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Finite temperature induced fermion number for quarks in a chiral field

Gerald V. Dunne and Kumar Rao
Department of Physics, University of Connecticut, Storrs, Connecticut 06269-3046

~Received 16 October 2002; published 27 February 2003!

We compute the finite temperature correction to the induced fermion number for fermions coupled to a static
SU~2! chiral background, using the derivative expansion technique. At zero temperature the induced fermion
number is topological, being the winding number of the chiral background. At finite temperature, however,
higher order terms in the derivative expansion give nontopological corrections to the winding number. We use
this result to show that the standard cancellation of the fractional parts of the fermion number inside and
outside the bag in an SU~2! x SU~2! hybrid chiral bag model of the nucleon does not occur at nonzero
temperature.
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I. INTRODUCTION

When second quantized fermions interact with a class
background field with a nontrivial topology~e.g, solitons,
vortices, monopoles, Skyrmions, etc.! the resulting quantum
states of the system can possess fractional eigenvalues.
intriguing phenomenon, known as fermion number fractio
ization, has applications ranging from particle, nuclear a
atomic physics to condensed matter systems@1–8#. At zero
temperature, the fermion number of the vacuum is a to
logical quantity~up to spectral flow effects!, and is related to
the spectral asymmetry of the relevant Dirac operator, wh
counts the difference between the number of positive
negative energy states of the fermion spectrum. Rigor
mathematical results, such as index theorems and Levins
theorem, show that the fractional part of the vacuum ferm
number is a topological invariant; i.e., it depends only on
asymptotic values of the background field, and is invari
under local deformations of the background@6,9–11#. This
topological character of the fermion number is important
various applications in model field theories, such as soli
models for the nucleon since it allows the fermion numbe
be kept fixed in a variational calculation that minimizes t
energy@12–14#. However, at finite temperature, the induc
fermion number is generically nontopological, and moreo
is not a sharp observable@15–18#. Several explicit examples
of finite temperature fermion number in kink@15,19#, sigma
model @15,17# and monopole@15,20,21# backgrounds have
been analyzed in detail. In this paper, we compute the fi
temperature nontopological corrections to the induced
mion number for a (311) dimensional SU~2! chiral back-
ground, and show explicitly that the finite temperature c
rection is nontopological.

The model of second quantized fermions chirally coup
to classical, heavy scalar and pseudoscalar fields has a
cations in particle and nuclear physics, where it is used
models to describe the low energy spectrum of QCD suc
in chiral quark soliton models of hadrons@12,22,23# and in
the hybrid chiral bag model of the nucleon@3,13#. At zero
temperature, the induced fermion number of fermions in
acting with a static chiral field coincides with the windin
number of the field, and this result may be interpreted
terms of a topological current density. Physically, the top
0556-2821/2003/67~4!/045013~8!/$20.00 67 0450
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logical zero temperature contribution to the fermion numb
corresponds to the virtual dipole pairs of vacuum polari
tion, which do not live long enough to thermalize. The no
topological finite temperature corrections correspond to
realqq̄ pairs in the thermal plasma which are sensitive to
details of the single particle spectrum.

This paper is organized as follows. In Sec. II, we defi
the finite T induced fermion number and review why it
generically nontopological. In Sec. III we use the derivati
expansion to compute higher orderT dependent correction
to the winding number of the chiral field. As a nontrivia
check we show that it vanishes in theT→0 limit. We con-
clude in Sec. IV and discuss the implications of the existe
of nontopologicalT dependent corrections for the hybrid ch
ral bag model for the nucleon.

II. FINITE TEMPERATURE INDUCED FERMION
NUMBER

The induced fermion number is an expectation value
the second quantized fermion number operator,N
5 1

2 *dx@C†,C#. For a given static classical backgroun
field configuration, the second quantized fermion field ope
tor C can be expanded in a complete set of states of
single particle Dirac HamiltonianH. At zero temperature, the
fermion number is a vacuum expectation value^N&0
[^0uNu0&, and by a standard Fock space calculation@6# is
related to the spectral asymmetry of the Dirac Hamiltonia

^N&052
1

2
~spectral asymmetry!

52
1

2E2`

`

dEs~E!sgn~E!. ~1!

Heres(E) is the spectral function, or density of states, of t
Dirac HamiltonianH:

s~E!5
1

p
Im TrS 1

H2E2 i e D . ~2!

Thus the fermion number of the vacuum^N&0 is essentially
the difference between the number of positive and nega
©2003 The American Physical Society13-1
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energy states of the Dirac spectrum. When fermions inte
with topologically nontrivial backgrounds~solitons, vortices,
monopoles, skyrmions!, or are constrained by certain boun
ary conditions~e.g., in the chiral bag!, the spectral asymme
try can be nonintegral, because of distortions in the Dirac
@4–6#.

At nonzero temperature,T, the induced fermion number i
a thermalexpectation value:

^N&T5
Tr~e2bHN!

Tr ~e2bH!

52
1

2E2`

`

dEs~E!tanhS bE

2 D ~3!

where b[1/T. This finite temperature expression~3! re-
duces smoothly to the zero temperature expression~1! in the
zero temperature limitb→`. The expression~3! also em-
phasizes that the role of the temperature is simply to de
mine the probability of each single-particle energy level b
ing occupied. The finite temperature induced fermi
number^N&T splits naturally into a zero temperature pie
^N&0, given by Eq.~1! and a temperature dependent corre
tion

^N&T5^N&01E
2`

`

dEs~E!sgn~E!n~ uEu!. ~4!

Heren(E) is the Fermi-Dirac distribution function

n~E!5
1

ebE11
~5!

and we have used the simple identity tanh(bE/2)51
22n(E). Thus the temperature enters only in the seco
term of Eq.~4! via the Fermi-Dirac distributionn(E). While
^N&0 is topological, the finite temperature correction to t
induced fermion number, being dependent on the Fe
weighting factorn(uEu), is more sensitive to the details o
the fermion spectrum, which in turn depends on the prec
shape of the background field. Therefore, the generic si
tion is that the finite temperature correction is nontopolo
cal. However, in certain special cases, when the backgro
is such that the Dirac Hamiltonian has a quantum mechan
SUSY, then the odd part of the spectral functions(E)
@which is what is needed in Eq.~4!# is itself topological, and
therefore the finite temperature correction is also topolog
even though it is temperature dependent. The simplest c
where this happens are for a kink background in 111 di-
mensions@15,19#, or for a monopole background@20,21#.

The physical interpretation of the separation in Eq.~4! is
the following @15#. The zero temperature fermion numb
^N&0 represents the vacuum polarization of the fermions
the presence of the background; it is temperature indep
dent because the virtual dipoles do not live long enough
come to thermal equilibrium. The temperature depend
correction corresponds to the plasma response of the sy
in the presence of the background and is thus sensitive to
04501
ct
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details of the spectrum. The finite temperature induced
mion number~and the rms fluctuations of the fermion num
ber! have been computed for sigma model backgrounds
(111) and (211) dimensions@15–18#. In this paper we
consider second quantized fermions chirally coupled to
SU~2! background in (311) dimensions.

III. INDUCED FERMION NUMBER IN A CHIRAL FIELD

A. The model

Consider an isodoublet of fermions interacting in
SU(2)L3SU(2)R chiral invariant way with a classical, stati
chiral background in (311) dimensions

L5 i C̄gm]mC2C̄~s1 ig5tW•pW !C

5 i C̄gm]mC2mC̄exp~ ig5tW•fW !C. ~6!

Here s is a scalar field andpW is a triplet of pseudoscala
Goldstone~pion! fields. The Pauli matrices,tW , are the gen-
erators of SU~2!, andm is the mass scale in the theory. Th
background fields (s,pW ) are constrained to lie on the ‘‘chira
3-sphere,’’ s21pW •pW 5m2, and thus they can be param
etrized by a unitary matrixU as

U5exp~ i tW•fW !5
1

m
~s1 i tW•pW !. ~7!

Thus

s5m cos~ ufW u!

pW 5m sin~ ufW u!p̂ ~8!

where the hat denotes a unit vector in isospin space.
model~6! is used in various quark-soliton models of baryo
wherein the baryon is described as a bound state with
quarks trapped by the soliton of the classical chiral fie
@12,22#. The model~6! also finds applications in extension
of the MIT bag model of the nucleon, to incorporate chir
symmetry; in these ‘‘hybrid’’ chiral bag models@3,13#,
quarks confined inside a boundary are chirally coupled
scalar and pseudoscalar fields~mesons! at the bag boundary
with appropriate boundary conditions to maintain continu
of the axial vector current.

At zero temperature, the induced fermion number for
model ~6! can be computed using the derivative expans
technique and is given by@2,6,22,24#

^N&05
1

24p2E d3xe i jkTr~] iUU†] jUU†]kUU†!. ~9!

Thus, the zero temperature induced fermion number is s
ply the winding number of the group elementU(x). The
winding number is a topological invariant, determined by t
asymptotic behavior ofU(x). Invoking Lorentz invariance,
the topological charge density~the integrand of̂N&0) can be
interpreted as the zeroth component of a current density
3-2
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Bm5
1

24p2
emnrsTr~]nUU†]rUU†]sUU†!. ~10!

This current Bm is often called a topological current becau
it is conserved,]mBm50, without use of the equations o
motion. In fact, the current density Bm in Eq. ~10! has cor-
rections involving higher order derivatives of the fieldU.
However, these higher derivative corrections are total der
tives and thus do not contribute to an integrated quan
such as the fermion number^N&0 @5,22#. At nonzero tem-
perature, experience with similar models in lower dime
sions @16,18# suggests that the fermion number density0
receives higher order derivative corrections that arenot total
derivatives and that are nontopological. This expectation
be confirmed by an explicit calculation in the next Sec.
the (311)-dimensional chiral quark model~6!. This appear-
ance of nontopological corrections at finite temperature
completely consistent with the fact that the Dirac Ham
tonian for this system has no quantum mechanical SU
Indeed, numerical results@12,25# for the spectrum of fermi-
ons in the background of an SU~2! chiral field U, in the
‘‘hedgehog’’ ansatz, show that the quark energy levels
highly sensitive to the shape~in particular, the length scale!
of the hedgehog profile function. By the arguments of
previous section, this means that the finite temperature
rections in Eq.~4! are necessarily nontopological.

B. The derivative expansion calculation

To calculate the induced fermion number at nonzero te
perature we use thei e prescription in the spectral density~2!
to rewrite ^N&T as a contour integral using the Dirac reso
vent

R~z![TrS 1

H2zD . ~11!

Here z is an arbitrary complex number, andH is the single
particle Dirac Hamiltonian corresponding to Eq.~6! in the
fermion sector. Thus

^N&T52
1

2EC

dz

2p i
TrS 1

H2zD tanhS bz

2 D ~12!

whereC is the contour (2`1 i e,1`1 i e) and (1`2 i e,
2`2 i e) in the complex energy plane. For a Hermitia
HamiltonianH, the poles and branch cuts of the resolvent
on the real axis. On the other hand, the Matsubara polezn
5(2n11)ipT of the tanh(bz/2) function lie on the imagi-
nary axis. Thus we have two equivalent representations
^N&T : deforming the contourC around the poles and cuts o
R(z) leads to an integral representation, and deformingC
around the discretezn leads to a summation representatio
The integral representation is just the familiar Sommerfe
Watson transform of the summation representation. Thus
computational strategy is:

~i! Obtain an expression for the Dirac resolventR(z). In
most cases this requires an approximation since the D
equation in the presence of complicated backgrounds
04501
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rarely be solved exactly, especially in higher dimensions
this paper we use the derivative expansion to obtain an
proximate expression forR(z).

~ii ! Insert the resulting expression forR(z) into Eq. ~12!
to obtain an expression for^N&T either as an integral, or as
sum over the Matsubara frequencieszn .

We stress that these two steps are independent. In par
lar, the derivative expansion calculation has nothing to
with the temperature—it is simply a means to obtain a
proximate information about the spectral properties of
Hamiltonian in the presence of the static background.

In the derivative expansion approximation@5,24,26# one
assumes that derivatives of the background field~here the
chiral fieldU) are much smaller than the mass scalem in the
theory,

u¹W Uu!m. ~13!

Since we are considering a static background configura
all these derivatives are spatial derivatives. So the ba
ground field is assumed to be approximately constant on
length scale of the fermion Compton wavelength. First, n
that to computê N&T we need theodd part of the spectral
density s(E), or equivalently theevenpart ~in z) of the
resolventR(z). The even part of the resolvent~11! can be
written as

FTrS 1

H2zD G
even

5TrS H
1

H22z2D . ~14!

Our strategy is to develop a systematic derivative expans
for this even part of the resolvent. From the Lagrangian~6!,
the corresponding Dirac Hamiltonian for the fermions in t
chiral backgroundU is

H52 i I ^ g0gW •¹W 1mcos~ ufW u!I ^ g01 imtW•p̂

^ g0g5sin~ ufW u!

52 i I ^ s1
^ s i] i1

m

2
@~U1U†! ^ s3

^ I

1 i ~U2U†! ^ s2
^ I # ~15!

where we have used the definitions~7! and ~8! and I is the
232 identity matrix. The first term is the kinetic energy o
the fermions, the second is the chiral invariant fermio
meson interaction. We choose the gamma matrix conven
as in@6#: g05s3

^ I ,g i5 is2
^ s i ,g55s1

^ I . The square of
the Hamiltonian~15! is

H25I ^ I ^ I ~2¹W 21m2!1
m

2
@ i ~] iU2] iU

†! ^ s3
^ s i

2~] iU1] iU
†! ^ s2

^ s i #

[H0
21V ~16!

where the interaction termV is
3-3
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V5
m

2
@ i ~] iU2] iU

†! ^ s3
^ s i2~] iU1] iU

†! ^ s2
^ s i #

~17!

andH0
25(2¹W 21m2) is the square of the free Dirac Hami

tonian. SinceV involves one factor ofm and one derivative
of U, it is small compared to the natural scalem2 of H0

2,
owing to the derivative expansion condition~13!. Hence the
even part of the resolvent~14! can be systematically ex
panded in powers ofV:

FTrS 1

H2zD G
even

52Tr~HnVnVnVn !

1Tr~HnVnVnVnVn !

2Tr~HnVnVnVnVnVn !1•••

~18!

where the free propagatorn is

n[
1

2¹W 21m22z2
. ~19!

The trace in Eq.~18! involves a matrix trace over the Dira
indices, a trace over the internal isospin indices, and a fu
tional trace. The leading term in this expansion involv
three factors ofV, since the Dirac and Isospin traces invol
ing H and either one or two factors ofV give zero. Note that
in computing these traces the operatorsH and n act on
everything to the right of them. We thus need to know t
action of n on the perturbationV(x). We make use use o
the following operator identity:

1

2¹W 21a2
V~x!5V~x!

1

2¹W 21a2

12„¹W V~x!…•¹W
1

~2¹W 21a2!2

1„¹W 2V~x!…
1

~2¹W 21a2!2

14„] i] jV~x!…] i] j

1

~2¹W 21a2!3

14@¹W „¹W 2V~x!…#•¹W
1

~2¹W 21a2!3
1•••

~20!

where the parentheses around the derivatives on the r
hand side~RHS! of Eq. ~20! indicate that the gradient opera
tor acts onV(x) only. At any given order of the derivative
expansion we collect together the required number of der
tives of the fieldU ~all possible combination of derivative
04501
c-
s

e

ht-

a-

for a given order!, as given by repeated application of th
above identity, noting thatV(x) itself already involves one
derivative ofU.

The leading term in the derivative expansion involv
three factors ofV from the first term in Eq.~18!. This corre-
sponds to all factors ofV pulled out, withn having no action
on them@corresponding to the first term in Eq.~20!#:

FTrS 1

H2zD G
even

(3)

52Tr~HnVnVnVn !(3)

5
2m4

16p~m22z2!5/2E d3xe i jk

3Tr~U] iU
†] jU]kU

†!. ~21!

Substituting this for̂ N&T in Eq. ~12!, we perform the con-
tour integral as a sum over Matsubara modes, and find
finite T contribution at this order of the derivative expansi
to be

^N&T
(3)5S (

n52`

`
m4T

16p@m21„~2n11!pT…2#5/2D
3E d3xe i jkTr~U] iU

†] jU]kU
†!

5S (
n52`

`
3pm4T

2@m21„~2n11!pT…2#5/2D ^N&0 .

~22!

Notice that this leading-order term is simply the zero te
perature fermion number̂N&0, multiplied by a temperature
dependent prefactor. In the low temperature limit, th
leading-order term~22! reduces smoothly to the zero tem
perature fermion number̂N&0 in Eq. ~9!:

^N&T
(3);^N&02Apm3

2T3
e2m/T^N&01•••. ~23!

Here we have used the general low temperature expans

T (
n52`

`
1

@„~2n11!pT…21m2#p

;
m122p

2Ap

GS p2
1

2D
G~p!

2
~2mT!12p

mG~p!
e2m/T1•••. ~24!

Thus, in the zero temperature limit the leading derivat
expansion term involving three derivative ofU gives the
entire zero temperature answer~9!, with temperature depen
dent corrections that vanish exponentially asT→0.

The leading-order expression~22! is still topological since
it is simply the zero temperature answer multiplied by
3-4
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smooth function of temperature. The nontopological con
butions to^N&0 come from the next higher term in the d
rivative expansion which involves five derivatives ofU @The
fourth order terms in the derivative expansion give zero
cause the functional trace over the propagators turn out t
zero. In fact, all terms with an even number of derivativ
give zero after traces, as must be the case since the fer
number is odd under a ‘‘parity’’ operation under whichxW→
2xW , together withc(xW )→g5c(2xW ).# At fifth order, each of
04501
i-

-
be
s
ion

the first three terms in the derivative expansion~18! contrib-
utes. Using the operator identity~20! we collect together
terms involving five derivatives ofU from each of the three
terms in Eq.~18!. For the last term involving five factors o
V(x) this corresponds to taking all theV’s out with then ’s
having no effect on them. For the first two terms we need
go to higher derivative terms in Eq.~20! to collect the five
derivative terms. After a considerable amount of manipu
tion we have found the following compact expression for t
fifth order contribution:
: first,
otal

o
f

o

er of the
l

FTrS 1

H2zD G
even

(5)

5
m616m4z2

256p~m22z2!9/2E d3xe i jkTr@$] iU] jU
†~¹W U•¹W ]kU

†!2] iU
†] jU~¹W U†

•¹W ]kU !%

24$U] iU
†] jU]kU

†~¹W U•¹W U†!%#1
m4

256p~m22z2!7/2E d3xe i jkTr@5¹W •$] iU
†] jU]kU

†¹W U

2] iU] jU
†]kU¹W U†%24] i$U] jU

†~¹W ]kU•¹W U†!2U] jU
†~¹W U•¹W ]kU

†!%26] i$U
†] jU~¹W U†

•¹W ]kU !

2U†] jU~¹W ]kU
†
•¹W U !%210] i$U] jU

†]kU¹W 2U†2U†] jU]kU
†¹W 2U%#. ~25!

In obtaining Eq.~25! we have used the following identity

Tr@¹W 2U] iU
†] jU]kU

†2¹W 2U†] iU] jU
†]kU#52Tr@U] iU

†] jU]kU
†~¹W U†

•¹W U !2U†] iU] jU
†]kU~¹W U•¹W U†!#

which can be easily proved using the unitarity ofU, the cyclicity of the trace and the fact that¹W U†
•¹W U5(¹W s•¹W s

1¹W pa
•¹W pa)I , whereU is parametrized as in Eq.~7!.

From Eq.~25! we see that the fifth-order term in the even part of the resolvent contains two types of contributions
those that cannot be expressed as a total derivative~the first two terms!, and second those which are total derivatives. The t
derivative terms go to zero after doing the spatial integrals. The remaining terms in Eq.~25! are clearly nontopological and
cannot be expressed in terms of the algebraic structure of the winding number density in Eq.~9!. These terms give a nonzer
contribution to the spatial integral and depend sensitively on the profile of the fieldU, not just on the asymptotic behavior o
U. Substituting the fifth-order resolvent expression~25! into the general expression~12! for the finite temperature fermion
number, it is a simple matter to evaluate thez integral. This gives the fifth order contribution to the finiteT induced fermion
number:

^N&T
(5)52T (

n52`

`
m626m4

„~2n11!pT…2

256p@m21„~2n11!pT…2#9/2E d3xe i jkTr@$] iU] jU
†~¹W U•¹W ]kU

†!2] iU
†] jU~¹W U†

•¹W ]kU !%

24$U] iU
†] jU]kU

†~¹W U•¹W U†!%#. ~26!

Putting everything together the finite temperature induced fermion number^N&T of fermions coupled to a chiral field, up t
fifth order in the derivative expansion, is the sum of Eqs.~22! and ~26!:

^N&T5S (
n52`

`
3pm4T

2@m21„~2n11!pT…2#5/2D 1

24p2E d3xe i jkTr~U] iU
†] jU]kU

†!

2S T (
n52`

`
m626m4

„~2n11!pT…2

256p@m21„~2n11!pT…2#9/2D E d3xe i jkTr@$] iU] jU
†~¹W U•¹W ]kU

†!2] iU
†] jU~¹W U†

•¹W ]kU !%

24$U] iU
†] jU]kU

†~¹W U•¹W U†!%#1•••. ~27!

This is the main result of this paper. The first term is proportional to the~topological! winding number~9!, and as shown in
Eqs.~22!, ~23!, the temperature dependent prefactor smoothly reduces to one~plus exponentially decaying corrections! asT
→0, and we recover the well-known zero temperature answer that the fermion number is equal to the winding numb
background fieldU. The second set of terms in Eq.~27! ~coming from ^N&T

(5)), are clearly nontopological. A nontrivia
3-5
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consistency check is that this nontopological contribution must vanish in theT→0 limit, since theT50 fermion number is
topological and comes entirely from the third-order derivative expansion term. This is shown as follows: using t
temperature expansion~24!, theT dependent prefactor of the nontopological piece in Eq.~27! behaves as~keeping leading and
next-to-leading terms!

2T (
n52`

`
m626m4

„~2n11!pT…2

256p@m21„~2n11…pT!2#9/2

;2
m4

256p F7m2S m28

2Ap

G~4!

G~9/2!
2

~2mT!27/2

mG~9/2!
e2m/T1••• D 26S m26

2Ap

G~3!

G~7/2!
2

~2mT!25/2

mG~7/2!
e2m/T1••• D G

;A2mT

p S m

3840pT4D S 126
T

m
1••• De2m/T. ~28!
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The important thing to note here is that the leading cons
pieces cancel, leaving the leading contribution as an ex
nentially suppressed term which vanishes asT→0. This
should be contrasted with the low temperature limit of t
prefactor of the third order term in Eq.~22!, where a constan
term survives, yielding the winding number, as in Eq.~23!.
The cancellation in Eq.~28! of the leading constant pieces
the prefactor of the fifth order term in Eq.~27! means that
this fifth order contribution~which is nontopological! to the
fermion number vanishes atT50. This is a stringent check
on the fact that the zero temperature fermion numbe
known to be topological. We stress that this cancellation
highly nontrivial because the compact fifth order express
~26! comes about by combining three different terms in
fifth order of the derivative expansion~18!.

IV. CONCLUSIONS AND DISCUSSION

We have presented an explicit derivative expansion co
putation of the finite temperature corrections to the indu
fermion number for fermions coupled to a static SU~2! chiral
background. This calculation illustrates the splitting of t
induced fermion number into a zero temperature pie
which is topological~here it is the winding number of th
chiral field!, and a finite temperature correction which
nontopological. That the finiteT induced fermion numbe
will have a nontopological contribution was argued on ge
eral grounds in@17,18# where sigma models in (111) and
(211) dimensions were analyzed. It was shown in that
nerically there exist nontopological contributions to the
duced fermion number, except for very special backgrou
fields for which the Dirac Hamiltonian has a quantum m
chanical SUSY relating the positive and negative ene
spectra. The Dirac spectrum in the presence of a ‘‘hedgeh
chiral background has been calculated numerically in@12,25#
and clearly shows the absence of any quantum mecha
SUSY, as well as the sensitive dependence of the spec
on the scale of the background. Since the fermion spect
is not symmetric and is sensitive to the scale of the ba
ground ~i.e., the length scale of the hedgehog profile fun
tion!, the finite T corrections must also be sensitive to th
scale because of the presence of the Fermi weighting fa
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n(E) in Eq. ~4!. Thus the finite temperature corrections mu
be nontopological in this model. We have given an analy
calculation that confirms this numerical expectation a
moreover yields the precise compact form~27! of the next
order in the derivative expansion for the fermion number
finite temperature. Our calculation of the finiteT induced
fermion number was done in the derivative expansion lim
which assumes that the spatial derivatives of the backgro
field are much smaller than the fermion mass scale in
theory. A nontrivial consistency check on our result is th
the nontopological finiteT contribution, coming from the
fifth order in the derivative expansion, has a prefactor t
vanishes exponentially in theT→0 limit.

An interesting implication of our result is for th
SUL(2)3SUR(2) hybrid chiral bag model of the nucleon
This model consists of quarks confined in a three dim
sional spherical bag, of radius R, with appropriate bound
conditions so that the quark current vanishes outside the
ensuring confinement@3,13#. Inside the bag the quarks ar
free and at the bag surface they obey the chiral bound
condition

@ igW •n̂1exp~ i tW•n̂g5u!#Cubag boundary50 ~29!

whereC is the quark field andn̂ is the unit normal vector a
the bag boundary. From the point of view of inside the b
the parameteru is simply a boundary condition paramete
The boundary condition~29! is consistent with chiral sym-
metry in the sense that it ensures that the axial vector cur
is continuous across the bag surface. Goldstone and J
computed the zero temperature fermion number withNc53
quarksinside the bag@3#

Bin~u!512
1

p Fu2
1

2
sin 2uG . ~30!

The first term is simply the contribution of the valenc
quarks and the fractional piece comes from the contribut
of the polarized Dirac sea. This polarization arises beca
the quark spectrum differs from the free spectrum owing
the nontrivial boundary condition~29!. The topological na-
3-6
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ture of this zero temperature fermion number is illustrated
the fact that Eq.~30! does not depend on the bag radiusR.

In the hybrid chiral quark bag model@3,13#, on the out-
side of the bag the quarks are coupled to meson~Skyrme!
fields, which are usually taken to be spherically symmet
with the pseudoscalar pion fields in Eqs.~8! being in the
‘‘hedgehog ansatz,’’fW 5 r̂u(r ). Outside the bag the quark
are coupled to a chiral field exactly as in the Lagrangian~6!.
So the induced fermion number comming from the reg
outside the bag can be calculated by computing the sp
integral in Eq.~9!, using the hedgehog ansatz forU, from R
to infinity @3#. This gives

Bout5
1

p Fu~R!2
1

2
sin 2u~R!G . ~31!

The topological nature of this contribution to the zero te
perature fermion number is illustrated by the fact that E
~31! only depends on the boundary values of the backgro
field, not on its detailed shape. Next, the inside and outs
regions are joined by identifying the boundary condition p
rameteru with the value of the hedgehog profile field at th
bag boundary:u5u(R). Then combining Eqs.~30! and~31!
we observe that the fractional parts of Eqs.~30! and ~31!
cancel, leaving the total fermion number of this hybrid chi
bag equal to one, the baryon number@3#. One can thus mode
the nucleon as a chiral bag defect in a Skyrme backgrou
Clearly, this cancellation depends crucially on the topolo
cal nature of the induced fermion number, both inside a
outside the bag.

We now ask whether this cancellation persists at nonz
temperature. From our results in this paper it is clear that
contribution from outside the bag, where the quarks
coupled to a chiral field, will be nontopological at nonze
temperature. The fifth-order term in Eq.~27!, when inte-
grated over the external region fromR to spatial infinity,
clearly yields a temperature dependent contribution tha
highly sensitive to the details of the profile functionu(r )
appearing in the hedgehog fieldU, and not just to the bound
ary valueu(R). On the inside of the bag, the finite temper
,

5
I
0–
m

ev

Re

04501
y

,

n
e

-
.
d
e
-

l

d.
i-
d

ro
e
e

is

ture induced fermion number is also nontopological. T
follows from the fact that the detailed quark spectrum, w
the boundary condition~29!, is sensitive to the bag radiusR.
This can be deduced from the explicit solutions in a gra
spin basis@see@11# for a phase shift analysis of the relate
external problem with boundary condition~29!#. Now sup-
pose we keep the identificationu5u(R) in order to ensure
that the zero temperature cancellation occurs. Then we
immediately that this cancellation cannot persist at fin
temperature—this is because we always have the freedo
modify the profile functionu(r ) in the external region, with-
out changing its value atr 5R. This will have no effect on
the contribution from inside the bag because we have
changedu @which is equal tou(R)], and we have not
changedR. On the other hand, we see from Eq.~27! that the
contribution from outside the bag does change. Theref
the fractional parts of the internal and external contributio
to the finite temperature fermion number cannot cancel.

Thus, at finite temperature, the baryon number of the
brid chiral bag is no longer unity for arbitrary configuration
of the chiral fieldU. Physically, this says that the therm
expectation value~3! of the baryon number differs from its
topological zero temperature value of 1~which is a tempera-
ture independent vacuum polarization effect! due to the ther-
mal occupation of excited quark states~which is a tempera-
ture dependent plasma response effect!. The finite
temperature corrections are nontopological because they
more sensitive to the details of the quark spectrum, which
turn are highly sensitive to the precise form of the chi
background.

Finally, we mention that it would be interesting to inve
tigate these issues analytically in the simpler cases of
(111)- and (211)-dimensional hybrid bags, where exa
analytic information is available for the quark spectrum
side the bag@27,28#.
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