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Canonical quantization of noncommutative field theory
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A simple method to canonically quantize noncommutative field theories is proposed. As a result, the el-
ementary excitations of a (2+1)-dimensional scalar field theory are shown to be bilocal objects living in an
(n+1)-dimensional space-time. Feynman rules for their scattering are derived canonically. They agree, upon
suitable redefinitions, with the rules obtained via star-product methods. The IR-UV connection is interpreted
within this framework.
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[. INTRODUCTION AND SUMMARY rameters proportional to the momentum a NC particle would
have had in the “lost”(conjugate directions. This picture
Noncommutative field theorigd] are interesting, nonlo- puts on firmer ground a general belféfl,12] that NC theo-
cal but most probably consistent, extensions of the usudies are about dipoles, not particles. Moreover, it shows that
ones. They also arise as a particular low energy limit ofthe dipoles live in a lower dimensional space. The Feynman
string theory[2,3]. The fields are defined over a base spacdules we obtain for them show, however, that this dimen-
which is noncommutativgl], often obeying relations of the sion'al redugtion is limited to tree level 'dynamics: loop inte-
type[x, .X,]=i6,,. At the classical level, new physical fea- grations pemg t.aken_ also over the pllpole p_arameters, the
tures appear in these theories. For instance, one encountd@* 1)'d'me”5'°r!a"t>’ Of. the theory is effgctlvely restored
solitonic excitations in higher dimensiofd], superluminal 23 far as renormalization is concerned. Third, we are able to

propagatiorf5], or waves propagating on discrete spdéds g:\/[%]alilnor;e lpr?ﬁls?nltntrerp?[irert_]a}i;)r}t?f th"ef ”?3}]\/ lmlxan%thir:\]n
At the quantum level, one has two superimposed structures; - - amely, the interaction vertices' lor cipoles have

the coordinate space, whei, %,]%0, and the dynamical general a finite area, and a poligonal boundary. As far as this
1 I,L ’ 14 1

. e . . . area is kept finite, loop amplitudes are effectively regulated
fields’ (fiber) space, where canonically conjugate varlablesoy noncommutativity. However, if the area shrinks to zero

do not commutef ¢(t,x), 7 (t,x)]#0. (in planar diagrams, or nonplanar ones with zero external
This two-level structure hampered the canonical quantizamomentun), the NC phase is of no effect, and UV infinities
tion of noncommutativgNC) field theories. Consequently, are present. They metamorphose into IR divergences if the
their perturbative quantum dynamics has been studied vieause of the vertex shrinking is an external momentum going
star-product techniqud4], i.e., by replacing operator prod- to zero.
ucts with the Groenewold-Moyal one. This leads to de-
formed theories, living on a commutative space of Weyl Il. BILOCAL OBJECTS
symbols. Perturbation theory is then defined in the usual . . . ,
way. Loop calculations performed in this setup pointed to an_ L€t us consider a (2 1)-dimensional scalar field
intriguing mixing between short distance and long distance? (t.%,¥) defined over a commutative timteand a pair of
physics, called the IR-UV connectidi,8,9]. NC coordinates satisfying
The purpose of this paper is to develop simple operatorial [%,9]=i6 1)
techniques for the direct quantization of noncommutative ' )
fields. In addition to naturalness, they present various advanrhe extension ta NC pairs is straightforward. Commutative

tages with respect to Moyaphase spac¢l0]) methods. gpatial directions are dropped, for simplicity. The action is
First, they allow a simpler derivation of the Feynman rules.

Second, canonical methods offer a clear picture of the de- 1 ., 5 T
grees of freedom of the theory, a picture not yet rigorously S= Ej dtTr [ @ (94P)"— (dyP)"— M D= 2V(D)].
established in NC spaces, in spite of many interesting works )
[11,17. We are able to prove that the fundamental excita-
tions of a (4 +1)-dimensional scalar theory with commut- X andy act on a harmonic oscillator Hilbert spaggin the
ing time arebilocal objects living in alower, (n+1)-, di-  usual way.H may be given a discrete badigs)} formed by
mensional space-time. We call them rods, or dipolesgigenstates gt>+ 92, or a continuous onfx)}, composed of
although no charge of any kind enters their description. Theigenstates of, say, We will discuss explicitely quartic po-
information on the remaining spatial directions is encoded tentials, V(®)=g/4!®*. Cubic potentials are actually sim-
into the length and orientation of the dipoles, througha-  pler, but maybe less relevant physically.
To quantize®, start with a usual classical commuting
field, expanded into normal modes with coefficieatand
*On leave from Institute of Atomic Physics, P.O. Box MG-6, a*. Upon usual field quantizatiora and a* become the
76900 Bucharest, Romania. Email address: acatrine@physics.uocgperatorsi anda™ acting on a standard Fock spage To

0556-2821/2003/64)/0450204)/$20.00 67 045020-1 ©2003 The American Physical Society



CIPRIAN ACATRINEI PHYSICAL REVIEW D 67, 045020 (2003

make the underlying space noncommutative, we introduce [ll. CORRELATORS

Eq. (1) and apply the Wey! quantization proced{it&] to the Let us now calculate two-point correlation functions for

i i (kyx+kyy) P
exponentiale .. The result is such rods. The expectation value of the product of two bilo-
dk.dk cal fields, taken on the Fock spagevacuum|0), is
(b:f f =y E ei(wkt—kxi—kygl)
272wy, Y (O[(X4| P|x3) (x| P|x1)[0)
+3lxk e (ot mkdky (©)) :f dk ikl (Xg+X4)/2— (X +X7)/2]
Y 8772wk
which means the following® is a “doubly”-quantum field X S(X4— X3 — Yo+ X0), &)

operator, acting on a direct product of two Hilbert spaces,

&: FoH— F®H. The NC field theory satisfying Eql) has  \ynerek
two superimposed operatorial structures: the NC coordinat
space and the quantum field space. Physicdllgreategde-
stroy9, via élxk (akxky)’ an excitation represented by a

y=(X"=x)/6, and W= Ok obeys Eq.(6) again.
g\gain, there is no integral alonky, . More precisely, if one
compares Eq(7) to the (1+1)-dimensional commutative
‘ . correlator of two fields{0|¢(X,) #(X1)|0), with X;= (X1
“plane wave” e'(“x! =}~k The bilocal nature of such a +x,)/2 andX,= (xs+x4)/2, the only differences are the ad-
wave will be demonstrated now. ditional (x’ —x)%/ 62 term in Eq.(6), and the delta function

. We could work withd® as an operator. ready to act on both S([X4—X3]—[X,—X;]), which ensures that the length of the
Hilbert spacesF and. Itis, however, simpler to “saturate” rod (the momentum along) is conserved. Thus, our bilocal
it on M, working with expectation value&'|®|x), which  gpjects propagate in a (11)-dimensional space. The exya
can still act onF. [x) is an eigenstate ok, X|x)=x|x),  direction is accounted for by their length, which contributes
§|x)=—i6a/9x|x). This means keeping only one coordinate to the energy, and orientation. We will also call these rods
out of a pair of NC spatial directioni$or n pairs, commuta-  dipoles, although they have no charges at their éatieast
tivity is gained on the reduced space at the expense of strigbr real scalar fields and they are extended objects in the

locality). A key equation is now absence of any background. One may speculate on possible
k. a2 relations of these rods with stretched open strings, or with
(x| et i) = XTIy 02 5(x ! — x—k, 6) the double index representation for Yang-Mills theories.

— alky[(x+x")/2] Iy
e X =x ky¢9). “) IV. INTERACTIONS

This is a bilocal expression, and we already see that its span The quartic interaction term in E¢2) can be written as
along thex axis, (x' —x), is proportional to the momentum

along the conjugatg direction, i.e., &' —x)= 0k, . Using g
Egs.(3) and (4), one sees that g f dtTrV(P) =47 dtfx . C<x|<I>|a)<a|<D|b)(b|<I)|c)
X{c|D|x). 8
<X’|q)|X>:J dky Ep el{ort—k (x+x")/2]} < | | > (8)
zwvzwkx'ky o We will have a look at some terms in the Dyson series gen-

erated by Eq(8) to illustrate the canonical derivation of the

Feynman rules. LetAB: denote normal ordering oAB.
Once the vacuum correlat¢y) is known, the derivation of
wherek, = (x"—x)/6. Thus,® annihilates a rod of momen- the diagrammatic rules follows the standard procedure;
tum k, and lengthok, , and creates a rod of momently  hence we will not present it in detail. To find the basic “ver-

and length— 6k,. Due to Eq.(1), one degree of freedom tex” for four-dipole scattering we evaluate
apparently disappears from E®). Its presence shows up in

+alx'7kye—i{wkt+kx[(x+x')/2]}], (5)

the now (1+1)-dimensional space only through the modi- _
fied dispersion relation —ka, —ky|: | dt b c(x|<I>|a><a|<I>|b)(b|<I>|c)
2 (x'—x)? 2 .
Dk, k= (x' =)/ 0] = Ky + T+m- (6) X(c|®|x):|kq,ky ), 9

Of course, this form is seen in the €11)-dimensional space |k;,k,) is a Fock space state, meaning two quanta are
in which the rods propagate. From the+2)-dimensional present, with moment&; andk,. The momente; ;1,34

NC point of view, one recovers a standard Klein-Gordon-likehave each two components:= (k; ,l;). k; is the momentum
dispersion relation through the substitutikp=(x"—x)/ 6. along x, wheread; represents the dipole extension alang
Equation(6) is not a modified dispersion relation in the sense(corresponding to the momentum aloy)g Using Eq.(5) and

of [14], but a consequence of bilocalignd dimensional re- integrating ovelrx, y, z, andu, one obtains the conservation
duction. laws k;+k,+ks+k,=0 andl+1,+I13+1,=0. The final
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result differs from the four-point scattering vertex of (2 (b)
+1) commutative particles with momenka= (k;,l;) only k et A—0
through the phase

—_— lloop

l_:zmt -
lloop
e - A e — A=0
—ks nonplanar legt — 0

(©) (@

e 1925 (Kil,—~1ik;). (10
1<)

Interpretingl; as theith momentum along, this is precisely

the star-product modification of the usual Feynman rules. %,

Our approach makes clear that the phds® appears due to

the bilocal nature of generix’|®|x)’s. Pointlike(x|®|x)’s

would never produce it. FIG. 1. Area vs finiteness.
By contracting adjacentnonadjacentterms in Eq.(9),

one obtains the plan@&nonplanar one-loop correction to the

e B e oo T iy eche 12 and 1 bases. it cotespends t ero eteral
pS. Again, g : length and momentum in the dipole picture, which means

sult is that one has to integrate over both the momentum an{iat the resulting divergence is half IR(=0) and half UV

length of the dipole circulating in a loop. This - o
1727 [ dkioopf dljo0p integration, together with the dispersion g?r;eorzt.um \éV:nystE%CGaggsofeJiSte?fS l;SbuoaJtzaer:OIs X;ngl
relation(6), brings back into play—as far as divergences are - sap, =, P

concerned—they direction. It is easy to extend the above gence. For di_poles the inergence comes from having zero
reasoning to (B+1)-dimensions: unconstrained dipoles vertex aread in any basis, and is half IR and half Uv. NC

will propagate in a -+ 1)-dimensional commutative space- field theory(NCFT) is somehow between usual field theory

time; their Feynman rules are obtained as outlined aboveand string theory: when the interaction vertex is a point, UV

Once the dipole lengths are interpreted as momenta in th'g”f;{]g'eess ;Zpﬁri;;wmn it opens up, as in string theory, am-
conjugate directions, our rules are identical to those obtainel '
long ago via star-product calculus. The calculational aspects

hase(10). This is zero, i.e., ineffective, wheA=0 in both

have been extensively explor¢d,7,8,9 in the last years. VI. REMARKS
Our physical interpretation is, however, different, and in this ) ] o
light we will discuss the IR-UV connection. We saw that by droppingh coordinates, intuition is

gained: the remaining space admits a notion of distance, al-

though bilocalland in some sense IR-UV dualbjects probe

it. Other bases of{ can also be used. For instance, the basis
We have derived directly from the field theory the dipolar{|n)}, formed by eigenvectors ¢f~x*+y?, leads to a dis-

character of the NC scalar field excitations. We saw that, irfrete remnant spa¢é]. Although the phase operator conju-

the {|x)} basis, the momentum in the conjugate directiongated tof is not easy to define, the multilocal character of

becomes the length of the dipole. Thus a connection betwedfie excitations is preserved.

V. IR-UV

ultraviolet (large momentumand infrared physicéarge dis- One could put the scalar fields on a torus by imposing
tance$ becomes evident. This puts on a more rigorous basigeriodic boundary conditions. In this cageiscret¢ high
the argument of8] concerning the IR-UV connection. momenta along/ would correspond to dipoles which wind

Moreover, we can provide a geometrical view of the dif- around the circle spanned by This relationship between
ferences between planar and nonplanar loop diagrams, angnding and momentum states is reminescent of T duality,
the role of low momenta in nonplanar graphs. Let us go tcand suggests that the canonical description may be employed
(4+1) directions,t, X, ¥, 2, 0, and assuméx,§]=[2,w] in describing Morita equivalence.
=i 6. Consider g|x,z)} basis. Then we can speak of acom- AN important question is: how do the dimensionality and
mutative space spanned by the axeandz, on which di- noncommutativity of space-time depend on the regime in
poles with momentump=(py,p,) and lengthl=(l,,l,) which we prlobe the theory? To start, we hqve a N(h.(2
= 0(py1pw) evolve. Consider the Scattering of four such di- + 1)-d|menS|0naI theory. Then, at the tree Ie(Aeé., classi-
poles, Their “meeting place” is a poligon with four edges cal plus tree level interference effectone hasD=n+1
and areaA [Fig. 1(@)]. One has two possibilities for the commuting directions. However, loop effects drive us back
one-loop correction to the propagator: planar and nonplanaio D=2n+1. At a scaler~ /6, space is surely NC. Far
In the planar case, adjacent dipole fields are contracted. Ma> /@ it is believed to be commutative. However,riiis the
mentum and length conservation enforce then the poligon teadius in the largest available commutative subspace, the
degenerate into a one-dimensional, zero-area oljjeict. ~ IR-UV connection suggests a connecti@uality? between
1(b)]. UV divergences persist. In the nonplanar case, due tther> /6 andr < /6 regimes. A clarification of these issues
the nonadjacent contraction the ardadoes not go to zero is desirable.

[cf., Fig. Ac)] unless the external dipole length vanishes In conclusion, we found a simple way to quantize scalar
[Fig. 1(d)]. A+ 0 appears thus to be related to the disappearNCFT through canonical methods. This provides a quantita-
ance of UV divergences. Actually, the true regulator is thetive description for the kinematics and dynamics of such
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theories—including limits in the dimensional reduction oneas a path integral approach, are presently under study.
may hope for, and a simple reinterpretation of the IR-UV

connection. Although the Feynman rules derived in this way
were previously known and used, we believe we provided a
simple and clear picture for the degrees of freedom of the | benefited from a pleasant working environment within

theory. This alternative point of view may find interesting the HEP Theory Group of the University of Crete. This work

applications, e.g., along the lines sketched in the above revas supported through the European Community Marie Cu-
marks. An extension of the method to gauge theories, as wetle Fund, under Contract HPMF-CT-2000-1060.

ACKNOWLEDGMENTS

[1] M. R. Douglas and N. A. Nekrasov, Rev. Mod. Phy8, 977 J. Michelson, Phys. Rev. B2, 066003(2000; J. Gomis, K.
(2002; R. J. Szabo, hep-th/0109162; J. A. Harvey, Landsteiner, and E. Lopeiid. 62, 105006(2000; L. Grig-
hep-th/0102076. These reviews include comprehensive lists of  uolo and M. Pietroni, J. High Energy Phya5, 032(2001); Y.

references. _ Kinar, G. Lifschytz, and J. Sonnenscheinid. 08, 001(2002);
[2] A. Connes, M. R. Douglas, and A. Schwarz, J. High Energy M. Van Raamsdonkibid. 11, 006 (2002; F. Ruiz Ruiz, Nucl.

Phys.02, 003(1998; M. R. Douglas and C. Hulipid. 02, 008 Phys.B637, 143(2002.

(1998. [10] C. Zachos, Int. J. Mod. Phys. 17, 297 (2002, and references
[3] N. Seiberg and E. Witten, J. High Energy Phy9, 032 therein.

(1999.

[11] D. Bigatti and L. Susskind, Phys. Rev. &2, 066004(2000);
M. M. Sheikh-Jabbari, Phys. Lett. 855 129(1999.

[12] C. S. Chu and P. M. Ho, Nucl. PhyB550, 151(1999; Z. Yin,
Phys. Lett. B466, 234 (1999; S. Iso, H. Kawai, and Y. Ki-
tazawa, Nucl. PhyB576, 375(2000; L. Alvarez-Gaume and
J. L. F. Barbon, Int. J. Mod. Phys. 26, 1123(2002); L. Jiang

[4] R. Gopakumar, S. Minwalla, and A. Strominger, J. High En-
ergy Phys05, 020(2000.

[5] K. Hashimoto and N. ltzhaki, Phys. Rev.62, 046007(2002);
Z. Guralnik, R. Jackiw, S. Y. Pi, and A. P. Polychronakos,
Phys. Lett. B517, 450 (200)); R. G. Cai, ibid. 517, 457

2002.

(6] (C A(]:)atrinei hep-th/0106006 and E. Nicholson, Phys. Rev. 66, 105020(2002.

[7] S. Minwalla, M. Van Raamsdonk, and N. Seiberg, J. High[13] H- Weyl, The Theory of Groups and Quantum Mecharils-
Energy Phys02, 020 (2000. ver, New York, 1950

[8] A. Matusis, L. Susskind, and N. Toumbas, J. High Energy[14] S. Coleman and S. Glashow, Phys. Re\6%) 116008(1999;
Phys.12, 002 (2000. G. Amelino-Camelia and T. Piraibid. 64, 036005(200); J.

[9] M. Van Raamsdonk and N. Seiberg, J. High Energy PAgs. Alfaro, H. A. Morales-Teotl, and L. F. Urrutia,ibid. 65,
035(2000; I. Ya. Aref'eva, D. M. Belov, and A. S. Koshelev, 103509 (2002, and references therein; see also J. M. Car-
Phys. Lett. B476, 431(2000; M. Hayakawa, hep-th/9912167; mona, J. L. Cortes, J. Gamboa, and F. Mendez,
Y. Kiem and S. Lee, Nucl. Phy&586, 303(2000; H. Liu and hep-th/0207158.

045020-4



