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Interaction of global and local monopoles
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We study the direct interaction between global and local monopoles. While in two previous papers the
coupling between the two sectors was only “indirect” through the coupling to gravity, we here introduce a new
term in the potential that couples the Goldstone field and the Higgs field directly. We investigate the influence
of this term in curved space and compare it to the results obtained previously.
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[. INTRODUCTION extra interaction is implemented by adding to the potential a
gauge invariant term as follows:

Magnetic monopoles have raised a lot of interest since \
their first constructl_on by Dira€l]. Wh_lle the_D|ra‘c mono- Va( 2, x?) = _3(¢a¢a_ ni)(XaXa_ 773)_ (1)
pole has a singularity, the so-called Dirac string, ‘t Hooft and 2
Polyakov[2] came up with the construction of a particlelike
magnetic monopole in the $B) Yang-Mills-Higgs (YMH)
theory with a triplet Higgs scalar. The magnetic charge o
this object results from the topological properties of the so
lution and is directly proportional to the degree of the map
from space-time infinity to the vacuum manifold of the
theory. Minimal coupling of the S(2) YMH model to grav-

Here, we are mainly interested in the analysis of the criti-
al behavior of the composite system considering now the
‘most general, gauge invariant potential. Because of the high
nonlinearity of the set of coupled differential equation, an
analytical analysis becomes impossible and only a numerical
analysis can provide the results.

ity leads(for suitable choice of the boundary conditiprie This paper is organized as follows. In Se_c. Il we descf'be
our model and the ansatz. In Sec. lll, we give the equations

globally regular gravitating monopol¢8-—6] which exist up of motion, the boundary conditions and the analysis of the

to a maximal value of the gravitational coupling. For higher . . A ;
values of that coupling, thg Schwarzschildprad?us of thge sodsymptotic behavior of the Goldstone and Higgs field func-

lution becomes larger than the radius of the monopole cordions: We present our numerical results in Sec. IV and de-

Considering only the theory with a scalar Goldstone ﬁeldScribe how the _extra terr(d) i.” the pote'ntial provides new ,
leads to a different type of topological defddt], the so- results concerning the behavior of the fields near the defect's
called global monopole. Like all global defects, this has in-\(;\(l)re ";S well as concertnmg tf(]je effe(;;tlve mafstshof the systert];].
finite energy resulting from the 17 falloff of the energy € ODSEIVE, €.g., a strong dependence of the mass on the

density. Coupling to gravity8,9] leads to the observation coupling constank . We give our conclusions in Sec. V.
that the effective mass of the system becomes negative.
Recently, a self-gravitating magnetic monopole in the IIl. THE EXTENDED MODEL

space-time of a global monopole has been considered This model is described by the following action which is

[10,11. In both papers the potential is the sum of the Higgs.omposed of the action for the gravitating global monopole
potential and the analog Goldstone field potential. Thus, the 4 the action of the gravitating local monopole:
interaction between the global Goldstone field and the local
Higgs field is only indirect, namely, through the coupling to
grg\?ity. g g ’ P S:SG+Ssz EG\/__gd4X+f LaV—gd*x, (2
Considering the composite topological defect, the effec-
tive mass was found to be positive or negative, depending owith the gravity LagrangiarCg,
the coupling constants of the model.
In this paper, we continue the investigation of this system, 1
allowing a direct interaction between the matter fields. This £G=167TG R )

and G denotes Newton’s constant.
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Ly=— %szpw,a_ %(DM&)(D"(ﬁa) — %((;an)(auxa) The ansatz for the global _Goldston_e fiedd, th_e Higgs field
¢? and the gauge flelé\i in Cartesian coordinates reads

—V(¢%x?), 4
3(x)=n:h(r)x2, 13
with covariant derivative of the Higgs field P =m:h(r) 13
a — La
D,ud’a: a#(ﬁa_efabcAquc’ (5) XA(X) = n.f(r)x?%, (14)
] ~. 1=u(r)
field strength tensor AZ(X) = €ig X o (15)
Fiv=uAL— 3,A— eeap ALAT, 6
and
and e being the gauge coupling constant. The potential a
V(43,x?) is given by 0(x)=0. (16)
Ay by N2 ) Substituting the above configurations into the matter La-
V(¢ x%) = (%%~ 771)2+Z(Xaxa— 75)? grangian density, we obtain
)\3 _ * 2
+?(¢a¢a_ 7li)()(a)(a_ 77%)’ (7) EM_ 477J1) drr A[NIC(f,h,u)-i—Z/l(f,h,u)], (17)

where the third term on the right hand side couples the twavhere
sectors directly to each other with coupling constent A ;,

o denpte the self-qoupling gonstants of the Higgs and Qold- K(f,h,u)= 1 ﬂi(f')2+i7li(h’)2+ (u )2, s
stone field, respectively, while,, 7, are the corresponding 2 2 e’r?
vacuum expectation values.
The potential7) has different properties according to the and
sign of A=\;\,—\3. For A>0, the potential has positive , , .
values and its minima are attained #f= 72, x2= 75, for fhu)— (u>~1)2  7iu?h? 72 A7) 212
which Eq.(7) is obviously zero. FoA <0, these configura- Ut.h.w= 2e2r4 r2 r2 T (h"=1)
tions become saddle points and two minima occur for . .
N N
L, o n, #2812 q)? R (- 1) (12— ).
$a=0, Xa=m2t5_m )

’ (19

and The prime denotes the derivative with respect.to
The gravity LagrangiarCg is given by
2 2_ 2, Ny
Xa=0, ¢5= 772+)\_3772- 9 1 (e
£G=£f drr(N=21)A". (20
The potential’s values for these extrema are, respectively, 0
1 > IIl. EQUATIONS OF MOTION
Vin= oA, V=g A 10 ©
1 2

Varying Eq.(2) with respect to the matter fields and gravi-
tational fields and introducing the dimensionless variable

which are negative sinca<0. and dimensionless mass functigix),

The ansatz x=enr, w(x)=enm(r), (21)

The ansatz for the metric tensor in Schwarzschild-like co- e obtain the following set of differential equations:
ordinates reads W I wing i ial equations:

ds?=—AANN(NE+N- (Ndr+r2desingtde?), L) aa N9 aor gz g2) 1 x2gihe— 1)1,
(11 dx dx
(22
where we define for later convenience the mass function
m(r) as follows: dh 5
Ix x2AN& =A[2uh+x%B5(h?—1)h
2m(r)
_ 2~2
N(r)y=1-2«a q _T. (12) +X2,8§h(f2—q2)], (23)
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d du u(u—1) behavior.of the functionS(x) andh(g). Two different types
ax ANd— = —2+uh2 , (24)  of behavior for the function§andh in flat space seem pos-
X X X sible. Either
d — A 1 :
T XAN)=[1-2a*x*U]A, (25) h(x)=1+—+0 —3), A:#,
X X B2B1— B3
with
0= q+ = +0 1) B i
X)=q+ — ~|, B=—————,
O e R S S e )
T e e atT TR @
2 or
+&(h2—1)(f2—q2) (26)
2 ' h(x) =1+ Ciexp(p1x) + Coexp(— p1X) + Czexp(poX)
and + C expl— paoX),
dA — f(x)=q+ C1exp( p1X) + Coexp — p1X) + CaexXp( p,X)
&=2a2AxK, 27 (x)=q i 18Xp(p1 26Xp(—py 3€Xp(p2
+Caexp — poX), (34)
with wherep?, p3 are the eigenvalues of the matrix
_ 1(/df\? 1({dh\* 1 du)? 2 2
=z<d—x) *z(ﬂ T(&) - ( g qfi)- 35
aB; q°pB;
The equations only depend on the dimensionless couplingur numerical analysis strongly suggests the following re-
constants sults: ForB2B5— B3>0, the solutions obey the asymptotic
. behavior(33) for f andh; for B2B82— B2<0, the functions
2 __ 2 2__ 2 _ _ 172 3
a’=4nGny, pi=Nile, 1=123, q=mn/m;. andh have the asymptotic behavi¢84). In this case, how-

(29 ever, one of the eigenvalues of E®5) becomes negative,

With the definition(12), Eq. (25) can be brought to the form consequgntly its square rc_)ot ?S complex and the functighs
thus oscillate. This behavior is clearly observed when we set

q° B1=0, B,#0 and increas@; from 0. ForB3;=0, the solu-
' = ax? K+lu-=1 ) (30) tions exist andf,h increase monotonically, as soon 8g
X2 #0, however, oscillations occur.
The finite energy of the solution can then be obtained by IV. NUMERICAL RESULTS

taking the value ofu(x) at infinity.
Because of the reasons given previously, we restrict our

analysis in the following to the caggfB5— 83>0.
. . ) The limit 83=0 was studied in detail if10,11]. Here we
The boundary conditions at the origin which follow from yiscyss how the new term influences the behavior of the
the requirement of regularity read solutions. One of the main features is that the Higgs function
—0)— —0) = —0)— —0) — h(x) does not reach its asymptotic valaéx=«>)=1 mono-
u(x=0)=1, f(x=0)=0, h(x=0)=0, x=0)=0. X ; :
( ) ( ) ( ) 2 ) (31) tonically. It first reaches a maximuim,,,,>1 for x<<ec and
then decreases to 1. This phenomenon, which can be ex-
In fact, the behavior of the function(x) near the origin is Pected from the inspection of E¢33) since A>0 for B3
w(X)~— a?g?x. The requirement of finite energy solutions # 0, is illustrated in Fig. 1. This is different from the phe-

A. Boundary conditions

leads to nomena observed i10,11. There, for all values of the cou-
pling constants, the functiam(x) was observed to be mono-
f(x=2)=q, h(x=9%)=1, u(x=%)=0, tonically increasing from 0 to 1 as indicated in Fig. 1 for

B3=0. The Goldstone field functionf(x) reaches its

N(x=0)=1-2a%qg° (32 asymptotic valuey for increasing values of the coordinate

when B3 is increasing. This again can be explained by Eq.

(33) since the valud is a decreasing function g8, with a

sharp drop atB3~1. Thus, the functiorf(x) decays less
The integration of the equations for generic values of thestrong for higher values g8s.

parameters needs a better understanding of the asymptotic At the same time, the minimum of the metric functibin

B. Asymptotic behavior
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FIG. 1. The metric function®, w, the Higgs field functiorh
and the Goldstone field functiohare shown as functions of the
dimensionless variabbefor q=0.4, «=0.6, 8,=B,=1, and three
different values of;.

T N
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3 ° B,=B,=1
(%]
©
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FIG. 2. The mass in units of#», /e is shown as a function of
B5 for three different combinations of the coupling constantand
g and forB,=pB,=1.

havior of the solution and checked that, like for the case

decreases with increasingg, while the matter functionu
reaches a maximum at roughly the saxra which the func-
tion N attains its minimum and then drops down to its
asymptotic value which determines the mass of the solution
Clearly, for B3=0, this asymptotic value is positive, while

B3=0, the solution bifurcates into a black hole for a finite
value of @, say «=a.. As demonstrated in Fig. 3 fg8,
=pB,=1, q=0.4 and B3=0.8, the functionN develops a
minimum which becomes deeper whideincreases and be-
¢omes zero fow= a. The limiting solution thus represents

for increasing B3, it decreases and becomes negative for
large enoughBs. 0.8
Another feature of the new term is that, for all parameters

but 85 fixed, the classical mass of the solution decreases.7 4

when B3 increases. This is illustrated by means of Fig. 2
where we have plotted the evolution of the mass as a func-o_6 |
tion of B; for three different combinations of the coupling
constantsy,q. Forq=1.0, «=0.4, the mass of the solution
is already negative foB;= 0 indicating that the influence of
the global monopole is already dominating in the limit of
vanishing direct interaction of the Higgs field and Goldstone 0.4
field. For smallerg, the mass becomes negative at some fi-
nite value,83=ﬂg. For fixedq, this value is increasing for
decreasingy. Since the local and global monopole are still
“indirectly” coupled over gravity, a stronger gravitational
coupling, of course, couples the two objects in a strongero'2 I
way. For small gravitational couplingd; thus has to be

raised further to make the influence of the global monopole0.1
dominating. When the combinatio?s5— 83 becomes
negative, the mass of the solution reaches, independent

0.5

0.3

0.0

q=04 y BI:B2=1

of the combination ofj and «. This again can be related to
the fact that we observe that the solutions become oscillating

for B3B3 —B3<0.

0.5

1.1 1.2

We also studied the way the solution bifurcates into a FIG. 3. The mass in units of#7, /e and the minimunN,, of
black hole when the parametearincreases while the others the metric functionN(x) are shown as a function af for 8;=0
are fixed. Fixingg=0.4, we have analyzed the critical be- and 8;=0.8, respectively, and=0.4, 8,=8,=1.
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V. CONCLUSIONS

Se——

In this paper we have analyzed the composite system of a
global and a local gravitating monopole considering the most
general gauge-invariant potential. This potential contains a
direct interaction between the Goldstone and the Higgs field.
This term leads to important consequences concerning the
local behavior of the fields themselves as well as concerning
the global properties of the system. One of the most relevant
consequences is related to the effective mass associated with
the composite topological defect. The numerical results show
L a strong dependence of this mass on the coupling constant
\3. Although the Goldstone and Higgs fields are indirectly
coupled through gravity, the extra direct interaction is more
effective. Increasing the parameteg, the mass becomes
negative, indicating the dominance of the global sector over
the local one. Compared to the results of thge=0 case
[10,11], we observe the modulus of the negative mass to
become very large in our system. Another point which de-
serves to be mentioned is that the extra direct interaction
0.01 0.1 1 10 term is not positive definite. Denoting bxy— ; the value ofx

X for which the Higgs field functiorh is equal to oneh be-
comes bigger than one far>x;,-, and the new term in the
potential becomes negative. However, for a particular choice
of the self-coupling constants such that they fulfill
an extremal black hole solution with horizaq. In Fig. 3, =MA\2—\3>0, the total potential is positive, vanishing
we also show the evolution of the mass with Finally, the  only at the minimag2= 73, x2=175.
critical solution corresponding t8;=0.8 anda.~1.085 is As possible extensions of the model studied here, let us
displayed in Fig. 4. This figure clearly suggests that the lim-mention the coupling to a scalar dilaton which arises natu-
iting solution is not an Abelian black hole for>x;,, like, rally in low energy effective actions of string theory. The
e.g., in the case of the pure local monopf#é where the gravitating local monopole was studied recently coupled to a
solutions bifurcate with the branch of Reissner-Nordstro dilaton [12] and it was found that in the limit of critical
(RN) solutions and consequently the functions reach theigravitational coupling, the solutions bifurcate with the
RN values forx>Xx,,. Here, the functioffiis equal to zero for branch of extremal Einstein-Maxwell-dilaton solutions
0=x=xy, and nontrivial forx,=<x=<x,. Similarly, the func-  which are associated with naked singularities. It would be
tions A andh are nontrivial forx<x, and are equal to their interesting to see what sort of critical solution the composite
asymptotic values fox>X,, while the gauge field function =~ system of a global and local monopole reaches since our
reaches its asymptotic value far=x; . This solution thus analysis indicates that the behavior of the functions close to
represents a “black hole inside a global monopole” as waghe core of the local monopole is strongly influenced by the

q=04,0=1.08,
B,=B,=1, ;=08

FIG. 4. The profiles of the functiond,A,u,f,h are shown for
amaC:l.OB, ,B]_:,BZZ 1, ﬁ3:0.8, andq:04

observed previously for th8;=0 limit [11].

global monopole.
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