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Scaling laws in hadronic processes and string theory
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We propose a possible scheme for getting the known QCD scaling laws within string theory. In particular,
we consider amplitudes for exclusive scattering of hadrons at large momentum transfer, hadronic form factors,
and distribution functions.
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I. INTRODUCTION

As is well known, string theory~the dual-resonance
model! was originally invented to describe the physics
hadrons@1#. However, in spite of much effort this idealize
theory of hadrons failed and finally was replaced by QCD

New ideas came in 1997–1999, with Polyakov’s propo
for a string theory whose tension is running, Maldacen
conjecture of the AdS conformal field theory~CFT! corre-
spondence, and the Randall-Sundrum proposal for the h
archy problem@2,3,4#. The key feature of all these is th
warped geometry in spacetime; i.e., the spacetime metr
no longer Minkowskian; rather, the normalization of th
four-dimensional Minkowski metric is a function of othe
coordinates. In the simplest case, for example, the wo
sheet action~its bosonic part! for the theory with a running
tension has the form

S5
1

4p E d2z~]w]̄w1a2~w!]X• ]̄X!, ~1.1!

wherea2(w) is the running string tension. A natural requir
ment is thata(w);ew asw→`. In other words, spacetim
behaves for largew as AdS5. The field w was called the
Liouville field in Ref. @2#.

Using these ideas, Polchinski and Strassler recently in
ated a new attempt to describe the physics of hadrons in
framework of string theory@5#.1 They proposed a scheme fo
evaluating the high-energy scattering amplitudes of glueb
in terms of vertex operators and found that the amplitu
fall as powers of the momentum. This is the desired re
which was found in the physics of hadrons a long time a
@9#. To be more precise, the amplitude for exclusive scat
ing of m12 glueballs is given by@5#

M~2→m!;
~gNc!

~n22!/4

Nc
mLm22 S L

p D n24

, ~1.2!

wherep is the large momentum scale,g is the string coupling
constant, which is the square of the gauge coupling,Nc is the
number of colors, andL is a scale by the lightest glueball.n
denotes the total number of constituents in the glueballs

*Permanent address: Landau Institute, Moscow, Russia. Ema
dress: andreev@physik.hu-berlin.de

1See also@6,7,8#.
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In fact, it was known already in the 1970s that dime
sional analysis and some simple assumptions~dimensional
counting rules! immediately lead to the correct scaling
exclusive hadronic scattering at large momentum transfe2

M~2→m!;p2n14. ~1.3!

Indeed, if the total number of constituents in the hadronsn
and the one-particle stateup& is normalized in such a way a
to have the dimension of@length#, then the amplitude has th
dimension @ length#n24. If, moreover, at large momentum
transfer,p is the only length scale, then it immediately fo
lows the wanted scaling. Modulo soft violations~logarithms!
this scaling is in rather good agreement with experimen
results.

It is now clear that the result~1.2! does not completely
agree with this dimensional analysis of exclusive proces
because it contains two dimensionful parameters. It se
more relevant for inclusive processes where the second
rameter is normally interpreted as the missing mass. In
casen represents a subset of the constituents which par
pate in scattering; the others remain as ‘‘spectators.’’ Mo
over, in Sec. II we will also see that QCD analysis provid
a dependence on the coupling constant which differs fr
the one in Eq.~1.2!.

The purpose of the present paper is twofold. The first is
propose a possible scheme for getting a scaling within st
theory which resolves these difficulties. This scheme can
considered as a refinement of@5#. Like old matrix models
~2D gravity coupled to conformal matter!, where the scaling
is obtained via a zero mode of the Liouville field@11#, here
we also get the scaling via a zero mode. As mentioned
lier, the warped geometry provides a natural candidate
the role of the Liouville field. Note that this significantl
simplifies the analysis as a knowledge of the whole dep
dence of the vertex operators on the Liouville field is n
required. As to the zero mode dependence, it is provided
the corresponding Laplace equation in spacetime. Thus
derivation of the scaling seems quite universal. Our sec
purpose is to apply this scheme to the hadronic form fac
and distribution functions for deep inelastic scattering. Th
are some special limits where these objects can easily
analyzed@12,13#. So we are bound to learn something if w
succeed.
d-

2See, e.g.,@10#.
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It is also worth mentioning that while this paper was b
ing written Polchinski and Strassler did new work@14# which
has some overlap with what we describe in Secs. II and3

The outline of the paper is as follows. We start in Sec
by recalling some basic facts about the QCD analysis
large-momentum-transfer processes. Here we focus on
subprocesses for hadronic scattering and form factors
Sec. III we present a scheme for getting the scaling beha
within string theory. We find complete agreement with t
Born approximation in QCD. Section IV contains our co
clusions and a list of open problems.

II. LARGE-MOMENTUM-TRANSFER PROCESSES
IN QCD

In this section we briefly recall some basic facts of QC
analysis of large-momentum-transfer exclusive process4

We do not consider spin dependent effects in what follow

A. Fixed-angle hadronic scattering

In QCD analysis of a hadronic processAB→CD the
fixed-angle scattering amplitude related to hard subproce
is given by the amplitudeTH for the scattering of hadronic
constituents, integrated over the possible constituent
menta adding up to the hadron momenta. Explicitly,

M~AB→CD!5 )
i 5A,...,D

E
0

1

@dxi #FD* ~xD,p'
2 !

3FC* ~xC,p'
2 !TH~xA,...,xD,p'

2 !

3FB~xB,p'
2 !FA~xA,p'

2 !, ~2.1!

where xi5$x1
i ,...,xni

i %, @dxi #5dx1
i
¯dxni

i d(12(k51
ni xk

i ),

p'
2 5tu/s, andni is the minimal number of constituents~va-

lence quarks! in the i th hadron.5 The momentum transfe
between hadronic constituents occurs via the hard scatte
amplitudeTH which, to leading order in the coupling con
stant, is given by the sum of all Born diagrams with hadro
replaced by their constituents. A typical Born diagram loo
like that in Fig. 1. The amplitudeF i is the probability am-
plitude for finding constituents with fractions of longitudin
momentaxk

i in the i th hadron.

3See also@15#.
4For further discussion, background, and experimental data,

e.g.,@16,17#.
5Note that adding more constituents~nonvalence quarks! is unim-

portant to leading order inp'
2 at p'

2 →`. So ni every time means
the minimal number.

FIG. 1. A typical Born diagram for meson-baryon scattering.
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For s→` at fixeds/t, TH falls with increasings as6

TH~xA,...,xD,p'
2 !5S e2

4psD
n/222

f ~s/t,xA,...,xD!

3@11O~e2!#, ~2.2!

wheren5nA1...1nD . Since the probability amplitudes in
the Born approximation behave as

F i~xi ,p'
2 !5f i~xi !, ~2.3!

the amplitudeM(AB→CD) takes the form

M~AB→CD!;S e2

4psD
n/222

. ~2.4!

At this point a comment is in order. It is well known tha
radiative corrections in QCD typically contain logarithm
that violate the scaling. To next order~one-loop approxima-
tion!, they are included by replacinge2/4p→as(p'

2 ),
F i(x

i ,p'
2 )→f i(x

i)(ln p'
2/LQCD

2 )2g i, where LQCD is the
QCD parameter andg i is some constant. Note that the am
plitude can then be rewritten as

M~AB→CD!;@as~p'
2 !#n/2221S ig ip'

2n14 . ~2.5!

B. Electromagnetic form factors and structure functions

The electromagnetic form factor of a hadron is given
the matrix element of the electromagnetic current betw
two hadronic stateŝp1quJa(0)up&. The form factors are
most easily analyzed by using the two invariantsq252Q2

,0, nB5p•q and then taking the Bjorken limit whereQ2

and nB both go to infinity with the ratioxB5Q2/2nB fixed
@12#. xB is known as the Bjorken variable. Note that fo
elastic scatteringxB51. Using Lorentz covariance and gaug
invariance, the matrix element can be parametrized in te
of a scalar function~form factor! F(Q2) as

^p1quJm~0!up&5~2pm1qm!F~Q2!, ~2.6!

whereJm(0)5*d4kJm(k).
To leading order in the coupling constant, the form fac

in QCD takes the form

F~Q2!5E
0

1

@dx#@dy#F* ~x,Q2!TB~x,y,Q2!F~y,Q2!,

~2.7!

where x5$x1 ,...,xn%, @dx#5dx1¯dxnd(12(k51
n xk), and

n is the number of constituents~valence quarks! in the
hadron.7 The amplitudeF is defined in the same way as i
the previous subsection whileTB is now given by the sum of
all Born diagrams for the hadron constituents to scatter w

e,
6Note that in the center of mass framet52s sin2(u/2), u5

2s cos2(u/2), andp'
2 5(1/4)s sin2 u. So p'

2 ;s at fixed angle.
7The variabley and the integration measure@dy# are defined in the

same way.
1-2
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SCALING LAWS IN HADRONIC PROCESSES AND . . . PHYSICAL REVIEW D67, 046001 ~2003!
the photon producing the constituents in the final state
typical Born diagram now looks like that in Fig. 2.

At large Q2 the Born diagrams give

TB~x,y,Q2!5S e2

4pQ2D n21

tB~x,y! ~2.8!

and thus, reasoning as in the previous subsection,
asymptotic behavior of the form factor is given by

F~Q2!;S e2

4pQ2D n21

. ~2.9!

A few noteworthy facts are the following. Dimension
analysis and the assumptions of Sec. I which lead to
scaling law for the amplitudes can also be applied to
form factors. This immediately gives the desired scaling l
~Bjorken scaling! F(Q2);Q22n12. One of the most inter-
esting applications of QCD was the prediction of slow v
lations of Bjorken scaling by soft lnQ2’s. To one-loop ap-
proximation, the logarithms are included in the same way
in Sec. II A: by replacing e2/4p→as(p'

2 ), F i(x
i ,p'

2 )
→f i(x

i)(ln p'
2/LQCD

2 )2g i. Note that the form factor can als
be rewritten as

F~Q2!;@as~p'
2 !#n2112g~Q2!2n11. ~2.10!

Let us conclude the discussion of QCD by briefly revie
ing the hadronic structure functions. These are defined
the hadronic tensor

Wmn~Q2,nB!5
1

4p E d4jeiq•j^puJm~j!Jn~0!up&

~2.11!

as8

Wmn~Q2,nB!5S 2hmn1
qmqn

q2 DF1~Q2,nB!

1
1

nB
S pm2

nB

q2 qmD S pm2
nB

q2 qnD
3F2~Q2,nB!. ~2.12!

Note that the functionsF1 and F2 are related to others in
common use byW15F1 andW25(M2/nB)F2 , whereM is
the hadronic mass.

8Since we do not consider spin effects, we omit the antisymme
part of Wmn which provides two other structure functionsg1 and
g2 .

FIG. 2. A typical Born diagram for the meson form factor.
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The physical meaning ofF2 is that its xB dependence
probes the longitudinal momentum distribution of the hadr
constituents as viewed in the infinite momentum frame of
hadron. In particular, it is expressed in terms of the distrib
tion functionsGi as9

F2~xB!5xB(
i 51

n

l i
2Gi~xB!, ~2.13!

wherel i is the charge of thei th constituent.
The structure functions are not known completely beca

they are in general beyond the tools of perturbative the
However, some asymptotics are available. In particular,
distribution functions which become functions~modulo soft
logarithms! only of xB in the Bjorken limit behave as@13#

Gi~xB!;~12xB!2n23 ~2.14!

near the thresholdxB51. As before,n means the total num
ber of constituents in the hadron. It is worth mentioning th
this asymptotic behavior can also be determined via a c
volution equation forGi @18#.

III. SCALING LAWS VIA STRING THEORY

The aim of this section is to show how the Born appro
mation for hadronic amplitudes and form factors can be e
ily obtained in the framework of string theory.

A. String theory settings

According to our discussion of Sec. I, the metric asym
totically behaves as AdS5. Since we are interested in th
scaling rather than its violation, it is natural to use this m
ric. So, as in@5# we begin with string theory on the produc
of AdS5 with a five-dimensional transverse space K. T
spacetime metric is then

ds25
r 2

R2 hmndXmdXn1
R2

r 2 dr21R2dsK
2 , ~3.1!

whereR is the radius of AdS5 and h is a four-dimensional
Minkowski metric. We assume that K does not provide a
dimensionful parameter exceptR. Moreover,dsK

2 does not
depend onR.

Before continuing our discussion of string theory settin
let us pause here to stress an important point. Although
use some techniques inspired by the AdS/CFT conjecture
do not strictly follow this conjecture. The point is that we a
interested in the physical processes where perturba
theory is applicable rather than the strong coupling regim
So we postulate the relation

g5
e2

4p
5

R2

a8
~3.2!

ic 9Gi(xB) is defined as the probability of finding thei th constituent
in the hadron with fractional longitudinal momentumxB ~in the
infinite momentum frame of the hadron!.
1-3
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between the closed string coupling constantg, the gauge
coupling constante, and the parametersR,a8. This relation
is not obviously what is imposed by the AdS/CFT corresp
dence. It becomes the latter~modulo a numerical factor! by
replacinge2→e, g→Ag. It is worth mentioning that some
examples where the AdS/CFT results look like the QCD o
after the above replacement are already known in the lit
ture ~see, e.g.,@19,20#!.

In the first-quantized string theory one first introduces
free field action on the worldsheet, then defines physical
tex operators. Finally, scattering amplitudes in spacetime
defined as expectation values of the vertex operators. In
eral, it is unknown how to implement this program in th
case of a curved background like AdS. However, we th
that the problem of interest does not require knowledge
the full string theory on AdS. It should be a simple strin
analogue of the dimensional counting rules that results in
scaling laws. Our idea is to relate the scaling to a zero m
of r as is usually done in the context of 2D gravity where t
scaling is due to a zero mode of the Liouville field. Then
we need is the dependence of vertex operators on this
mode. The latter can be found from the Laplace equation
AdS53K. In fact, our scenario means that nonzero modes
the transverse fields as well asr are not of primary impor-
tance for the scaling. To leading order, they contribute a
merical factor. Alternatively, one can say that fluctuations
the transverse fields as well asr are slow, as was assumed
@5#.

Under this assumption, it is straightforward to write dow
the part of the worldsheet action for the remaining nonz
modes that is most appropriate for our purposes:10

S5
1

4p E d2zS 1

â
]X• ]̄X1c• ]̄c1c̄•]c̄ D , ~3.3!

where â5a8R2/r 2 and thec’s have been rescaled asc
→(R/r )c. We use this form of the action for two reason
~1! It allows us to use the known results for string amplitud
simply by replacinga8→â; and ~2! it represents a mode
theory which has the running tension in the sense of Po
kov @see Eq.~1.1!#.

To evaluate the correlation functions of vertex operat
one needs to define the path integral measure. First let u
so for the zero modes.11 It is natural to take it in a covarian
form A2gd10j. However, for a reason which will be clear i
a moment we need it to be dimensionless. So we define
measure as

1

a82R6 A2gd10j5
1

a82R4 r 3drd4xdVK , ~3.4!

wheredVK is an invariant measure on K.

10Note that this is a conformal invariant action becauser does not
depend onz.

11We only consider the Neveu-Schwarz–Neveu-Schwarz~NS-NS!
sector, so there are no zero modes of thec’s.
04600
-

s
a-

a
r-
re
n-

k
f

e
e

l
ro
n
f

-
f

o

:
s

a-

s
do

he

The nonzero modes are quantized in an ordinary way
follows from their action~3.3!. The only novelty is the ap-
pearance ofâ instead ofa8. For example, in the case o
spherical topology the propagators are given by

^Xm~z,z̄!Xn~z8,z̄8!&52âhmn lnuz2z8u,

^cm~z!cn~z8!&5
hmn

z2z8
. ~3.5!

As mentioned earlier, we are interested in the scal
properties of hadron interaction involving transfer of lar
momenta where all masses are negligible. Therefore the m
appropriate string vertex operators to try are the mass
ones. In general, one computes such vertex operators in
supergravity approximation~zero mode approximation! by
finding solutions of the corresponding Laplace equation
AdS53K. A general solution looks likeV; f (V)w(r )eip•x,
wherew shows a power-law falloff asr→`. As mentioned
earlier, the metric is AdS5 only for larger, so it is pointless
to use the exact solution forw(r ) as long as we use the AdS5
metric. The only thing we really need is its power-law fallo
w;r 2n. It was suggested in@5# that if one interprets vertex
operators as hadronic states, one thinks of then’s as the
numbers of hadron constituents. The functionf is a solution
of the Laplace equation on K which is responsible for int
nal degrees of freedom. Since we do not take them into
count, we will not pay attention tof either.

Now let us extend the analysis to include the nonz
modes. In the approximation we use it can easily be done
using the standard expressions for the vertex operators
a8 replaced byâ. Putting all this together, we get

Vn,p5 f ~V!r 2neip•xE d2z«mnVi
m~p,z!V̄i

n~p,z̄!, ~3.6!

wherei means the superghost charge and« is the polarization
tensor. Note that we extract the zero mode factoreip•x from
the vertex operatorsVi andV̄i here and below. In general, th
integrand of Eq.~3.6! is more involved becauseVi andV̄i are
dressed by operators constructed from nonzero modesr
and the transverse fields.

Since we do not consider spin dependent effects let
specialize to the dilaton vertex. To fix its normalization, w
first make a rescalingX→AâX to bring the integrand into a
dimensionless form. Then we insert a factora8n. Thus, the
vertex takes the form

Vn,p5 f ~V!S a8

r D n

eip•xE d2z«mn
dilVi

m~ p̂,z!V̄i
n~ p̂,z̄!.

~3.7!

We usep̂ as a shorthand notation forAâp. It is evident that
such a vertex has the dimension@ length#n, exactly as needed
for the normalization of then-particle state.

Now that we have the vertex operators for hadronic sta
we can focus on the next object of interest, the vertex ope
tor for the electromagnetic current. Since the current is c
served, it obeys
1-4
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q•J~q!50. ~3.8!

A natural realization that satisfies such a condition can ea
be found in a picture where a string worldsheet adm
boundaries.12 In this case, we have

Jm~q!;eiq•x R
C
dzV0

m~ q̂,z!, ~3.9!

where V0
m5@]Xm1( i /2)(q̂•c)cm#eiq̂•X, q̂5Aâq. C de-

notes a worldsheet boundary.
By analogy with the vertex operators of hadrons, we

sert the factorf (V)(a8/r )n. Since the current has the dime
sionality of @length#, we setn51. Thus, the final form of
Jm(q) is given by

Jm~q!5 f ~V!
a8

r
eip•x R

C
dzV0

m~ q̂,z!. ~3.10!

B. Evaluation of amplitudes

The calculation of the scattering amplitude for a hadro
processAB→CD mainly goes along the lines of@5# adjusted
to our settings. The amplitude is defined as the expecta
value of the product of the vertex operators~3.7!:

d~4!~pA1¯1pD!M~AB→CD!5
1

g2 K )
i 5A,...,D

gniVni ,piL .

~3.11!

Here the string worldsheet is a sphere as is usual at the
level in closed string perturbation theory. Some factors
this expression require further explanation:~1! The overall
factorg22 comes from the sphere as it should;~2! the factors
gni are due to our normalization prescription. It differs fro
the standard one and will be discussed later.

The integration over nonzero modes does not req
much work at least in the case of spherical topology wh
the four-point dilaton amplitudeA4 is well known in the
literature@21#. Aside from an irrelevant numerical factor, th
amplitude is then given by

M~AB→CD!5
gn22

a82R4 E
0

`

drr 3S a8

r D n

3A4~a8R2s/r 2,a8R2t/r 2,a8R2u/r 2!.

~3.12!

Here the integral overVK has not disappeared, but was i
cluded in the numerical factor.n is the sum of theni ’s. From
the above expression it is evident that if we rescaler as r
→Aa8sRr then we get

M~AB→CD!5F~u!S g

sD n/222

, ~3.13!

12To our knowledge, this is the simplest way of introducing ele
tromagnetic currents in string theory.
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whereF(u) is a function of the angleu defined in the center
of mass frame. This is the desired result, and it is identica
the result of QCD, Eq.~2.4!.

A couple of comments are in order:~1! The use of the
relation~3.2! is crucial for matching with the QCD result.~2!
It may appear that the scaling is due to the zero modes o
That is not exactly true. The nonzero modes contribute to
function F(u) which contains some important information
We will return to this issue in Sec. IV.

C. Evaluation of form factors and distribution functions

By analogy with the amplitudes, we define the form fac
as the expectation value of the product of the vertex ope
tors given by Eqs.~3.7! and ~3.10!. Explicitly,

^p1quJm~0!up&5E d4k
1

g
^gnVn,p1qAgJm~k!gnVn,p&.

~3.14!

The worldsheet is now a disk~upper half plane!. So we insert
the overall factorg21 as is usual in the case of the disk. Ju
as before, each closed string vertex carries a factorgn. From
this, it seems natural to accompany each open string ve
by gn/2. If so, thenJm is accompanied byg1/2.

To evaluate the right hand side of Eq.~3.14!, it is conve-
nient to use the worldsheet doubling trick~see, e.g.,@22# and
references therein!. After performing the integration overx
and setting the vertex operators at (z1 ,z̄1 ,z2 ,z3 ,z̄3)
5( iy ,2 iy ,t,i ,2 i ), we find ~modulo a numerical factor!

^p1quJm~0!up&5
g2n21/2

a82R4 E
0

1`

drr 3S a8

r D 2n11

Am~ p̂,q̂!

~3.15!

with

Am~ p̂,q̂!5E
2`

1`

dtE
0

1

dy«hn
dil«ls

dil ^V21
h ~ iy ,2 p̂2q̂!

3V21
n ~2 iy ,2 p̂2q̂!V0

m~ t,2q̂!

3V0
l~ i ,p̂!V0

s~2 i ,p̂!&. ~3.16!

Here we again include the integral overVK in an irrelevant
numerical factor.

To keep things as simple as possible, first we choose
infinite momentum frame for the hadron13

pm5~P1M2/2P,0,0,P!, qm5~nB /P,q1,q2,0!.
~3.17!

HereM2 is the mass of the hadron. Secondly, we specia
to a convenient current componentJ0 or, equivalently,J3.
Then it follows from Lorentz covariance thatA0( p̂,q̂)
5AâPA(âQ2).

Using Eq.~2.6!, we find the following representation fo
the form factor:

-
13Note thatQ252q25(q1)21(q2)21O(1/P2).
1-5
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F~Q2!5
g2n21/2

a85/2R3 E
0

1`

drr 3S a8

r D 2n12

A~a8R2Q2/r 2!.

~3.18!

The desired QCD result~2.9! is obtained by rescalingr
→Aa8Q2Rr and using the relation~3.2!.

At this point, it is necessary to make a couple of remar
~1! Unlike the four-point dilaton amplitudeA4 we used to

evaluate the hadronic amplitudes in the previous subsec
the correlator of the five vertex operators in Eq.~3.16! is not
well defined in the following sense. As an object of 2D co
formal field theory,*dtV0

m(t,2q̂) is well defined only atq2

50 while for our purposes we need it at largeq2. In fact,
this is the long standing problem of string theory: how
continue correlators of vertex operators defined on shell~at
special values of momenta! to off shell ~for arbitrary values
of momenta!. So far, there is no solution to this problem.
the problem of interest it means thatA0 is in general
ambiguous.14 However, it is clear from the above discussio
that the explicit form ofA0 is not of principal importance for
our purposes. So our results seem rather universal and i
pendent of any special way of going off shell. We will retu
to this point in Sec. IV.

~2! It is straightforward to evaluate the inelastic form fa
tors by using the same technique. It is clear that the result
the same form as before withn replaced by (n11n2)/2. Here
ni means the number of constituents in thei th hadron.

Finally, let us discuss how the asymptotics~2.14! for the
distribution functions can be obtained in string theory.
fact, it was realized long ago@13# that this asymptotics is
closely related to the asymptotic behavior of the form fact
we have just considered. Thus, it seems natural to reprod
it too.

To do so, we first choose a convenient infinite moment
frame defined by Eq.~3.17!. Our next task is to evaluate th
probability amplitude of finding thei th constituent in the
hadron with fractional longitudinal momentumxB . If Vn,p
describes a hadronic state withn constituents, then the bes
that we can use as an approximation to the hadronic s
containing thei th constituent with a specific momentum
V1,p8Vn21,p2p8 . What is important to remark is that, unlik
p, all other momenta are not lightlike. Thus, the correspo
ing vertex operators are off shell. The probability amplitu
is simply

Ai;^Vn,pV1,p8Vn21,p2p8&. ~3.19!

To compute the distribution function, we have to integra
uAi u2 over the momenta of the constituents. In our appro
mation to the probability amplitude there is no integrati
over longitudinal momenta asxB is fixed. As to transverse
momenta, it seems natural to parametrize them in termsq
@see Eq.~3.17!#. The lovely thing about the thresholdxB

14Because of this, it seems pointless to give an explicit calcula
of A0. It will suffer from ambiguity like any off-shell continuation
04600
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51 is that at leading order in 12xB we can takeq5p
2p8. Just as before, it is now easy to evaluate the sca
behavior of the amplitude

Ai;
1

~Q2!n22 . ~3.20!

Finally, the desired result is obtained after a simple estim
tion:

Gi~xB!;E
M2/~12xB!

1`

dQ2Ai
2;~12xB!2n23. ~3.21!

At this point, it is worth mentioning that in approaching th
threshold one must satisfy the inequalityQ2(12xB).M2 in
order to stay in the Bjorken limiting region forxB . This
inequality provides the lower limit of integration.

IV. MANY OPEN PROBLEMS

There is a large number of open problems associated
the circle of ideas explored in this paper. In this section
list a few.

It would be interesting to understand in more detail ho
string theory reproduces the results of QCD in the Born
proximation. The point is that in QCD the calculation of th
hadronic scattering amplitudes involves the summation o
huge number of Born diagrams like the one presented in
1. On the other hand, we saw in Sec. III that in string theo
the summation is automatically done and all information
encoded in the functionF(u). Thus, this function may be
considered as a generating function for Born diagrams. If
it would significantly simplify ordinary QCD calculations
The problem is how to implement this explicitly. Unfortu
nately, our approximation is invalid for computing the exa
form of F(u). A possible way to deal with the problem is o
course to involve the nonzero modes ofr and even the trans
verse fields. The price for this is a long standing proble
string theory on AdS5. Although some information that is
relevant for deep inelastic scattering has already been
tracted from this theory~see, e.g.,@7,23#!, a complete solu-
tion is still missing.

A related problem is understanding more clearly t
stringy calculation of the form factors. Even without turnin
on the nonzero modes ofr and the transverse fields, it re
quires off-shell continuation. In principle, accounting for th
nonzero modes might help with off-shell continuation. Ho
ever, another interesting idea for doing it is to try the origin
Liouville mode as it comes from a conformal factor of th
worldsheet metric@24#. In addition, it would be interesting to
compute the matrix element^puJm(j)Jn(0)up& directly by
using the vertex operators.

It should be stressed that the string theory construction
are dealing with has an essential difference from the stand
one. Usually each external leg of a Feynman diagram co
sponds to a vertex operator in the corresponding string
relator representing the amplitude. For example, one ha
tree level in closed string perturbation theory

n

1-6
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gm22^Vn1 ,p1
¯Vnm ,pm

&, ~4.1!

where each operator is accompanied byg. It is transparent
from the diagrams of Figs. 1 and 2 that in the problem
interest we assigned a vertex operator to a number of ex
nal legs also. This is as it should be because hadrons
composite objects. As a consequence, our normalization
scription for the vertex operators is different from Eq.~4.1!.
It is clear that the standard prescription fails if it is blind
applied to recover the QCD results. To see what happ
consider our normalization in more detail. We begin with
modification of Eq.~4.1! via replacinggVni ,pi

→ggiVni ,pi
.

This gives the overall factorgn22, wheren5n11¯1nm .
However, this is not the whole story. The point is that t
expectation value of the product of the vertex operators p
vides an additional factorg2n/2. This effect is unknown in
the case of Minkowski spacetime because it is due to
warped geometry. Thus, we end up with the desired ans
Modulo g22, the effect of the warped geometry is in fact th
transformation of the closed string coupling constant to
open string coupling constantg→Ag. It would be interesting
to see whether the warped geometry also transforms the
string couplinge to Ae. If so, then it might help to explain
the known effecte2Nc→Ae2Nc observed in AdS/CFT calcu
lations ~see, e.g.,@19,20#!.

Another interesting problem involves computing t
quantum corrections. Our discussion here was entirely c
sical. At first glance, the QCD results of Sec. II formal
assume a slight modification of the Born approximation
one-loop level that on the string theory side can be imp
mented by just replacinggni→gni1g i. But the real situation
is much more involved. The point is that the coupling co
stant is now running. So, if we indeed wish to recover
QCD results, we need to provide a mechanism which ma
the coupling run. One possible way is to deform the str
background to get the desired running. How to implem
this and what will happen remain to be seen.

As we mentioned, we do not strictly follow the prescri
tions of the AdS/CFT correspondence. So we have postul
the relation ~3.2!. Our motivation is that, first of all, we
would like to describe the known results of QCD to s
whether the ideas work or not. Note also that one can exp
this relation to make a simple estimation of the size of
internal compact space K in terms ofa8:

R250.1a8. ~4.2!

Here we used the fact that the typical value of the coupl
constant obtained from deep inelastic scattering experim
is of order 0.1. The next step would be to see what happ
in the strong coupling regime where it is believed that
d-
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th
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AdS/CFT correspondence holds. At present we lack the
lution of string theory on AdS53S5 or on its nonconformal
deformations that could help us. However, let us nonethe
see what information about high-energy scattering can
found by using our approximation. Assuming as in@5# that at
small r the geometry given by Eq.~3.1! is truncated atr
5r 0 , the amplitude~3.12! then becomes

M~AB→CD!;
g~3/4!n22

Nc
n/4 S 1

As
D n24E

r 0 /Aa8sR

`

drr 32n

3A4S 1

r 2 ,2
sin2 u/2

r 2 ,2
cos2 u/2

r 2 D ,

~4.3!

where we also rescaledr asr→Aa8sRr. It is at least some-
what plausible in the hard scattering limit (s→`) that
r 0 /Aa8sR!1.15 If so, then the leading behavior of the am
plitude has the same power-law falloff as in@5#.16 It is of
some interest to evaluate corrections to the scaling. To do
first we note that at smallr the four-point amplitudeA4

behaves asA4;e2(1/r 2) f (u). Next we estimate the correctio
as

g~3/4!n22

Nc
n/4 S 1

As
D n24E

0

r 0 /Aa8sR
drr 32ne2~1/r 2! f ~u!

;e2~a8R2/r 0
2
!s f~u!. ~4.4!

Unlike in Sec. II, where the radiative QCD logarithms vi
late the scaling, there is now an exponential correction wh
already violates the scaling at the tree level.

There is a list of other interesting issues including sp
flavor, color, soft subprocesses, the evolution of the distri
tion functions, and many others, which certainly deserve
be addressed.
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