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Field localization in warped gauge theories
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We present four-dimensional gauge theories that describe physics on five-dimensional (svaeel
backgrounds, which includes bulk fields with various sgivectors, spinors, and scalarfield theory on the
AdS; geometry is examined as a simple example of our formulation. Various properties of bulk fields on this
background, e.g., the mass spectrum and field localization behavior, can be achieved within a fully four-
dimensional framework. Moreover, that gives a localization mechanism for massless vector fields. We also
consider supersymmetric cases, and show in particular that the conditions on bulk masses imposed by super-
symmetry on warped backgrounds are derived from a four-dimensional supersymmetric theory on the flat
background. As a phenomenological application, models are shown to generate hierarchical Yukawa couplings.
Finally, we discuss possible underlying mechanisms which dynamically realize the required couplings to
generate curved geometries.
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I. INTRODUCTION scalar(Higgs) condensation, which induces dynamicaliec-
troweak symmetry breaking on the brane where the KK
The standard model is greatly successful but it still haggauge bosons localifé]. In addition, models on more com-
many free parameters which must be small to describe naglicated backgrounds where a warp factor oscillates generate
ture. While its supersymmetric extensions, e.g., the minimabulk fields which localize at some points in extra dimensions
supersymmetric standard model, are attractive scenariof7,8]. This type of localization might be useful in explaining
small couplings are also required to explain observed factthe observed phenomena.
such as the fermion mass hierarchy and mixing angles. However extra dimensional theories are generally non-
In recent years, extra dimensions have cast a new perspe@normalizable and the calculations depend on the regular-
tive on physics beyond the standard model. One of the imization scheme that one adopts. Furthermore, extra dimen-
portant aspects of extra dimensional models is that bullsional theories are constrained by symmetries of higher
fields can be localized with finite-width wave-function pro- dimensions. For example, in the supersymmetric case, bulk
files. This fact provides us with a geometrical explanation fortheories are constrained by=1 supersymmetry in five di-
small numbers. That is, with a configuration where somemensions. Motivated by these facts, recently a four-
fields are separated from each other in the extra dimensiondimensional(4D) description of extra dimensional models
space, the couplings among them are generally suppressedas proposed9,10]. With this method, the phenomena of
Then how and where fields are localized is an issue to baigher dimensional models are reproduced in terms of 4D
considered. From this viewpoint, extra dimensional modelgheories, and several interesting models have been proposed
with a curved background are interesting because fieldalong this line[11,17.
could be localized depending on the shape of the background In this paper, we present 4D gauge theories that describe
geometry. One of the most famous examples of curved geshysics on 5D curved geometries. As will be discussed be-
ometries is the Randall-SundrufRS) model with the Ad§  low, taking generic values of gauge couplings and gauge-
warped metric[1]. Field theories of vectors, spinors, and symmetry-breaking vacuum expectation val(¢gVs), the
scalars have been studied on this backgrol@d4]. The models provide vector, spinor, and scalar fields on curved
localization behavior of zero-mode wave functions has interextra dimension$.As a good and simple illustration, we
esting applications to phenomenology such as the suppresempare our 4D model with the RS one. We particularly
sion of unwanted operators. For example, hierarchical form$cus on the “localization” behaviors of mass eigenstates in
of Yukawa couplings and proton decay were studiefBi5). “index spaces” of gauge groups. It will be shown that the
The localization of Kaluza-Klein(KK) excited modes localization profiles and the exponentially suppressed mas-
also leads to interesting phenomena. For instance, the locadive spectrum are certainly reproduced. In addition, our for-
ization of higher KK gauge bosons could realize a compositenulation gives a localization mechanism even for massless
vector fields. As a phenomenological application, hierarchi-
cal Yukawa matrices are derived in our approach; that is, a
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TEmail address: kobayash@gauge.scphys.kyoto-u.ac.jp
*Email address: maru@hep-th.phys.s.u-tokyo.ac.jp
$Email address: yoshioka@tuhep.phys.tohoku.ac.jp 1in the same spirit, curved backgrounds were studiefd.8).

0556-2821/2003/64)/04501914)/$20.00 67 045019-1 ©2003 The American Physical Society



ABE et al. PHYSICAL REVIEW D 67, 045019 (2003

Al A2 A3 Al-2 ANt AN where the N—1)XN matrix D V*¢is defined as
O O O-- O O O
Q! Q? QN-2 QN-1 U1 -1 1
vec_ . .
FIG. 1. Moose diagram for bulk vector fields in the orbifold
extra dimension. UN-1 -1 1
The localization behavior depends on the required condi- 91
tions for gauge-symmetry-breaking VEVs and gauge and X ) 3

other couplings. If these values are determined in the under-
lying theories, it may be said that the physics on warped
backgrounds is dynamically generated within a four-
dimensional framework. We consider several possibilities 9,
realize the conditions by utilizing, for example, strongly
coupled gauge theories. Thus this could provide a purely 4

IN

The consequence of these mass terms is that we have a
assless gauge boson corresponding to the unbroken gauge
ymmetry, which is given by the following linear combina-

dynamical approach for small numbers. on:

We will proceed with the argument as follows. In Sec. Il, N
we describe our 4D gauge theories, which have gerfean- A0 = 2 (%) Al %)
universa) values of gauge-symmetry-breaking VEVs and N A T

couplings. The models provide vector, spinor, and scalar
fields in warped extra dimensions. It is also shown that su\z/vheregeﬂazgzEi'ilgf2 andggiag is the gauge coupling of the
persymmetry multiplets in flat 4D models generate superiow-energy gauge theory SO)giag- The profile of’AELO) is
symmetry multiplets on warped backgrounds. In Sec. lll, Wengependent of the values of . It is found from this that the
then numerically determine with a finite number of gaugemassiess vector field is “localized” at the points with smaller
groups tha_t the formule_ltlon given m_Sec. Il certainly repro-gauge couplings. If the gauge couplings take a universal
duces various properties of bulk f|9|ds on.the. RS baCk'valueVgizg, the massless mod&® has a constant “wave
ground. In addition, a phenomenological application to quar L W

. . . . . L function” along the “index space” of gauge groups. As seen
mass matrices is also given. Finally, we discuss possibilitie

of dynamically realizing the conditions required for curved%elow’ this direction labeled by becomes the fifth spatial

geometries in Sec. IV. We conclude the discussion in Sec. \gmensmn in the continuum limitN— ). The localization

The Appendix is devoted to a brief review of 5D bulk fields ehavior can easny. be understood from thg fact that, for
on a RS background. smaller gauge coupling; , the symmetry-breaking scatgv

of SU(n); becomes lower, and hence the corresponding vec-
Il 4D FORMULATION FOR CURVED GEOMETRIES tor field A'M becomes the more dominant component in the
low-energy degree of freedof(”.

It is interesting to note that this vector localization mecha-
Following Refs.[9,10], we introduce SU{); gauge theo- nism ensures charge universality. Suppose that there is a field

A. Vectors

ries with gauge couplingg;(i=1, ... N), and scalar fields in a nontrivial representation of SWj; only. That is, it
Qi [i=1,...,(N—1)] which are in bifundamental represen- couples only toA'M with strengthg; . This corresponds to a
tations of SUQ); X SU(n);. 1. The system is schematized by four-dimensional field confined on a brane. If there are sev-
the segment diagram in Fig. 1. eral such fields, they generally have different values of gauge
The gauge invariant kinetic term of the scal@ssis writ- couplings. However, note that these fields couple to the
ten by massless mode&(?) with a universalgauge couplinggiag
N—1 defined above. This is because, in the presented mechanism,
= D 0)(D*0)). 1 the vector fle_lds are localized depending on the values of the
i=21 (D, Q) (D*Q) @) gauge couplings.

) S As for massless eigenstates, the mass eigenvalues and
where the covariant derivative is given Wy,Q;=4d,Q;  wave functions are obtained by diagonalizing the mass ma-
—igiA,Qi+ig;1Q;A, . We assume that the scalar fields trix (3). The simplest case is the universal couplings
Q; develop VEVs proportional to the unit matrixQ;)

=v;, which break the gauge symmetry to a diagonal Yv,=v, Vgi=g. (5)
SU(n) giag- From the kinetic terng1), the mass terms for the
vector fieldsA'# are obtained: In this case, one obtains the mass eigenvalud3 6f as
1S i+1 NF . (nm
Lom=5 ;1 lvi(gi+ 1A, —aiA,)| my=2g sinf 55| (n=0,... N—1). (6)
1 N—-1 N
=23 S D, veal |2 2) In the limit N—o with L=2N/gv fixed (the limit to con-
2= = e tinuum 5D theory, the eigenvalues become
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2nmT 2. Abelian case with nonuniversal gauge couplings

M= ™ Now let us compare the 4D model with generic couplings
(8) to extra dimensional ones. We define the dimensionless
These are the same spectrum as that of the bulk gauge bosparameters; andh; as

in the St/Z, extra dimension with radiuk/2.

With generic values of VEVs; and gauge couplings; , gi=gfi, vi=vh;. (12
the situation is rather complicated. In this case, the mass. _ ,
term (2) of the vector fields becomes First we restrict ourselves to the case that the gauge group is

U(1), namely, Abelian theory witmo vector self-couplings
Similarly substituting Eqg.(12) and taking the continuum

1 ' . 1 o
Lgmzz Z Uizgigi+1(A',L+l_Alu)2_ 5 Z [vizgi+l(gi+2 limit, Eq. (2) becomes
1 (L2
—20i+1+9)+ (02 1= v i+ 1(Gi4 2~ Gi1)] Lgm=§f dy [h(y)a,[f(Y)A VI (13
0
XAi+12+£2 _ ANZ_EZ
(AL )7 SUNON(ON+1~ ON) (AL) "~ 50191(92 Equation(13) induces the kinetic energy term along the extra
) dimension and mass terms for the vector field on the warped
—g1)(A)% (8)  background metric:

The first term becomes the kinetic energy transverse to the ds*=GyndxMdxN=[f(y)h(y)]%»,,dx“dx"—dy?.

four dimensions in the continuum limit. On the other hand, (14)

the second and third terms are bulk and brane mass terms

respectively. It should be noted that these mass terms vanisthe bulk and boundary mass terms grgependent and pro-

in the case of universal gauge coupling, which correspondBortional to the derivatives of(y). This is also seen from

to a flat massless vector field in 5D theory as discussed® 4D modelthe second and third terms in E@)].

above. In other words, nonuniversal gauge couplings gener- "€ above is a generic correspondence between our 4D

ate bulk/brane mass terms and cause a localization of tHgaS€ and continuum 5D theory. As an example, consider the
wave function. following forms of the parameters:

—a-ik a7k
1. VEVs and couplings generatingdSs background f(y)=e %, h(y)=e™ ", (19
First we consider the series of VEVs and couplingsy;  wherek is a positive constant with mass dimension 1. Equa-
that generates a vector field on the RS warped backgroungion (13) leads to
namely, the Ad$ background. This model can be obtained
by choosing a universaj; and by varyingv; as 1wz
| | Lom=5 JO dye 2E M (,A,) 7= {2+ KAL)

RS: gi=g, vi=ve K@) (9)
1
_ = —2(¢+ 7)ky, 21L/2
Substituting this and taking the continuum limit, E8) be- 2[§ke Ao (16)
comes
The first term on the right hand side is the kinetic term of the
1 (L2 k ) gauge boson along the extra dimension with the warped
Lgm:EJo dy [e"¥ayA,(xy)]% (10 packground
ds?=e 2 kyy  dxtdx’—dy?. 17

wherey represents the coordinate of the extra dimension:

y—i/go(i=1,... N)andA, (x)=A,(xy), etc. Itisfound  The second and third terms correspond to the bulk and
that Eq.(10) successfully induces the kinetic energy termpoyundary masses announced before. As easily seen, the
along the extra dimension and mass terms for the vector fielgpoye equation includes the expression for vector fields on
on the warped background metric: the RS background. In the 5D RS model, the Lagrangian for

vector fields is written agsee the Appendjx
M N -2k 2
ds?’=GyndxMdx"=e 2y dx*dx’—dy?,  (11)

vec_ 1 v 1 -2k 2
where 7, =diag(1-1,—1,—1) with ©=0,1,2,3. We here Lrs=- ZF#VFM + 7€ Y(0yAL)%, (18)
conclude that we can obtain the vector field on a RS warped

background by varying only the VEMs . In the following  where theA;=0 gauge fixing condition is chosen. By com-
we will see that nonuniversal gauge couplingsinduce paring Eq.(16) with Eq. (18), we find that the case with
other interesting results beyond the effects from the back-

ground metric. {+n=1 (19
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realizes vector fields on the RS background. Also, a special 1 (L2

limit, (£,%)=(0,1), produces the flat zero-mode solution. ﬁﬁcrf—zf dyf=2(y)V—GGMNG*BF sFns

That corresponds to the form of the paramet@sin the 0 23)
previous special argument. The other solutions which satisfy

{+ =1 correspond to nonflat wave functions of the zero-

mode vector field on the RS background. It is clearly underon the warped-background metri¢4), provided thatgsp
stood in our formulation that such nonflat wave functions are= /2 g. This is the generic correspondence between the
caused by introducing bulk and/or boundary mass terms iRresent 4D model and continuum 5D theory. From €8),

the RS model. For example, in the case &fif) =(1,0), the e thus find they-dependent factof ~?(y) in front of the
vector field has bulk and boundary mass terms, and is locatanonical Yang-Mills term, which corresponds to a 5D dila-
ized with a peak at thg=L/2 point. It should be noticed that ton VEV. The factor does carry the origin of the massless
with these bare mass terms the zero mode is still masslesgector localization shown in Eq(4).> With the constant
This is understood from our formulation where the gaugegauge couplingg;=g (f;=1), one obtains a bulk vector
symmetry SU() giag iS left unbroken in the low-energy effec- field with a constant zero mode on the warped mettit). A

tive theory. field redefinitionf ~1(y)Ay— Ay in Eq. (23) gives the pre-
_ _ _ _ vious bulk and boundary mass terms but one then has
3. Non-Abelian case with nonuniversal gauge couplings y-dependent vector self-couplings in non-Abelian cases.

In the above Abelian case we discussed interpretation of
Fhe nonuniversaf; asy—d.epend.ent bulk or boundary masses B. Spinors
in the warped extra dimension. Next we treat the non- . i } ) .
Abelian theory with vector self-couplings. Since in this case e next consider spinor fields by arranging fermions of
we also have-dependent vector self-couplings in addition to fundamental or antifundamental representation in each gauge
the y-dependent bulk or boundary masses, it may be conveheory SUQ);. We introduce two Weylone Dirag spinors
nient and instructive to sefe as ay-dependent coefficient of 0 construct a 5D bulk fermion. The orbifold compactifica-

the vector kinetic term. To this end, we define the four-tion in continuum theory requires that one spinor obeys the
dimensional fieldAk | Neumann boundary condition and the other the Dirichlet

one. In the present 4D model, this can be achieved by having
asymmetrical numbers of fundamental and antifundamental
spinors, resulting in chiral fermions in the low-energy gauge
theory. Here we consider the fundamental Weyl spinors
7;(i=1, ... N) inthe SUf); theory and the antifundamen-
tal ¢j(j=1,... N—1). As seen belowy corresponds to the

wherea=L/(2N) is the lattice spacing, which goes to zero |k fermion with the Neumann boundary condition ahtb
in_the continuum limit. Rescaling the gauge fieldshat with the Dirichlet one.

. i i+1
Qi = vie—la(giA5+gi+1A5 )2

=vi(1—ia(giAs+0i1As D2+ 0(a?),  (20)

\/lei(NAl ] As)— (A, As), the kinetic term The generic gauge-invariant mass and the mixing terms of
—z2i-,F,,F'"" and Eq.(1) becomes 7 and y; are written as
N—-1
N -2 N—1 2
f: S : .

L£90=— 7 (:1L'—/2F'WF"”1L > aL—/'2 J,A5 Lim=— Zl (aihiQimiv1— Bviim) +He., (24

= = =

AIF1_pl
Y

£ _ig[Al ,A‘5+1/2]+iéA‘;l/z(Ai;l—AL) where a; and B; are dimensionless coupling constants. We
assume tha®Q; develop VEVs(Q;)=v;. The mass matrix

2 for spinors is then given by

, (21

+0(a"?)
U1 —B1 o
where g=g/N and AL"Y?=(AL+AL"1)/2. In the con- D sP= :

tinuum limit N—oo with L andg fixed, Eq.(21) results in UN-1 —Bn-1 an-1
(29

1wz f3(y)
‘CEI(I‘I?: - _f dy {nﬂynPUFpper . . .

4Jo L/2 The spinor mass eigenvalues and eigenvediees/e func-
tions) are read from this matrix. One easily sees that the
_ 2 v

2lh T 1" 7*F usF vs1 (22) massless mode is containedsnand given by the following
linear combination:

Wh?re Fun(X,Y) = dnAn(X,Y) = InAM(X,Y) —
—ig[Au(X,Y),An(X,y)]. This completely reproduces the
5D Yang-Mills kinetic term with ay-dependent coefficient 2For a continuum 5D analysis, sE&4].
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1 N /-1 B That is, thec;’s take a universal value. Now the localization
70 = E (H —J) 7 behavior of the spinors is easily understood. In the present
NIt 2i=1\j=1 ¢ 4D model, the spinor mass matr{25) becomes with Eq.
> |11 8j1ay) (27)
i=1|j=1
(26)
Therefore the localization profile of zero mode depends on spi o
the ratio of dimensionless couplingg and B;. A simple D ™=
case isa;=B; for all i. In this case®) corresponds to a UN-1
chiral zero mode obtained from a 5D bulk fermion on the flat lie 1
background. Ife;# B;, the system describes a fermion with !
a curved wave-function profile. For example, 8f/a;=c X .
>1 (<1), 7 has a monotonically increasirigecreasing —1+cy_; 1
wave-function profile. As another interesting example, taking
Bila;=cX (c,x are constants and<1), 7(®) has a Gauss- 91
ian profile with a peak at=1/2—In,c. Other profiles of X . (32
massless chiral fermions could also be realized in our ap- In
proach.

Let us discuss the 5D continuum limit. The relevant

choice of couplingsy; and 3; is A vanishing bulk mass parameter=1/2 corresponds to

Vc¢;=0, that is,a;= ;.4 in our model. Then the mass ma-
ai=0i+1, Bi=0i(1-c). (270 trix D SPis exactly the same &8 ¥¢¢ and their mass eigen-
values and eigenstates are the same. In particular, the mass-
The parameters; give rise to a bulk bare mass in the con- |ess mode;©) has a flat wave function with universal gauge
tinuum limit as will be seen below. The only difference be- couplings as considered here. This is consistent with the ex-
tween the vector and spinor cases is the existence of poss'b&ession(ZG), where the ratioe;/3; determines the wave-
bulk mass parametefsee Eqs(3) and(25)]. The mass and  nction profile. On the other hand, in the casecof1/2
mixing terms(24) then become (c<1/2), the RS zero-mode spinor is localizedyat 0 (y
=L/2) [2], which in turn corresponds 1§>0 (c;<0) in our
model. One can see from the spinor mass ma&ix that the
zero-mode wave function is monotonically increasiilg-
creasing with respect to the indek
+ouf(y)e(y)p(x.y) n(x,y)]+H.c., (28 In this way, we have a 4D localization mechanism for the
spinor fields. Nonuniversal gauge couplings or nonuniversal
wheref andh are the same as defined in the case of vectomasses give rise to a nonflat wave function for a chiral mass-
fields (12). Similar to the vector case, this form is comparedless fermion. The latter option is not realized for vector
with the bulk spinor Lagrangian in the RS space-tifsee  fields. Notice that the charge universality still holds in the

L/2

Lim=— . dyh(y)[ ¢ (x,y)d{f(y) n(x,y)}

the Appendix low-energy effective theory. That is, with any complicated
wave-function profiles, zero modes interact with a universal
[ ospi_ L/2d —— ——, value of the gauge coupling. This is because curved profiles
N Lgiodh o, g+ niaha,n of vector fields depend only on the gauge couplings.

+{ge (9 +(c—120")p+H.cl]. (29
C. Scalar

Here the kinetic terms have been canonically normalized in  Finally we consider scalar fields. We may introduce two
order to compare them to the 4D model. In E29), cis a  types of scalar fields; and ¢; in the fundamental and anti-
pOSSibIe 5D Dirac mass, and the “1/2” contribution in the fundamental representations of Sui(' respective|y‘ In ad-
mass terms comes from the spin connection with the Rjition, for each type of scalar, there are two choices ofzhe
metric. Itis interesting that the 5D spinor Lagrangi@®) i parity assignment in the continuum limit. This orbifolding

reproduced by taking the exact same limit of parameters aSrocedure is incor ;

. ; porated by removigg or ¢y . The gauge
that in the vector case, defined by Ef). Furthermore, the invariant mass and mixing terms fgr and ¢ are written as
relation between the mass parameteshould be taken as

1
2

N N
K L == |a/Qidi1—Bluvidil®>— 2 (gviv)¥ #il?
(30) i=1 i=1

ci=|C g_U . (32)
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N . . N . k k 2
Es‘Pm:_Zl | Qigi—Blvir1eir1l>— 2 (Gvin)?leil?, ci'=(1—b)g—v, yi2=(a+4b—b2)(g—v) (for ¢),
7 (33 (39

i=1

2
wherea, B, andy are the dimensionless coupling constants. ¢/=(b-2) L y2=(a+4b— b2)(£) (for ).
It is implicitly assumed that nonintroduced fields are appro- gu gu

priately removed in the sums. We have included the mixing (40)
mass terms up to the nearest-neighbor interactions. Other

invariant terms such asp; ;| or terms containing); cor- D. Supersymmetry on warped background

respond to nonlocal interactions in 5D theories, and we do In this subsection, we discuss 5D supersymmetry on

not consider these in this paper. Notice, however, that for arped backgrounds. Generally a supersymmetric theory
supersymmet'r]c case, these terms may be suppressed duerﬁgy be obtained by relevant choices of couplings from a
renormalizability and holomorphy of the superpotential.  ,nqpersymmetric theory. We here examine whether it is

The zero-mode eigenstates are given in the same form ag,qqjple to construct supersymmetric 4D models which de-
that of the spinor shown in the previous section, replaging gcrihe 5p supersymmetric ones on warped backgrounds.
andgB by a’ andg’ (a’ andp’). Therefore the ratia’/8"  This is a nontrivial check for the ability of our formalism to
(a'lB') determines the zero-mode wave function. properly describe 5D nature. In R¢B], the 5D theory on the

Let us consider the continuum 5D limit. In what follows, AdS; RS background was studied. There, supersymmetry on
we remove gy, Which corresponds to th&, assignment AdS; geometry was identified and then the conditions on the
¢(+) and ¢(—). The 5D limit can be achieved by taking mass parameters imposed by this type of supersymmetry

the following choices of couplings: were derived(also given in the Appendix hereAs seen
below, these relations among mass parameters foiy AdS
al=gii1, Bl=g(l—c)) (34) persymmetry are indeed satisfied in our 4D formalism. This
I ' | i/

fact seems remarkable in the sense that the present analyses
_ _ _ do not include gravity.
al=0gi+1, Bi=0i1(1-¢c/,,), (35 First consider vector supermultiplets in 5D. The scalar
fields Q; and the gauge bosom;t are extended to chiral and
yector superfields in 4D, respectively. Notice that the VEVs

wherec/ andc/ correspond to the bulk mass parameters, a .
that were discussed above,

in the spinor case. Then the mass tefB® and(33) for the
scalars take the following forms with the parametrization
(12): J P (Qp=vi &, (41)

are in the(baryonig D-flat direction.

L2 , We start with the following 4D supersymmetric Lagrang-
Low=- fo dyr)IILay+goc’ MUFWI S i 975 stpersy grang

+ 2t ikt 36 i - & i
[gvy(V) T (y) d(x.Y)|°] (36) ) Jd29d20 SEES 4ig.2J d2OW Wi+ Hc.

L/2 _
co—- fo dy Py 118, gue () 1{h(y) e(x.y)} 2 42

The bilinear terms of the component fields are written in the

+go¥(y)1Ah(y) e(x,y)|2]. (37) unitary gaugegwe follow the conventions df19]):
: _ 1 : 1o _
As a special case, we compageand ¢ with the scalar E(DijAL)t(DikA#)Jr E(D')2+ E(DijN')T(Dika)
fields in the RS space-time. The scalar Lagrangian on the RS
background igsee also the Appendix +(D}CHY(Dy DY) — (D x) (DA +H.c., (43)
Li2 ~ where we have rescaled\( ,\',D')—g;(A, ,\',D') for ca-
sca_ __ 2 k _ 2 Ny i A

Lrs™= fo dy [[d,¢*+|e"™{ay+(1-b)k}¢| nonical normalization of the kinetic terms. The mass matrix

Dj; is defined in Eq(2). The first term is nothing but E@2),
+(a+4b—b?)k*e 2| ¢|*] (38 that is, the mass terms for vector fields. By also canonically

normalizing C' and x' and integrating out the auxiliary
where the 4D kinetic term is canonically normalized, and fields, we find the mass terms for the adjoint spinors and
and b are the bulk and boundary mass parameters, respegcalar:
tively, defined in the AppendiXEq. (A3)]. By substituting L
the RS limit in our model given by Eq9), we find the il i TPttt pt ok
relations between the mass parameters in 4D and 5D: XDijHH.c. Z(D'JC J(DiCH. (44
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These masses have the same forms as that of the vector figideresting that the mass relation for vector multiplets is the
because we started from a supersymmetric theory. We thusne for chiral multiplets with Dirichlet boundary conditions

have a model witte; =0 for the spinors and/ =y'=0 for
the scalar(Note thatC; , which originate fromQ;, haveZ,
odd parity)

(49 with c=1/2. This value ofc is the limit of vanishing
bulk mass parameters.
It should be noticed that our analyses have been per-

It is a nontrivial check to see whether the above masdormed for generic warped backgrounds, including the RS

terms satisfy the conditions for 5D AgSupersymmetry. We
find from the relation$30) and (40) that the mass terms for
x andC imply

1
a=—4, b=2, c= X (45
Indeed, these relations are just those required bysAglS

persymmetny3]. In this way,5D vector supermultiplets on a

case as a special limit. We thus found that even in generic
warped backgrounds the conditions on the bulk mass param-
eters required for 5D warped supersymmetry should be the
same as for the RS case.

IIl. NUMERICAL EVALUATION

Here we perform a numerical study to confirm our formu-
lation of the curved extra dimension discussed in the previ-

RS warped background are automatically derived from a 4Dous sections. We will also give a phenomenological applica-

supersymmetric model on a flat background

tion to the hierarchy among Yukawa couplings.

We also construct a 5D hypermultiplet in the warped extra

dimension starting from a 4D supersymmetric theory. In or-

A. Spectrum and wave function

der to have a hypermultiplet we introduce the chiral super-

fields ¢; and ¢; in the fundamental and antifundamental rep-

resentations of the SWj; gauge theory. In the followingp
is removed to implemeri, orbifolding which leaves a chi-

ral zero mode of the fundamental representation. The fermi

onic components o$; and¢; then correspond te; and; ,

respectively, in Sec. Il B. The generic renormalizable super-

potential is written as

N—1
W= 21 (a¢'Qi¢' t—bvip'¢)). (46)

In the following, we consider the case that corresponds to
the RS model in the continuum limit, as a good and simple
application. The gauge couplings and VEVs are specified as
given in Sec. Il

RS: gi=g, v;=ve /(@) (50)
The universal gauge couplingg;=g implies that vector
zero modes have flat wave functions as shown in &g.
The following is a summary of the mass terms for various
spin fields, which were derived in the previous sections:

This superpotential just leads to a spinor mass term of the

1
form (24). In addition, the mass and mixing terms of the Lgm=75 [D1pA,l%, (51)
scalars¢ and ¢ also have the same form as those of the 2
spinors:
- Lim=—¢Dnp+H.c., (52
- 2, [aiQigiaatbwigl® L&y= Db’ =M%, (53
N—1 _ T 2 t 12
£s¢m—_|D—(3/2—b)<P| —[MTg|?
- ;1 & 1Qi-1¢i -1+ bjvi g% (47) (54)

Supersymmetry induces equivalence between the boson ardl€ Parameterb andc represent the bulk mass parameters
fermion mass matrices. In turn, this implies in our formula-for scalars and spinors, respectively. TH¢«{1)XN mass

tion given in the previous sections that the mass parametefgatricesD, andM are defined as follows:

are equal,ci=c/=c/ and alsoy;=y;=0. Thus, there is

. -1+
only one parametec left. It is found from Eqs.(30), (39), V1 o 1
and (40) that if one take the continuum limit the relations Dy=g ,
1 2 UN-1 -1+ Wy 1
a=|cts| 4, bzz—c (for ¢), (48) (59
2 3 K U1
a=|Cc— E) —4, b=§+C (for o) M = /a+4b_b§ ;
(49) UN-1

are generated. These mass relations are exactly those im- 1 0
posed by supersymmetry on the Ad§eometry[3]. Thus N
hypermultiplets on the RS background are properly incorpo- X S ' (56)
rated in our formalism with a flat background. It may be 1 0
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FIG. 2. The mass eigenvalues and eigenvectors of the magspdor vector fields in the casdd./27=0.12, 1.2, and 12. We take the
total number of gauge groups Bis= 100. (a), (c), and(e) show the eigenvalues? for eachkL with the symbolsO. The corresponding KK
mass spectrum of the continuum RS theory is also depicted by the dottedinéd), and(f) show the eigenvectotd?(i) for eachkL with
the symbolsx, A, and. The corresponding KK wave function of the continuum RS theory is also depicted by the lines. For the
continuum cases, the horizontal axiggigy. The wave functions plotted here are normalized by the zero-mode ones.

where wherem? are the mass eigenvalues which should correspond
to the KK spectrum of vector fields. In the following, we use
1\ k the notation
ol 25 o7 .
UP()=(Ug)' sy, i=1,...N, j=0,...N-1,
For supersymmetric cases, the mass matrizg$or bosons (59)

and fermions take the same form and, moreol+ 0, as _
discussed previously. that is, the coefficients oA, in the jth massive eigenstates
We define the matriced s that diagonalize the mass N#. In the continuum limit, this corresponds to the value of
matrices for gauge, fermion, and scalar fields, respectivelyghe wave function ay=i/guv for the jth KK excited vector
For exampleU satisfies field. Similar definitions are made for spinors and scalars.
For vector fields, we illustrate the resultant eigenvalues
mJ and eigenvector_Uﬁ(i) in Figs. Aa)—2(f). For compari-
(58) son, we also show in the figures the wave functions and KK

U{D1.DyUg=diag(md)?(md)?, ... (m§ 1)d),
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Uof (4) the family indices. For simplicity, we study a supersymmet-
ric case and introduce two types of Higgs scallis and
x ©=0.0 Hy. Then the mass parameters of the Higgs scalars satisfy
s =0.5 Eq. (48) and they are denoted bg''ud in the following.
0 c=1.0 Similarly, the quark behaviors are described by their mass
—— ¢=0.0 parameters®“d, We assume)(j‘fﬂ,)iva(l). Generally, in
~ c=0.5 supersymmetric 5D models, Yukawa couplings such as Eq.
ee10 (60) are prohibited by 5D supersymmetry. However, since
the present model is 4D, one may apply 5D-like results to
5 Yukawa couplings without respecting 5D consistency. This is
one of the benefits of our scheme.
FIG. 3. Typical behavior of the massless eigenvettjfi) for We are now interested in the zero-mode part of &),
fermions with mass parameter(denoted by the symbols, A,  which generates the following mass terms:

andd). The total number of gauge groups is takerNas100. The
corresponding zero-mode wave functions in the continuum RS
theory are depicted by the lines. The casel/2 is the conformal
limit where the massless mode is not localized.

Cyurawa= Yy A HRUG+ Y§ag(HG)dy +H.c.,  (61)

where the fields with tildes’ stand for thejth mass eigen-

mass eigenvalues of vector fields on the RS background. It igtate given byg/=={L,Uf(i)q" (similarly for u, d, and
found from the figures that our 4D model completely repro-Hu.a). The effective Yukawa couplings are

duces the mode function profilgBigs. 2b), 2(d), and Zf)].

Localization becomes sharp &k increases; this situation is N

similar to the continuum case. The warp-suppressed spectra yab=yary Ug'“(i)Uga(i)Ugb(i), (62
of KK excited modes are also realizgigs. 2a), 2(c), and =1

2(e)]. For a largerN (the number of gauge groupsthe o imilarly forY, . A typical behavior olU(i) is shown in

model leads to a spectrum more in agreement with the CONkjgy 3 for several values of the bulk mass parametén Fig.
tinuous RS case. Note, however, that the localization profileg ~\, o show the behaviors of the zero-mode Yukawa cou-

.Of wave f‘.’”C“O”S can be_seen_e_ven with a rather shialt lings Y, 4 against the quark mass parameters. Two limiting
is interesting that even with a finite number of gauge groupg..qas withcMud=0 and 1 are shown. The former corre-
the massive modes have warp-suppressed spectra and loc?i'onds to a bulk Higgs scalar localizedyat L/2 and the

ization profi_les i_n the index space of gauge theor_y. latter to one aty=0 in the continuum RS limit. From the
For fermion fields, there is another interesting issue to b?igures we see that if there is?(1) difference of mass ratio

examined. It is the localization behavior via dependence O%mong, the generations, it generates a large hierarchy be-

gm%miiigaaaemee;?:r\:\gcgfvﬁz d'se(;g?;eo%én Szcé“fBr'K\:/t\./gntween Yukawa couplings. Combined with the mechanisms
W P z wave Tuncliong, -+ control mass parameters discussed in the next section,

f . . . . . .
Uo(i) in Fig. 3. The figure indicates that the zero-mode wave, o onains a hierarchy without symmetries within the four-

functions surely give the expected localization nature of thgjimensional framework.
continuum RS limit[Eqg. (A13) in the Appendi}. We find In the case ofcMud=1, the Yukawa coupling depends

that th% vaIT]es O.fl tk]:ehwallve fIL_Jncpons aﬁ eXponen_t;f"ny_sl_JpéxponentialIy on the quark bulk mass paramet8rs® when
pressed at the tail of the localization profile even with a finite q.ud g 53 This implies that ifc®“d exist in this region

nhumber of gauge groups. The profiles of massive modes “Yhe obtains the following form of the Yukawa matrices:
also be reproduced.

) A\Maa )\ MNab
B. Yukawa hierarchy from 4D ()\nba )\nbb), (63
Now we apply our formulation to phenomenological
problems in four dimensions. Let us use the localization bewhere their exponents satisfy
havior, which has been shown above, to obtain the Yukawa
hierarchy. This issue has been studied in the 5D RS frame-

work [3,5]. We consider a model corresponding to {lse-
persymmetrig standard model in the bulk. The Yukawa cou- Thjs form is similar to that obtained by the Froggatt-Nielsen
plings for quarks are given by mechanisnj15] with a U(1) symmetry. As an illustration, let
N us take the following mass parameters:
Crana™ 2, (V)i GaH LU+ (V)i daHdb) + Hoc,

(60) 3Similar behavior can be obtained farud>0.5. For cHud
>0.5, the Higgs scalars have a peakatl (y=0). This situation
where g, u, and d denote the left-handed quarks and theis different from the one discussed in RES] where the Higgs field
right-handed up and down quarks, respectively, afldare s localized ai =N (y=L/2).

naa+ nbb: nab+ nba. (64)
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0.2 0.4 0.6 0.8

(c) cHuwd =0 (d) cfwed =1

FIG. 4. The quark mass® (=c,) andc"“? (=cg) dependences of the zero-mode Yukawa couplit§ with kL/27-=10.83 andN
=20. The mass parameters of the Higgs scaiflrs are taken to be 0 ifia) and(c), and 1 in(b) and(d).

c%123=(0.36, 0.42, 1.00 for the Yukawa matrixX63). Such a form may lead to realistic
fermion masses and mixing angles. For example, one could
c'123=(0.36, 0.42, 1.00 (65  derive the Yukawa matrix
c%123=(0.42, 1.00, 1.0 0 A\ 0
CHu'dzl Yab2 )\4 )\3 )\3 (68)
0 N\ 1

andN=20 andkR=10.83, which generates the low-energy

Yukawa matrices if initial values of (y!%); are sufficiently suppressed. In this

A6 A5 23 A5 A3 23 case, the X2 supmatrix for the second and .third genera-
) 5 4 o ) PR tions does not satisfy E¢64). The Yukawa matriX68) may
Y&P= A7 AT AT YEP=| AT A" N[, (66)  be relevant to the down-quark sector, indeed studied in Ref.
A A2 1 A2 11 [17]. We do not pursue further systematic studies on these
types of Yukawa matrices in this paper.
where\ =0.22. This pattern of quark mass textures leads to
realistic quark masses and mixing anglé$] with a large

value of the ratio(H%)/(HY). If the above analysis were
extended to S(b) grand unified theory, realistic lepton We have shown that 4D models with nonuniversal VEVs
masses and mixing may be derived. Other forms of Yukawand gauge and other couplings can describe 5D physics on
matrices that may be realized by the Froggatt-Nielsercurved backgrounds, including the RS model with an expo-
mechanism are easily incorporated in our formulation. nential warp factor. In the continuum 5D theory, this factor is
For more complicated patterns of mass parameters, weerived as a solution of the equation of motion for gravity.
could realize Yukawa matrices that are different from thoseOn the other hand, in the 4D viewpoint, warped geometries
derived from the Froggatt-Nielsen mechanism. In generalare generated by taking the couplings and VEVs as appropri-
off-diagonal entries tend to be rather suppressed, that is, waie forms. In the previous sections, we have just assumed
have their typical forms and examined its consequences. If one
could identify how to control these couplings by the under-
Naat Npp<Napt Npa (67)  lying dynamicsthe resultant 4D theories turn out to provide

IV. TOWARD DYNAMICAL REALIZATION
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attractive schemes to discuss low-energy physics such as tiny Ui2—1: Ui2+ €, (75)
coupling constants.

First we consider the scalar VEM®);)=v;. A simple  and nonuniversal VEVs; are indeed realized. In this case,
way to dynamically control them is to introduce additional the dynamical origin of nonuniversal VEVs is the nonvan-
strongly coupled gauge theorig8]. Consider the following ishing FlI terms. These may be generated at the loop level.

set of asymptotically free gauge theories: Furthermore, if the matter content is different for each gauge
_ theory, thee; themselves have complicated forms.
A, : SU(n); gauge field(g,A), (69 Above, we supposed that the charges@f are (+1,
—1) under U(1)XU(1);.4. Alternatively, if Q; have
A'ﬂ; SU(m); gauge field(g; ,A,), (700  charges M1,—M) under U(1)XU(1);;, and other matter

fields have integer charges, the gauge symmtty(1); is

whereA and A; denote the dynamical scales. We have, forroken to the product of a diagonal(1) gauge symmetry
simplicity, assumed common values gfand A for all ~and the discrete gauge symmetiy(Zy);. Such discrete

SU(n), . In addition, two types of fermions are introduced: 9auge symmetry would be useful for phenomenolptf].
Models with nonuniversal gauge couplingsare also in-

g (n,m1), g (1,m,n), (71) teresting in the sense that they can descr!be the localization
of massless vector fields. A nonuniversality of gauge cou-

where their representations under ®)&SU(m), Plings is generated, e.g., in the case that ther§lUgauge
% SU(N); + 1 gauge groups are shown in parentheseshIf theories have different matter content from each other. Then

> A, the SUM); theories are confined at a higher scale thanthe radiative corrections to gauge couplings and their

SU(n);, and the fermion bilinear composite scalas ren_or_m_a_llzatlon-group running become nonuniversal, even if
— ) ] i their initial values are equal.

~§&¢ appear. Their VEVw; are given by the dynamical  Thjs fact is also applicable to the above-mentioned

scalesA; of the SUm); gauge theories through a dimen- mechanism for nonuniversal;. Suppose that the Sb);

sional transmutation as theory contains (&1+i) vectorlike quarks which decouple at

- - v. The gauge couplingg;(v) are then determined by

(Q=vi=Aj=n QU280 (1), (72 |
1 i |

= =——In

9i(v) 82

A’

where B is a universal one-loop gauge beta function for v

SU(m); (B<0). The gauge couplingg, generally take dif-
ferent values and thus lead to different valuesvpf For  where we have assumed that the 81)( theories are

example, a linear dependence oﬁi?ibn the indexi is am-  strongly coupled at a high-energy scalé (>v). Tuning of
plified to an exponential behavior of . That is, the relevant matter content thus generates the desired linear

dependence of @f With these radiatively induced cou-

1 ~ k ) lings (76) at hand, the VEVs are determined from :
~ :_Zﬁ(—)iHvi=ve_k'/gv, (73) pling ( ) E:_qz)
gi(m) gu , |2

. . vi=v| —| . (77
which reproduces the bulk fields on the RS background as A’

shown before. The index dependences of the gauge cou-

plings are actually generic situations, and may also be con- V. CONCLUSION

trolled, for example, by some mechanism fixing dilatons or

the radiatively induced kinetic terms discussed below. A su- We have formulated 4D models that provide 5D field

persymmetric extension of the above scenario is achievetheories on generic warped backgrounds. The warped geom-

with quantum-deformed moduli spacg?]. etries are achieved with generic values of symmetry-
Another mechanism that dynamically induces nonuniverbreaking VEVs, gauge couplings, and other couplings in the

sal VEVs is obtained in supersymmetric cases. Consider theodels. We focused on field localization behaviors along the

gauge groupll;U(1); and the chiral superfield®; with  index space of gauge theofthe fifth dimension in the con-

charges ¢ 1,—1) under U(1)XU(1);,,. Itis assumed that tinuum limit), which is realized by taking relevant choices of

the scalar componentsy; of Q; develop their VEVs(q;)  the mass parameters.

=vp,;. TheD term of each U(1)is given by As a good and simple application, we constructed 4D
models corresponding to bulk field theories on the AdS
Di=e+|qil>—|ai_q1|?+ - - -, (74 Randall-Sundrum background. The localized wave functions

of massless modes are completely reproduced with a finite
whereg; is the coefficient of the Fayet-lliopould&l) term,  number of gauge groups. In addition, the exponentially sup-
and the ellipsis denotes contributions from other fieldspressed spectrum of the KK modes is also generated. These
charged under U(1) which are assumed not to have VEVSs. results imply that most properties of brane world models can
Given nonvanishing FI terms;;#0, the D-flathess condi- be obtained within 4D gauge theories. Supersymmetric ex-
tions mean tensions were also investigated. In 5D warped models, the
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bulk and boundary mass terms of spinors and scalars satisfgld S'/z, with radiusR and two three-branes at the orbifold
complicated forms imposed by supersymmetry on the R$ixed pointsy=0 andy=L/2==R. The Einstein equation
background. However, we show in our formalism that thes€or this five-dimensional setup leads to the solutj@h

forms of the mass terms are derived from adlbbal super-

symmetric model on #at background. Con , )

As an application of our 4D formulation, we derived hi- ds’=e 27y, dx*dx"—dy? o=Klyl, (A1)
erarchical forms of Yukawa couplings. The zero modes of ] ] ] )
scalars and spinors with different masses have differenfherek is a constant with mass dimension 1. Let us study a
wave-function profiles as in the 5D RS cases. Therefore byector fieldAy , a Dirac fermion¥, and a complex scalap
varying theO(1) mass parameters for each generation, ond the bulk specified by the background metkd). The 5D
can obtain realistic Yukawa matrices with a large hierarchy2ction is given by
from the overlaps of the wave functions in a purely 4D
framework. Other phenomenological issues such as proton R
stability, grand unified theoryGUT) symmetry breaking, sszf d4xf dy\/—_g
and supersymmetry breaking can also be discussed. 0

The conditions on the model parameters should be ex-
plained by some dynamical mechanisms if one considers the
models from a fully 4D viewpoint. One interesting way is to
include additional strongly coupled gauge theories. In this
case, a smalO(1) difference between gauge couplings is, here
converted to exponential profiles of symmetry-breaking_ I+
VEVs via dimensional transmutatlorj, and indeed generates a; Y57, 12 andT"4;=0. From the transformation properties
warp factor of the RS model. A difference of gauge cou-,,qer7. parity, the mass parameters of scalar and fermion
p!lngs is achlev_ed_ by, for exgmple, the dynamlcs_ controllmgﬁe|dS are parametrized hs
dilatons, or radiative corrections to gauge couplings. Super-
symmetrizing models provide a mechanism for dynamically
realizing nonuniversal VEVs witiD-flathess conditions.

Our formulation makes sense not only from the 4D points
of view but also as a lattice-regularized 5D theory. In this
sense, effects such as the AdS/conformal field th€GRT)
correspondence might be clearly seen with our formalism. As My =Co’, (A4)
another application, it can be applied to construct various
types of curved backgrounds and bulk or boundary massewherea,b, andc are dimensionless parameters.

For example, we discussed massless vector localization by Referring to[3], the vector, scalar, and spinor fields are
varying the gauge couplingg;. Furthermore, one might cited together using the single notation®
consider models in which some fields are charged under only {A#,¢,e‘2"‘lf,_,R}. The KK mode expansion is performed
some of the gauge groups. These seem not like bulk or brarss
fields, but “quasibulk” fields. Applications including these
phenomena will be studied elsewhere.

-1 L
rngﬁnN+|&M¢|2+l\I"yMDM‘I’
5

—m3| p2—my P |, (A2)

ym=(v.,i7vs) and the covariant derivative By
I'y wherel'y is the spin connection given by,

2 2 b "
mg=ak +§o , (A3)

1

P(xH,y)= > OM(xH)f(y). (A5)
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APPENDIX: BULK FIELDS IN AdS 5 where a= (8/2)2+ Mq)/kz, S={2, 4, 1}, and Mé,

Here we briefly review the field theory on a RS back- ={0,ak?c(c+1)k? for each component i. N, is the
ground, following Ref[3]. One of the original motivations normalization factor and, andY , are the Bessel functions.
for introducing a warped extra dimension by Randall andThe corresponding KK spectrum,, is obtained by solving
Sundrum is to provide the weak Planck mass hierarchy via
the exponential factor in the space-time metric. This factoris——
called the “warp factor,” and the bulk space a “warped extra “4n Ref. [3], the integral range with respect tois taken as
dimension.” Such a nonfactorizable geometry with a warp— rR<y<n=R. Here we adopt &y< =R, and then the boundary
factor distinguishes the RS brane world from others. mass parametds in Eq. (A3) is different from that in Ref[3] by

Consider the fifth dimensiog compactified on an orbi- the factor 1/2.
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b,(m,)=b,(m,e™F). (A7) a=c?+c—15/4 andb=23/2¥ ¢ for hypermultiplets. There is
no freedom to choose the bulk masses for vector supermul-
A supersymmetric extension of this scenario was distiplets and only one freedom parametrizeddor the bulk

cussed i 3,4]. The on-shell field content of a vector super- hypermultiplets. It should be noted that in warped 5D models
multiplet is (Ay ,\;,2) whereAy, \(i=1,2), andX are fields contained in the same supermultiplet have different
the vector, two Majorana spinors, and a real scalar in théulk and boundary masses. That is in contrast with the flat
adjoint representation, respectively. Also a hypermultipletcase.
consists of H;,¥), whereH;(i=1,2) are two complex sca- TheZ, even components in supermultiplets have massless
lars and¥ is a Dirac fermion. By requiring the actidi?2) modes with the following wave functions:

to be invariant under supersymmetric transformation on the
warped background, one finds that the five-dimensional

, : . 1
masses of the scalar and spinor fields have to satisfy for VELO) and AL ©), (AL2)
V2mR
mi = —4k?+ 20", (A8)
e(12-c)o
1, ———— for H' © and v{©. A13
m=0’, (A9) Noy27R - (A13)
The subscript means the left-handed§ ever) component.
m2..=| c2+c— E) K2+ §Ic o The massless vector multiplet has a flat wave function in the
H12 B 4 2 ' extra dimension. On the other hand, the wave function for

(A10) massless chiral multiplets involvesyadependent contribu-
tion from the space-time metric, which induces a localization
my=co’, (A11)  of the zero modes. The zero modes with massed/2 and
€c<1/2 localize aty=0 andy=wR, respectively. The case
where ¢ remains as an arbitrary dimensionless parametewith c=1/2 corresponds to the conformal limit where the
That is,a=—4, b=2, andc=1/2 for vector multiplets and kinetic terms of the zero modes are independent. of
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