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Canonical quantization of noncommutative field theory
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A simple method to canonically quantize noncommutative field theories is proposed. As a result, the el-
ementary excitations of a (2n11)-dimensional scalar field theory are shown to be bilocal objects living in an
(n11)-dimensional space-time. Feynman rules for their scattering are derived canonically. They agree, upon
suitable redefinitions, with the rules obtained via star-product methods. The IR-UV connection is interpreted
within this framework.
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I. INTRODUCTION AND SUMMARY

Noncommutative field theories@1# are interesting, nonlo-
cal but most probably consistent, extensions of the us
ones. They also arise as a particular low energy limit
string theory@2,3#. The fields are defined over a base spa
which is noncommutative@1#, often obeying relations of the
type@xm ,xn#5 iumn . At the classical level, new physical fea
tures appear in these theories. For instance, one encou
solitonic excitations in higher dimensions@4#, superluminal
propagation@5#, or waves propagating on discrete spaces@6#.
At the quantum level, one has two superimposed structu
the coordinate space, where@ x̂m ,x̂n#Þ0, and the dynamica
fields’ ~fiber! space, where canonically conjugate variab

do not commute,@f̂(t,x),p̂(t,x)#Þ0.
This two-level structure hampered the canonical quant

tion of noncommutative~NC! field theories. Consequently
their perturbative quantum dynamics has been studied
star-product techniques@1#, i.e., by replacing operator prod
ucts with the Groenewold-Moyal one. This leads to d
formed theories, living on a commutative space of We
symbols. Perturbation theory is then defined in the us
way. Loop calculations performed in this setup pointed to
intriguing mixing between short distance and long distan
physics, called the IR-UV connection@7,8,9#.

The purpose of this paper is to develop simple operato
techniques for the direct quantization of noncommutat
fields. In addition to naturalness, they present various adv
tages with respect to Moyal~phase space@10#! methods.
First, they allow a simpler derivation of the Feynman rul
Second, canonical methods offer a clear picture of the
grees of freedom of the theory, a picture not yet rigorou
established in NC spaces, in spite of many interesting wo
@11,12#. We are able to prove that the fundamental exc
tions of a (2n11)-dimensional scalar theory with commu
ing time arebilocal objects living in alower, (n11)-, di-
mensional space-time. We call them rods, or dipol
although no charge of any kind enters their description. T
information on the remainingn spatial directions is encode
into the length and orientation of the dipoles, throughn pa-
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rameters proportional to the momentum a NC particle wo
have had in the ‘‘lost’’~conjugate! directions. This picture
puts on firmer ground a general belief@11,12# that NC theo-
ries are about dipoles, not particles. Moreover, it shows t
the dipoles live in a lower dimensional space. The Feynm
rules we obtain for them show, however, that this dime
sional reduction is limited to tree level dynamics: loop int
grations being taken also over the dipole parameters,
(2n11)-dimensionality of the theory is effectively restore
as far as renormalization is concerned. Third, we are abl
give a more precise interpretation of the IR-UV mixing th
in @8#. Namely, the interaction ‘‘vertices’’ for dipoles have i
general a finite area, and a poligonal boundary. As far as
area is kept finite, loop amplitudes are effectively regula
by noncommutativity. However, if the area shrinks to ze
~in planar diagrams, or nonplanar ones with zero exter
momentum!, the NC phase is of no effect, and UV infinitie
are present. They metamorphose into IR divergences if
cause of the vertex shrinking is an external momentum go
to zero.

II. BILOCAL OBJECTS

Let us consider a (211)-dimensional scalar field
F(t,x̂,ŷ) defined over a commutative timet and a pair of
NC coordinates satisfying

@ x̂,ŷ#5 iu. ~1!

The extension ton NC pairs is straightforward. Commutativ
spatial directions are dropped, for simplicity. The action i

S5
1

2 E dt TrH@Ḟ22~]xF!22~]yF!22m2F222V~F!#.

~2!

x̂ and ŷ act on a harmonic oscillator Hilbert spaceH in the
usual way.H may be given a discrete basis$un&% formed by
eigenstates ofx̂21 ŷ2, or a continuous one$ux&%, composed of
eigenstates of, say,x̂. We will discuss explicitely quartic po-
tentials,V(F)5g/4!F4. Cubic potentials are actually sim
pler, but maybe less relevant physically.

To quantizeF, start with a usual classical commutin
field, expanded into normal modes with coefficientsa and
a* . Upon usual field quantization,a and a* become the
operatorsâ and â1 acting on a standard Fock spaceF. To.gr
©2003 The American Physical Society20-1
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make the underlying space noncommutative, we introd
Eq. ~1! and apply the Weyl quantization procedure@13# to the
exponentialsei (kxx1kyy). The result is

F5E E dkxdky

2pA2vk

@ âkxky
ei ~vkt2kxx̂2kyŷ!

1âkxky

† e2 i ~vkt2kxx̂2kyŷ!#, ~3!

which means the following:F is a ‘‘doubly’’-quantum field
operator, acting on a direct product of two Hilbert spac
F:F^ H→F^ H. The NC field theory satisfying Eq.~1! has
two superimposed operatorial structures: the NC coordin
space and the quantum field space. Physically,F creates~de-
stroys!, via âkxky

† (âkxky
), an excitation represented by

‘‘plane wave’’ ei (vkt2kxx̂2kyŷ). The bilocal nature of such a
wave will be demonstrated now.

We could work withF as an operator ready to act on bo
Hilbert spacesF andH. It is, however, simpler to ‘‘saturate’
it on H, working with expectation valueŝx8uFux&, which
can still act onF. ux& is an eigenstate ofx̂, x̂ux&5xux&,
ŷux&52 iu]/]xux&. This means keeping only one coordina
out of a pair of NC spatial directions~for n pairs, commuta-
tivity is gained on the reduced space at the expense of s
locality!. A key equation is now

^x8uei ~kxx̂1kyŷ!ux&5eikx~x1kyu/2!d~x82x2kyu!

5eikx@~x1x8!/2#d~x82x2kyu!. ~4!

This is a bilocal expression, and we already see that its s
along thex axis, (x82x), is proportional to the momentum
along the conjugatey direction, i.e., (x82x)5uky . Using
Eqs.~3! and ~4!, one sees that

^x8uFux&5E dkx

2pA2vkx ,ky

@ âkx ,ky
ei $vkt2kx@~x1x8!/2#%

1âkx ,2ky

† e2 i $vkt1kx@~x1x8!/2#%#, ~5!

whereky5(x82x)/u. Thus,F annihilates a rod of momen
tum kx and lengthuky , and creates a rod of momentumkx
and length2uky . Due to Eq.~1!, one degree of freedom
apparently disappears from Eq.~5!. Its presence shows up i
the now (111)-dimensional space only through the mod
fied dispersion relation

v@kx ,ky5~x82x!/u#5Akx
21

~x82x!2

u2 1m2. ~6!

Of course, this form is seen in the (111)-dimensional space
in which the rods propagate. From the (211)-dimensional
NC point of view, one recovers a standard Klein-Gordon-l
dispersion relation through the substitutionky5(x82x)/u.
Equation~6! is not a modified dispersion relation in the sen
of @14#, but a consequence of bilocalityand dimensional re-
duction.
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III. CORRELATORS

Let us now calculate two-point correlation functions f
such rods. The expectation value of the product of two b
cal fields, taken on the Fock spaceF vacuumu0&, is

^0u^x4uFux3&^x2uFux1&u0&

5E dkx

8p2vk
eikx@~x31x4!/22~x11x2!/2#

3d~x42x32x21x1!, ~7!

whereky5(x82x)/u, andvk5vkx ,ky
obeys Eq.~6! again.

Again, there is no integral alongky . More precisely, if one
compares Eq.~7! to the (111)-dimensional commutative
correlator of two fields,̂ 0uf(X2)f(X1)u0&, with X15(x1
1x2)/2 andX25(x31x4)/2, the only differences are the ad
ditional (x82x)2/u2 term in Eq.~6!, and the delta function
d(@x42x3#2@x22x1#), which ensures that the length of th
rod ~the momentum alongy! is conserved. Thus, our biloca
objects propagate in a (111)-dimensional space. The extray
direction is accounted for by their length, which contribut
to the energy, and orientation. We will also call these ro
dipoles, although they have no charges at their ends~at least
for real scalar fields!, and they are extended objects in th
absence of any background. One may speculate on pos
relations of these rods with stretched open strings, or w
the double index representation for Yang-Mills theories.

IV. INTERACTIONS

The quartic interaction term in Eq.~2! can be written as

E dt TrHV~F!5
g

4! E dtE
x,a,b,c

^xuFua&^auFub&^buFuc&

3^cuFux&. ~8!

We will have a look at some terms in the Dyson series g
erated by Eq.~8! to illustrate the canonical derivation of th
Feynman rules. Let:ÂB̂: denote normal ordering ofÂB̂.
Once the vacuum correlator~7! is known, the derivation of
the diagrammatic rules follows the standard procedu
hence we will not present it in detail. To find the basic ‘‘ve
tex’’ for four-dipole scattering we evaluate

K 2k3 ,2k4u:E dtE
x,a,b,c

^xuFua&^auFub&^buFuc&

3^cuFux&:uk1 ,k2L , ~9!

uk1 ,k2& is a Fock space state, meaning two quanta
present, with momentak1 and k2 . The momentak i ,i 51,2,3,4
have each two components:k i5(ki ,l i). ki is the momentum
along x, whereasl i represents the dipole extension alongx
~corresponding to the momentum alongy!. Using Eq.~5! and
integrating overx, y, z, andu, one obtains the conservatio
laws k11k21k31k450 and l 11 l 21 l 31 l 450. The final
0-2



2

le

in
re
a
s
n
ar
e
s

e-
v
t

ne
ec

hi

lar
, i
on
e

s

if-
a
t

-

i-
s

e
na
M
n

e

es
a

th

nal
s

al
r-
ero

ry
V
m-

, al-

sis

-
of

ing

d

lity,
yed

nd
in

2

ck

the

s

lar
ita-
ch

CANONICAL QUANTIZATION OF NONCOMMUTATIV E . . . PHYSICAL REVIEW D 67, 045020 ~2003!
result differs from the four-point scattering vertex of (
11) commutative particles with momentak i5(ki ,l i) only
through the phase

e2 iu/2(
i , j

~ki l j2 l ikj !. ~10!

Interpretingl i as thei th momentum alongy, this is precisely
the star-product modification of the usual Feynman ru
Our approach makes clear that the phase~10! appears due to
the bilocal nature of generiĉx8uFux& ’s. Pointlike^xuFux& ’s
would never produce it.

By contracting adjacent~nonadjacent! terms in Eq.~9!,
one obtains the planar~nonplanar! one-loop correction to the
free rod propagator, together with the recipe for calculat
loops. Again, the derivation is straightforward. The main
sult is that one has to integrate over both the momentum
length of the dipole circulating in a loop. Thi
1/2p*dkloop*dl loop integration, together with the dispersio
relation~6!, brings back into play—as far as divergences
concerned—they direction. It is easy to extend the abov
reasoning to (2n11)-dimensions: unconstrained dipole
will propagate in a (n11)-dimensional commutative spac
time; their Feynman rules are obtained as outlined abo
Once the dipole lengths are interpreted as momenta in
conjugate directions, our rules are identical to those obtai
long ago via star-product calculus. The calculational asp
have been extensively explored@1,7,8,9# in the last years.
Our physical interpretation is, however, different, and in t
light we will discuss the IR-UV connection.

V. IR-UV

We have derived directly from the field theory the dipo
character of the NC scalar field excitations. We saw that
the $ux&% basis, the momentum in the conjugate directi
becomes the length of the dipole. Thus a connection betw
ultraviolet~large momentum! and infrared physics~large dis-
tances! becomes evident. This puts on a more rigorous ba
the argument of@8# concerning the IR-UV connection.

Moreover, we can provide a geometrical view of the d
ferences between planar and nonplanar loop diagrams,
the role of low momenta in nonplanar graphs. Let us go
(411) directions,t, x̂, ŷ, ẑ, û, and assume@ x̂,ŷ#5@ ẑ,ŵ#
5 iu. Consider a$ux,z&% basis. Then we can speak of a com
mutative space spanned by the axesx and z, on which di-
poles with momentump5(px ,pz) and length l5( l x ,l z)
5u(py ,pw) evolve. Consider the scattering of four such d
poles, Their ‘‘meeting place’’ is a poligon with four edge
and areaA @Fig. 1~a!#. One has two possibilities for th
one-loop correction to the propagator: planar and nonpla
In the planar case, adjacent dipole fields are contracted.
mentum and length conservation enforce then the poligo
degenerate into a one-dimensional, zero-area object@Fig.
1~b!#. UV divergences persist. In the nonplanar case, du
the nonadjacent contraction the areaA does not go to zero
@cf., Fig. 1~c!# unless the external dipole length vanish
@Fig. 1~d!#. AÞ0 appears thus to be related to the disappe
ance of UV divergences. Actually, the true regulator is
04502
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phase~10!. This is zero, i.e., ineffective, whenA50 in both
the ux,z& and uy,u& bases. That corresponds to zero exter
length and momentum in the dipole picture, which mean
that the resulting divergence is half IR (pext50) and half UV
( lext50). In Weyl space this is just the usual zero extern
momentum, saypm

ext50, and one speaks about an IR dive
gence. For dipoles the divergence comes from having z
vertex areaA in any basis, and is half IR and half UV. NC
field theory~NCFT! is somehow between usual field theo
and string theory: when the interaction vertex is a point, U
infinities appear; when it opens up, as in string theory, a
plitudes are finite.

VI. REMARKS

We saw that by droppingn coordinates, intuition is
gained: the remaining space admits a notion of distance
though bilocal~and in some sense IR-UV dual! objects probe
it. Other bases ofH can also be used. For instance, the ba
$un&%, formed by eigenvectors ofn̂;x21y2, leads to a dis-
crete remnant space@6#. Although the phase operator conju
gated ton̂ is not easy to define, the multilocal character
the excitations is preserved.

One could put the scalar fields on a torus by impos
periodic boundary conditions. In this case~discrete! high
momenta alongy would correspond to dipoles which win
around the circle spanned byx. This relationship between
winding and momentum states is reminescent of T dua
and suggests that the canonical description may be emplo
in describing Morita equivalence.

An important question is: how do the dimensionality a
noncommutativity of space-time depend on the regime
which we probe the theory? To start, we have a NC (n
11)-dimensional theory. Then, at the tree level~i.e., classi-
cal plus tree level interference effects!, one hasD5n11
commuting directions. However, loop effects drive us ba
to D52n11. At a scaler;Au, space is surely NC. Forr
@Au it is believed to be commutative. However, ifr is the
radius in the largest available commutative subspace,
IR-UV connection suggests a connection~duality?! between
the r @Au andr !Au regimes. A clarification of these issue
is desirable.

In conclusion, we found a simple way to quantize sca
NCFT through canonical methods. This provides a quant
tive description for the kinematics and dynamics of su

FIG. 1. Area vs finiteness.
0-3
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theories—including limits in the dimensional reduction o
may hope for, and a simple reinterpretation of the IR-U
connection. Although the Feynman rules derived in this w
were previously known and used, we believe we provide
simple and clear picture for the degrees of freedom of
theory. This alternative point of view may find interestin
applications, e.g., along the lines sketched in the above
marks. An extension of the method to gauge theories, as
y,
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as a path integral approach, are presently under study.
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