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Finite temperature induced fermion number for quarks in a chiral field
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We compute the finite temperature correction to the induced fermion number for fermions coupled to a static
SU(2) chiral background, using the derivative expansion technique. At zero temperature the induced fermion
number is topological, being the winding number of the chiral background. At finite temperature, however,
higher order terms in the derivative expansion give nontopological corrections to the winding number. We use
this result to show that the standard cancellation of the fractional parts of the fermion number inside and
outside the bag in an SP) x SU(2) hybrid chiral bag model of the nucleon does not occur at nonzero

temperature.
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[. INTRODUCTION logical zero temperature contribution to the fermion number

corresponds to the virtual dipole pairs of vacuum polariza-

When second quantized fermions interact with a classicaiion, which do not live long enough to thermalize. The non-
background field with a nontrivial topologge.g, solitons, topol%]ical finite temperature corrections correspond to the
vortices, monopoles, Skyrmions, etthe resulting quantum realqq pairs in the thermal plasma which are sensitive to the
states of the system can possess fractional eigenvalues. Thistails of the single particle spectrum.
intriguing phenomenon, known as fermion number fraction- This paper is organized as follows. In Sec. Il, we define
ization, has applications ranging from particle, nuclear andhe finite T induced fermion number and review why it is
atomic physics to condensed matter syst¢is8|. At zero  generically nontopological. In Sec. Il we use the derivative
temperature, the fermion number of the vacuum is a topoexpansion to compute higher ordérdependent corrections
logical quantity(up to spectral flow effecisand is related to to the winding number of the chiral field. As a nontrivial
the spectral asymmetry of the relevant Dirac operator, whicltheck we show that it vanishes in tiie-0 limit. We con-
counts the difference between the number of positive andlude in Sec. IV and discuss the implications of the existence
negative energy states of the fermion spectrum. Rigorousf nontopologicall dependent corrections for the hybrid chi-
mathematical results, such as index theorems and Levinsonfal bag model for the nucleon.
theorem, show that the fractional part of the vacuum fermion
number is a topological invariant; i.e., it depends only onthe  ||. FINITE TEMPERATURE INDUCED FERMION
asymptotic values of the background field, and is invariant NUMBER
under local deformations of the backgrouf@9—-11. This . ) ) )
topological character of the fermion number is important for ~ The induced fermion number is an expectation value of
various applications in model field theories, such as solitothe second quantized fermion number operatd,
models for the nucleon since it allows the fermion number to=z/dx[W',¥]. For a given static classical background
be kept fixed in a variational calculation that minimizes thefield configuration, the second quantized fermion field opera-
energy[12—14. However, at finite temperature, the inducedtor ¥ can be expanded in a complete set of states of the
fermion number is generically nontopological, and moreovessingle particle Dirac Hamiltoniahl. At zero temperature, the
is not a sharp observabl@5—18. Several explicit examples fermion number is a vacuum expectation valddl),
of finite temperature fermion number in kifik5,19, sigma  =(0|N|0), and by a standard Fock space calculafiéhis
model[15,17] and monopold15,20,2] backgrounds have related to the spectral asymmetry of the Dirac Hamiltonian
been analyzed in detail. In this paper, we compute the finite
temperature nontopological corrections to the induced fer-
mion number for a (3-1) dimensional S(2) chiral back-
ground, and show explicitly that the finite temperature cor-

L ) 1 e
rection is nontopological. f dEo(E)sgr(E). e

1
(N)o=— E(spectral asymmety

The model of second quantized fermions chirally coupled 2
to classical, heavy scalar and pseudoscalar fields has appli-
cations in particle and nuclear physics, where it is used iHereo(E) is the spectral function, or density of states, of the
models to describe the low energy spectrum of QCD such aBirac HamiltonianH:
in chiral quark soliton models of hadrof$2,22,23 and in
the hybrid chiral bag model of the nucle¢®,13]. At zero
temperature, the induced fermion number of fermions inter-
acting with a static chiral field coincides with the winding
number of the field, and this result may be interpreted inThus the fermion number of the vacuuiiN), is essentially
terms of a topological current density. Physically, the topo-the difference between the number of positive and negative
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energy states of the Dirac spectrum. When fermions interadaetails of the spectrum. The finite temperature induced fer-
with topologically nontrivial backgroundsolitons, vortices, mion numberand the rms fluctuations of the fermion num-
monopoles, skyrmionsor are constrained by certain bound- ber have been computed for sigma model backgrounds in
ary conditions(e.g., in the chiral bagthe spectral asymme- (1+1) and (2+1) dimensiong15-18. In this paper we
try can be nonintegral, because of distortions in the Dirac seeonsider second quantized fermions chirally coupled to an

[4-6]. SU(2) background in (3-1) dimensions.
At nonzero temperaturd, the induced fermion number is
a thermalexpectation value: IIl. INDUCED FERMION NUMBER IN A CHIRAL FIELD
Tr(e—BH N) A. The model
(N)r= Tr (e #") Consider an isodoublet of fermions interacting in an

SU(2), X SU(2) chiral invariant way with a classical, static
chiral background in (3-1) dimensions

=— % deU(E)tanl‘(ﬂz—E)

where =1/T. This finite temperature expressidB) re- — — L.

duces smoothly to the zero temperature expresdipim the =i1Wy*o, ¥ —m¥expiyst ¢)¥. (6)
zero temperature limiB—o. The expressiori3) also em- . _ L .

phasizes that the role of the temperature is simply to detetH€re o is a scalar field andr is a triplet of pseudoscalar
mine the probability of each single-particle energy level be-Goldstone(pion) fields. The Pauli matrices;, are the gen-
ing occupied. The finite temperature induced fermionerators of SW2), andm is the mass scale in the theory. The

number(N)+ splits naturally into a zero temperature piece packground fieldsd, ) are constrained to lie on the “chiral
(N)o, given by Eq.(1) and a temperature dependent COMMEC-3 gphere,” o2+ 7- m=m?, and thus they can be param-

L=iVy g, V=V (o+iysr m)W

tion etrized by a unitary matrixJ as
<N>T:<N>0+f dEo(E)sgn(E)n(|E|). 4 U=exp(i7 ¢)= i(o'-}—i;"’;'). 7
e m
Heren(E) is the Fermi-Dirac distribution function Thus
1 o=mcos|d|)
n(gE)= 5
(B) Pt 1 ) ) o
m=msin(|¢|) 7 8

and we have used the simple identity tgBiER)=1 . o .

—2n(E). Thus the temperature enters only in the secondvhere thg hat dgnotes_ a unit vector in isospin space. The

term of Eq.(4) via the Fermi-Dirac distributiom(E). While model(6) is used in various quark-soliton models of baryons

(N), is topological, the finite temperature correction to theWherein the baryon is described as a bound state with the

induced fermion number, being dependent on the Fermfluarks trapped by the soll_ton of thg c_IaSS|9aI chwal_ﬂeld

weighting factorn(|E|), is more sensitive to the details of [12,22. The model(6) also finds applications in extensions

the fermion spectrum, which in turn depends on the precis@' the MIT bag model of the nucleon, to incorporate chiral

shape of the background field. Therefore, the generic situYMMetry; in these “hybrid” chiral bag model§3,13],

tion is that the finite temperature correction is nontopologi-duarks confined inside a boundary are chirally coupled to

cal. However, in certain special cases, when the backgrourgfalar and pseudoscalar fieldsesons at the bag boundary

is such that the Dirac Hamiltonian has a quantum mechanicdYith appropriate boundary conditions to maintain continuity

SUSY, then the odd part of the spectral functiof)  ©Of the axial vector current. ,

[which is what is needed in E¢4)] is itself topological, and At zero temperature, the induced fermion number for the

therefore the finite temperature correction is also topological®del (6) can be computed using the derivative expansion

even though it is temperature dependent. The simplest casichnique and is given byp,6,22,24

where this happens are for a kink background i 11 di-

mensiong 15,19, or for a monopole backgrouri@0,21]. _
oo : . . (N)op=

The physical interpretation of the separation in Et.is

the following [15]. The zero temperature fermion number

(N)q represents the vacuum polarization of the fermions inThus, the zero temperature induced fermion number is sim-

the presence of the background; it is temperature indepemply the winding number of the group elemebt(x). The

dent because the virtual dipoles do not live long enough tavinding number is a topological invariant, determined by the

come to thermal equilibrium. The temperature dependenasymptotic behavior obJ(x). Invoking Lorentz invariance,

correction corresponds to the plasma response of the systetime topological charge densitshe integrand ofN),) can be

in the presence of the background and is thus sensitive to thaterpreted as the zeroth component of a current density

1
2472

fd3x6iikTr(aiuuTajUUTakuuT). 9)
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1 rarely be solved exactly, especially in higher dimensions. In
B.= €., T1(9"UUTPUUT"UUT).  (10)  this paper we use the derivative expansion to obtain an ap-
24w proximate expression fdR(z).

(ii) Insert the resulting expression f&(z) into Eq. (12
to obtain an expression fgN)t either as an integral, or as a
sum over the Matsubara frequencis

We stress that these two steps are independent. In particu-

rections involving higher order derivatives of the fieltl lar, the derivative expansion calculation has nothing to do
However, these higher derivative corrections are total derlva\;\,ith the temperature—it is simply a means to obtain ap-

tives and thus dq not contribute to an integrated quant'%roximate information about the spectral properties of the
such as the fermion numbéN), [5,22]. At nonzero tem-

. . e . . Hamiltonian in the presence of the static background.
perature, experience with similar models in lower dimen-

) . X In the derivative expansion approximati¢®,24,2§ one
sions[16,1§ suggests that the fermion number density B j55mes that derivatives of the background fi¢iere the
receives higher order derivative corrections thatrarttotal

C : ; . .. chiral fieldU) are much smaller than the mass saalm the
derivatives and that are nontopological. This expectation W'”[heory

be confirmed by an explicit calculation in the next Sec. for
the (3+ 1)-dimensional chiral quark modé&). This appear-

ance of nontopological corrections at finite temperature is
completely consistent with the fact that the Dirac Hamil- gince we are considering a static background configuration
tonian for this system has no quantum mechanical SUSY,

) ~<'all these derivatives are spatial derivatives. So the back-
Indeed, numerical resulfd2,29 for the spectrum of fermi- 6104 field is assumed to be approximately constant on the
ons in the background of an $2) chiral field U, in the

length scale of the fermion Compton wavelength. First, note

“hedgehog” ansatz, show that the quark energy levels argyat 1o computgN); we need theodd part of the spectral
highly sensitive to the shag@ particular, the length scale density o(E), or equivalently theevenpart (in z) of the

of the hedgehog profile function. By the arguments of theresolventR(z). The even part of the resolveftl) can be
previous section, this means that the finite temperature COliritten as

rections in Eq.(4) are necessarily nontopological.

This current B, is often called a topological current because
it is conservedgd,B#=0, without use of the equations of
motion. In fact, the current density Bin Eq. (10) has cor-

|VU|<m. (13

=Tr

even

H

) . (14)

B. The derivative expansion calculation [Tr( m) >
- H -z

To calculate the induced fermion number at nonzero tem-

perature we use thie prescription in the spectral densit®  our strategy is to develop a systematic derivative expansion

to rewrite (N)1 as a contour integral using the Dirac resol- for this even part of the resolvent. From the Lagrang@in

vent the corresponding Dirac Hamiltonian for the fermions in the

1 chiral backgroundJ is

R(z)ETr( —) (11 Lo - o

H-z H=—il ®9°y-V+mcog|é|)l ® y°+imr- 7
Here z is an arbitrary complex number, amtlis the single ® y°y5sin(|<f>|)
particle Dirac Hamiltonian corresponding to E®) in the

fermion sector. Thus _ m
=—il®cled s+ =[(U+UNH ool
(N) lj dZT( L) r('gz) (12 i
=——| —Tr| ——|tanh —
™ 2)¢2m \H-z 2 +i(U-UNhed?sl] (15

whereC is the contour ->+ie,+>+i€) and (+*—ie,  where we have used the definitiof® and (8) and| is the
—»—jie€) in the complex energy plane. For a Hermitian 2x 2 identity matrix. The first term is the kinetic energy of
HamiltonianH, the poles and branch cuts of the resolvent liethe fermions, the second is the chiral invariant fermion-
on the real axis. On the other hand, the Matsubara pgles meson interaction. We choose the gamma matrix convention
=(2n+1)i#T of the tanhBz/2) function lie on the imagi- as in[6]: Y’=c%21,y =ic?®¢',y*=0c'®1. The square of
nary axis. Thus we have two equivalent representations fothe Hamiltonian(15) is

(N)1: deforming the contou€ around the poles and cuts of

R(z) leads to an integral representation, and deforntng ) s, o, Mo N 3

around the discrete, leads to a summation representation. H*=1®1a1(=Vo+m)+ E['(aiu_‘?iu L atly

The integral representation is just the familiar Sommerfeld-

Watson transform of the summation representation. Thus the —(U+aUNed’®0']
computational strategy is:
(i) Obtain an expression for the Dirac resolv&{iz). In EH§+V (16)

most cases this requires an approximation since the Dirac
equation in the presence of complicated backgrounds cawhere the interaction terid is
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m . ‘ A
V= i[l(o'*iU—ﬂiUT)®03®cf'—((9iU+r7iUT)®a'2®a"]

17
andH3=(—V2+m?) is the square of the free Dirac Hamil-
tonian. SinceV involves one factor ofn and one derivative
of U, it is small compared to the natural scafé of H3,
owing to the derivative expansion conditi¢h3). Hence the

even part of the resolventl4) can be systematically ex-
panded in powers o¥:

il

—Tr(HAVAVAVA)

+Tr(HAVAVAVAVA)
—Tr(HAVAVAVAVAVA)+ - - -
(18

where the free propagatdk is

1

A=—"T.
—V24+m2—72

(19

The trace in Eq(18) involves a matrix trace over the Dirac

indices, a trace over the internal isospin indices, and a func-

PHYSICAL REVIEW D67, 045013 (2003

for a given ordey, as given by repeated application of the
above identity, noting tha¥/(x) itself already involves one
derivative ofU.

The leading term in the derivative expansion involves
three factors oW from the first term in Eq(18). This corre-
sponds to all factors of pulled out, withA having no action
on them[corresponding to the first term in E¢RO)]:

1 (3)
i,
even

= | el
167T( m2_22)5/2f

XTr(Uauto,uguh).

—Tr(HAVAVAVA)®

(21)

Substituting this fofN)¢ in Eq. (12), we perform the con-
tour integral as a sum over Matsubara modes, and find the
finite T contribution at this order of the derivative expansion
to be

(N)P=

< m*T
n== 16 m2+((2n+1)7T)2]°2

xJ d*e*Tr(UaUT9,Ua UM

tional trace. The leading term in this expansion involves

three factors oW, since the Dirac and Isospin traces involv-

ing H and either one or two factors & give zero. Note that
in computing these traces the operatbtsand A act on

everything to the right of them. We thus need to know the

action of A on the perturbatio®v(x). We make use use of
the following operator identity:

1
———V(X)=V(X) ————

—V2+2a? (x) ()—V2+a2
+2(VV(x))-V !
X . - >~ - ~
(—V?+a?)?

+(€2V(x));
(—V?+a?)?

1
+4((?i(3]-V(X))07i(9j (—62—4—3_2)3

. R 1
+4[V(V2V(x))]~VW+ .

a2)3

(20

_ - 37m*T
n==e 2[m?+((2n+1)7wT)?]%2

)<N>0-
(22)

Notice that this leading-order term is simply the zero tem-
perature fermion numbeiN),, multiplied by a temperature
dependent prefactor. In the low temperature limit, this
leading-order term(22) reduces smoothly to the zero tem-
perature fermion numbé&iN), in Eq. (9):

3
(NP (N~ \ S T5e ™ (Nt (29

Here we have used the general low temperature expansion

[

1

Tn;m [(2n+1)7T)?>+m?]P
s
ml*Zp p_i (ZmT)l*p -
"o T mrp ¢ T @Y

Thus, in the zero temperature limit the leading derivative

where the parentheses around the derivatives on the righexpansion term involving three derivative &f gives the
hand sidgRHS) of Eq. (20) indicate that the gradient opera- entire zero temperature answ@y, with temperature depen-
tor acts onV(x) only. At any given order of the derivative dent corrections that vanish exponentiallyTas:0.

expansion we collect together the required number of deriva- The leading-order expressid2?) is still topological since
tives of the fieldU (all possible combination of derivatives it is simply the zero temperature answer multiplied by a
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smooth function of temperature. The nontopological contri-the first three terms in the derivative expansitB) contrib-
butions to(N), come from the next higher term in the de- utes. Using the operator identit{20) we collect together
rivative expansion which involves five derivativesfThe  terms involving five derivatives off from each of the three

fourth order terms in the derivative expansion give zero belerms in Eq.(18). For the last term involving five factors of
¥(X) this corresponds to taking all thés out with theA’s

cause the functional trace over the propagators turn out to bh J o h For the i d
zero. In fact, all terms with an even number of derivatives avtlgghin%:r ?jgtri(\)/gt?nge.rmosr itn eEélr;g)t}['(v)OCt;T;ncst mz ?ﬁz to
give zero after traces, as must be the case since th? fermi erivativge terms. After a considerable amount of manipula-
number is odd under a “parity” operation under whigh-  tion we have found the following compact expression for this
—X, together withiy(x) — y°y(—x).] At fifth order, each of  fifth order contribution:

®) m8+ 6m?z?
even 25677( m2_ 22)9/2

fd3x6iikTr[{aiuajuT(ﬁu-ﬁakUT)—aiufajU(ﬁuT-ﬁakU)}

4
—4{usUto,Ug Ut (VU-VU +—J d3xe*TI5V-{9,UTo.Ug UTVU
{ i j k ( }] 25677(m2—22)7’2 [ { i j k

—-3,UauTaUVUT —49{UgUT (VU VU —UgUT(VU-VaUN}-6a,{UT3,U(VU'-V4U)
—UT9,U(VaUT-VU)}—105{Us;UT9UV2UT-UT9,UUTV2U}]. (25)
In obtaining Eq.(25) we have used the following identity
T V2U4UT9,UgUT-V2UT9UgUT9U]=—-Tr{U4UT9,UaUT(VUT-VU)—UT4U4UTeU(VU-VUT)]

which can be easily proved using the unitarity df the cyclicity of the trace and the fact th&tU!-VU=(Vo Vo
+V a2 Va?)l, whereU is parametrized as in Eg7).

From Eq.(25) we see that the fifth-order term in the even part of the resolvent contains two types of contributions: first,
those that cannot be expressed as a total derivétiesfirst two termy and second those which are total derivatives. The total
derivative terms go to zero after doing the spatial integrals. The remaining terms {83 @re clearly nontopological and
cannot be expressed in terms of the algebraic structure of the winding number density9 Ehese terms give a nonzero
contribution to the spatial integral and depend sensitively on the profile of thelfjetdt just on the asymptotic behavior of
U. Substituting the fifth-order resolvent expressi@®) into the general expressiqi2) for the finite temperature fermion
number, it is a simple matter to evaluate thimtegral. This gives the fifth order contribution to the finftenduced fermion
number:

* 6__ 4 2
(N>(T5)=—T 2 m°—6m*((2n+1)=T)

2. J5erTmi s (2N l)ﬂ)z]glzf d3xe* T {a;U9;UT (VU -V uh—auTsu(VUT- Vo U)}

—4{Ug,UT9,UaUT(VU-VUN]]. (26)

Putting everything together the finite temperature induced fermion nuthberof fermions coupled to a chiral field, up to
fifth order in the derivative expansion, is the sum of E@®) and (26):

)

N _( S 3mm*T )
(N)r= n=== 2[m?+((2n+1)wT)?]%?) 2472

fd3XeiikTr(uaiuTajuakuT)

( ” mé—6m*((2n+1)7T)?
T
n== 256m[m2+ ((2n+1)7T)2]92

fd3XeiJkTr[{aiuajuT(ﬁu-ﬁakuT)—aiu*ajU(ﬁuT~ﬁaKU)}

—-4{UgUT9,UaUT(VU-VUN}]+- - -. (27)

This is the main result of this paper. The first term is proportional to(tiygologica) winding number(9), and as shown in
Egs.(22), (23), the temperature dependent prefactor smoothly reduces tgpaurseexponentially decaying correctiores T

—0, and we recover the well-known zero temperature answer that the fermion number is equal to the winding number of the
background fieldU. The second set of terms in ER7) (coming from(N>(T5)), are clearly nontopological. A nontrivial
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consistency check is that this nontopological contribution must vanish iith@ limit, since theT=0 fermion number is
topological and comes entirely from the third-order derivative expansion term. This is shown as follows: using the low
temperature expansid4), the T dependent prefactor of the nontopological piece in(E@) behaves a&eeping leading and
next-to-leading terms

oo

mé—6m*((2n+1)7T)?
n==e 256w m?+((2n+1)7T)?]%2

oo 2 m-8 T'(4) _(2mn*7’2e7m+m _[m® T3 _(2mT)*5’267m,T+._.
256m 27 T(912  mI(9/2) 27 T(712)  mI(7/2)
2mT m T
~\—| ———|1-6=+---|e ™. (28
™ | 38407 T4 m

The important thing to note here is that the leading constanmi(E) in Eq. (4). Thus the finite temperature corrections must
pieces cancel, leaving the leading contribution as an expdse nontopological in this model. We have given an analytic
nentially suppressed term which vanishesTass0. This  calculation that confirms this numerical expectation and
should be contrasted with the low temperature limit of themoreover yields the precise compact fofRv) of the next
prefactor of the third order term in E€R2), where a constant order in the derivative expansion for the fermion number at
term survives, yielding the winding number, as in E2Q). finite temperature. Our calculation of the finifeinduced
The cancellation in Eq28) of the leading constant pieces in fermion number was done in the derivative expansion limit
the prefactor of the fifth order term in ER7) means that which assumes that the spatial derivatives of the background
this fifth order contributionwhich is nontopologicalto the  field are much smaller than the fermion mass scale in the
fermion number vanishes at=0. This is a stringent check theory. A nontrivial consistency check on our result is that
on the fact that the zero temperature fermion number ishe nontopological finitel contribution, coming from the
known to be topological. We stress that this cancellation idifth order in the derivative expansion, has a prefactor that
highly nontrivial because the compact fifth order expressiorvanishes exponentially in thE—0 limit.

(26) comes about by combining three different terms in the An interesting implication of our result is for the

fifth order of the derivative expansidis). SU, (2) X SU(2) hybrid chiral bag model of the nucleon.
This model consists of quarks confined in a three dimen-
V. CONCLUSIONS AND DISCUSSION sional spherical bag, of radius R, with appropriate boundary

o o ) conditions so that the quark current vanishes outside the bag,
We have presented an explicit derivative expansion comansyring confinemeri3,13. Inside the bag the quarks are

putation of the finite temperature corrections to the inducedree and at the bag surface they obey the chiral boundary
fermion number for fermions coupled to a static(@lchiral  ~ondition

background. This calculation illustrates the splitting of the
induced fermion number into a zero temperature piece,
which is topological(here it is the winding number of the
chiral field), and a finite temperature correction which is ) ] “ )
nontopological. That the finitd induced fermion number WhereW is the quark field ana is the unit normal vector at
will have a nontopological contribution was argued on gen{he bag boundary. From the point of view of inside the bag,
eral grounds irf17,18 where sigma models in ({#1) and the parametep is S|_rr_1ply a _bounda_ry cond_ltlon parameter.
(2+1) dimensions were analyzed. It was shown in that geThe boundary conditioi29) is consistent with chiral sym-
nerically there exist nontopological contributions to the in-Metry in the sense that it ensures that the axial vector current
duced fermion number, except for very special background® continuous across the bag surfac_e. Goldstone and Jaffe
fields for which the Dirac Hamiltonian has a quantum me-computed the zero temperature fermion number Witk 3
chanical SUSY relating the positive and negative energyluarksinsidethe bag[3]

spectra. The Dirac spectrum in the presence of a “hedgehog”
chiral background has been calculated numericalli 25

and clearly shows the absence of any quantum mechanical
SUSY, as well as the sensitive dependence of the spectrum
on the scale of the background. Since the fermion spectrumhe first term is simply the contribution of the valence
is not symmetric and is sensitive to the scale of the backguarks and the fractional piece comes from the contribution
ground(i.e., the length scale of the hedgehog profile func-of the polarized Dirac sea. This polarization arises because
tion), the finite T corrections must also be sensitive to thisthe quark spectrum differs from the free spectrum owing to
scale because of the presence of the Fermi weighting factahe nontrivial boundary conditiof29). The topological na-

[iy-n+exp(i 7-NY°0) 1% |pag boundary™ O (29)

1.
60— =sin 26

5 . (30)

1
Bin(6)=1- —
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ture of this zero temperature fermion number is illustrated byture induced fermion number is also nontopological. This
the fact that Eq(30) does not depend on the bag radRis  follows from the fact that the detailed quark spectrum, with
In the hybrid chiral quark bag modgB,13], on the out- the boundary conditiof29), is sensitive to the bag radils
side of the bag the quarks are coupled to me®kyrme  This can be deduced from the explicit solutions in a grand
fields, which are usually taken to be spherically symmetricspin basigsee[11] for a phase shift analysis of the related
with the pseudoscalar pion fields in Ed8) being in the external problem with boundary conditid@9)]. Now sup-

“hedgehog ansatz,’s=r 6(r). Outside the bag the quarks Pose we keep the identificatiofi= 6(R) in order to ensure

are coupled to a chiral field exactly as in the Lagrangin  that the zero temperature cancellation occurs. Then we see
So the induced fermion number comming from the regionmmediately that this cancellation cannot persist at finite
outsidethe bag can be calculated by computing the spacéemperature—this is because we always have the freedom to
integra| in Eq(g), using the hedgehog ansatz fdr from R modlfy the profile functiorﬂ(r) in the external region, with-

to infinity [3]. This gives out changing its value at=R. This will have no effect on

the contribution from inside the bag because we have not
changedd [which is equal tod(R)], and we have not
changedR. On the other hand, we see from EJ7) that the
contribution from outside the bag does change. Therefore,
The topological nature of this contribution to the zero tem-the fractional parts of the internal and external contributions
perature fermion number is illustrated by the fact that Eqto the finite temperature fermion number cannot cancel.

(31 only depends on the boundary values of the background Thus, at finite temperature, the baryon number of the hy-
field, not on its detailed shape. Next, the inside and outsidérid chiral bag is no longer unity for arbitrary configurations
regions are joined by identifying the boundary condition pa-of the chiral fieldU. Physically, this says that the thermal
rameterd with the value of the hedgehog profile field at the expectation valug3) of the baryon number differs from its
bag boundaryf= 6(R). Then combining Eq430) and(31)  topological zero temperature value ofvthich is a tempera-

we observe that the fractional parts of E¢30) and (31) ture independent vacuum polarization efjetue to the ther-
cancel, leaving the total fermion number of this hybrid chiralmal occupation of excited quark stat@ghich is a tempera-
bag equal to one, the baryon numb&}. One can thus model ture dependent plasma response effecThe finite

the nucleon as a chiral bag defect in a Skyrme backgroundemperature corrections are nontopological because they are
Clearly, this cancellation depends crucially on the topologi-more sensitive to the details of the quark spectrum, which in
cal nature of the induced fermion number, both inside andurn are highly sensitive to the precise form of the chiral
outside the bag. background.

We now ask whether this cancellation persists at nonzero Finally, we mention that it would be interesting to inves-
temperature. From our results in this paper it is clear that théigate these issues analytically in the simpler cases of the
contribution from outside the bag, where the quarks arg1+1)- and (2+1)-dimensional hybrid bags, where exact
coupled to a chiral field, will be nontopological at nonzero analytic information is available for the quark spectrum in-
temperature. The fifth-order term in E@7), when inte- side the bad27,2§.
grated over the external region froR to spatial infinity,
clearly yields a temperature dependent contribution that is
highly sensitive to the details of the profile functiaigr)
appearing in the hedgehog fidlj and not just to the bound- We thank the U. S. Department of Energy for support
ary valued(R). On the inside of the bag, the finite tempera- through grant DE-FG02-92ER40716.

BOUF% O(R)— %sin 20(R)|. (31
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