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Field localization in warped gauge theories
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We present four-dimensional gauge theories that describe physics on five-dimensional curved~warped!
backgrounds, which includes bulk fields with various spins~vectors, spinors, and scalars!. Field theory on the
AdS5 geometry is examined as a simple example of our formulation. Various properties of bulk fields on this
background, e.g., the mass spectrum and field localization behavior, can be achieved within a fully four-
dimensional framework. Moreover, that gives a localization mechanism for massless vector fields. We also
consider supersymmetric cases, and show in particular that the conditions on bulk masses imposed by super-
symmetry on warped backgrounds are derived from a four-dimensional supersymmetric theory on the flat
background. As a phenomenological application, models are shown to generate hierarchical Yukawa couplings.
Finally, we discuss possible underlying mechanisms which dynamically realize the required couplings to
generate curved geometries.
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I. INTRODUCTION

The standard model is greatly successful but it still h
many free parameters which must be small to describe
ture. While its supersymmetric extensions, e.g., the minim
supersymmetric standard model, are attractive scena
small couplings are also required to explain observed fa
such as the fermion mass hierarchy and mixing angles.

In recent years, extra dimensions have cast a new pers
tive on physics beyond the standard model. One of the
portant aspects of extra dimensional models is that b
fields can be localized with finite-width wave-function pr
files. This fact provides us with a geometrical explanation
small numbers. That is, with a configuration where so
fields are separated from each other in the extra dimensi
space, the couplings among them are generally suppre
Then how and where fields are localized is an issue to
considered. From this viewpoint, extra dimensional mod
with a curved background are interesting because fie
could be localized depending on the shape of the backgro
geometry. One of the most famous examples of curved
ometries is the Randall-Sundrum~RS! model with the AdS5
warped metric@1#. Field theories of vectors, spinors, an
scalars have been studied on this background@2–4#. The
localization behavior of zero-mode wave functions has in
esting applications to phenomenology such as the supp
sion of unwanted operators. For example, hierarchical fo
of Yukawa couplings and proton decay were studied in@3,5#.

The localization of Kaluza-Klein~KK ! excited modes
also leads to interesting phenomena. For instance, the lo
ization of higher KK gauge bosons could realize a compo
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scalar~Higgs! condensation, which induces dynamical~elec-
troweak! symmetry breaking on the brane where the K
gauge bosons localize@6#. In addition, models on more com
plicated backgrounds where a warp factor oscillates gene
bulk fields which localize at some points in extra dimensio
@7,8#. This type of localization might be useful in explainin
the observed phenomena.

However extra dimensional theories are generally n
renormalizable and the calculations depend on the regu
ization scheme that one adopts. Furthermore, extra dim
sional theories are constrained by symmetries of hig
dimensions. For example, in the supersymmetric case, b
theories are constrained byN51 supersymmetry in five di-
mensions. Motivated by these facts, recently a fo
dimensional~4D! description of extra dimensional mode
was proposed@9,10#. With this method, the phenomena o
higher dimensional models are reproduced in terms of
theories, and several interesting models have been prop
along this line@11,12#.

In this paper, we present 4D gauge theories that desc
physics on 5D curved geometries. As will be discussed
low, taking generic values of gauge couplings and gau
symmetry-breaking vacuum expectation values~VEVs!, the
models provide vector, spinor, and scalar fields on cur
extra dimensions.1 As a good and simple illustration, w
compare our 4D model with the RS one. We particula
focus on the ‘‘localization’’ behaviors of mass eigenstates
‘‘index spaces’’ of gauge groups. It will be shown that th
localization profiles and the exponentially suppressed m
sive spectrum are certainly reproduced. In addition, our f
mulation gives a localization mechanism even for mass
vector fields. As a phenomenological application, hierarc
cal Yukawa matrices are derived in our approach; that is
hierarchy without symmetries in four dimensions.

1In the same spirit, curved backgrounds were studied in@13#.
©2003 The American Physical Society19-1
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The localization behavior depends on the required con
tions for gauge-symmetry-breaking VEVs and gauge a
other couplings. If these values are determined in the un
lying theories, it may be said that the physics on warp
backgrounds is dynamically generated within a fo
dimensional framework. We consider several possibilities
realize the conditions by utilizing, for example, strong
coupled gauge theories. Thus this could provide a purely
dynamical approach for small numbers.

We will proceed with the argument as follows. In Sec.
we describe our 4D gauge theories, which have generic~non-
universal! values of gauge-symmetry-breaking VEVs a
couplings. The models provide vector, spinor, and sca
fields in warped extra dimensions. It is also shown that
persymmetry multiplets in flat 4D models generate sup
symmetry multiplets on warped backgrounds. In Sec. III,
then numerically determine with a finite number of gau
groups that the formulation given in Sec. II certainly repr
duces various properties of bulk fields on the RS ba
ground. In addition, a phenomenological application to qu
mass matrices is also given. Finally, we discuss possibili
of dynamically realizing the conditions required for curv
geometries in Sec. IV. We conclude the discussion in Sec
The Appendix is devoted to a brief review of 5D bulk field
on a RS background.

II. 4D FORMULATION FOR CURVED GEOMETRIES

A. Vectors

Following Refs.@9,10#, we introduce SU(n) i gauge theo-
ries with gauge couplingsgi( i 51, . . . ,N), and scalar fields
Qi @ i 51, . . . ,(N21)# which are in bifundamental represe
tations of SU(n) i3SU(n) i 11. The system is schematized b
the segment diagram in Fig. 1.

The gauge invariant kinetic term of the scalarsQi is writ-
ten by

L5 (
i 51

N21

~DmQi !
†~DmQi !, ~1!

where the covariant derivative is given byDmQi5]mQi

2 igiAm
i Qi1 igi 11QiAm

i 11 . We assume that the scalar field
Qi develop VEVs proportional to the unit matrix,̂Qi&
5v i , which break the gauge symmetry to a diagon
SU(n)diag. From the kinetic term~1!, the mass terms for the
vector fieldsAm

i are obtained:

Lgm5
1

2 (
i 51

N21

uv i~gi 11Am
i 112giAm

i !u2

5
1

2 (
i 51

N21

(
j 51

N

uDi j
vecAm

j u2, ~2!

FIG. 1. Moose diagram for bulk vector fields in the orbifo
extra dimension.
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where the (N21)3N matrix D vec is defined as

D vec5S v1

�

vN21

D S 21 1

� �

21 1
D

3S g1

�

gN

D . ~3!

The consequence of these mass terms is that we ha
massless gauge boson corresponding to the unbroken g
symmetry, which is given by the following linear combina
tion:

Ãm
(0)5(

i 51

N S gdiag

gi
DAm

i , ~4!

wheregdiag
22 [( i 51

N gi
22 andgdiag is the gauge coupling of the

low-energy gauge theory SU(n)diag. The profile of Ãm
(0) is

independent of the values ofv i . It is found from this that the
massless vector field is ‘‘localized’’ at the points with small
gauge couplings. If the gauge couplings take a unive
value;gi5g, the massless modeÃm

(0) has a constant ‘‘wave
function’’ along the ‘‘index space’’ of gauge groups. As se
below, this direction labeled byi becomes the fifth spatia
dimension in the continuum limit (N→`). The localization
behavior can easily be understood from the fact that,
smaller gauge couplinggi , the symmetry-breaking scalegiv
of SU(n) i becomes lower, and hence the corresponding v
tor field Am

i becomes the more dominant component in

low-energy degree of freedomÃm
(0) .

It is interesting to note that this vector localization mech
nism ensures charge universality. Suppose that there is a
in a nontrivial representation of SU(n) i only. That is, it
couples only toAm

i with strengthgi . This corresponds to a
four-dimensional field confined on a brane. If there are s
eral such fields, they generally have different values of ga
couplings. However, note that these fields couple to
massless modesÃm

(0) with a universalgauge couplinggdiag

defined above. This is because, in the presented mechan
the vector fields are localized depending on the values of
gauge couplings.

As for massless eigenstates, the mass eigenvalues
wave functions are obtained by diagonalizing the mass
trix ~3!. The simplest case is the universal couplings

;v i5v, ;gi5g. ~5!

In this case, one obtains the mass eigenvalues ofD vec as

mn52gv sinS np

2ND ~n50, . . . ,N21!. ~6!

In the limit N→` with L[2N/gv fixed ~the limit to con-
tinuum 5D theory!, the eigenvalues become
9-2
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mn.
2np

L
. ~7!

These are the same spectrum as that of the bulk gauge b
in the S1/Z2 extra dimension with radiusL/2p.

With generic values of VEVsv i and gauge couplingsgi ,
the situation is rather complicated. In this case, the m
term ~2! of the vector fields becomes

Lgm5
1

2 (
i

v i
2gigi 11~Am

i 112Am
i !22

1

2 (
i

@v i
2gi 11~gi 12

22gi 111gi !1~v i 11
2 2v i

2!gi 11~gi 122gi 11!#

3~Am
i 11!21

1

2
vN

2 gN~gN112gN!~Am
N!22

1

2
v1

2g1~g2

2g1!~Am
1 !2. ~8!

The first term becomes the kinetic energy transverse to
four dimensions in the continuum limit. On the other han
the second and third terms are bulk and brane mass te
respectively. It should be noted that these mass terms va
in the case of universal gauge coupling, which correspo
to a flat massless vector field in 5D theory as discus
above. In other words, nonuniversal gauge couplings ge
ate bulk/brane mass terms and cause a localization of
wave function.

1. VEVs and couplings generatingAdS5 background

First we consider the series of VEVsv i and couplingsgi
that generates a vector field on the RS warped backgro
namely, the AdS5 background. This model can be obtain
by choosing a universalgi and by varyingv i as

RS: gi5g, v i5ve2ki/(gv). ~9!

Substituting this and taking the continuum limit, Eq.~2! be-
comes

Lgm5
1

2E0

L/2

dy @e2ky]yAm~x,y!#2, ~10!

where y represents the coordinate of the extra dimensi
y↔ i /gv( i 51, . . . ,N) andAm

i (x)↔Am(x,y), etc. It is found
that Eq. ~10! successfully induces the kinetic energy te
along the extra dimension and mass terms for the vector
on the warped background metric:

ds25GMNdxMdxN5e22kyhmndxmdxn2dy2, ~11!

wherehmn5diag(1,21,21,21) with m50,1,2,3. We here
conclude that we can obtain the vector field on a RS war
background by varying only the VEVsv i . In the following
we will see that nonuniversal gauge couplingsgi induce
other interesting results beyond the effects from the ba
ground metric.
04501
son

ss

e
,
s,

ish
s
d
r-

he

d,

:

ld

d

k-

2. Abelian case with nonuniversal gauge couplings

Now let us compare the 4D model with generic couplin
~8! to extra dimensional ones. We define the dimensionl
parametersf i andhi as

gi5g fi , v i5vhi . ~12!

First we restrict ourselves to the case that the gauge grou
U~1!, namely, Abelian theory withno vector self-couplings.
Similarly substituting Eq.~12! and taking the continuum
limit, Eq. ~2! becomes

Lgm5
1

2E0

L/2

dy †h~y!]y@ f ~y!Am~x,y!#‡2. ~13!

Equation~13! induces the kinetic energy term along the ex
dimension and mass terms for the vector field on the war
background metric:

ds25GMNdxMdxN5@ f ~y!h~y!#2hmndxmdxn2dy2.
~14!

The bulk and boundary mass terms arey dependent and pro
portional to the derivatives off (y). This is also seen from
the 4D model@the second and third terms in Eq.~8!#.

The above is a generic correspondence between our
case and continuum 5D theory. As an example, consider
following forms of the parameters:

f ~y!5e2zky, h~y!5e2hky, ~15!

wherek is a positive constant with mass dimension 1. Equ
tion ~13! leads to

Lgm5
1

2E0

L/2

dye22(z1h)ky@~]yAm!22z~2h1z!k2~Am!2#

2
1

2
@zke22(z1h)ky~Am!2#0

L/2. ~16!

The first term on the right hand side is the kinetic term of t
gauge boson along the extra dimension with the war
background

ds25e22(z1h)kyhmndxmdxn2dy2. ~17!

The second and third terms correspond to the bulk
boundary masses announced before. As easily seen,
above equation includes the expression for vector fields
the RS background. In the 5D RS model, the Lagrangian
vector fields is written as~see the Appendix!

LRS
vec52

1

4
FmnFmn1

1

2
e22ky~]yAm!2, ~18!

where theA550 gauge fixing condition is chosen. By com
paring Eq.~16! with Eq. ~18!, we find that the case with

z1h51 ~19!
9-3
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realizes vector fields on the RS background. Also, a spe
limit, ( z,h)5(0,1), produces the flat zero-mode solutio
That corresponds to the form of the parameters~9! in the
previous special argument. The other solutions which sat
z1h51 correspond to nonflat wave functions of the ze
mode vector field on the RS background. It is clearly und
stood in our formulation that such nonflat wave functions
caused by introducing bulk and/or boundary mass term
the RS model. For example, in the case of (z,h)5(1,0), the
vector field has bulk and boundary mass terms, and is lo
ized with a peak at they5L/2 point. It should be noticed tha
with these bare mass terms the zero mode is still mass
This is understood from our formulation where the gau
symmetry SU(n)diag is left unbroken in the low-energy effec
tive theory.

3. Non-Abelian case with nonuniversal gauge couplings

In the above Abelian case we discussed interpretation
the nonuniversalf i asy-dependent bulk or boundary mass
in the warped extra dimension. Next we treat the no
Abelian theory with vector self-couplings. Since in this ca
we also havey-dependent vector self-couplings in addition
the y-dependent bulk or boundary masses, it may be con
nient and instructive to seef i as ay-dependent coefficient o
the vector kinetic term. To this end, we define the fo
dimensional fieldA5

i ,

Qi[v ie
2 ia(giA5

i
1gi 11A5

i 11)/2

5v i„12 ia~giA5
i 1gi 11A5

i 11!/21O~a2!…, ~20!

wherea[L/(2N) is the lattice spacing, which goes to ze
in the continuum limit. Rescaling the gauge fiel
AN fi(Am

i , A5
i )→(Am

i , A5
i ), the kinetic term

2 1
4 ( i 51

N Fmn
i Fimn and Eq.~1! becomes

L kin
gQ52

1

4 (
i 51

N

a
f i

22

L/2
Fmn

i Fimn1 (
i 51

N21

a
hi

2

L/2
U]mA5

i 11/2

2
Am

i 112Am
i

a
2 i ĝ@Am

i ,A5
i 11/2#1 i ĝA5

i 11/2~Am
i 112Am

i !

1O~a1/2!U2

, ~21!

where ĝ5g/AN and A5
i 11/2[(A5

i 1A5
i 11)/2. In the con-

tinuum limit N→` with L and ĝ fixed, Eq.~21! results in

L kin
gQ52

1

4E0

L/2

dy
f 22~y!

L/2
$hmnhrsFmrFns

22@h~y! f ~y!#2hmnFm5Fn5%, ~22!

where FMN(x,y)5]MAN(x,y)2]NAM(x,y)2

2 i ĝ@AM(x,y),AN(x,y)#. This completely reproduces th
5D Yang-Mills kinetic term with ay-dependent coefficient
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vec 52

1

4E0

L/2

dy f22~y!A2GGMNGABFMAFNB

~23!

on the warped-background metric~14!, provided thatg5D

5AL/2 ĝ. This is the generic correspondence between
present 4D model and continuum 5D theory. From Eq.~23!,
we thus find they-dependent factorf 22(y) in front of the
canonical Yang-Mills term, which corresponds to a 5D di
ton VEV. The factor does carry the origin of the massle
vector localization shown in Eq.~4!.2 With the constant
gauge couplinggi[g ( f i51), one obtains a bulk vecto
field with a constant zero mode on the warped metric~14!. A
field redefinitionf 21(y)AM→AM in Eq. ~23! gives the pre-
vious bulk and boundary mass terms but one then
y-dependent vector self-couplings in non-Abelian cases.

B. Spinors

We next consider spinor fields by arranging fermions
fundamental or antifundamental representation in each ga
theory SU(n) i . We introduce two Weyl~one Dirac! spinors
to construct a 5D bulk fermion. The orbifold compactific
tion in continuum theory requires that one spinor obeys
Neumann boundary condition and the other the Dirich
one. In the present 4D model, this can be achieved by ha
asymmetrical numbers of fundamental and antifundame
spinors, resulting in chiral fermions in the low-energy gau
theory. Here we consider the fundamental Weyl spin
h i( i 51, . . . ,N) in the SU(n) i theory and the antifundamen
tal c j ( j 51, . . . ,N21). As seen below,h corresponds to the
bulk fermion with the Neumann boundary condition andc to
that with the Dirichlet one.

The generic gauge-invariant mass and the mixing term
h i andc j are written as

Lf m52 (
i 51

N21

~a ic iQih i 112b iv ic ih i !1H.c., ~24!

wherea i and b i are dimensionless coupling constants. W
assume thatQi develop VEVs^Qi&5v i . The mass matrix
for spinors is then given by

D spi5S v1

�

vN21

D S 2b1 a1

� �

2bN21 aN21

D .

~25!

The spinor mass eigenvalues and eigenvectors~wave func-
tions! are read from this matrix. One easily sees that
massless mode is contained inh and given by the following
linear combination:

2For a continuum 5D analysis, see@14#.
9-4
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h̃ (0)5
1

A(
i 51

N F)
j 51

i 21

~b j /a j !G 2
(
i 51

N S )
j 51

i 21 b j

a j
D h i .

~26!

Therefore the localization profile of zero mode depends
the ratio of dimensionless couplingsa i and b i . A simple
case isa i5b i for all i. In this case,h̃ (0) corresponds to a
chiral zero mode obtained from a 5D bulk fermion on the fl
background. Ifa iÞb i , the system describes a fermion wi
a curved wave-function profile. For example, ifb i /a i5c

.1 (,1), h̃ (0) has a monotonically increasing~decreasing!
wave-function profile. As another interesting example, tak
b i /a i5cxi (c,x are constants andx,1), h̃ (0) has a Gauss
ian profile with a peak ati 51/22 lnxc. Other profiles of
massless chiral fermions could also be realized in our
proach.

Let us discuss the 5D continuum limit. The releva
choice of couplingsa i andb i is

a i5gi 11 , b i5gi~12ci !. ~27!

The parametersci give rise to a bulk bare mass in the co
tinuum limit as will be seen below. The only difference b
tween the vector and spinor cases is the existence of pos
bulk mass parameters@see Eqs.~3! and~25!#. The mass and
mixing terms~24! then become

Lf m52E
0

L/2

dyh~y!@c~x,y!]y$ f ~y!h~x,y!%

1gv f ~y!c~y!c~x,y!h~x,y!#1H.c., ~28!

wheref andh are the same as defined in the case of vec
fields ~12!. Similar to the vector case, this form is compar
with the bulk spinor Lagrangian in the RS space-time~see
the Appendix!

LRS
spi52E

0

L/2

dy @c̄ i s̄m]mc1h̄ i s̄m]mh

1$ce2ky~]y1~c21/2!s8!h1H.c.%#. ~29!

Here the kinetic terms have been canonically normalized
order to compare them to the 4D model. In Eq.~29!, c is a
possible 5D Dirac mass, and the ‘‘1/2’’ contribution in th
mass terms comes from the spin connection with the
metric. It is interesting that the 5D spinor Lagrangian~29! is
reproduced by taking the exact same limit of parameters
that in the vector case, defined by Eq.~9!. Furthermore, the
relation between the mass parametersc should be taken as

ci5S c2
1

2D k

gv
. ~30!
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That is, theci ’s take a universal value. Now the localizatio
behavior of the spinors is easily understood. In the pres
4D model, the spinor mass matrix~25! becomes with Eq.
~27!

D spi5S v1

�

vN21

D
3S 211c1 1

� �

211cN21 1
D

3S g1

�

gN

D . ~31!

A vanishing bulk mass parameterc51/2 corresponds to
;ci50, that is,a i5b i 11 in our model. Then the mass ma
trix D spi is exactly the same asD vec, and their mass eigen
values and eigenstates are the same. In particular, the m

less modeh̃ (0) has a flat wave function with universal gaug
couplings as considered here. This is consistent with the
pression~26!, where the ratioa i /b i determines the wave
function profile. On the other hand, in the case ofc.1/2
(c,1/2), the RS zero-mode spinor is localized aty50 (y
5L/2) @2#, which in turn corresponds toci.0 (ci,0) in our
model. One can see from the spinor mass matrix~31! that the
zero-mode wave function is monotonically increasing~de-
creasing! with respect to the indexi.

In this way, we have a 4D localization mechanism for t
spinor fields. Nonuniversal gauge couplings or nonuniver
masses give rise to a nonflat wave function for a chiral ma
less fermion. The latter option is not realized for vect
fields. Notice that the charge universality still holds in t
low-energy effective theory. That is, with any complicat
wave-function profiles, zero modes interact with a univer
value of the gauge coupling. This is because curved profi
of vector fields depend only on the gauge couplings.

C. Scalar

Finally we consider scalar fields. We may introduce tw
types of scalar fieldf i andw i in the fundamental and anti
fundamental representations of SU(n) i , respectively. In ad-
dition, for each type of scalar, there are two choices of theZ2

parity assignment in the continuum limit. This orbifoldin
procedure is incorporated by removingf1 or wN . The gauge
invariant mass and mixing terms forf andw are written as

L sm
f 52(

i 51

N

ua i8Qif i 112b i8v if i u22(
i 51

N

~giv ig i !
2uf i u2,

~32!
9-5
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L sm
w 52(

i 51

N

uā i8Qiw i2b̄ i8v i 11w i 11u22(
i 51

N

~giv i ḡ i !
2uw i u2,

~33!

wherea, b, andg are the dimensionless coupling constan
It is implicitly assumed that nonintroduced fields are app
priately removed in the sums. We have included the mix
mass terms up to the nearest-neighbor interactions. O
invariant terms such asuf if j u2 or terms containingQi cor-
respond to nonlocal interactions in 5D theories, and we
not consider these in this paper. Notice, however, that fo
supersymmetric case, these terms may be suppressed d
renormalizability and holomorphy of the superpotential.

The zero-mode eigenstates are given in the same form
that of the spinor shown in the previous section, replacina

andb by a8 andb8 (ā8 andb̄8). Therefore the ratioa8/b8

(ā8/b̄8) determines the zero-mode wave function.
Let us consider the continuum 5D limit. In what follow

we removewN , which corresponds to theZ2 assignment
f(1) and w(2). The 5D limit can be achieved by takin
the following choices of couplings:

a i85gi 11 , b i85gi~12ci8!, ~34!

ā i85gi 11 , b̄ i85gi 11~12 c̄i 118 !, ~35!

whereci8 and c̄i8 correspond to the bulk mass parameters
in the spinor case. Then the mass terms~32! and~33! for the
scalars take the following forms with the parametrizati
~12!:

L sm
f 52E

0

L/2

dyh2~y!@ u@]y1gvc8~y!#$ f ~y!f~x,y!%u2

1@gvg~y!#2u f ~y!f~x,y!u2#, ~36!

L sm
w 52E

0

L/2

dy f2~y!@ u@]y2gv c̄8~y!#$h~y!w~x,y!%u2

1@gvḡ~y!#2uh~y!w~x,y!u2#. ~37!

As a special case, we comparef and w with the scalar
fields in the RS space-time. The scalar Lagrangian on the
background is~see also the Appendix!

LRS
sca52E

0

L/2

dy @ u]mfu21ue2ky$]y1~12b!k%fu2

1~a14b2b2!k2e22kyufu2# ~38!

where the 4D kinetic term is canonically normalized, anda
and b are the bulk and boundary mass parameters, res
tively, defined in the Appendix@Eq. ~A3!#. By substituting
the RS limit in our model given by Eq.~9!, we find the
relations between the mass parameters in 4D and 5D:
04501
.
-
g
er

o
a
e to

as

s

S

c-

ci85~12b!
k

gv
, g i

25~a14b2b2!S k

gv D 2

~ for f!,

~39!

c̄i85~b22!
k

gv
, ḡ i

25~a14b2b2!S k

gv D 2

~ for w!.

~40!

D. Supersymmetry on warped background

In this subsection, we discuss 5D supersymmetry
warped backgrounds. Generally a supersymmetric the
may be obtained by relevant choices of couplings from
nonsupersymmetric theory. We here examine whether i
possible to construct supersymmetric 4D models which
scribe 5D supersymmetric ones on warped backgroun
This is a nontrivial check for the ability of our formalism t
properly describe 5D nature. In Ref.@3#, the 5D theory on the
AdS5 RS background was studied. There, supersymmetry
AdS5 geometry was identified and then the conditions on
mass parameters imposed by this type of supersymm
were derived~also given in the Appendix here!. As seen
below, these relations among mass parameters for AdS5 su-
persymmetry are indeed satisfied in our 4D formalism. T
fact seems remarkable in the sense that the present ana
do not include gravity.

First consider vector supermultiplets in 5D. The sca
fieldsQi and the gauge bosonsAm

i are extended to chiral an
vector superfields in 4D, respectively. Notice that the VE
that were discussed above,

~Qi !b
a5v i db

a , ~41!

are in the~baryonic! D-flat direction.
We start with the following 4D supersymmetric Lagran

ian:

L5 (
i 51

N21 E d2ud2ū Qi
†e(VQi1(

i 51

N
1

4gi
2E d2uWiWi1H.c. .

~42!

The bilinear terms of the component fields are written in
unitary gauge~we follow the conventions of@19#!:

1

2
~Di j Am

j ! t~DikAm
k !1

1

2
~Di !21

1

2
~Di j N

j !†~DikNk!

1~Di j
t Cj ! t~DikDk!2~Di j x

j !~Diklk!1H.c., ~43!

where we have rescaled (Am
i ,l i ,Di)→gi(Am

i ,l i ,Di) for ca-
nonical normalization of the kinetic terms. The mass mat
Di j is defined in Eq.~2!. The first term is nothing but Eq.~2!,
that is, the mass terms for vector fields. By also canonic
normalizing Ci and x i and integrating out the auxiliary
fields, we find the mass terms for the adjoint spinors a
scalar:

2x iDi j l
j1H.c.2

1

2
~Di j

t Cj ! t~Dik
t Ck!. ~44!
9-6
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These masses have the same forms as that of the vector
because we started from a supersymmetric theory. We
have a model withci50 for the spinors andc̄i85ḡ850 for
the scalar.~Note thatCi , which originate fromQi , haveZ2
odd parity.!

It is a nontrivial check to see whether the above m
terms satisfy the conditions for 5D AdS5 supersymmetry. We
find from the relations~30! and~40! that the mass terms fo
x andC imply

a524, b52, c5
1

2
. ~45!

Indeed, these relations are just those required by AdS5 su-
persymmetry@3#. In this way,5D vector supermultiplets on a
RS warped background are automatically derived from a
supersymmetric model on a flat background.

We also construct a 5D hypermultiplet in the warped ex
dimension starting from a 4D supersymmetric theory. In
der to have a hypermultiplet we introduce the chiral sup
fieldsf i andw i in the fundamental and antifundamental re
resentations of the SU(n) i gauge theory. In the following,wN
is removed to implementZ2 orbifolding which leaves a chi-
ral zero mode of the fundamental representation. The fer
onic components off i andw i then correspond toh i andc i ,
respectively, in Sec. II B. The generic renormalizable sup
potential is written as

W5 (
i 51

N21

~aiw
iQif

i 112biv iw
if i !. ~46!

This superpotential just leads to a spinor mass term of
form ~24!. In addition, the mass and mixing terms of th
scalarsf and w also have the same form as those of t
spinors:

2 (
i 51

N21

uaiQif i 111biv if i u2

2 (
i 51

N21

uai 21Qi 21w i 211biv iw i u2. ~47!

Supersymmetry induces equivalence between the boson
fermion mass matrices. In turn, this implies in our formu
tion given in the previous sections that the mass parame
are equal,ci5ci85 c̄i8 and alsog i5ḡ i50. Thus, there is
only one parameterc left. It is found from Eqs.~30!, ~39!,
and ~40! that if one take the continuum limit the relations

a5S c1
1

2D 2

24, b5
3

2
2c ~ for f!, ~48!

a5S c2
1

2D 2

24, b5
3

2
1c ~ for w!

~49!

are generated. These mass relations are exactly those
posed by supersymmetry on the AdS5 geometry@3#. Thus
hypermultiplets on the RS background are properly incor
rated in our formalism with a flat background. It may b
04501
eld
us

s

a
-
r-
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-
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interesting that the mass relation for vector multiplets is
one for chiral multiplets with Dirichlet boundary condition
~49! with c51/2. This value ofc is the limit of vanishing
bulk mass parameters.

It should be noticed that our analyses have been p
formed for generic warped backgrounds, including the
case as a special limit. We thus found that even in gen
warped backgrounds the conditions on the bulk mass par
eters required for 5D warped supersymmetry should be
same as for the RS case.

III. NUMERICAL EVALUATION

Here we perform a numerical study to confirm our form
lation of the curved extra dimension discussed in the pre
ous sections. We will also give a phenomenological appli
tion to the hierarchy among Yukawa couplings.

A. Spectrum and wave function

In the following, we consider the case that corresponds
the RS model in the continuum limit, as a good and sim
application. The gauge couplings and VEVs are specified
given in Sec. II:

RS: gi5g, v i5ve2ki/(gv). ~50!

The universal gauge coupling;gi5g implies that vector
zero modes have flat wave functions as shown in Eq.~4!.
The following is a summary of the mass terms for vario
spin fields, which were derived in the previous sections:

Lgm5
1

2
uD1/2Amu2, ~51!

Lf m52cDch1H.c., ~52!

L sm
f 52uD3/22bfu22uMfu2, ~53!

L sm
w 52uD2(3/22b)

† wu22uM†wu2.
~54!

The parametersb andc represent the bulk mass paramete
for scalars and spinors, respectively. The (N21)3N mass
matricesDx andM are defined as follows:

Dx5gS v1

�

vN21

D S 211vx 1

� �

211vx 1
D ,

~55!

M5Aa14b2b2
k

v S v1

�

vN21

D
3S 1 0

� �

1 0
D , ~56!
9-7
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FIG. 2. The mass eigenvalues and eigenvectors of the matrixD1/2 for vector fields in the caseskL/2p50.12, 1.2, and 12. We take th
total number of gauge groups asN5100. ~a!, ~c!, and~e! show the eigenvaluesmn

g for eachkL with the symbolss. The corresponding KK
mass spectrum of the continuum RS theory is also depicted by the dotted lines.~b!, ~d!, and~f! show the eigenvectorsUn

g( i ) for eachkL with
the symbols3, n, and h. The corresponding KK wave function of the continuum RS theory is also depicted by the lines. F
continuum cases, the horizontal axis isgvy. The wave functions plotted here are normalized by the zero-mode ones.
s
e

ond
e

s

of

.
es

KK
where

vx5S x2
1

2D k

gv
. ~57!

For supersymmetric cases, the mass matricesDx for bosons
and fermions take the same form and, moreover,M50, as
discussed previously.

We define the matricesUg, f ,s that diagonalize the mas
matrices for gauge, fermion, and scalar fields, respectiv
For example,Ug satisfies

Ug
†D1/2

T D1/2Ug5diag„~m0
g!2,~m1

g!2, . . . ,~mN21
g !2

…,
~58!
04501
ly.

wheremi
g are the mass eigenvalues which should corresp

to the KK spectrum of vector fields. In the following, we us
the notation

U j
g~ i ![~Ug! j 11

i , i 51, . . . ,N, j 50, . . . ,N21,
~59!

that is, the coefficients ofAm
i in the j th massive eigenstate

Ãm
j . In the continuum limit, this corresponds to the value

the wave function aty5 i /gv for the j th KK excited vector
field. Similar definitions are made for spinors and scalars

For vector fields, we illustrate the resultant eigenvalu
mn

g and eigenvectorsUn
g( i ) in Figs. 2~a!–2~f!. For compari-

son, we also show in the figures the wave functions and
9-8
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FIELD LOCALIZATION IN WARPED GAUGE THEORIES PHYSICAL REVIEW D67, 045019 ~2003!
mass eigenvalues of vector fields on the RS background.
found from the figures that our 4D model completely rep
duces the mode function profiles@Figs. 2~b!, 2~d!, and 2~f!#.
Localization becomes sharp askL increases; this situation i
similar to the continuum case. The warp-suppressed spe
of KK excited modes are also realized@Figs. 2~a!, 2~c!, and
2~e!#. For a largerN ~the number of gauge groups!, the
model leads to a spectrum more in agreement with the c
tinuous RS case. Note, however, that the localization profi
of wave functions can be seen even with a rather smallN. It
is interesting that even with a finite number of gauge gro
the massive modes have warp-suppressed spectra and
ization profiles in the index space of gauge theory.

For fermion fields, there is another interesting issue to
examined. It is the localization behavior via dependence
the mass parametersc, which was discussed in Sec. II B. W
show the c dependence of the zero-mode wave funct
U0

f ( i ) in Fig. 3. The figure indicates that the zero-mode wa
functions surely give the expected localization nature of
continuum RS limit@Eq. ~A13! in the Appendix#. We find
that the values of the wave functions are exponentially s
pressed at the tail of the localization profile even with a fin
number of gauge groups. The profiles of massive modes
also be reproduced.

B. Yukawa hierarchy from 4D

Now we apply our formulation to phenomenologic
problems in four dimensions. Let us use the localization
havior, which has been shown above, to obtain the Yuka
hierarchy. This issue has been studied in the 5D RS fra
work @3,5#. We consider a model corresponding to the~su-
persymmetric! standard model in the bulk. The Yukawa co
plings for quarks are given by

LYukawa5(
i 51

N

~~yu
ab! iqa

i Hu
i ub

i 1~yd
ab! iqa

i Hd
i db

i !1H.c.,

~60!

where q, u, and d denote the left-handed quarks and t
right-handed up and down quarks, respectively, anda,b are

FIG. 3. Typical behavior of the massless eigenvectorU0
f ( i ) for

fermions with mass parameterc ~denoted by the symbols3, n,
andh). The total number of gauge groups is taken asN5100. The
corresponding zero-mode wave functions in the continuum
theory are depicted by the lines. The casec51/2 is the conformal
limit where the massless mode is not localized.
04501
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the family indices. For simplicity, we study a supersymm
ric case and introduce two types of Higgs scalarsHu

i and
Hd

i . Then the mass parameters of the Higgs scalars sa
Eq. ~48! and they are denoted bycHu,d in the following.
Similarly, the quark behaviors are described by their m
parameterscq,u,d. We assume (yu,d

ab ) i;O(1). Generally, in
supersymmetric 5D models, Yukawa couplings such as
~60! are prohibited by 5D supersymmetry. However, sin
the present model is 4D, one may apply 5D-like results
Yukawa couplings without respecting 5D consistency. This
one of the benefits of our scheme.

We are now interested in the zero-mode part of Eq.~60!,
which generates the following mass terms:

LYukawa5Yu
abq̃a

0^H̃u
0&ũb

01Yd
abq̃a

0^H̃d
0&d̃b

0 1H.c., ~61!

where the fields with tildesq̃ j stand for thej th mass eigen-
state given byq̃ j5( i 51

N U j
q( i )qi ~similarly for u, d, and

Hu,d). The effective Yukawa couplings are

Yu
ab5yu

ab(
i 51

N

U0
Hu~ i !U0

qa~ i !U0
ub~ i !, ~62!

and similarly forYd . A typical behavior ofU0( i ) is shown in
Fig. 3 for several values of the bulk mass parameterc. In Fig.
4, we show the behaviors of the zero-mode Yukawa c
plings Yu,d against the quark mass parameters. Two limiti
cases withcHu,d50 and 1 are shown. The former corre
sponds to a bulk Higgs scalar localized aty5L/2 and the
latter to one aty50 in the continuum RS limit. From the
figures, we see that if there is aO(1) difference of mass ratio
among the generations, it generates a large hierarchy
tween Yukawa couplings. Combined with the mechanis
that control mass parameters discussed in the next sec
one obtains a hierarchy without symmetries within the fo
dimensional framework.

In the case ofcHu,d51, the Yukawa coupling depend
exponentially on the quark bulk mass parameterscq,u,d when
cq,u,d,0.5.3 This implies that ifcq,u,d exist in this region
one obtains the following form of the Yukawa matrices:

S lnaa lnab

lnba lnbb
D , ~63!

where their exponents satisfy

naa1nbb5nab1nba . ~64!

This form is similar to that obtained by the Froggatt-Niels
mechanism@15# with a U~1! symmetry. As an illustration, le
us take the following mass parameters:

3Similar behavior can be obtained forcHu,d.0.5. For cHu,d

.0.5, the Higgs scalars have a peak ati 51 (y50). This situation
is different from the one discussed in Ref.@5# where the Higgs field
is localized ati 5N (y5L/2).

S

9-9
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FIG. 4. The quark masscq ([cL) and cu,d ([cR) dependences of the zero-mode Yukawa couplingYab with kL/2p510.83 andN
520. The mass parameters of the Higgs scalarscHu,d are taken to be 0 in~a! and ~c!, and 1 in~b! and ~d!.
gy

t

n
w
e

w
s
ra
, w

c
uld

is
a-

ef.
ese

Vs
s on
po-
is

ty.
ies
pri-

med
ne

er-
e

cq1,2,35~0.36, 0.42, 1.00!,

cu1,2,35~0.36, 0.42, 1.00!, ~65!

cd1,2,35~0.42, 1.00, 1.00!,

cHu,d
51,

andN520 andkR510.83, which generates the low-ener
Yukawa matrices

Yu
ab.S l6 l5 l3

l5 l4 l2

l3 l2 1
D , Yd

ab.S l5 l3 l3

l4 l2 l2

l2 1 1
D , ~66!

wherel50.22. This pattern of quark mass textures leads
realistic quark masses and mixing angles@16# with a large
value of the ratio^H̃u

0&/^H̃d
0&. If the above analysis were

extended to SU~5! grand unified theory, realistic lepto
masses and mixing may be derived. Other forms of Yuka
matrices that may be realized by the Froggatt-Niels
mechanism are easily incorporated in our formulation.

For more complicated patterns of mass parameters,
could realize Yukawa matrices that are different from tho
derived from the Froggatt-Nielsen mechanism. In gene
off-diagonal entries tend to be rather suppressed, that is
have

naa1nbb<nab1nba ~67!
04501
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for the Yukawa matrix~63!. Such a form may lead to realisti
fermion masses and mixing angles. For example, one co
derive the Yukawa matrix

Yab.S 0 l4 0

l4 l3 l3

0 l3 1
D ~68!

if initial values of (y11) i are sufficiently suppressed. In th
case, the 232 submatrix for the second and third gener
tions does not satisfy Eq.~64!. The Yukawa matrix~68! may
be relevant to the down-quark sector, indeed studied in R
@17#. We do not pursue further systematic studies on th
types of Yukawa matrices in this paper.

IV. TOWARD DYNAMICAL REALIZATION

We have shown that 4D models with nonuniversal VE
and gauge and other couplings can describe 5D physic
curved backgrounds, including the RS model with an ex
nential warp factor. In the continuum 5D theory, this factor
derived as a solution of the equation of motion for gravi
On the other hand, in the 4D viewpoint, warped geometr
are generated by taking the couplings and VEVs as appro
ate forms. In the previous sections, we have just assu
their typical forms and examined its consequences. If o
could identify how to control these couplings by the und
lying dynamics, the resultant 4D theories turn out to provid
9-10
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attractive schemes to discuss low-energy physics such as
coupling constants.

First we consider the scalar VEVŝQi&5v i . A simple
way to dynamically control them is to introduce addition
strongly coupled gauge theories@9#. Consider the following
set of asymptotically free gauge theories:

Am
i : SU~n! i gauge field ~g,L!, ~69!

Âm
i : SU~m! i gauge field ~ ĝi ,L̂ i !, ~70!

whereL and L̂ i denote the dynamical scales. We have,
simplicity, assumed common values ofg and L for all
SU(n) i . In addition, two types of fermions are introduced

j i : ~n,m̄,1!, j̄ i : ~1,m,n̄!, ~71!

where their representations under SU(n) i3SU(m) i

3SU(n) i 11 gauge groups are shown in parentheses. IfL̂ i
@L, the SU(m) i theories are confined at a higher scale th
SU(n) i , and the fermion bilinear composite scalarsQi

;j i j̄ i appear. Their VEVsv i are given by the dynamica
scalesL̂ i of the SU(m) i gauge theories through a dime
sional transmutation as

^Qi&[v i.L̂ i5m e1/2b̂ĝi
2(m), ~72!

where b̂ is a universal one-loop gauge beta function
SU(m) i (b̂,0). The gauge couplingsĝi generally take dif-
ferent values and thus lead to different values ofv i . For
example, a linear dependence of 1/ĝi

2 on the indexi is am-
plified to an exponential behavior ofv i . That is,

1

ĝi
2~m!

522b̂S k

gv D i↔v i5ve2ki/gv, ~73!

which reproduces the bulk fields on the RS background
shown before. The index dependences of the gauge
plings are actually generic situations, and may also be c
trolled, for example, by some mechanism fixing dilatons
the radiatively induced kinetic terms discussed below. A
persymmetric extension of the above scenario is achie
with quantum-deformed moduli spaces@12#.

Another mechanism that dynamically induces nonuniv
sal VEVs is obtained in supersymmetric cases. Consider
gauge group) iU(1)i and the chiral superfieldsQi with
charges (11,21) under U(1)i3U(1)i 11. It is assumed tha
the scalar componentsqi of Qi develop their VEVs^qi&
5v i . TheD term of each U(1)i is given by

Di5e i1uqi u22uqi 21u21•••, ~74!

wheree i is the coefficient of the Fayet-Iliopoulos~FI! term,
and the ellipsis denotes contributions from other fie
charged under U(1)i , which are assumed not to have VEV
Given nonvanishing FI terms,e iÞ0, the D-flatness condi-
tions mean
04501
iny

l

r

n

r

s
u-
n-
r
-
d

r-
he

s

v i 21
2 5v i

21e i , ~75!

and nonuniversal VEVsv i are indeed realized. In this cas
the dynamical origin of nonuniversal VEVs is the nonva
ishing FI terms. These may be generated at the loop le
Furthermore, if the matter content is different for each gau
theory, thee i themselves have complicated forms.

Above, we supposed that the charges ofQi are (11,
21) under U(1)i3U(1)i 11. Alternatively, if Qi have
charges (M ,2M ) under U(1)i3U(1)i 11 and other matter
fields have integer charges, the gauge symmetry) iU(1)i is
broken to the product of a diagonal U~1! gauge symmetry
and the discrete gauge symmetry) i(ZM) i . Such discrete
gauge symmetry would be useful for phenomenology@18#.

Models with nonuniversal gauge couplingsgi are also in-
teresting in the sense that they can describe the localiza
of massless vector fields. A nonuniversality of gauge c
plings is generated, e.g., in the case that the SU(n) i gauge
theories have different matter content from each other. T
the radiative corrections to gauge couplings and th
renormalization-group running become nonuniversal, eve
their initial values are equal.

This fact is also applicable to the above-mention
mechanism for nonuniversalv i . Suppose that the SU(m) i
theory contains (2m1 i ) vectorlike quarks which decouple a

v. The gauge couplingsĝi(v) are then determined by

1

ĝi
2~v !

5
i

8p2
lnS L8

v D , ~76!

where we have assumed that the SU(m) i theories are
strongly coupled at a high-energy scaleL8 (.v). Tuning of
the relevant matter content thus generates the desired li
dependence of 1/ĝi

2 . With these radiatively induced cou
plings ~76! at hand, the VEVs are determined from Eq.~72!:

v i5vS v

L8
D i /2m

. ~77!

V. CONCLUSION

We have formulated 4D models that provide 5D fie
theories on generic warped backgrounds. The warped ge
etries are achieved with generic values of symmet
breaking VEVs, gauge couplings, and other couplings in
models. We focused on field localization behaviors along
index space of gauge theory~the fifth dimension in the con-
tinuum limit!, which is realized by taking relevant choices
the mass parameters.

As a good and simple application, we constructed
models corresponding to bulk field theories on the Ad5
Randall-Sundrum background. The localized wave functio
of massless modes are completely reproduced with a fi
number of gauge groups. In addition, the exponentially s
pressed spectrum of the KK modes is also generated. T
results imply that most properties of brane world models c
be obtained within 4D gauge theories. Supersymmetric
tensions were also investigated. In 5D warped models,
9-11
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bulk and boundary mass terms of spinors and scalars sa
complicated forms imposed by supersymmetry on the
background. However, we show in our formalism that the
forms of the mass terms are derived from a 4Dglobal super-
symmetric model on aflat background.

As an application of our 4D formulation, we derived h
erarchical forms of Yukawa couplings. The zero modes
scalars and spinors with different masses have diffe
wave-function profiles as in the 5D RS cases. Therefore
varying theO(1) mass parameters for each generation,
can obtain realistic Yukawa matrices with a large hierarc
from the overlaps of the wave functions in a purely 4
framework. Other phenomenological issues such as pro
stability, grand unified theory~GUT! symmetry breaking,
and supersymmetry breaking can also be discussed.

The conditions on the model parameters should be
plained by some dynamical mechanisms if one considers
models from a fully 4D viewpoint. One interesting way is
include additional strongly coupled gauge theories. In t
case, a smallO(1) difference between gauge couplings
converted to exponential profiles of symmetry-break
VEVs via dimensional transmutation, and indeed generat
warp factor of the RS model. A difference of gauge co
plings is achieved by, for example, the dynamics controll
dilatons, or radiative corrections to gauge couplings. Sup
symmetrizing models provide a mechanism for dynamica
realizing nonuniversal VEVs withD-flatness conditions.

Our formulation makes sense not only from the 4D poi
of view but also as a lattice-regularized 5D theory. In th
sense, effects such as the AdS/conformal field theory~CFT!
correspondence might be clearly seen with our formalism
another application, it can be applied to construct vario
types of curved backgrounds and bulk or boundary mas
For example, we discussed massless vector localization
varying the gauge couplingsgi . Furthermore, one migh
consider models in which some fields are charged under
some of the gauge groups. These seem not like bulk or b
fields, but ‘‘quasibulk’’ fields. Applications including thes
phenomena will be studied elsewhere.
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APPENDIX: BULK FIELDS IN AdS 5

Here we briefly review the field theory on a RS bac
ground, following Ref.@3#. One of the original motivations
for introducing a warped extra dimension by Randall a
Sundrum is to provide the weak Planck mass hierarchy
the exponential factor in the space-time metric. This facto
called the ‘‘warp factor,’’ and the bulk space a ‘‘warped ext
dimension.’’ Such a nonfactorizable geometry with a wa
factor distinguishes the RS brane world from others.

Consider the fifth dimensiony compactified on an orbi-
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fold S1/Z2 with radiusR and two three-branes at the orbifo
fixed pointsy50 andy5L/2[pR. The Einstein equation
for this five-dimensional setup leads to the solution@1#

ds25e22shmndxmdxn2dy2, s5kuyu, ~A1!

wherek is a constant with mass dimension 1. Let us stud
vector fieldAM , a Dirac fermionC, and a complex scalarf
in the bulk specified by the background metric~A1!. The 5D
action is given by

S55E d4xE
0

pR

dyA2g F 21

4g5
2

FMN
2 1u]Mfu21 i C̄gMDMC

2mf
2 ufu22mCC̄CG , ~A2!

where gM5(gm ,ig5) and the covariant derivative isDM
5]M1GM where GM is the spin connection given byGm
5 ig5gms8/2 andG450. From the transformation propertie
underZ2 parity, the mass parameters of scalar and ferm
fields are parametrized as4

mf
2 5ak21

b

2
s9, ~A3!

mC5cs8, ~A4!

wherea,b, andc are dimensionless parameters.
Referring to@3#, the vector, scalar, and spinor fields a

cited together using the single notationF
5$Am ,f,e22sCL,R%. The KK mode expansion is performe
as

F~xm,y!5
1

A2pR
(
n50

`

F (n)~xm! f n~y!. ~A5!

By solving the equations of motion, the eigenfunctionf n is
given by

f n~y!5
ess/2

Nn
FJaS mn

k
esD1ba~mn!YaS mn

k
esD G , ~A6!

where a5A(s/2)21MF
2 /k2, s5$2, 4, 1%, and MF

2

5$0,ak2,c(c61)k2% for each component inF. Nn is the
normalization factor andJa andYa are the Bessel functions
The corresponding KK spectrummn is obtained by solving

4In Ref. @3#, the integral range with respect toy is taken as
2pR<y<pR. Here we adopt 0<y<pR, and then the boundary
mass parameterb in Eq. ~A3! is different from that in Ref.@3# by
the factor 1/2.
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ba~mn!5ba~mnepkR!. ~A7!

A supersymmetric extension of this scenario was d
cussed in@3,4#. The on-shell field content of a vector supe
multiplet is (AM ,l i ,S) whereAM , l i( i 51,2), andS are
the vector, two Majorana spinors, and a real scalar in
adjoint representation, respectively. Also a hypermultip
consists of (Hi ,C), whereHi( i 51,2) are two complex sca
lars andC is a Dirac fermion. By requiring the action~A2!
to be invariant under supersymmetric transformation on
warped background, one finds that the five-dimensio
masses of the scalar and spinor fields have to satisfy

mS
2 524k212s9, ~A8!

ml5
1

2
s8, ~A9!

mH1,2
2

5S c26c2
15

4 D k21S 3

2
7cDs9,

~A10!

mC5cs8, ~A11!

where c remains as an arbitrary dimensionless parame
That is,a524, b52, andc51/2 for vector multiplets and
-

J.
,

ss

E

ev

. D

04501
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e
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a5c26c215/4 andb53/27c for hypermultiplets. There is
no freedom to choose the bulk masses for vector superm
tiplets and only one freedom parametrized byc for the bulk
hypermultiplets. It should be noted that in warped 5D mod
fields contained in the same supermultiplet have differ
bulk and boundary masses. That is in contrast with the
case.

TheZ2 even components in supermultiplets have mass
modes with the following wave functions:

1

A2pR
for Vm

(0) and lL
1 (0) , ~A12!

e(1/22c)s

N0A2pR
for H1 (0) and CL

(0) . ~A13!

The subscriptL means the left-handed (Z2 even! component.
The massless vector multiplet has a flat wave function in
extra dimension. On the other hand, the wave function
massless chiral multiplets involves ay-dependent contribu-
tion from the space-time metric, which induces a localizat
of the zero modes. The zero modes with massesc.1/2 and
c,1/2 localize aty50 andy5pR, respectively. The case
with c51/2 corresponds to the conformal limit where th
kinetic terms of the zero modes are independent ofy.
i,

s.
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