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We propose a possible scheme for getting the known QCD scaling laws within string theory. In particular,
we consider amplitudes for exclusive scattering of hadrons at large momentum transfer, hadronic form factors,
and distribution functions.
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I. INTRODUCTION In fact, it was known already in the 1970s that dimen-
sional analysis and some simple assumpti@dimensional
As is well known, string theory(the dual-resonance counting ruleg immediately lead to the correct scaling in
mode) was originally invented to describe the physics of exclusive hadronic scattering at large momentum trarfsfer:
hadrong 1]. However, in spite of much effort this idealized
theory of hadrons failed and finally was replaced by QCD. M(2—m)~p T4, 1.3
New ideas came in 1997-1999, with Polyakov’s proposal
for a string theory whose tension is running, Maldacena’'dndeed, if the total number of constituents in the hadroms is
conjecture of the AdS conformal field theof€FT) corre-  and the one-particle stafp) is normalized in such a way as
spondence, and the Randall-Sundrum proposal for the hiete have the dimension ¢fength], then the amplitude has the
archy problem[2,3,4. The key feature of all these is the dimension[length" . If, moreover, at large momentum
warped geometry in spacetime; i.e., the spacetime metric igansfer,p is the only length scale, then it immediately fol-
no longer Minkowskian; rather, the normalization of the Jows the wanted scaling. Modulo soft violatiofiegarithmg
four-dimensional Minkowski metric is a function of other this scaling is in rather good agreement with experimental
coordinates. In the simplest case, for example, the worldresults.

shee;t actior(its bosonic paitfor the theory with a running It is now clear that the resultl.2) does not completely
tension has the form agree with this dimensional analysis of exclusive processes
1 because it contains two dimensionful parameters. It seems
Y = levant for inclusive processes where the second pa-
S=— | d%z(dpde+a(e)dX-iX), 1.0 ~ more rek , e :
477J (9pde (¢) ) (D rameter is normally interpreted as the missing mass. In this

casen represents a subset of the constituents which partici-
wherea?®(¢) is the running string tension. A natural require- pate in scattering; the others remain as “spectators.” More-
ment is thata(¢)~e® as ¢—. In other words, spacetime over, in Sec. Il we will also see that QCD analysis provides
behaves for largep as AdS. The field ¢ was called the a dependence on the coupling constant which differs from
Liouville field in Ref.[2]. the one in Eq(1.2).

Using these ideas, Polchinski and Strassler recently initi- The purpose of the present paper is twofold. The first is to
ated a new attempt to describe the physics of hadrons in theropose a possible scheme for getting a scaling within string
framework of string theory5].' They proposed a scheme for theory which resolves these difficulties. This scheme can be
evaluating the high-energy scattering amplitudes of glueballgonsidered as a refinement [&]. Like old matrix models
in terms of vertex operators and found that the amplitude$2D gravity coupled to conformal matiewhere the scaling
fall as powers of the momentum. This is the desired resulis obtained via a zero mode of the Liouville figldil], here
which was found in the physics of hadrons a long time agawve also get the scaling via a zero mode. As mentioned ear-
[9]. To be more precise, the amplitude for exclusive scattertier, the warped geometry provides a natural candidate for
ing of m+2 glueballs is given by5] the role of the Liouville field. Note that this significantly

simplifies the analysis as a knowledge of the whole depen-
(gNg)(" 24 A -4 dence of the vertex operators on the Liouville field is not
NVC“Am*Z p ’ required. As to the zero mode dependence, it is provided by
the corresponding Laplace equation in spacetime. Thus our
wherep is the large momentum scalgijs the string coupling  derivation of the scaling seems quite universal. Our second
constant, which is the square of the gauge coupligs the  purpose is to apply this scheme to the hadronic form factors
number of colors, and is a scale by the lightest gluebati.  and distribution functions for deep inelastic scattering. There
denotes the total number of constituents in the glueballs. are some special limits where these objects can easily be
analyzed 12,13. So we are bound to learn something if we
succeed.
*Permanent address: Landau Institute, Moscow, Russia. Email ad-
dress: andreev@physik.hu-berlin.de
ISee alsd6,7,8. %See, e.g.[10].
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For s— at fixeds/t, Ty falls with increasings as

2 \n/l2—2

f(s/t,x?,... xP)

A D ~2)_
Tr(X%,...x7,p7) s

X[1+0(e?)], (2.2

FIG. 1. Atypical Born diagram for meson-baryon scattering.
wheren=n,+...+np. Since the probability amplitudes in

It is also worth mentioning that while this paper was be-the Born approximation behave as
ing written Polchinski and Strassler did new wiki] which

has some overlap with what we describe in Secs. Il and III. ®i(X,p2) = ¢i(X), 2.3
The outline of the paper is as follows. We start in Sec. Il )

by recalling some basic facts about the QCD analysis of'® @mplitudeM(AB—CD) takes the form

large-momentum-transfer processes. Here we focus on hard g2 \n2-2

subprocesses for hadronic scattering and form factors. In M(ABHCD)~<4—WS) _ (2.9

Sec. Il we present a scheme for getting the scaling behavior
within string theory. We find complete agreement with the

Born approximation in QCD. Section IV contains our con-
clusions and a list of open problems.

Il. LARGE-MOMENTUM-TRANSFER PROCESSES
IN QCD

At this point a comment is in order. It is well known that
radiative corrections in QCD typically contain logarithms
that violate the scaling. To next ordéne-loop approxima-
tion), they are included by replacing@?/4m— ay(p?),
®;(x,p?)— ¢i(X)(INpl/AScp) ", where Agep is the
QCD parameter ang; is some constant. Note that the am-

In this section we briefly recall some basic facts of QCcDPlitude can then be rewritten as

analysis of large-momentum-transfer exclusive procebses.
We do not consider spin dependent effects in what follows.

A. Fixed-angle hadronic scattering

In QCD analysis of a hadronic processB—CD the

fixed-angle scattering amplitude related to hard subprocess

is given by the amplitudd  for the scattering of hadronic
constituents, integrated over the possible constituent m
menta adding up to the hadron momenta. Explicitly,

XDEXC,p?)Tu(xA,... xP,p?)

X Dg(xB,p?)DA(xA,p?), (2.2)

where x'={xy,...x,}, [dX]=dx; -dx, S(1— 23 %),
pf=tu/s, andn; is the minimal number of constituentga-
lence quarksin the ith hadror® The momentum transfer

between hadronic constituents occurs via the hard scattering

amplitude T, which, to leading order in the coupling con-

stant, is given by the sum of all Born diagrams with hadrons

M(AB—CD)~[ag(p?)]"2 2 2mp "4 (2.5

B. Electromagnetic form factors and structure functions

The electromagnetic form factor of a hadron is given by

%I%e matrix element of the electromagnetic current between

Wo hadronic stategp+q|J?(0)|p). The form factors are

Jnost easily analyzed by using the two invariagfs= — Q?

<0, vg=p-q and then taking the Bjorken limit whei@?

and v both go to infinity with the ratioxg=Q?/2vg fixed

[12]. xg is known as the Bjorken variable. Note that for
elastic scatteringg=1. Using Lorentz covariance and gauge
invariance, the matrix element can be parametrized in terms
of a scalar functior(form facton F(Q?) as

(p+0alJ“(0)|p)=(2p*+a*)F(Q?),

whereJ#(0) = [d*kJ*(K).
To leading order in the coupling constant, the form factor
in QCD takes the form

(2.6

1
F(QY)= fo[dx][dy]cb*<x,Q2>TB<x,y,Q2>¢<y,Q2>,
27

replaced by their constituents. A typical Born diagram looks

like that in Fig. 1. The amplitud®; is the probability am-
plitude for finding constituents with fractions of longitudinal
momentax, in theith hadron.

3See alsd15].

where x={Xy,... Xp}, [dX]=dx; --dx,6(1—=}_,%,), and

n is the number of constituentévalence quarksin the
hadron’ The amplituded is defined in the same way as in
the previous subsection whilg; is now given by the sum of
all Born diagrams for the hadron constituents to scatter with

“For further discussion, background, and experimental data, see,

e.g.,[16,17.

5Note that adding more constituerftmonvalence quarkss unim-
portant to leading order ipf at prDO. Son; every time means
the minimal number.

®Note that in the center of mass frame —ssirX(6/2), u=
—scog(62), andp? = (1/4)ssir? 6. Sop>~s at fixed angle.

"The variabley and the integration measurey] are defined in the
same way.
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The physical meaning oF, is that its xg dependence
probes the longitudinal momentum distribution of the hadron
constituents as viewed in the infinite momentum frame of the
hadron. In particular, it is expressed in terms of the distribu-

tion functionsG; as
FIG. 2. A typical Born diagram for the meson form factor.

n
the photon producing the constituents in the final state. A FZ(XB):XBiZZl N Gi(Xe), (213
typical Born diagram now looks like that in Fig. 2.

At large Q the Born diagrams give where),; is the charge of théth constituent.

2 \n—t The structure functions are not known completely because
e ) tg(X,y) (2.9 they are in general beyond the tools of perturbative theory.

4mQ? B ' However, some asymptotics are available. In particular, the

) ) ) ) distribution functions which become functio®modulo soft

and thus, reasoning as in the previous subsection, thl%garithms) only of xg in the Bjorken limit behave agl3]

asymptotic behavior of the form factor is given by

- Gi(xg)~(1—xg)2" 3 (2.14

(2.9

TB(X!yrQZ):

eZ

47Q?

F(QZ)N( near the thresholag=1. As beforen means the total num-

ber of constituents in the hadron. It is worth mentioning that
A few noteworthy facts are the following. Dimensional this asymptotic behavior can also be determined via a con-

analysis and the assumptions of Sec. | which lead to thgolution equation foiG; [18].

scaling law for the amplitudes can also be applied to the

form factors. This immediately gives the desired scaling law IIl. SCALING LAWS VIA STRING THEORY

(Bjorken scaling F(Q?)~Q 2"*2. One of the most inter- . _ o .

esting applications of QCD was the prediction of slow vio- 1he a@im of this section is to show how the Born approxi-

lations of Bjorken scaling by soft 8%s. To one-loop ap- mat|on for hadronlc amplitudes and' form factors can be eas-

proximation, the logarithms are included in the same way adly obtained in the framework of string theory.

in Sec. IIA: by replacing e?/4m— ay(p?), ®;(x,p?)

— ¢i(x)(In p/A3cp) . Note that the form factor can also A. String theory settings
be rewritten as According to our discussion of Sec. |, the metric asymp-
5 2 142y 2 il totically behaves as AdS Since we are interested in the
F(Q)~[as(pD)] Q9" (210 scaling rather than its violation, it is natural to use this met-

ric. So, as in5] we begin with string theory on the product
Let us conclude the discussion of QCD by briefly review- ] d g y b

. ; . ) of AdS; with a five-dimensional transverse space K. The
ing the hadronic structure functions. These are defined V'@pacetime metric is then
the hadronic tensor

2 2

r R
o|52=E 7,,dXHd XY + r—zdr2+ Rdsz, (3.1

1 .
WH(QP )= 4 [ a2 (p]a4(£)3(0)|p)

(21D whereR is the radius of Ad$and 7 is a four-dimensional

2 Minkowski metric. We assume that K does not provide any
dimensionful parameter exce® Moreover,ds; does not
q“q” depend orR. o . _ . .
WH"(Q?,vg)=| — p*"+ —qr) F1(Q?vg) Before continuing our discussion of string theory settings,

let us pause here to stress an important point. Although we

1 e Ve use some techniques inspired by the AdS/CFT conjecture, we
+—| p*— —Zq“) ( p*— —zq”) do not strictly follow this conjecture. The point is that we are

v 9 q interested in the physical processes where perturbation
X Fo(Q% vp). (2.12  theory is applicable rather than the strong coupling regime.

So we postulate the relation
Note that the function$; and F, are related to others in ) 5
common use by, =F; andW,=(M?/vg)F,, whereM is e” R

the hadronic mass. g= in o (3.2

8Since we do not consider spin effects, we omit the antisymmetric °G;(xg) is defined as the probability of finding tlith constituent
part of W*” which provides two other structure functiogs and in the hadron with fractional longitudinal momentuxg (in the
ds- infinite momentum frame of the hadrpn
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between the closed string coupling constantthe gauge The nonzero modes are quantized in an ordinary way as
coupling constang, and the parameteRR,«’. This relation  follows from their action(3.3). The only novelty is the ap-

is not obviously what is imposed by the AAS/CFT corresponpearance ofx instead ofa’. For example, in the case of
dence. It becomes the latténodulo a numerical factpiby  spherical topology the propagators are given by
replacinge?—e, g— /g. It is worth mentioning that some

examples where the AdS/CFT results look like the QCD ones (XM(z,2)X"(z'Z'))=—an""In[z—2'|,
after the above replacement are already known in the litera-
ture (see, e.g.[19,20). "

(M2 9" (2))= (3.5

In the first-quantized string theory one first introduces a z—7"
free field action on the worldsheet, then defines physical ver-

tex operators. Finally, scattering amplitudes in spacetime are As mentioned earlier, we are interested in the scaling
defined as expectation values of the vertex operators. In gefproperties of hadron interaction involving transfer of large
eral, it is unknown how to implement this program in the momenta where all masses are negligible. Therefore the most
case of a curved background like AdS. However, we thinkappropriate string vertex operators to try are the massless
that the problem of interest does not require knowledge obnes. In general, one computes such vertex operators in the
the full string theory on AdS. It should be a simple stringy supergravity approximatiorizero mode approximationby
analogue of the dimensional counting rules that results in thénding solutions of the corresponding Laplace equation on
scaling laws. Our idea is to relate the scaling to a zero modédSs; < K. A general solution looks like/~f(Q)¢(r)e'P,

of r as is usually done in the context of 2D gravity where thewhere ¢ shows a power-law falloff as—. As mentioned
scaling is due to a zero mode of the Liouville field. Then all earlier, the metric is Adsonly for larger, so it is pointless

we need is the dependence of vertex operators on this zeto use the exact solution far(r) as long as we use the AgS
mode. The latter can be found from the Laplace equation ometric. The only thing we really need is its power-law falloff
AdS; X K. In fact, our scenario means that nonzero modes ofp~r ~". It was suggested ifb] that if one interprets vertex
the transverse fields as well asare not of primary impor- operators as hadronic states, one thinks of nilseas the
tance for the scaling. To leading order, they contribute a nunumbers of hadron constituents. The functfds a solution
merical factor. Alternatively, one can say that fluctuations ofof the Laplace equation on K which is responsible for inter-
the transverse fields as well agsre slow, as was assumed in nal degrees of freedom. Since we do not take them into ac-
[5]. count, we will not pay attention tbeither.

Under this assumption, it is straightforward to write down Now let us extend the analysis to include the nonzero
the part of the worldsheet action for the remaining nonzeranodes. In the approximation we use it can easily be done by
modes that is most appropriate for our purpoSes: using the standard expressions for the vertex operators with

a' replaced bya. Putting all this together, we get
1 2
S= yp f d<z

where &=a'R?r? and they/s have been rescaled a8  \herei means the superghost charge arsl the polarization
—(R/r)¢. We use this form of the action for two reasons: tensor. Note that we extract the zero mode faetBr* from

(2) It allows us to use the known results for string amplitudesthe vertex operator andVi here and below. In general, the

simply by replacinga’ — &; and (2) it represents a model . . . =
theory which has the running tension in the sense of Polyantegrand of Eq(3.6) is more involved becausé andV; are

kov [see Eq(1.1)]. dressed by operators constructed from nonzero modes of

1 _
=KX+ g+ a3

Vi p=TF(Q)r ‘”e‘p‘xf dZZSMVV{L(p,z)Vi”(p,ﬂ, (3.6

To evaluate the correlation functions of vertex operator@nd the trans(\j/erse fields. .
one needs to define the path integral measure. First let us do SNce we do not consider spin dependent effects let us
so for the zero model It is natural to take it in a covariant SPecialize to the dilaton vertex. To fix its normalization, we
form y—gd'%. However, for a reason which will be clear in first make a rescalin— \/aX to bring the integrand into a

a moment we need it to be dimensionless. So we define th@mensionless form. Then we insert a factoi”. Thus, the
vertex takes the form

measure as
a'\" il _
! N 1 Vi p=f(Q)| — e‘p'xfdzz ve(p, 2V (D,2).
“12p6 _gle§= IV 4r3drd4deK, (34) n.p ( )( r ) €y |(p ) |(p_j
a’“R a'“R (37)
whered()y is an invariant measure on K. We usep as a shorthand notation fef&p. It is evident that

such a vertex has the dimensidength]", exactly as needed
for the normalization of tha-particle state.

1ONote that this is a conformal invariant action becausees not Now that we have the vertex operators for hadronic states,
depend ore. we can focus on the next object of interest, the vertex opera-

e only consider the Neveu-Schwarz—Neveu-Schwid&-NS  tor for the electromagnetic current. Since the current is con-
sector, so there are no zero modes of ffe served, it obeys
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q-J(q)=0. (3.9 whereF (0) is a function of the angl® defined in the center
of mass frame. This is the desired result, and it is identical to
A natural realization that satisfies such a condition can easilyhe result of QCD, Eq(2.4).
be found in a picture where a string worldsheet admits A couple of comments are in ordefl) The use of the

boundaries? In this case, we have relation(3.2) is crucial for matching with the QCD resu(®)
It may appear that the scaling is due to the zero modes only.
iq- N That is not exactly true. The nonzero modes contribute to the
JH(q)~e'dX § dzV§(§,2), 3.9 . . ) . ) .
(@ c 6(a.2) @9 function F(6) which contains some important information.

A We will return to this issue in Sec. IV.
where VA=[aX*+(i/2)(§- ¢)y*1€9*, g=\aq. C de-
notes a worldsheet boundary. C. Evaluation of form factors and distribution functions
By analogy with the vertex operators of hadrons, we in-
sert the factof () (a'/r)". Since the current has the dimen-
sionality of [length], we setn=1. Thus, the final form of
J#(q) is given by

By analogy with the amplitudes, we define the form factor
as the expectation value of the product of the vertex opera-
tors given by Eqs(3.7) and (3.10. Explicitly,

1
<p+q|J”(0)|p)=f d4k§<gnvn,p+q\/aJM(k)gnVn,p>'
(3.19

The worldsheet is now a digkipper half plang So we insert
. . _ _the overall factog~* as is usual in the case of the disk. Just
The calculation of the Scatterlng amplltude for a hadronl%s before’ each closed String vertex carries a f@toFrom

procesAB— CD mainly goes along the lines 8] adjusted  thjs, it seems natural to accompany each open string vertex
to our settings. The amplitude is defined as the expectatiopy "2, |f so, thenJ* is accompanied bg/2

a' R
H@-f) Serr § dzvi@a. (310

B. Evaluation of amplitudes

value of the product of the vertex operat¢gs?): To evaluate the right hand side of E.14), it is conve-
1 nient to use the worldsheet doubling triee, e.g.[22] and
8 (pa+--+pp)M(AB—CD)= _2< T g"v, p_>_ references therejnAfter performing the integration over
9" \i=A...D b and setting the vertex operators atz; (z;,2,,23,23)
(3.11) =(iy,—iy,t,i,—i), we find (modulo a numerical factor
Here the string worldsheet is a sphere as is usual at the tree g2 2 e a'\2ntl
level in closed string perturbation theory. Some factors of (p+q|J“(0)|p>=WJ drr3 —) A#“(p,q)
. . " i a’“R 0 r
this expression require further explanatidf) The overall (3.15

factorg~? comes from the sphere as it shoul®) the factors
g" are due to our normalization prescription. It differs from \y;iip
the standard one and will be discussed later.

The integration over nonzero modes does not require o +oo 1o i dil . o
much work at least in the case of spherical topology where ~ A“(P,d)= f_x dtfo dys;,exe(VZ1(ly, —P—0)
the four-point dilaton amplitude4, is well known in the

literature[21]. Aside from an irrelevant numerical factor, the XV (—=iy,—p—q)V5(t,29)
amplitude is then given by N,
o . XVu(i,p)Vg(—i,p)). (3.1
* o
M(AB—CD)= WJ dffB(T) Here we again include the integral oM@j in an irrelevant
0 numerical factor.
X As(a'R%s/r2, o' R2t/r2, o' R2ulr?). To keep things as simple as possible, first we choose the

infinite momentum frame for the hadron

(3.12
L=(P+M?/2P,0,0P), g*=(vg/P,q%q%0).
Here the integral ovef), has not disappeared, but was in- pr=( P a"=(rslP.anq )(3_17)

cluded in the numerical factom.is the sum of they;’s. From
the above expression it is evident that if we resaabesr HereM? is the mass of the hadron. Secondly, we specialize

—a'sRrthen we get to a convenient current componeift or, equivalently,J®.
o Then it follows from Lorentz covariance that®(p,d)
_ 9\"" =aPA(aQ?).
M(AB—CD)= F(e)(g) ’ .13 Using Eq.(2.6), we find the following representation for

the form factor:

12To our knowledge, this is the simplest way of introducing elec-
tromagnetic currents in string theory. BNote thatQ?= —g?=(g) %+ (g?) 2+ O(1/P?).
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9?2 4 . o' \2n+2 2o =1 is that at leading order in -1xg we can takeq=p
F(Q%)= WJ drr?l — A(a'R°Q%/r). —p’. Just as before, it is now easy to evaluate the scaling
0 (3.18 behavior of the amplitude

1
The desired QCD resul2.9) is obtained by rescaling A~ —=rm2 (3.20

2\n—2"

—Ja’Q%Rr and using the relatiofB.2). Q)

At this point, itis necessary to make.a couple of r(:“m"irkSFinally, the desired result is obtained after a simple estima-

(1) Unlike the four-point dilaton amplitudgl, we used to .

: . ; g . tion:

evaluate the hadronic amplitudes in the previous subsection,
the correlator of the five vertex operators in E8.16) is not .
well def!ned in the following §eqse. As an .object of 2D2con— Gi(XB)NJ , dQZAiZN(l_XB)zn_s- (3.21)
formal field theory,[dtV4(t,29) is well defined only ag M?/(1-xg)
=0 while for our purposes we need it at largé. In fact,
this is the long standing problem of string theory: how to At this point, it is worth mentioning that in approaching the
continue correlators of vertex operators defined on sla¢ll threshold one must satisfy the inequal@f(1—xg)>M?2 in
special values of moment#o off shell (for arbitrary values order to stay in the Bjorken limiting region fotg. This
of momenta. So far, there is no solution to this problem. In inequality provides the lower limit of integration.
the problem of interest it means thad® is in general
ambiguous* However, it is clear from the above discussion
that the explicit form of4° is not of principal importance for
our purposes. So our results seem rather universal and inde- There is a large number of open problems associated with
pendent of any special way of going off shell. We will return the circle of ideas explored in this paper. In this section we
to this point in Sec. IV. list a few.

(2) Itis straightforward to evaluate the inelastic form fac- |t would be interesting to understand in more detail how
tors by using the same technique. It is clear that the result hasgring theory reproduces the results of QCD in the Born ap-
the same form as before withreplaced by 6, +n,)/2. Here  proximation. The point is that in QCD the calculation of the
n; means the number of constituents in thie hadron. hadronic scattering amplitudes involves the summation of a

Finally, let us discuss how the asymptoti@14) for the  huge number of Born diagrams like the one presented in Fig.
distribution functions can be obtained in string theory. In1. On the other hand, we saw in Sec. Ill that in string theory
fact, it was realized long agpl3] that this asymptotics is the summation is automatically done and all information is
closely related to the asymptotic behavior of the form factorsencoded in the functiof(6). Thus, this function may be
we have just considered. Thus, it seems natural to reproduensidered as a generating function for Born diagrams. If so,
it too. it would significantly simplify ordinary QCD calculations.

To do so, we first choose a convenient infinite momentunThe problem is how to implement this explicitly. Unfortu-
frame defined by Eq.3.17). Our next task is to evaluate the nately, our approximation is invalid for computing the exact
probability amplitude of finding theéth constituent in the form of F(6). A possible way to deal with the problem is of
hadron with fractional longitudinal momentury. If V, ,  course to involve the nonzero modesraind even the trans-
describes a hadronic state withconstituents, then the best verse fields. The price for this is a long standing problem:
that we can use as an approximation to the hadronic statgtring theory on AdS. Although some information that is
containing theith constituent with a specific momentum is relevant for deep inelastic scattering has already been ex-
Vip'Vno1p-p - What is important to remark is that, unlike tracted from this theorysee, e.g.[7,23]), a complete solu-

p, all other momenta are not lightlike. Thus, the correspondtion is still missing.
ing vertex operators are off shell. The probability amplitude A related problem is understanding more clearly the
is simply stringy calculation of the form factors. Even without turning
on the nonzero modes ofand the transverse fields, it re-
- uires off-shell continuation. In principle, accounting for the
A= (VnpVipVo-1p-p): .19 gonzero modes might help with off-shell continuation. How-
ever, another interesting idea for doing it is to try the original
To compute the distribution function, we have to integrateLiouville mode as it comes from a conformal factor of the
|Ai|? over the momenta of the constituents. In our approxi-worldsheet metri¢24]. In addition, it would be interesting to
mation to the probability amplitude there is no integrationcompute the matrix elemer{p|J“(£)J”(0)|p) directly by
over longitudinal momenta ass is fixed. As to transverse using the vertex operators.
momenta, it seems natural to parametrize them in terngs of It should be stressed that the string theory construction we
[see EQ.(3.17]. The lovely thing about the thresholk are dealing with has an essential difference from the standard
one. Usually each external leg of a Feynman diagram corre-
sponds to a vertex operator in the corresponding string cor-
Because of this, it seems pointless to give an explicit calculatiorrelator representing the amplitude. For example, one has at
of A°. It will suffer from ambiguity like any off-shell continuation. tree level in closed string perturbation theory

IV. MANY OPEN PROBLEMS
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(4.1 AdS/CFT correspondence holds. At present we lack the so-
lution of string theory on AdSX S® or on its nonconformal

where each operator is accompanieddoyit is transparent deformations that could help us. However, let us nonetheless

from the diagrams of Figs. 1 and 2 that in the problem ofsee what information about high-energy scattering can be

interest we assigned a vertex operator to a number of extefound by using our approximation. Assuming ag%hthat at

nal legs also. This is as it should be because hadrons ammall r the geometry given by E¢3.1) is truncated ar

composite objects. As a consequence, our normalization pre=ro, the amplitudeg3.12) then becomes

scription for the vertex operators is different from E4.1). (3apn—2 n4

It is clear that the standard prescription fails if it is blindly M(AB—CD)~ g 1 J“’ drp3-n

applied to recover the QCD results. To see what happens NQ;“ ro/Va'sR

consider our normalization in more detail. We begin with a

modification of Eq.(4.1) via replacinggVy , —g%Vy . ¥ A 1 sir? 6/2 B cos 9/2)

This gives the overall factog" 2, wheren=n;+---+n,,. Arze 2 o e )

However, this is not the whole story. The point is that the 4.3

expectation value of the product of the vertex operators pro-

vides an additional factog™"2. This effect is unknown in  where we also rescaledasr — \/a'sRr. It is at least some-

the case of Minkowski spacetime because it is due to thevhat plausible in the hard scattering limis-{:=) that

warped geometry. Thus, we end up with the desired answer,/\/a'sR<1.® If so, then the leading behavior of the am-

Modulog~?, the effect of the warped geometry is in fact the plitude has the same power-law falloff as [i6].1° It is of

transformation of the closed string coupling constant to th&some interest to evaluate corrections to the scaling. To do so,

open string coupling constagt—+/g. It would be interesting first we note that at small the four-point amplitudeA4,

to see whether the warped geometry also transforms the opgjanhaves as44~e—(1/r2)f(0)_ Next we estimate the correction

string couplinge to \e. If so, then it might help to explain ag

the known effece?N.— /e?N, observed in AdS/CFT calcu-

g AV

ni.py ‘Vnm'pm>'

Vs

lations (see, e.9.[19,20). g34n-2 [ 1 n—4 TSR o e
Another interesting problem involves computing the _Ng"‘_ ﬁ fo drr=""e

guantum corrections. Our discussion here was entirely clas-

sical. At first glance, the QCD results of Sec. Il formally Ne—(a’RZ/rg)sf(H)_ (4.4)

assume a slight modification of the Born approximation at
one-loop level that on the string theory side can be impleUnlike in Sec. I, where the radiative QCD logarithms vio-
mented by just replacing™—g" " 7. But the real situation late the scaling, there is now an exponential correction which
is much more involved. The point is that the coupling con-already violates the scaling at the tree level.
stant is now running. So, if we indeed wish to recover the There is a list of other interesting issues including spin,
QCD results, we need to provide a mechanism which makefiavor, color, soft subprocesses, the evolution of the distribu-
the coupling run. One possible way is to deform the stringiion functions, and many others, which certainly deserve to
background to get the desired running. How to implemenbe addressed.
this and what will happen remain to be seen.
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Here we used the fact that the typical value of the coupling——

constant obtained from deep inelastic scattering experimentst®in the model described if5], r,= A R?, whereA is the scale of
is of order 0.1. The next step would be to see what happense lightest hadron. So it means thiag4< /.

in the strong coupling regime where it is believed that the ®Note that the coupling dependence is different.
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