermembrane a
tion can be discretized to give Yang-Mills quantum mech
ics @4#, which is usually called ‘‘matrix theory’’ providing a
nonperturbative partonic description of M theory@5#. In re-
lation with type IIA string theory the cubic interaction term
are easily identified as describing the Myers’ dielectric eff
@6#: the constituent D0-branes are expanding into fuz
spheres. Let us quote here the plane-wave solution of ele
dimensional supergravity which is of utmost interest in t
paper:

ds2524dx1dx22F S m

3 D 2

y21S m

6 D 2

z2Gdx121dyW 21dzW2,

F5mdx1`dy1`dy2`dy3, ~1!

where yW ,zW are vectors inR3,R6, respectively. The matrix
theory in this particular background is first given in Ref.@3#,
and the derivation by discretizing the supermembrane ac
is demonstrated in Ref.@7#. One notable feature of this solu
tion is that at the level of the metric the symmetry of t
nine-dimensional transverse space is already broken
SO(3)3SO(6). Theexistence of a dimensionful paramet
m renders the study of matrix model in some sense e
more tractable than the flat space counterpart. In the orig
matrix theory a perturbative approach is hard to achieve
because of continuous moduli and secondly due to the
of dimensionless parameter. Now with the plane-wave m
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trix theory the moduli space is a discrete set of fuzzy sphe
of different radii, and there exists a dimensionless coupl
constant which makes perturbative calculations possible@7#.
By exploiting the fact that the symmetry algebra contain
classical Lie superalgebra SU~2u4! and studying its atypical,
i.e., short representations, it is shown that there exist p
tected states whose energies are free from perturbative
rections@8–10#.

The aim of this paper is to provide a list of supersymm
ric branes in the eleven-dimensional plane waves thro
supergravity analysis. It can be taken as the M-theory ans
to the paper by Skenderis and Taylor@11# who studied su-
persymmetric D-branes in AdS53S5 and the plane-wave
backgrounds of type IIB string theory. The motivation f
such a study is obvious when we recall the importance
D-branes in modern string theory. Especially in terms of
AdS/conformal field theory~CFT! correspondence@12#, the
branes correspond to several interesting objects such as
netic monopoles, baryonic vertex@13#, giant gravitons@14#,
and defect conformal field theory@15#. The supergravity
analysis of Refs.@11,16# is found to agree with microscopi
constructions of D-branes as open string boundary condit
@17# and as squeezed states of closed string sector@18#.
These 1/2-Bogomoln’yi-Prasad-Sommerfield~BPS! branes
are also constructed as localized supergravity solutions
Ref. @19#. For M theory a comparison can be made with t
matrix model constructed in Ref.@3#, where 1/2-BPS fuzzy
sphere solutions are presented. A systematic search of s
symmetric branes as matrix theory solitons is undertaken
Refs. @20,21#, and a new matrix model of fivebranes
plane-wave is constructed in Ref.@22# asN58 gauge quan-
tum mechanics with extra hypermultiplets. We find our res
consistent with the literature, as it should be. For rela
works on eleven-dimensional plane-wave solutions see R
@23#.

The particular form of plane-wave makes it natural
classify branes first according to the behavior in terms ofx1

and x2. We will be interested in the branes which are e
tended along bothx1 andx2, and also the branes which ar
extended alongx1 while localized inx2. We will call them
‘‘longitudinal’’ and ‘‘transverse’’ branes, respectively. In th
matrix theory description the longitudinal M5-branes are
alized as four-dimensional objects, while it is the transve
spherical M2-branes which become fuzzy spheres of ma
©2003 The American Physical Society04-1
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theory. For completeness we will also present longitudi
M2-branes and transverse M5-branes in the plane wav
well, although they are not immediately related to the so
tons of matrix theory.

It is by now well established that the plane waves are
Penrose limits@24# of AdS solutions. In the Penrose limit th
spacetime is blown up around the world line of a chosen n
geodesic. For the case of AdS backgrounds, if the mass
particle moves in the sphere the limits are plane waves, w
for particles moving only in AdS the spacetime becom
Minkowski. Now an interesting question is what happens
the supersymmetric branes in AdS space in the Penrose l
There are two types of half supersymmetric branes in A
backgrounds: AdS branes and giant gravitons. In order to
AdS branes it is convenient to start with intersecting bra
configurations and take the near horizon limit of one bra
Let us take M5- and M2-branes intersecting on a string as
example. This system preserves eight supersymmet
When we take the near horizon limit of M2-branes the ba
ground geometry becomes AdS43S7, and likewise the six-
dimensional M5-brane world volume occupies AdS3 sub-
space of AdS4 and S3 inside S7. The supersymmetry is
enhanced to 16, and one can conjecture that this config
tion is dual to a two-dimensional superconformal field theo
with SO~4! global symmetry. Similar configurations are sum
marized in the Table I. The giant gravitons are spherical
or M5 orbiting at light velocity in S4 or S7. If we choose null
geodesics moving along with the giant gravitons the br
geometry is kept intact. They become transverse sphe
branes in plane waves.

In the main part of this paper we usek symmetric mem-
brane and fivebrane actions to check the equation of mo
and supersymmetry of various brane embeddings in p
waves. We choose to use the same notation which is in
duced in Ref.@11# to denote different brane configuration
World-volume directions are given in the parenthesis, so,
instance, (1,2,2,2) means five-branes extended alo
x1,x2, and two directions inR3 and R6 each. When one
checks the supersymmetry it is essential to have the exp
form of Killing spinors. They can be found in the literatu
but for completeness and to set the notation we show
derivations in the Appendix.

II. M2 BRANES IN PLANE WAVES

It is a relatively simple matter to check the supersymm
try of membranes with simple geometries in the plane w

TABLE I. AdS branes and the corresponding planar branes
the plane wave.

Brane Intersection AdS embeddingpp-wave embedding

M2 (0uM2'M2) AdS23S1 (1,2,1,0)
M2 (1uM2'M5) AdS3

M5 (1uM5'M2) AdS33S3 (1,2,2,2)
M5 (3uM5'M5) AdS53S1 (1,2,0,4)
M5 (1uM5'M5) AdS33S3 (1,2,2,2)
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background. The bosonic part of the supermembrane ac
can be written as@25#

S52TE d3s~A2detg2C!, ~2!

where g and C are the induced metric and the three-for
gauge field pulled back on the world volume, respective
Unbroken supersymmetry requires that the Killing spinors
the background geometry be consistent with the so-ca
k-symmetry projections, so

Gke5e, ~3!

where

Gk5
1

3!
emnp]mXM]nXN]pXPGMNP . ~4!

Capital italic letters denote eleven-dimensional indices a
lowercase is reserved for world volume indices. The eq
tion of motion is written as

1

A2g
]m~A2ggmn]nXN!GMN1gmn]mXN]nXPgMNP

5
1

3!
emnpFMmnp, ~5!

where G is background metric,gMNP are Christoffel sym-
bols, andF5dC.

A. Longitudinal branes

These branes are one dimensional in the transverse n
dimensional space, and it is straightforward to see that t
satisfy the equation of motion with linear geometries. Wh
lying along the i th direction ~hatted indices represent th
tangent space!

Gk5G1̂2̂ î ~6!

and in order for the projection to be satisfied at every po
of x1 the conditions

G1̂2̂ îe05e0 , ~7!

G1̂2̂ îG 1̂2̂3̂e05e0 ~8!

have to be satisfied. We find that if the membrane is exten
purely inR3 it has at least 1/4 supersymmetry and the sup
symmetry is enhanced to one half when located at the ori
And the longitudinal membranes lying inR6 direction break
the supersymmetry completely. It is essentially becauseGk
anticommutes withG 1̂2̂3̂ .

B. Transverse branes

Another class of supersymmetric membranes have sph
cal geometry inR3. The equations of motion for transvers

n

4-2



s
i
n

th
-
a

T

ns
er

e
te
n
e
io
-

in

ch
d

ld

one

ge

orn-
a

on

-

er-
per-

field

SUPERSYMMETRY AND BRANES IN M-THEORY PLANE WAVES PHYSICAL REVIEW D67, 046004 ~2003!
scalarsza8 force them to lie at the origin, and the radiusr of
the sphere is found to be arbitrary. We further get

Gk5
3

mr FG1̂2
r 2

2 S m

3 D 2

G2̂GG 1̂2̂3̂G âya. ~9!

It turns out thatGke5e is satisfied for anyx1 and r, for
G1̂e050. This is precisely the projection of Killing spinor
which are linearly realized in the supermembrane action
the light-cone gauge or the matrix quantum mechanics. A
it agrees with the observation in the matrix theory that
fuzzy sphere solutions inR3 preserve the whole linearly re
alized supersymmetry while breaking the nonlinearly re
ized supersymmetries completely.

There also exist transverse branes of planar geometry.
equations of motion are satisfied for (1,1,1) and (1,0,2)
branes. Due to Wess-Zumino couplings (1,2,0) planar
branes do not satisfy the equation of motion without tra
verse scalar excitations. None of these planar transv
branes are supersymmetric.

III. M5 BRANES IN PLANE WAVES

A. Introduction to PST formulation of five-brane action

M-theory five-branes and the gauge field theory confin
on their world volume are certainly one of the most mys
rious objects in string theory. The construction of covaria
action is a subtlety because of the self-dual three-form fi
strength. There exist several proposals for M5-brane act
in the literature@26–28#. Among them, covariant field equa
tions from superembedding approach@27# is proven to be
equivalent to other approaches@29#. Noncovaraint action of
Ref. @28# can be obtained from Ref.@26# with gauge fixing of
auxiliary field. In this paper we use the Pasti-Sorokin-Ton
~PST! @26,30# formulation which is manifestly covariant. In
this section, we review Ref.@30# briefly.

The bosonic part of PST action is

S5TM5EM6

d6xF2A2det~gmn1H̃mn!1
1

4
A2gH̃mnHmn

2
1

2
l ~C61dA2`C3!G , ~10!

wheregmn is the induced metric on the world volume.C6
and C3 are pullback of Ramond-Ramond potentials whi
are subject to the eleven-dimensional Hodge duality con
tion

F75dC62C3`dC35* F4 . ~11!

A2 is world volume gauge field, which gives modified fie
strength on the world volume,

H35dA22C3 . ~12!

There is an auxiliary scalar fielda(x) such that

Hmn5Hmnpv
p, H̃mn5H̃mnpv

p,
04600
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]pa

A2gmn]ma]na
, ~13!

whereH̃3 is Hodge dual toH3 on the world volume

H̃mnp5
1

3!
emnpi jkHi jk . ~14!

It can be shown that upon double-dimensional reduction,
obtains dual form of D4-brane action andH̃mn reduces to
gauge field strength on the world volume.

The PST action has the following four different gau
symmetries

~1! dA25dL,

~2! dA25da`f, da50,

~3! da5w, dAmn5
w

A2~]a!2 S 2dLBI

dH̃mn
2HmnD ,

~4! dA25B2 , dC35dB2 . ~15!

Here LBI[Adet(dm
n1H̃m

n). Note that the first symmetry is
the same as the usual gauge symmetry of the Dirac-B
Infeld action of D-branes and the fourth one is simply
pullback of eleven-dimensional gauge symmetry. Up
gauge fixing of scalar fielda, for example, asa5x5, we
obtain the noncovariant formulation of Ref.@28#. From the
equation of motion ofA2, self-duality constraint is incorpo
rated automatically :

Hmn5
H̃mn21/2trH̃2H̃mn1H̃mn

3

LBI
. ~16!

The equation of motion forXM is

em1•••m6S 1

6!
Fm̂

m1•••m6
2

1

~3! !2 ~Fm̂
m1m2m3

Hm4m5m6

2]nXm̂Fn
m1m2m3

Hm4m5m6
! D52

1

2
Tmn¹m]nXm̂,

~17!

where

Tmn52gmnS LBI2
1

4
H̃mnH

mnD2
1

2
HmpqH̃pq

n . ~18!

In order to incorporate fermions and make the action sup
symmetric one replaces the fields and coordinates by su
forms and supercoordinates. Thek symmetry is more in-
volved than that of membranes because of the gauge
and the auxiliary scalara:
4-3
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Gk52
vmGm

A2det~g1H̃ !
S 1

5!
e i 1••• i 5nG i

1
••• i

5
vn

1
1

2
A2gGnpH̃

np1
1

8
emn1n2p1p2qGmH̃n

1
n

2
H̃p

1
p

2
vqD .

~19!

Gm5em
m̂Gm̂ is pullback of eleven-dimensional gamma m

trices on six-dimensional world volume. One can check t
Gk as given above is traceless and squares to identity.

B. Longitudinal branes

1. „¿,À,3,1… branes

We notice that there is a source term to the world volu
flux from the Wess-Zumino coupling to the background fo
form fields. This phenomenon is essentially the same as
M5-brane baryonic vertices in AdS73S4 @31#, and one could
start from the configurations in the AdS background and t
the Penrose limit, but here we will derive the general so
tions of brane equation of motion. We set the notation for
null fluxes as~we takez4 to be along the world volume!

H̃5
1

2
dx1`dya`dybf ceabc1dx1`dya`dz4ga ,

~20!

then from the Bianchi identity we get

]af a5m,

eabc]bgc50. ~21!

Now when we choosea5z4, it is straightforward to get

H1a52 iga ,

H̃1a52 i f a ~22!

and when they are substituted into the generalized s
duality equation~16! it gives simply

f a5ga . ~23!

In fact when we evaluate the nonlinear terms in the equa
we find they vanish. This is not unexpected since the flu
are null and higher order Lorentz invariants constructed
contracting indices typically vanish. One simple solution
given asf a5ga5(m/3)xa. Now we can check whether thes
branes are supersymmetric, which meansGke5e should be
satisfied everywhere on the world volume. When we sp
out the required conditions we find it is impossible to sati
especially at everyx1. Essentially the reason is tha
G1̂2̂1̂2̂3̂4̂ does not commute withG 1̂2̂3̂ which dictates thex1

dependence of all Killing spinors. Similar objects in II
plane waves are (1,2,4,0) supersymmetric D5-branes wi
04600
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null fluxes turned on due to Wess-Zumino couplings, so
analogy does not persist here. We give more comments
this issue in Sec. IV.

2. „¿,À,2,2… branes

For this type of branes the pull back of three-form fie
vanishes so the world volume gauge fieldH̃ can be set to
zero. For clarity let us choosey1,y2,z4,z5 to be world vol-
ume directions. UsingGk5G1̂2̂1̂2̂4̂5̂ , the projection condi-
tion gives the following equations:

G1̂2̂1̂2̂4̂5̂Qe05Qe0 , ~24!

G1̂2̂1̂2̂4̂5̂QG1̂2̂1̂2̂3̂e05QG1̂2̂1̂2̂3̂e0 , ~25!

G1̂2̂1̂2̂4̂5̂QG 1̂2̂3̂e05QG 1̂2̂3̂e0 , ~26!

G1̂2̂1̂2̂4̂5̂QG1̂2̂e05QG1̂2̂e0 , ~27!

where

Q[S 11
m

6
yaG âG2̂1̂2̂3̂2

m

12
za8G â8G2̂1̂2̂3̂D . ~28!

Now using the commutation properties of matrices involve
it is straightforward to see that Eq.~24! is satisfied if the
transverse scalars are set to zero and

G1̂2̂1̂2̂4̂5̂e05e0 , ~29!

implying that (1,2,2,2) branes are 1/2-BPS when they
at the origin. For the branes located away from the orig
they still preserve 1/4 of the supersymmetries for the Killi
spinors which are annihilated byG2̂ .

We can also consider nonzero gauge fields on the w
volume. We will see that turning on null fluxesH145
5H112 does not break the supersymmetry provided
brane is accordingly moved away from the origin. The orig
of such world volume fields in AdS backgrounds is not ha
to find. (1,2,2,2) branes are Penrose limits of AdS33S3

branes, where nonzero three-form flux can be turned
through AdS3 and S3. When the Penrose limit is taken th
flux becomes null just like the background four-form fiel
This example is similar to AdS43S2 D5-branes with non-
zero flux through S2 which was explicitly studied in Ref.
@11#.

We haveGk5G1̂2̂1̂2̂4̂5̂2H145G2̂1̂2̂ , and the branes are
supersymmetric if

GkQe05Qe0 , ~30!

GkQG1̂2̂1̂2̂3̂e05QG1̂2̂1̂2̂3̂e0 , ~31!

GkQG1̂2̂1̂2̂3̂e05QG 1̂2̂3̂e0 ~32!

are satisfied. There are at least 1/4 supersymmetries
G2̂e050, and the supersymmetry is enhanced to 1/2, w
Eq. ~29! as the projection rule and
4-4
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H1455
m

3
y3, ~33!

with other transverse scalars set to zero.

3. „¿,À,1,3… branes

For this orientation the branes are not supersymmetric
respective of positions.

4. „¿,À,0,4… branes

The analysis is similar to that of (1,2,2,2) branes. The
branes are 1/2-BPS at the origin and 1/4-BPS away from
One might ask whether it is also possible to turn on wo
volume flux and move the branes away from the origin, sim
lar to (1,2,2,2) branes. When one proceeds, for instan
with nonzeroH1675H145 one finds that there is no relatio
between the flux and the position of the brane similar
(1,2,2,2) branes. So it is not possible to compensate
harmonic potential with null world volume fluxes in th
case.

C. Transverse branes

The consideration is analogous to the spherical M2-bra
in R3. The effective harmonic potential of light-cone gau
action puts the five-dimensional sphere of arbitrary radiu
the origin ofR3, and we have

Gk5
6

mr FG1̂2
r 2

2 S m

6 D 2

G2̂GG 4̂5̂6̂7̂8̂9̂G â8z
a8. ~34!

The projection condition is again satisfied providedG1̂e0
50. They can be traced back to AdS43S7 backgrounds in
the same way as giant gravitons or M5-branes orbiting7.
Unlike spherical membranes, these solutions are not real
as solitons of the massive matrix model in Ref.@3#. This is
not unrelated to the well-known difficulty of constructin
odd-dimensional objects in matrix models.

The study of transverse planar M5-branes is again sim
to that of transverse planar M2-branes. Because of the W
Zumino couplings (1,3,2) should have gauge fields whi
transverse scalar field has to be turned on in (1,0,5) branes.
(1,2,3) and (1,1,4) branes satisfy the equations of moti
without field excitations. They are all nonsupersymmetric

IV. DISCUSSIONS

In this paper we have employedk symmetric membrane
and five-brane actions to find supersymmetric branes
eleven-dimensional plane waves. The result is consis
with the predictions based on known supersymmetric br
configurations in AdS backgrounds, and the next step is n
rally to compare with the branes found in the matrix theo
From the matrix equation of motion one readily sees that
mass terms invalidate the planar membrane solutions o
dinary matrix theory in flat space, let alone supersymme
Membranes with rather nontrivial geometries such as hyp
bolic surfaces can be found instead@20#. The nonsupersym
metric transverse planar membranes reported in this p
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should not be taken as contradictory with matrix theory
sults. The matrix theory is obtained after light-cone gau
fixing, andx2 is not at our disposal but determined by th
Virasoro constraints. In this workx2 is always set to a con
stant for transverse branes. Usually the constraint equa
does not allow us to setx2 to a constant, but for transvers
spherical membranes the constraint equation becomes tr
and that is why two approaches coincide.

An alternative to soliton description is possible with fiv
branes in matrix theory. The open string modes between
and D4-branes in type-IIA string picture@32# give rise to
hypermultiplets in the matrix quantum mechanics. The pla
wave deformation of this matrix theory is presented in R
@22# for (1,2,2,2) branes in our notation, and certainly
will be interesting to construct the matrix theory of (1,
2,0,4) branes which are also supersymmetric.

By and large our result goes hand in hand with type-I
branes in AdS53S5 and plane waves. Especially with Ad
branes and giant gravitons we find perfect analogy, so
look for other pairs of supersymmetric branes in ten- a
eleven-dimensional plane waves. We are especially in
ested in two types of type-IIB branes in plane waves wh
have the peculiarity that supersymmetries do not dep
where they are located. Curiously we have not found sim
objects in M-theory plane waves.

First there exist D-strings from unstable D-strings
AdS53S5 which are wrapped on a great circle of S5 @33#.
The supersymmetry is enhanced under Penrose limit
these D-strings have eight supersymmetries in plane wa
everywhere inR8. For these 1/4-BPS D-strings, the analo
might be membranes wrapping S2 of S4 in AdS73S4. This
configuration satisfies the equation of motion, but surely t
is not supersymmetric.1 If we take the Penrose limit, the
result should be (1,2,1,0) membranes with enhanced sym
metries. Just up to this point, situations seem to be the s
lar to type-IIB case, but this type of membranes are 1/2-B
at the origin differently from D-strings. And in fact (1,
2,1,0) can be obtained from AdS23S1 membranes as pre
sented in Table I.

We are also interested in (1,2,4,0) D5-branes with null
world-volume flux turned on by Wess-Zumino coupling
Once the gauge field is turned on they have 16 supersym
tries irrespective of positions. It is (1,2,3,1) M5-branes
which can be matched with (1,2,4,0) D5-branes but ac
cording to our analysis these M5-branes are not supers
metric. In our opinion this does not contradict the know
baryonic M5-branes wrapping S4 in AdS73S4 which are su-
persymmetric @31#. The Penrose limits of baryonic D5
branes are studied in Ref.@34#, where it is illustrated that
resulting configuration is localized inx1 which originates
from the affine parameter of the null geodesic. It is beca
the null geodesics have a nonvanishing component along
radial direction of Poincare coordinate system, so they in
sect with the brane world volume at a point. Static config
rations in global coordinates could give longitudinal bran

1We can check explicitly using the Killing spinors in global coo
dinates presented in the Appendix.
4-5
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because massless particles moving purely in S5 can be
chosen,2 but the baryonic branes in the literature are all co
structed in Poincare coordinates. Unfortunately finding
persymmetric baryonic branes which are static in global
ordinates does not seem promising. In global coordinates
Killing spinors depend on all coordinates,3 so satisfyingGk
projection everywhere on the world volume is more difficu
In fact it is not even clear how to put background D3-, M2
or M5-branes supersymmetrically.

We thus conclude that the analogy between type-IIB a
M-theory is not extended beyond AdS branes and g
gravitons. It might simply mean that the Penrose limit a
differently with different AdS solutions, but one cannot ru
out the possibility that D-strings and (1,2,4,0) D5-branes
are in fact spurious and unphysical. We think it is an imp
tant matter to check their consistency for instance follow
the approach advocated in Ref.@36#.

Note added.After this paper was completed we receiv
an interesting paper by Skenderis and Taylor@38#, where
open string boundary conditions for light-cone world sh
action in type-IIB plane waves is carefully reinvestigated
is argued that one can restore some of the broken space
supersymmetries by using world sheet symmetries. It will
very exciting to check whether such additional symmetr
can be found also for branes in M-theory plane waves.
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APPENDIX: THE DERIVATION OF KILLING SPINORS

1. Plane waves

An explicit derivation of the Killing spinors in eleven
dimensional plane wave can be also found in Ref.@37#. The
pp-wave solution of interest in this paper is given as

ds2524dx1dx22F S m

3 D 2

y21S m

6 D 2

z2Gdx121dyW 21dzW2,

F11235m, ~A1!

where indices of ya and za8 are a51,2,3 and a8
54,5,6,7,8,9 for each. We define the tangent space as
lows:

2For further details of choosing null geodesics when one takes
Penrose limits in different coordinate systems we refer the rea
to Ref. @35#.

3We could not find the explicit form of Killing spinors in globa
coordinates from the literature, so we decided to present the s
tions in an appendix.
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h1̂2̂5h1̂2̂51, h1̂2̂5h2̂2̂50, h î ĵ5d i j ,

e2
2̂52,e1

2̂5
1

2F S m

3 D 2

y21S m

6 D 2

z2G ,e1
1̂521,ei

ĵ5d i
j .

~A2!

Thus,

G25
1

2
G1̂1

1

4 F S m

3 D 2

y21S m

6 D 2

z2GG2̂ ,

G152G2̂ ,

G252G2̂ ,

G152G1̂1
1

2F S m

3 D 2

y21S m

6 D 2

z2GG2̂ .

~A3!

By setting the variation of gravitino to zero we get the Ki
ing spinor equations

decm5¹me2
1

288
~GMNPQRF

NPQR28FMNPQGNPQ!e50,

~A4!

where

¹m5]m1
1

4
vm

m̂n̂Gm̂n̂ . ~A5!

For each components they become

¹2e50, ~A6!

¹ae2
m

6
G âG2̂1̂2̂3̂e50, ~A7!

¹a8e1
m

12
Ga8̂G2̂1̂2̂3̂e50, ~A8!

¹1e1
m

12
~2G1̂2̂1̂2̂3̂12G 1̂2̂3̂!e50. ~A9!

Spin connections can be calculated as

v1
â2̂52S m

3 D 2

ya,

v1
a8̂2̂52S m

6 D 2

za8. ~A10!

From Eq.~A6!, we know thate is independent of2. From
Eqs.~A7!, ~A8!, we get

e5S 11
m

6
yaG âG2̂1̂2̂3̂2

m

12
za8G â8G2̂1̂2̂3̂Dx, ~A11!

wherex5x(1). Inserting this into Eq.~A9!, we get

e
rs

lu-
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]1x1
m

12
~2G1̂2̂1̂2̂3̂12G 1̂2̂3̂!x50. ~A12!

The solution is

x5e(m/12)x1G1̂2̂1̂2̂3̂e2(m/6)x1G 1̂2̂3̂e0 , ~A13!

wheree0 is a 32 components constant spinor.

2. AdSÃ S in global coordinates

Global metric for AdS73S4 is

ds25RAdS
2 ~2cosh2rdt21dr21sinh2rdV5

2!1RS
2dS4

2 ,

F453RS
3vol~S4!, ~A14!

where

dSn
25dun

21sin2un
2dSn21

2 . ~A15!

HereRAdS52RS . The Penrose limit is taken, withRS→`,

u i5
p

2
2

yi

RS
~ i 51,2,3!,

r5
z

RAdS
,

t5
mx1

6
1

6x2

RAdS
2 m

,

u5
mx1

3
2

3x2

RS
2m

, ~A16!

whereu5u4. We get

ds2524dx1dx22F S m

3 D 2

y21S m

6 D 2

z2Gdx121dyW 21dzW2,

F45mdx1`dy1`dy2`dy3. ~A17!

Killing spinor equations for global AdS73S4 space are

]te1
1

2
sinhrGt̂r̂e2

1

2
coshrGt̂G*

ˆ e50,

]re2
1

2
Gr̂G*

ˆ e50,

¹ae2
1

2
sinhrea

âG âG*
ˆ e50,

¹a8e1
1

2
ea8

a8̂Ga8̂G*
ˆ e50, ~A18!

where

G*
ˆ 5Gu1

ˆ u2
ˆ u3
ˆ u4
ˆ . ~A19!
04600
Herea5f1 , . . . ,f5 anda85u1 , . . . ,u4. Vielbeins are de-
fined such thatei î ej

ĵh î ĵ5ḡi j , where ḡi j is metric of unit
sphere. The solution is

e5e(r/2)Gr̂G
*
ˆ e(f1 /2)Gr̂f̂1S )

k51

3

e[(fk11)/2]Gf̂kf̂k11D
3e2(u1 /2)Gû1

G
*
ˆ S )

k51

3

e[(uk11)/2]Gûkûk11D e(t/2)Gt̂G
*
ˆ .

~A20!

The global metric for AdS43S7 is

ds25RAdS
2 ~2cosh2rdt21dr21sinh2rdV2

2!1RS
2dS7

2 ,

F453RAdS
3 coshr sinh2r sinf1dt`dr`df1`df2 ,

~A21!

where

dSn
25dun

21sin2un
2dSn21

2 . ~A22!

Here RAdS51/2RS . The Penrose limit is taken, withRS
→`,

u i5
p

2
2

zi

RS
~ i 51,2,3!,

r5
y

RAdS
,

t5
mx1

3
1

3x2

RAdS
2 m

,

u5
mx1

6
2

6x2

RS
2m

, ~A23!

whereu5u7. We get the same metric as Eq.~A17!.
Killing spinor equations for global AdS43S7 space are

]te1
1

2
sinhrGt̂r̂e2

1

2
coshrGt̂G*

ˆ e50,

]re2
1

2
Gr̂G*

ˆ e50,

¹ae2
1

2
sinhr ea

âG âG*
ˆ e50,

¹a8e1
1

2
ea8

â8G â8G*
ˆ e50, ~A24!

where

G*
ˆ 5Gt̂r̂f̂1f̂2

. ~A25!

Herea5f1 , . . . ,f2 anda85u1 , . . . ,u7. Vielbeins are de-
fined such thatei î ej

ĵh î ĵ5ḡi j , where ḡi j is metric of unit
sphere. The solution of the Killing spinor equation is
4-7
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e5e(r/2)Gr̂G
*
ˆ e(f1 /2)Gr̂f̂1e(f2 /2)Gf̂1f̂2e2(u1 /2)Gû1

G
*
ˆ S )

k51

6

e[(uk11)/2]Gûkûk11D e(t/2)Gt̂G
*
ˆ . ~A26!
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